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Stochastic inflation resolves primordial perturbations nonlinearly, probing their probability distribution
deep into its non-Gaussian tail. The strongest perturbations collapse into primordial black holes. In typical
black-hole-producing single-field inflation, the strongest stochastic kicks occur during a period of constant
roll. In this paper, I solve the stochastic constant-roll system, drawing the stochastic kicks from a
numerically computed power spectrum, beyond the usual de Sitter approximation. The perturbation
probability distribution is an analytical function of the integrated curvature power spectrum σ2k and the
second slow-roll parameter ϵ2. With a large ϵ2, stochastic effects can reduce the height of the curvature
power spectrum required to form asteroid mass black holes from 10−2 to 10−3. I compare these results to
studies with the nonstochastic ΔN formalism.
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I. INTRODUCTION

During cosmic inflation, quantum vacuum fluctuations
stretch and grow, forming the seeds of the classical structure
of the late Universe. Studying these fluctuations provides a
glimpse into the quantum nature of gravity and offers insight
into the interplay between quantum and classical physics.
This interplay is made manifest in stochastic inflation [1],
where a classically evolving coarse-grained Friedmann–
Lemaître–Robertson–Walker (FLRW) universe receives ran-
dom kicks from short-wavelength quantum fluctuations.
Combined with the ΔN formalism [2–5], stochastic

inflation describes the super-Hubble fluctuations nonper-
turbatively [6,7]. This is important for primordial black
holes (PBHs) [8,9], a dark matter candidate [10–12]
forming from the rarest, strongest perturbations. Many
recent works [13–40] study the stochastic system, employ-
ing simplifying assumptions to make the computation
manageable or relying on heavy-duty numerics. They show
that the stochastic effects enhance PBH abundance over the
usual Gaussian approximation.
The black-hole-forming inflationary models typically

contain a phase of ultraslow-roll inflation, where the inflaton
field climbs up toward a local maximum in its potential, and
its perturbations grow (see, e.g., [41–44]), followed by a dual
phase of constant-roll inflation when the field rolls down the
other side. The importance of the constant-roll phase was
recently emphasized in [45]. In [46], it was pointed out that
the coarse-grained field experiences the strongest stochastic
motion precisely during constant roll, when the perturbations
amplified by ultraslow roll provide their kicks. It was also

shown that in such a setup, the inflaton’s stochastic motion is
constrained on its classical trajectory and that the stochastic
kicks can be drawn from a precomputed power spectrum
PRðkÞ, computed beyond the de Sitter approximation. This
improves the computation’s accuracy compared with pre-
vious studies.
In this paper, I refine the analysis of [46], solving the

stochastic equations exactly in the pure constant-roll limit.
I present an analytical expression for the probability
distribution of the perturbations, interpolating between a
central Gaussian and an exponential tail, and study the
stochastic trajectories corresponding to a given perturbation
strength. Finally, I discuss the consequences for PBH
formation and compare the results to previous studies.

II. STOCHASTIC INFLATION

I study an inflaton field φ with the canonical action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
∂
μφ∂μφ − VðφÞ

�
; ð1Þ

where g is the metric determinant, R is the curvature scalar,
V is the inflaton potential, and the reduced Planck mass has
been set to 1. In the stochastic formalism, we divide the field
into long and short wavelength parts, φ ¼ ϕþ δϕ, separated
by the coarse-graining scale with Fourier wave number kσ:

ϕ≡
Z
k<kσ

d3k

ð2πÞ2=3 φkðNÞe−ik⃗·x⃗;

δϕ≡
Z
k>kσ

d3k

ð2πÞ2=3 φkðNÞe−ik⃗·x⃗;

kσ ≡ σaH0: ð2Þ*eemeli.tomberg@kbfi.ee
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In each super-Hubble patch, the long-wavelength part
behaves like a local FLRW universe. Above, a is the scale
factor of this universe,H is the Hubble parameter andH0 its
initial value,1 and σ ≪ 1 is a constant.
The long-wavelength part is classical, while the short-

wavelength perturbations are quantum. If we neglect the
latter, the former would follow the standard Friedmann
equations

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0; 3H2 ¼ 1

2
ϕ̇2 þ VðϕÞ; ð3Þ

where dot denotes a derivative with respect to the cosmic
time. However, the evolution of ϕ is also affected by the
short-wavelength modes through the time-dependent kσ:
the short modes are stretched by the expansion of the
universe, and when they outgrow the coarse-graining scale,
they join the background, changing it in a random quantum
kick. The resulting stochastic equations for ϕ read as
(see, e.g., [19,31,46])

ϕ0 ¼ π þ ξϕ; π0 ¼ −ð3 − ϵ1Þ
�
π þ V;ϕðϕÞ

VðϕÞ
�
þ ξπ; ð4Þ

where we have eliminated H, separated the second-order
equation in (3) into two first-order equations by introducing
the field momentum π, and adopted the number of e-folds
of expansion N ≡ ln a as the new time variable. Prime
denotes a derivative with respect to N, and ϵ1 ≡ 1

2
π2 is the

first slow-roll parameter. The ξϕ and ξπ terms provide the
stochastic kicks.
The short-wavelength perturbations live in the local

background, and we evolve them linearly, Fourier mode
by Fourier mode, using the Sasaki–Mukhanov equation.
Owing to linearity, the perturbations are Gaussian. The
mode that is exiting the coarse-graining scale gives the two-
point correlators of the stochastic kicks,

hξϕðNÞξϕðN0Þi ¼ PϕðN; kσÞδðN − N0Þ;
hξπðNÞξπðN0Þi ¼ PπðN; kσÞδðN − N0Þ;
hξϕðNÞξπðN0Þi ¼ PϕπðN; kσÞδðN − N0Þ; ð5Þ

where PXX are the power spectra of the field and momen-
tum perturbations in the spatially flat gauge,

PϕðN; kÞ≡ k3

2π2
jδϕkðNÞj2;

PπðN; kÞ≡ k3

2π2
jδϕ0

kðNÞj2;

PϕπðN; kÞ≡ k3

2π2
δϕkðNÞδϕ0�

k ðNÞ: ð6Þ

Despite appearances, there is only one independent kick at
each time step: the quantum state of the short-wavelength
perturbations is highly squeezed, leading to the strong

correlation ξπ ¼ δϕ0
k

δϕk
ξϕ [23]. Moreover, the kicks are

aligned in a very specific way. To see this, consider the
ratio of the comoving curvature perturbation Rk ¼ δϕk=π
and its derivative in the nonstochastic limit:

R0
k

Rk
¼ δϕ0

k

δϕk
−
π0

ϕ0 : ð7Þ

At super-Hubble scales, Rk freezes to a time-independent
value: R0

k=Rk → 0. In this limit, ξπ=ξϕ ¼ δϕ0
k=δϕk ¼

π0=ϕ0. The momentum and field kicks are proportional
to the momentum and field time derivatives, respectively. In
other words, the stochastic kicks induce only adiabatic
fluctuations along the classical, nonstochastic background
trajectory [46]. This single-clock trajectory determines π as
a function of ϕ, and the second equation in (4) becomes
redundant.
To describe motion along the classical trajectory, I define

the function ϕ̃ as the field value on this trajectory at a given
time N. Let Ñ be the inverse of ϕ̃, that is, the time when a
particular field value is reached, and let π̃ ¼ ϕ̃0 be the
derivative of ϕ̃. Below I will abuse the notation so that, by
default, ϕ̃ is evaluated at the current clock time N, but π̃ is
evaluated at Ñ, and Ñ is evaluated at the current field
value ϕ, so that π̃ is indeed a function of ϕ, as alluded to
above. Switching π to π̃ in the first equation in (4)
corresponds to constraining the stochastic motion onto
the classical trajectory. The equation becomes, term by
term,

dϕ ¼ π̃dN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PϕðN; kσÞdN

q
ξ̂N; ð8Þ

where I switched to finite time steps of length dN and
renormed the noises to have unit variance, hξ̂N ξ̂N0 i ¼ δNN0 .
I will switch between discrete and continuous time when-
ever it is beneficial for clarity.
Before solving Eq. (8), one must first solve π̃ from the

classical trajectory. I emphasize that even though we are left
with a single first-order differential equation (8), the full
nonlinear dynamics of (4) are included through the pre-
solved π̃; the current procedure simply separates the
problem into a classical part for π̃ and a stochastic part
for ϕ. One must also solve PϕðN; kσÞ before using (8).

1Some previous studies used kσ ¼ σaH (see, e.g., [19,31,46]).
I use a constant H0 instead of a time-dependent H so that kσ is a
function of the number of e-folds N ¼ ln a only. This makes the
treatment simpler and more consistent and removes a factor of
ð1 − ϵ1Þ from the noise correlators (5). Since H changes little
during inflation, the practical effect is small.
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I will discuss solving both π̃ and PϕðN; kσÞ in the next
section.
The stochastic process (8) is related to cosmological

perturbations through the ΔN formalism [2–5]. We evolve
ϕ starting from its classical value at Nini up to a fixed
time N. The final field value corresponds to a classical e-
fold number Ñ, now a stochastic variable. The initial and
final times correspond to two coarse-graining scales, kini ¼
kσðNiniÞ and k ¼ kσðNÞ. The comoving curvature pertur-
bation R, coarse-grained at k, equals the difference
between N and Ñ [46]:

R<k ¼ ΔN ≡ N − Ñ: ð9Þ

Indeed, through the noise in (8),R<k collects contributions
from all perturbations with wave numbers from kini to k, but
not beyond. Repeating the stochastic evolution generates
statistics for R<k.

III. ΔN DISTRIBUTION WITH CONSTANT ROLL

Equation (8) was solved numerically in [46]. I will now
solve it analytically for constant-roll inflation [47,48],
defined by

ϵ̃2 ≡ ϵ̃01
ϵ̃1

¼ const:; where ϵ̃1 ≡ 1

2
π̃2 ≪ 1: ð10Þ

Note that these slow-roll parameters are computed on
the classical trajectory, as the tildes indicate. Below I will
drop the tilde over the constant ϵ2 to lighten the notation.
I demand ϵ2 > −3 to ensure that super-Hubble perturba-
tions freeze [46].2 From (10), we get

π̃0 ¼ ϵ2
2
π̃ ⇒ π̃ ¼ ϵ2

2
ϕ̃

⇒ ϕ̃ðNÞ ¼ ϕ0e
ϵ2
2
N ¼ 2

ϵ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ̃1ðNÞ

p
; ð11Þ

where I integrated repeatedly. In the first step, I omitted the
integration constant, corresponding to a shift in ϕ; in the
second step, I introduced the constant ϕ0, absorbed into
the first slow-roll parameter. On the last line, I evaluated
everything at N, but relations (11) apply generically for the
functions ϕ̃, π̃, and ϵ̃1 at any parameter value.
As (11) shows, π̃ is linear in ϕ during constant roll.3

Also, as shown in [46], the stochasticity of the background
does not affect the evolution of the short-wavelength
perturbations during constant roll, and Pϕ can be precom-
puted in a nonstochastic background. It is then a known

function of time, and we can write it as PϕðN; kσÞ ¼
2ϵ̃1ðNÞPRðkσÞ, where I dropped the time dependency of
PR, which we assume to be frozen. Then (8) is a first-order
linear differential equation and can be solved via standard
methods. The homogeneous equation with ξN ¼ 0 is solved
by ϕ ¼ ϕ̃ðNÞ, so the general solution is ϕ ¼ ϕ̃ðNÞ × fðNÞ.
Substituting this into (8) and using (11) yields

ϕðNÞ ¼ ϕ̃ðNÞ
�
1 −

ϵ2
2
XðNÞ

�
; ð12Þ

XðNÞ≡ −
XkσðNÞ

k¼kini

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðkÞd ln k

p
ξ̂k: ð13Þ

I delegated the solution’s stochastic part to an auxiliary
variable X, which follows the equation4

dX ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðkÞd ln k

p
ξ̂k; ð14Þ

and used the coarse-graining scale kσ as a time variable
indexing the steps, with dN ¼ d ln k and hξ̂kξ̂k0 i ¼ δkk0 .
Note that all σ dependency is lost; from now on, I drop the
subscript σ for brevity.
The integrated X is a sum of independent Gaussian

random variables, itself a Gaussian with mean zero and
variance equal to the sum of the component variances. Its
probability density is

p½XðkÞ� ¼ 1ffiffiffiffiffiffi
2π

p
σk

e
−X2ðkÞ

2σ2
k ; σ2k ≡

Z
k

kini

PRðk0Þd ln k0; ð15Þ

where I again passed to the continuum limit. Writing
ϕðNÞ¼ ϕ̃ðÑÞ¼ϕ0e

ϵ2
2
Ñ and ϕ̃ðNÞ¼ϕ0e

ϵ2
2
N from (11), and

using (9), we get a relationship between X and ΔN:

X ¼ 2

ϵ2
ð1 − e−

ϵ2
2
ΔNÞ: ð16Þ

The probability density of ΔN is then

p½ΔNðkÞ� ¼ p½XðkÞ�
���� dX
dΔN

����
¼ 1ffiffiffiffiffiffi

2π
p

σk
exp

�
−

2

σ2kϵ
2
2

ð1 − e−
ϵ2
2
ΔNðkÞÞ2

−
ϵ2
2
ΔNðkÞ

�
: ð17Þ

I explicitly wrote out the k dependence to emphasize that
ΔNðkÞ gives R<k coarse grained over a specific scale k,

2This excludes, in particular, ultra-slow-roll inflation with
ϵ2 ¼ −6. As discussed in Sec. V, it is positive ϵ2 values that
are important for PBH formation.

3In our abused notation, π̃ ¼ π̃ðÑðϕÞÞ ¼ ϵ2
2
ϕ̃ðÑðϕÞÞ ¼ ϵ2

2
ϕ.

4Since the expectation value of dX vanishes, this stochastic
process is amartingale. Many rigorous mathematical results exist
for such processes; see, e.g., [49].
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adjustable by changing the upper limit of integration
for σk in (15).
In Fig. 1, I compare (17) to a numerical solution of (8)

for an example model from [46] with a dominant constant-
roll phase; see Appendix A for details. The power spectrum
PRðkÞ is peaked at scales that exit the coarse-graining scale
during the constant roll; see Fig. 2. I make a second
comparison to a matching numerically solved pure con-
stant-roll case, where (11) applies exactly, but with the
power spectrum from the above model. For small ΔN, the
match is excellent. In the ΔN → 0 limit, the distribution
is Gaussian, with variance σ2k and a slightly shifted mean.
For large ΔN, the distributions start to deviate. We see a

non-Gaussian, exponential tail, familiar from previous
studies of stochastic inflation [13,18,20,26–28,32,34,35].
To understand the large ΔN behavior, note that X has a

boundary value 2=ϵ2 at ϵ2ΔN → ∞ [see (16)], correspond-
ing to ϕ ¼ 0 in the convention of (11). This is an
asymptotic limit of the classical trajectory: in constant-roll
inflation, the field can only travel a finite distance.
However, extreme ξ̂k fluctuations in (14) can take X beyond
this point.5 For such fluctuations, results (15) and (17)
become unreliable. I want these problems to take place in
the tail of the probability distribution, at least one sigma
away from the mean; to this end, I require σk ≲ j2=ϵ2j, or
σkjϵ2j ≲ 2. In addition, for the results to be valid at a given
XðkÞ, I demand the distance to 2=ϵ2 to be at least σk, that is,
ϵ2XðkÞ≲ 2 − σkjϵ2j, or

ϵ2ΔN ≲ 2 ln
2

σkjϵ2j
: ð18Þ

Beyond this, the stochastic motion of our example model
starts to probe dynamics beyond the constant-roll phase,
and the results become unreliable since the precomputed
Pϕ can no longer be trusted. In the pure constant-roll
case, trajectories beyond (18) diverge. In the numerics, this
happened to three points in a thousand; these were
discarded from Fig. 1, making the pure constant-roll result
also unreliable beyond (18). Note also that because of the
ϵ2X < 2 limitation, the distributions (15), (17) are not
properly normalized; however, in our limit of small σkjϵ2j,
the correction is negligible.
The transition to the exponential tail starts approximately

when the exponent shifts from concave to convex behavior,
that is ∂2ΔN lnp ¼ 0, and completes when ϵ2

2
dominates the

exponent’s derivative ∂ΔN lnp. Solving these conditions
from (17) we get the following hierarchy:
(1) jϵ2ΔNðkÞj ≳ 0.1 × 2: Gaussianity of ΔN fails,
(2) ϵ2ΔNðkÞ ≈ 2 ln 2: transition to exponential tail

starts,
(3) ϵ2ΔNðkÞ≳ 2 ln 2

σkjϵ2j: X too close to 2=ϵ2; results
(15), (17) fail,

(4) ϵ2ΔNðkÞ≳ 4 ln 2
σkjϵ2j: transition to exponential tail is

complete.
The exponential tail never comes to fully dominate since

the limit (18) is reached first and our single-clock stochastic
description fails.
For completeness, I compute the expectation value of

ΔNðkÞ by inverting (16):

ΔNðkÞ ≈ −
Z

∞

−∞

2

ϵ2
ln

�
1 −

ϵ2
2
XðkÞ

�
p½XðkÞ�dXðkÞ

¼
X∞
n¼1

ð2n − 1Þ!
n!

σ2nk ϵ2n−12

23n−1
; ð19Þ

FIG. 1. The probability distribution p½ΔNðkÞ�, solved numeri-
cally from (8) (107 points in bins of width 0.05) for an example
model (upper blue line; see Appendix A) and its pure-constant-
roll version (lower red line), the corresponding analytical
result (17) (middle black line), and a Gaussian approximation
with variance σ2k and mean matched to the distribution’s peak
(dashed line). Dotted lines, from left to right, correspond to
ϵ2ΔNðkÞ ¼ 0.2, 2 ln 2, 2 ln 2

σkϵ2
, and 4 ln 2

σkϵ2
.

FIG. 2. The power spectrum of the example model. The region
between kini and kPBH is shaded. The parameter values are deduced
from σ2k ¼

R kPBH
kini

PRðkÞd ln k and ϵ2 ¼ −d lnPRðkPBHÞ=d ln k (for
the latter, see Sec. V). 5Similar behavior was studied in a simplified setup in [20].
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where I Taylor expanded the logarithm around XðkÞ ¼ 0.
The sum diverges as the factorial in the numerator grows;
this is due to the improper bounds I used in the integral,
going beyond X ¼ 2=ϵ2. However, for small σkjϵ2j, keep-
ing only the first terms in the sum provides an excellent
approximation for the properly bounded integral. The result
is negligibly small. This is good: in (9), ΔN was defined as
the difference between the elapsed time and the non-
stochastic background time, while technically, R<k is
better given by the difference between the elapsed time
and its mean, equivalent to ΔN − ΔN. The difference is
not significant and will be neglected in this paper.
Note also that ϵ2ΔNðkÞ is positive due to the heavy tail
at ϵ2ΔN > 0, but the peak of the distribution (17) actually
has ϵ2ΔNpeak < 0, given by

ΔNpeak ¼ −
2

ϵ2
ln

�
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2kϵ

2
2

q ��
: ð20Þ

IV. STOCHASTIC TRAJECTORIES

Let us study more closely the stochastic trajectories that
end at a fixed XðkÞ, and thus a fixed ΔNðkÞ. At an
intermediary scale k0, kini < k0 < k, the conditional prob-
ability density of X is

p½Xðk0ÞjXðkÞ� ¼ p½Xðk0Þ�p½Xðk0Þ → XðkÞ�
p½XðkÞ� ; ð21Þ

where the transition probability from Xðk0Þ to XðkÞ is

p½Xðk0Þ → XðkÞ� ¼
exp

n
− ½Xðk0Þ−XðkÞ2�

2ðσ2k−σ2k0 Þ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2k − σ2k0 Þ

q : ð22Þ

The division by p½XðkÞ� ensures the correct normalization,R
∞
−∞ p½Xðk0ÞjXðkÞ�dXðk0Þ ¼ 1. Using (15) and (22), (21)
becomes

p½Xðk0ÞjXðkÞ� ¼ 1ffiffiffiffiffiffi
2π

p
σk0jk

e
−
½Xðk0Þ−X̄ðk0Þjk �2

2σ2
k0 jk ;

σ2k0jk ≡
σ2k0

σ2k
ðσ2k − σ2k0 Þ; X̄ðk0Þjk ≡ σ2k0

σ2k
XðkÞ: ð23Þ

Stochastic trajectories ending at XðkÞ cluster around the
“most probable path” given by the conditional expectation
values X̄ðk0Þjk.

The corresponding expectation values for ΔNðk0Þ are

ΔNðk0Þjk ≡ −
Z

∞

−∞

2

ϵ2
ln
h
1 −

ϵ2
2
Xðk0Þ

i
p½Xðk0ÞjXðkÞ�dXðk0Þ

¼ −
2

ϵ2
ln

�
1 −

ϵ2
2
X̄ðk0Þjk

�

þ
X∞
n¼1

ð2n − 1Þ!
2n−1n!

σ2nk0jkϵ
2n−1
2

½2 − ϵ2X̄ðk0Þjk�2n
; ð24Þ

analogously to (19), where this time I expanded around
Xðk0Þ ¼ X̄ðk0Þjk. Again, the first terms in the formally
divergent sum give a good approximation.
In [46], ΔNðk0Þjk was approximated by minimizing an

exponent in the probability density of the stochastic noise.
In constant roll, (24) is a strict improvement over the
method of [46] since it also takes into account the
integration volume and reproduces the expectation value
accurately. Indeed, in Appendix B I show that [46] only
reproduces the σk0jk → 0 limit of (24). In [46], the most
probable paths in ΔN were used as an ideal bias for
importance sampling (see also [36]), allowing efficient
numerical studies of the far tail of the probability
distribution. For numerical studies in constant roll, I
recommend working in X and converting to ΔN only in
the end to accessR<k. With (23), the ideal bias for the noise
term ξ̂k0 is

ξ̄k0 ¼ −
dX̄ðk0Þjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðk0Þd ln k

p ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRðk0Þd ln k

p XðkÞ
σ2k

; ð25Þ

which is the largest for the modes with the strongest
PRðk0Þ.
With the typical trajectories (23)–(24) at hand, we may

take a second look at the region of applicability of the
original probability distributions (15), (17). The distribu-
tions are reliable for a given XðkÞ as long as the typical
paths do not go too close to the boundary value X ¼ 2=ϵ2.
From (23), the variances on the paths are of order σk, so
good paths have ϵ2XðkÞ ≲ 2 − σkjϵ2j. This excludes the
same ΔN region as above in (18); applying the requirement
at the distribution mean X ≈ 0 reproduces our old limit
σkjϵ2j ≲ 2. Knowledge of the most probable paths has
allowed us to better understand these limits.
Wemay also ask what dominates the typical evolution: the

classical drift or the stochastic kicks. These correspond to the
first and second terms on the right-hand side of Eq. (8),
respectively, with the typical noise given by (25). For the
classical drift to dominate, the ratio of the terms should
be larger than 1 in magnitude. After some algebra involving
(11), (16), and (23), this condition can be expressed as
j d
d ln k0 ΔNðk0Þjkj < 1, where ΔNðk0Þjk is the leading order
expression from (24); in other words, the evolution is
classical if ΔN grows slower than N (remember that
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d ln k ¼ dN). Expanding (16) in different ΔNðkÞ regimes,
we can also estimate the condition as
(1) jϵ2ΔNðkÞj≪1: Trajectories are classical forPRðk0Þ<

σ2k=jΔNðkÞj.
(2) ϵ2ΔNðkÞ ≪ −1: Trajectories are classical for

PRðk0Þ < jϵ2jσ2k0=2.
(3) ϵ2ΔNðkÞ ≫ 1: The stochastic evolution takes X

beyond the classical trajectory, and the current analy-
sis breaks down. Trajectories are never classical.

These improve the approximate condition PRðk0Þ ≪ 1
commonly used in the literature; see, e.g., [7] for a
discussion.

V. IMPLICATIONS FOR PRIMORDIAL
BLACK HOLE PRODUCTION

As discussed above, a typical single-field, PBH-
producing model of inflation proceeds through two phases:
first an ultraslow-roll phase with ϵ2 ≲ −6, and then a dual
constant-roll phase with ϵ2 ≳ 0 [45]. The power spectrum
PRðkÞ is enhanced for scales that exit the Hubble radius
during ultraslow roll. However, the coarse-graining param-
eter σ introduces a delay between the Hubble and coarse-
graining exits of a given mode. The most enhanced modes
get coarse grained only during the constant-roll phase, so
that is when the stochastic effects are strongest and the
PBH-producing nonlinear perturbations develop [46].
Thus, the constant-roll formalism derived above is the
right tool to compute PBH statistics.
For simplicity, I assume that all patches exceeding a

collapse threshold of Rc ¼ ΔNc ≈ 1 collapse into PBHs
[50–52] when the corresponding scale k re-enters the
Hubble radius after inflation. The PBH is formed from
all mass within the Hubble radius, with approximate mass6

Mk ≈ 6.8 × 1049 g

�
k

0.05 Mpc−1

�
−2
: ð26Þ

The PBH mass fraction today is

ΩPBH ≈ 6.2 × 1025β

�
Mk

g

�
−1=2

; ð27Þ

where β is their mass fraction when they form. The
enhancement is a result of PBH density diluting slower
than the radiation energy density during radiation domi-
nation. To compute β, the probability density pðΔNÞ is
typically assumed to be Gaussian, leading to7 [50]

βk ¼ 2

Z
∞

ΔNc

dΔNffiffiffiffiffiffi
2π

p
σk

e
−ΔN2

2σ2
k ¼ erfc

�
ΔNcffiffiffi
2

p
σk

�
: ð28Þ

With our more careful analysis, (15)–(17) give

βk ¼ 2

Z
2=ϵ2

Xc

dXðkÞp½XðkÞ�

¼ erfc

�
Xcffiffiffi
2

p
σk

�
− erfc

�
2=ϵ2ffiffiffi
2

p
σk

�

≈
σkϵ2ffiffiffiffiffiffi
2π

p
exp

h
− 2

σ2kϵ
2
2

ð1 − e−
ϵ2
2
ΔNcÞ2

i
1 − e−

ϵ2
2
ΔNc

; ð29Þ

where Xc is related to ΔNc by (16). I approximated the
second complementary error function as 0, correspond-
ing to sending the upper integration limit to infinity,
and I used a large-argument approximation for the first
error function. The result merges with the Gaussian
approximation (28) in the ϵ2 → 0 limit. As discussed
around (18), this result is reliable for ϵ2σk ≲ 2,
ΔNc ≲ 2

ϵ2
ln 2

σkϵ2
. These are comfortably satisfied for

ΔNc ≈ 1, small σk, and ϵ2 at most of order 1. PBH
production typically takes place in the transition region
between the Gaussian middle and the large-ΔN expo-
nential tail of the probability distribution.
Let us next find the parameter space that produces a

desired PBH abundance β. From (16) and (29), we have

ffiffiffi
2

p

σkϵ2
ð1 − e−

ϵ2
2
ΔNcÞ ≈ erfc−1ðβkÞ≡ E; ð30Þ

linking σk and ϵ2 together. Equation (18) limits their
variation to

ϵ2 ¼ 0…
2

ΔNc
ln
�
1þ

ffiffiffi
2

p
E
	
;

σk ¼
ΔNc

ð ffiffiffi
2

p
Eþ 1Þ lnð ffiffiffi

2
p

Eþ 1Þ…
ΔNcffiffiffi
2

p
E
: ð31Þ

The ϵ2 ¼ 0 and high σk values correspond to slow-roll
inflation with Gaussian statistics; the high ϵ2 and low σk
values correspond to a maximal stochastic effect still
reliably captured by our method. For example, if PBHs
of mass 1019 g—in the asteroid mass window [11,12]—
constitute all dark matter, ΩPBH ≈ 0.27, then by (27)
β ≈ 1.4 × 10−17 and E ≈ 6.0. With ΔNc ≈ 1, (31) gives
ϵ2 ¼ 0…4.5, σk ¼ 0.05…0.12. Introducing a nonzero ϵ2
allows us to decrease σk by 60%, corresponding to a drop of
84% in PR, say, from PR ∼ 0.01 to 0.0016. This way,
stochastic effects slightly alleviate the fine-tuning needed to
produce PBHs from a high PR peak.

6I assume standard expansion history, where PBHs form early
in the radiation-dominated era, and the Hubble parameter today is
H0 ≈ 70 km=s=Mpc.

7The prefactor of 2 is a common correction employed in the
Press–Schechter formalism [50].
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To provide another point of view, fixing σk ¼ 0.05 in the
above scenario, the slow-roll parameter is allowed to vary
as ϵ2 ¼ 0…3.3, giving (naively) ΩPBH ¼ 0.27…1011.
A model that is tuned correctly in the Gaussian approxi-
mation can severely overproduce PBHs when stochastic
effects are taken into account.
In (29), the PBH abundance is given in terms of two

parameters, σk and ϵ2. The first of these is an integral over
the power spectrum peak; see (15). However, the second
one can also be deduced from the power spectrum. As
shown in [45], in the standard setup of ultraslow roll
followed by constant roll, the power spectrum decays like
PRðkÞ ∝ k−ϵ2 after the peak. Computing the stochastic
abundance (29) is then no more demanding than computing
the Gaussian estimate: for both, knowledge of the power
spectrum is enough. Figure 2 demonstrates this for the
example model. I have here focused on PBHs of a fixed
mass; to get the PBH statistics in different mass bins, it is
enough to vary the k in σk.
In Appendix C, I compare results (17) and (29), starting

from the power spectrum, to heavy-duty numerical com-
putations of the full stochastic system (4) of modified
Higgs potentials from [31]. The match is excellent.

VI. COMPARISON TO NONSTOCHASTIC
ΔN COMPUTATIONS

PBH formation with constant roll was considered earlier
in [29,53–59], with the ΔN formalism but without sto-
chasticity. These studies start with an initial Gaussian field
perturbation Δϕ and let the nonlinear, classical background
dynamics turn it into a final ΔN. Using this strategy, [58]
derived a probability distribution8 identical to (17). In this
paper’s notation,

ΔϕðNÞ≡ ϕðNÞ − ϕ̃ðNÞ ¼ −π̃ðNÞXðNÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ̃1ðNÞ

p 2

ϵ2
ð1 − e−

ϵ2
2
ΔNÞ; ð32Þ

where I used (11), (12), and (16). Since the stochastic
equation (8) is linear in ϕ during constant roll,Δϕ separates
into the stochastic X and a nonstochastic prefactor, and is,
indeed, Gaussian, inheriting this feature from X. It does not
matter when the stochastic kicks in X are applied: an initial,
macroscopic kick of sufficient strength produces the same
result as microscopic kicks distributed over time. The
former, the method of [29,53–59], successfully reproduces
the exponential ΔN tail in constant roll.
I have provided a stochastic interpretation for this

method and clarified the time and scale dependence of
the process. In particular, the later constant-roll phase turns

out to be dynamically more important than the earlier
ultraslow-roll phase. It was already pointed out in [29,56]
that PBHs form from the transition region between the
Gaussian part and the exponential tail of the probability
distribution; I confirmed this and pointed out that the tail is,
in fact, not reliably resolved by current methods.9 Finally,
the approach of [29,53–59] breaks down outside of con-
stant roll (potentially even if multiple regions of constant
roll are combined, such as in [58]), where the stochastic
Eq. (8) is no longer linear. Outside of constant roll, there is
no reason to assumeΔϕ to be fully Gaussian, or the method
of a strong initial kick to reproduce a more accurate
stochastic result.

VII. CONCLUSIONS

In this paper, I used the stochastic ΔN formalism to
compute the probability distribution of the coarse-grained
curvature perturbation R in constant-roll inflation, starting
from the linear power spectrum PR. I then studied the
formation probability of primordial black holes. PBH
production is controlled by a transition region between
the probability distribution’s Gaussian center and expo-
nential tail.
The results apply very generally to all PBH-producing

models of single-field inflation where the field rolls over a
local maximum of its potential, or, equivalently, where an
ultraslow-roll phase is followed by a dual constant-roll
phase. The perturbation probability distribution is an
analytical function of quantities derived from the power
spectrum only, and thus using the improved, stochastic
result (29) is not computationally any more expensive
than the Gaussian approximation (28). The power spec-
trum can be precomputed (beyond the de Sitter approxi-
mation) and used as an input for the stochastic evolution
since there is no backreaction between the short-
wavelength perturbations and the stochastic background
during constant roll.
Recently, a series of papers [60–63] have suggested

that a high power spectrum PR ∼ 10−2 may produce
strong loop corrections that ruin the model’s cosmic
microwave background (CMB) predictions, ruling out
inflationary PBHs (see [59,64–66] for a critical take).
I have demonstrated that stochastic effects can lower the
PR required for PBH production, down to ∼10−3 in an
example case of constant-roll inflation. This helps alle-
viate the reported tension and demonstrates that one
needs to go beyond traditional perturbation theory to
make definitive claims about the compatibility of the
CMB and inflationary PBHs.
The PBH mass and abundance formulas (26), (27) are

approximations commonly used in the literature. In truth,

8Perturbations active during ultraslow roll, ϵ2 ¼ −6, follow a
dual distribution with p ∼ e−3ΔN [56,58].

9I thank Andrew Gow for discussions on the properties of the
far tail of the distribution and its relevance for PBH formation.
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the masses follow a distribution around (26), and the
abundance is better computed from the compaction
function [32,67–71], a quantity related but not identical
to Rk. I leave a compaction-function-based treatment for
future work.
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APPENDIX A: EXAMPLE MODEL

The example model of Figs. 1 and 2 is lifted from [46]
(the “Hubble-tailored model”). It is built starting from an
analytical form of the first slow-roll parameter as a function
of the number of e-folds N,

ϵ1 ¼ ϵ1;top × e−3ðN−N1Þ cosh
2½λðN2 − NÞ�

cosh2½λðN2 − N1Þ�

×

�
2

1þ e−θcutðλþ3=2ÞðN−N1Þ

�
2=θcut

×

�
1þ ffiffiffi

α
p ðθ−1SR ln 2Þβ=2

1þ ffiffiffi
α

p ðθ−1SR ln½1þ e−θSRðN−N1Þ�Þβ=2
�
2

: ðA1Þ

The different parts set ϵ1 to describe slow roll at early times,
to shift to ultraslow roll with ϵ2 ≈ −3 − 2λ around N1, and
to shift to the dual constant roll with ϵ2 ≈ −3þ 2λ around
N2. Behavior (A1) determines everything about the model,
including the underlying inflationary potential and the
ensuing perturbation power spectrum PRðkÞ, up to an
overall energy scale that is fixed by CMB observations. I
solve the power spectrum numerically from the Sasaki–
Mukhanov equation, beyond the de Sitter approximation
PR ≈ H2

8π2ϵ1
. For more details, see Appendix A in [46].

I use the same parameter values as [46],

ϵ1;top ¼ 0.01; N1 ¼ 32; N2 ¼ 35.04; λ ¼ 2.308;

α ¼ 50; β ¼ 1.28; θcut ¼ 1; θSR ¼ 5; ðA2Þ

where the e-folds are counted from the CMB scale and
inflation ends (ϵ1 ¼ 1) at N ¼ 50. The model is compatible
with the latest CMB bounds [72,73] and produces a power
spectrum peak giving PBHs around the asteroid mass
window [11,12]. For easier numerics, the model is tuned
to have strong stochastic effects—the power spectrum
peak is PRðkpeakÞ ∼ 0.1, and I evaluate p½ΔNðkPBHÞ� for

kPBH ≫ kpeak to include stochastic kicks over a wide range
of scales; see Fig. 2. The relevant parameter values are

kini ¼ 7.725 × 1011; kPBH ¼ 8.472 × 1014;

σ2k¼kPBH
≈ 0.1769; ϵ2 ≈ 1.616: ðA3Þ

The ensuing probability distribution in Fig. 1 overproduces
PBHs but clearly shows the Gaussian, exponential, and
transition regions described in the text.

APPENDIX B: MOST PROBABLE PATHS

In [46], Eq. (8) was rewritten in terms of the classical
e-fold number Ñ, a proxy for ϕ, as

dÑ ¼ dN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PϕðN; kσÞ
2ϵ̃1ðÑÞ dN

s
ξ̂N ðB1Þ

(up to the slightly different kσ convention; see footnote 1
above). Working in Ñ is appealing since it makes accessing
ΔN ¼ N − Ñ easy. However, (B1) is slightly inaccurate: it
neglects a term arising from the nonlinear relation between
ϕ̃ and Ñ and the stochastic nature of the differential
equation. The correct form, given by Itô’s lemma [7,74],
can be arranged into

dΔN ¼ PϕðN; kσÞ
4ϵ̃1ðÑÞ

ϵ̃2ðÑÞ
2

dN −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PϕðN; kσÞ
2ϵ̃1ðÑÞ dN

s
ξ̂N: ðB2Þ

The smallness of the power spectrum suppresses the first,
extra term, at least for small perturbations. When com-
puting the probability distribution up to ΔN ∼ 1, the
difference between (B1) and (B2) is negligible for the
modified Higgs model of [46], but noticeable for
the Hubble-tailored one.
The Ñ equation can be used to estimate the most

probable path for a fixed final ΔN. Following [46], we
start from the probability distribution of the noises ξ̂N :

pðξ̂Þ ¼ 1ffiffiffiffiffiffi
2π

p e−
1
2

P
N
ξ̂2N : ðB3Þ

Using (B2) and going to the continuum limit, the exponent
becomes

−
1

2

X
N

ξ̂2N ¼ −
Z ðÑ0 − 1þDÞ2

PϕðNÞ=ϵ̃1ðÑÞ dN; ðB4Þ

D≡ PϕðNÞϵ̃2ðÑÞ
8ϵ̃1ðÑÞ ; ðB5Þ
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where the kσðNÞ argument of Pϕ is implied and D is the
additional contribution from Itô’s lemma. Minimizing this
with respect to ÑðNÞ gives the differential equation

Ñ00 −
ϵ̃2ðÑÞ
2

ð1 − Ñ02 −D2Þ þ P0
ϕðNÞ

PϕðNÞ ð1 − Ñ0Þ

þ ϵ̃3ðÑÞDð1 −DÞ ¼ 0; ðB6Þ

where ϵ̃3ðÑÞ≡ ϵ̃02ðÑÞ=ϵ̃2ðÑÞ. This is Eq. (3.22) from [46],
up to the different kσ convention and the extra D terms.
For a direct comparison to [46], I will now approximate
D ≈ 0. Going from Ñ to ΔN with (9) and rearranging,
we then get

ΔN00

ΔN0 ¼
ϵ̃0ðÑÞ
2ϵ̃ðÑÞΔN

0 þ P0
ϕðNÞ

PϕðNÞ −
ϵ̃0ðÑÞ
ϵ̃ðÑÞ : ðB7Þ

In constant roll, ϵ̃0ðÑÞ=ϵ̃ðÑÞ ¼ ϵ2 is a constant, and we can
integrate (B7) twice to get

e−
ϵ2
2
ΔNΔN0 ¼ C

PϕðNÞ
ϵ̃1ðNÞ ¼ CPRðNÞ ðB8Þ

⇒ Xðk0Þ ¼
Z

k0

kini

e−
ϵ2
2
ΔN dΔN

d ln k00
d ln k00 ¼ Cσ2k0 ; ðB9Þ

where I followed the conventions for ϵ̃1ðNÞ, X, σk0 , and
dN ¼ d ln k from above. Setting the constant of integration
C ¼ XðkÞ=σ2k to fix the final value XðkÞ (and thus ΔN) at
k0 ¼ k, this is the exact result (23) for the conditional
expectation value X̄ðk0Þjk: the method of [46] correctly

produces the most probable X paths in constant roll.
However, the mean ΔN paths slightly differ from these
due to the nonlinear relationship between X and ΔN
[see (24)]; taking the result (B9) and converting to ΔN
by inverting (16) only reproduces (24) in the σk0jk → 0

limit. In (B3), the difference can be attributed to the
different volumes in the ξ̂N space one has to integrate
over to catch all the paths in an X bin versus a ΔN bin.

APPENDIX C: MODIFIED HIGGS MODELS

In [23,31], three inflection point models of modified
Higgs inflation were studied. A supercomputer was used to
numerically solve the probability distributions p½ΔNðkÞ� at
a scale k ¼ kPBH somewhat past the power spectrum peak,
from the full equations (4), together with simultaneously
evolved short-wavelength perturbations to provide the
stochastic noise. All the example models follow the dual
ultraslow-roll–constant-roll behavior, with power spectra
similar to Fig. 2. Starting from the power spectra, I have
re-estimated p½ΔNðkÞ� and the PBH abundance by the
methods of this paper and compared them to the numerical
results10 of [23,31]. I present the results in Fig. 3. The
matches are excellent.
To estimate the PBH abundance, [31] extrapolated

p½ΔNðkÞ� beyond the collapse threshold with an exponential
fit eA−BN . The fit soon starts to deviate from the curve (17)
which turns further down. As a consequence, the fit over-
estimates the PBH abundance in all but the solar mass case,
where the tail was resolved reliably beyond the collapse
threshold. Table I lists key figures for the three models.

FIG. 3. Probability distributions p½ΔNðkÞ� in the three models considered in [23,31] for asteroid mass, solar mass, and supermassive
black holes: the numerical results from [31] (blue dots), exponential fits to their tails (red dashed lines), analytical results (17) (solid
black lines), and Gaussian approximations (dashed black lines). The dotted lines mark the collapse threshold ΔNc ¼ 1.

10I thank Sami Raatikainen for providing the data of [31] in its
original accuracy.
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