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Strong lensing of gravitational-wave signals can produce three types of images, denoted as type-I,
type-II, and type-III, corresponding to the minima, saddle, and maxima, respectively, of the lensing
potential of the lensed images. Type-II images, in particular, receive a nontrivial phase shift of π=2. This
phase shift can introduce additional distortions in the strains produced by the type-II image of the binary
black hole signals depending on the morphology of the signals, e.g., when they have contributions from
higher harmonics, precession, eccentricity, etc. The probability of observing type-II images is nearly the
same as that of strong lensing itself, and, thus, these signals are likely to be observed in the near future. In
this work, we investigate the potential applicability of these distortions in helping identify type-II signals
from a single detection and the systematic biases that could arise in the inference of parameters if they are
recovered with gravitational-wave templates that do not take the distortion into account. We show that the
lensing distortions will allow us to confidently identify the type-II images for highly inclined binaries: At
network signal-to-noise ratio (SNR) ρ ¼ 20ð50Þ, individual type-II images should be identifiable with ln
Bayes factor lnB > 2 for inclinations ι > 5π=12ðπ=3Þ. Furthermore, based on the trends we observe in
these results, we predict that, at high SNRs (≳100), individual type-II images would be identifiable even
when the inclination angle is much lower (∼π=6). We then show that neglecting physical effects arising
from these identifiable type-II images can significantly bias the estimates of source parameters (such as sky
location, distance, inclination, etc.). Thus, in the future, using templates that take into account the lensing
deformation would be necessary to extract source parameters from type-II lensed signals.
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I. INTRODUCTION

The sensitivities of the LIGO and Virgo gravitational-
wave (GW) detectors [1,2] are constantly improving. So far,
they have already confidently detected 90 compact binary
merger events [3] and are expected to detect hundreds of
such mergers in the upcoming observing runs [4]. Accurate
extraction of source parameters from these mergers is
essential to interpret them in an astrophysical and cosmo-
logical context. Understanding and modeling physical
effects due to the propagation of the wave between the
source and the detector is significant in this regard. Ignoring
these effects in the templates used to search and estimate
parameters of a GW signal could cause problems in
explaining or interpreting the underlying signals.
One such propagation effect is gravitational lensing.

GWs get lensed when the signals encounter mass inho-
mogeneities during their journey to the detectors. If the
intervening object is sufficiently massive, it can produce

multiple images of the source through strong lensing [5,6].
The multiple images would differ in their magnifications
and arrival times at the observer. The probability (quanti-
fied by the optical depth) for strong lensing is, however,
small, e.g., ∼10−3 − 10−4 for galaxy lenses [7], mainly
because it requires a strong alignment between the source,
lens, and observer. Searches in GW data have not detected
signatures of strong lensing so far [8,9]. Nevertheless, at the
design sensitivities of Advanced LIGO and Virgo [10,11],
1.3þ0.6

−0.4–1.7
þ0.9
−0.6 detections of binary black holes (BBHs)

lensed by galaxies are expected per year [12]. These
prospects will only be enhanced with the addition of
KAGRA [13,14] and LIGO-India [15,16] to the detector
network. Furthermore, third-generation GW detectors like
Cosmic Explorer [17] and Einstein Telescope [18] are
expected to have an order of magnitude better sensitivity as
compared to the current generation of detectors, thus
potentially observing hundreds of thousands of mergers
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every year. This suggests an exciting time for doing science
with strongly lensed GWs in the future [19–24].
In the geometric-optics limit, the lens equation picks

solutions at extremal points of the time-delay (arrival time
with respect to a reference time) surface over a family of
trajectories. The images thus produced due to strong
lensing can be of different types corresponding to the
minima, saddle point, and the maxima of the time delay,
called type-I, type-II, and type-III images, respectively.
Type-I and type-III images have positive parity (i.e.,
positive magnification), while type-II images have negative
parity. In addition, type-II images receive a π=2 phase shift,
while type-I and type-III images receive a phase shift of 0
and π, respectively [25]. Thus, unlensed signals with an
overall magnification can mimic type-I and type-III images.
On the other hand, type-II images get distorted compared to
their unlensed counterparts due to the nontrivial phase shift
of π=2. In the cases when the GW radiation is mainly
composed of the dominant harmonics (2;�2 modes), these
distortions can be mimicked by type-I or the unlensed
GW signals by adjusting their parameters, such as the
coalescence phase and/or polarization angle [26]. However,
when the signal has significant contributions from higher
harmonics, precession, or eccentricity, these distortions
may not be reproduced by the type-I signals [26], as also
discussed in Sec. II here. In such cases, the current
strategies that LIGO-Virgo follows, i.e., analyzing a
detected signal under the hypothesis that the signal is
unlensed, may lead to significant biases in the inferences of
the parameters. The standard LIGO-Virgo search pipelines
could also miss the signals [7,26].
Under the singular isothermal ellipse approximation1 for

the galaxy lenses [27], it has been shown that the prob-
ability of seeing multiple images without a type-II image
being one of them is less than 0.01% [7]. Hence, the
probability of observing type-II images is practically the
same as that of strong lensing. Moreover, it was also shown
that more than 90% of sources with multiple images would
have a type-II image as the second brightest image [7].
Thus, if a strongly lensed event pair is detected, there is a
high chance that a type-II image would be present.
In this work, we thoroughly investigate the systematic

effects that could arise when a type-II lensed (BBH) signal
is recovered with the type-I and unlensed templates. We
first establish the cases where a single-event-based con-
fident identification of the type-II nature of a signal could
be possible. This is done by choosing a threshold for the ln
Bayes factor between the two hypotheses A and B, where
A represents the hypothesis where we inject a type-II signal
and recover with type-II templates, and B represents the
hypothesis when the type-II injected signal is recovered
with the type-I template. We claim a type-II signal is

identified when the ln Bayes factor lnB ≥ 2. We study the
effect of strong lensing on a broad set of injections at a total
signal-to-noise ratio (SNR) of 20 and 50, using the noise
spectra of the LIGO-Virgo design sensitivities. We show
that, even at modest values of SNR, the type-II nature of the
image can be inferred for moderate to high values of the
inclination angle.We also show that noninclusion of the π=2
phase shift in the parameter estimation templates for such
signals could lead to significant systematic errors, rendering
the recovered posteriors inconsistent with the true values. In
other words, the parameters of the signals could be wrongly
inferred if type-II templates are not used during the param-
eter estimation (PE). This could, in turn, bias the astro-
physical interpretation of the source—e.g., a lighter BH
could be wrongly attributed to higher mass—thus causing
difficulties in explaining their formation mechanisms.
One strategy to look for the strong lensing signatures

in the data is by analyzing pairs of events with consistent
sky locations and chirp masses [28,29].2 This is motivated
by the belief that strong lensing will not affect the
frequency profile of the observed signal. This is indeed
true for type-I and type-III images and, in some cases, even
for the type-II images if they are quasicircular and contain
only the dominant (22) mode. In general, though, one
would need to perform a joint analysis, where a pair of
events are simultaneously analyzed [31–33]. However, as
we discussed before, in a realistic scenario, if there is a
lensed event pair in the data, one of them would likely be a
type-II image. Then, given that we would not know a priori
the parameters of the underlying unlensed GW signal, we
may not expect that there will be consistency in the
parameters (such as the chirp mass and the sky location
parameters) extracted using the templates of the unlensed
signals. Thus, in principle, one would need to do a joint-PE
search over the full data without any prior belief. This may
become a difficult task for such techniques, given their
computational costs. On the other hand, doing a full search
over data for just the individual type-II images should be
relatively easy, and, if detected, they can help narrow down
the search for its corresponding pair, sincewewould already
know the parameters of the underlying unlensed signal.
Moreover, when the lensed pair cannot be detected due to
detector downtime or data quality issues, lensing signatures
can be obtained from just one image and further used for
downstream analyses such as estimating lensing rates.
We note that a similar study has been performed in

Ref. [7]. However, the study therein is based on the
analytical approximation of the Bayes factor, emphasizing
the identification of the type-II signals. They also do not
explicitly consider the detector response of the GW signals,
avoiding this by assuming that both polarizations are

1A more realistic approximation than the singular isothermal
sphere.

2Reference [30] quantifies the false alarm probabilities asso-
ciated with this strategy and the difficulties that arise in the
identification of lensed events as a result.
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measurable. In our work, we perform a full parameter
estimation study, emphasizing both the identification of the
type-II signals and the biases in the inference of the binary
parameters. Thus, in this sense, our work builds upon their
work along with this particular goal. We also note that
Ref. [34] has performed a complementary analysis, show-
ing that including higher-order modes in joint PE allows
identifying of individual image types in a lensed pair.
This paper is organized as follows: In Sec. II, we explain

the effect of the strong lensing on GWs and describe the
method followed in this work. In Sec. III, we discuss the
results based on a wide set of simulations tuned to our
interests. Section IVpresents the conclusion and futurework.

II. SETUP

A. Theory

The problem of lensing of GWs has been looked at in
depth already [35]. In geometric optics limit (i.e., the short-
wavelength regime, valid for, e.g., lensing of GWs by
galaxies), the effect of lensing on GWs can be derived from
the Kirchhoff diffraction integral3 by choosing points on
the image plane corresponding to the extremal points of the
time delay [36]. Since the extremal points can be either the
minimum, saddle, or maximum, we can have three types of
images: type-I, type-II, and type-III, respectively. In this
limit, the Kirchhoff integral reduces to the Gaussian
integral around these extremal points, and the result is
the following amplification factor for the jth image:

FjðfÞ ¼ ffiffiffiffiffi
μj

p
exp½2πifδtj − sgnðfÞinjπ�; ð1Þ

where f is the observed GW frequency, μj and δtj represent
the magnification and time delay, respectively, of the jth
image, and the extra phase shift Δϕj ¼ sgnðfÞnjπ results
from the integration of the complex Gaussian function,
where nj, called theMorse index, takes the values 0, 1=2, or
1 for type-I, -II, or -III images, respectively. The lensed GW
signal is then given by convolving the unlensed signal with
the amplification factor:

h̃Lþ;×;jðfÞ ¼ FjðfÞh̃þ;×ðfÞ: ð2Þ

As we can see, the type-I image receives just a linear phase
compared to the unlensed signal. This linear phase is
practically unimportant for all of our purposes, since this
cannot be measured by the PE. The type-III image receives
an additional overall negative sign but otherwise is again
the same as the unlensed signal. The type-II image, on the
other hand, depending on the sign of the frequencies, can
receive þπ=2 or −π=2 phase shifts. As a consequence, the
time-domain lensed signal is given by the Hilbert

transformation of Eq. (2) rather than the simple inverse
Fourier transformation of the unlensed signal:

hL;IIþ;×ðtÞ ¼ −
Z

∞

−∞
dfsgnðfÞie−i2πfth̃þ;×ðfÞ: ð3Þ

For our purpose in this work, we directly use Eq. (2)
for the lensed template construction, because the GW
data analysis is done in the frequency domain itself.
Nevertheless, Eq. (3) serves a better purpose for the visual
inspections of the lensing effects, and, thus, we use it just
for the sake of demonstrations. Also, the standard GW data
analysis employs only the positive frequencies, because, for
a real signal, the negative frequencies do not provide any
extra information, and, hence, only the þπ=2 phase shift is
relevant for us. We now discuss the implications of the π=2
phase shift for the type-II images with different structures.
A general GW can have different harmonic contents. One

way to visualize it is via spherical mode decomposition:

hþðtÞ − ih×ðtÞ ¼
X
l≥2

Xl
m¼−l

hlmðt; λÞ−2Ylmðι;ϕcÞ; ð4Þ

where −2Ylm [37] denotes the spin-2 weighted spherical
harmonics which are function of the inclination angle4 ι and
the coalescence phase ϕc. The spherical harmonics basically
separate the angular part of the GW radiation from its radial
part, and, thus, the modes hlmðtÞ depend just on the intrinsic
parameters (λ) of the binary, e.g., component masses (m1;2)
and spins (χ1;2) if the binary is circular. For nonprecessing
BBH binaries in circular motion, the m < 0 modes are
related to the m > 0 due to the reflection symmetry of the
GW radiation about the binary plane:

hl;−m ¼ ð−1Þlh�lm: ð5Þ
This helps simplifyEq. (4) in terms of only them > 0modes,
and, thus, throughout this paper we use m > 0 modes to
denote the full mode contents. On a bit further simplification
of Eq. (4), writing hlm ¼ Almeiϕlm , one would obtain (see
Appendix C in Ref. [38])

hþðtÞ ¼
X
l≥2

X
m≥0

fþlmðιÞAlmðtÞ cos½ϕlmðtÞ þmϕc�; ð6Þ

h×ðtÞ ¼
X
l≥2

X
m≥0

f×lmðιÞAlmðtÞ sin½ϕlmðtÞ þmϕc�; ð7Þ

where fþlmðιÞ and f×lmðιÞ are functions of the inclination
angle encoding the magnitude of the spherical harmonics

−2YlmðιÞ. Their explicit expressions are not relevant for the
discussion here. The relative contribution of the modes lm
to the polarizations hþ;× depends on the specific choice
of the parameter λ and the inclination angle (ι). For example,

3The Kirchhoff diffraction integral describes the generic
lensing phenomenon.

4The angle between the total angular momentum J⃗ of the
binary and the observer.
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for nonprecessing BBH binaries with even the moderate
mass ratio q ¼ m1=m2 ≥ 4, the contribution of higher-order
modes (HMs) becomes significant, neglecting which
can have consequences for detection and parameter estima-
tion, e.g., systematic bias, loss in the detection volume,
etc. [39–41].
When a GW signal reaches the detectors, the strain

induced on a particular detector is given by

h ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ; ð8Þ
where Fþ and F× are called the antenna pattern functions,
which arise as a result of the detector’s response to the GW
signal. They represent the angular sensitivity of that
detector and, hence, are functions of the sky angles θ
and ϕ in the detector frame; these parameters denote
the location of the binary in the sky. The angle ψ denotes
the freedom in fixing the binary plane with respect to the
detector plane and is called the polarization angle. The
explicit expressions of the antenna pattern functions for
the LIGO and Virgo detectors are5

Fþ ¼ 1

2
½1þ cos2ðθÞ� cosð2ϕÞ cosð2ψÞ

− cosðθÞ sinð2ϕÞ sinð2ψÞ; ð9Þ

F× ¼ 1

2
½1þ cos2ðθÞ� cosð2ϕÞ cosð2ψÞ

þ cosðθÞ sinð2ϕÞ cosð2ψÞ: ð10Þ
By combining Eqs. (6)–(8), one would obtain

h ¼
X
l≥2

X
m≥0

AlmðtÞ cos½ϕlmðtÞ þmϕc − χlm�; ð11Þ

where

χlm ¼ tan−1
�
F×ðθ;ϕ;ψÞf×lmðιÞ
Fþðθ;ϕ;ψÞfþlmðιÞ

�
; ð12Þ

AlmðtÞ ¼ AlmðtÞjFþj½1þ tan2ðχlmÞ�1=2: ð13Þ
Equation (11) is just a bit more simplified version of
Eq. (8). Now, by taking the Fourier transform of the above
equation and then applying the Hilbert transformation in
Eq. (3), one can easily show that the strains produced by the
lensed signals in the time domain are given as follows.
For type-I images, there is only an additional magnifi-

cation factor μI, i.e.,

hI ¼
X
l≥2

X
m≥0

jμIj1=2AlmðtIÞ cos½ϕlmðtIÞ þmϕc − χlm�:

ð14Þ

For type-II images, there is an additional π=2 phase shift:

hII ¼
X
l≥2

X
m≥0

jμIIj1=2AlmðtIIÞ

× cos½ϕlmðtIIÞ þmϕc − χlm þ π=2�; ð15Þ

while, for type-III images,

hIII ¼
X
l≥2

X
m≥0

jμIIIj1=2AlmðtIIIÞ

× cos½ϕlmðtIIIÞ þmϕc − χlm þ π�; ð16Þ

where tj ¼ tþ δtj for image type j∈ fI; II; IIIg. As
expected, the type-I and type-III induced strains are just
the rescaled versions of the ones caused by the unlensed
GW signals. The extra π phase shift in the type-III strains
which causes just a global sign flip can be easily mimicked
by the polarization angle ψ through the χlm term under the
change ψ → ψ þ π=2. Thus, for type-III image signals,
the PE with unlensed GW templates would yield a bias in
the polarization angle by π=2.
The type-II induced strain is interesting, since the π=2

phase shift cannot be easily absorbed into other known
parameters unless the signal is quasicircular, nonprecess-
ing, and comprised of just the dominant lm ¼ 22 mode, in
which case the coalescence angle ϕc can easily absorb it by
adjusting itself, ϕc → ϕc þ π=4, as should be clear from
Eq. (15) when m ¼ 2. One can note, however, that the
polarization angle ψ can also try to adjust itself such that
Δχlm ¼ −π=2, and, thus, it is not always the case that only
ϕc will get biased during the PE as we will show later.
When HMs also start contributing to the strain, the different
lm modes would require different shifts in the ϕc, i.e.,

ϕc → ϕc þ
π

2m
ð17Þ

in order to mimic the π=2 lensing phase shift. Thus, the
strain produced by type-II image signals would look
distorted compared to its unlensed counterpart. Figure 1
(bottom panel) shows an illustrative example of this case
with the binary parameters M ¼ 100M⊙, q ¼ 7, and
ι ¼ π=3. Since the inclination and the mass ratio are high
here, HMs also contribute significantly, and, thus, there are
additional distortions that are not mimicked by the change
in the coalescence phase. However, we also show the case
with the zero inclination for the same binary configuration
in the top panel. For very small inclinations, the GW signals
mainly contain the 22 mode, and, thus, we can see that the
general relativity (GR) signal with the transformation ϕc →
ϕc þ π=4 very well mimics the type-II image, as expected.
We now explore how helpful these distortions in the

type-II image strains can be in separating such signals from
a catalog of detected BBH events and, at the same time,
how they would affect the inference of parameters if the

5These expressions hold when the sky angles are specified in
the detector frame.
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correct template is not used. Below, we discuss the
simulations’ details to address these questions.

B. Simulations and Bayesian inference

Measurement of parameters from a GW signal amounts
to estimating the posterior probability density function
(PDF) pðθjdÞ, where θ is the set of parameters that
describes a GW signal and d is the data stream from the
interferometers in the network. According to Bayes theo-
rem, the posterior PDF is given by

pðθjdÞ ¼ LðdjθÞπðθÞ
Z

: ð18Þ

Here, LðdjθÞ is the likelihood function of the data given the
parameters, πðθÞ is the prior distribution for the parameters,
and the normalization factor Z is the evidence, given by

Z ¼
Z

dθLðdjθÞπðθÞ: ð19Þ

The evidence can be thought of as the likelihood function
marginalized over all the parameters. The evidence is not a
useful quantity by itself but is very useful while comparing
different models or hypotheses describing the data. In
the context of this work, the two hypotheses that we
consider are

A∶ the signal is unlensed;

B∶ the signal is type-II lensed:

In order to understand which hypothesis fits the data better,
we formulate the Bayes factor Btype-II

unlensed, which is defined as
the ratio of the evidences of the two hypotheses:

Btype-II
unlensed ¼

Ztype-II

Zunlensed
ð20Þ

⇒ lnB ¼ lnBtype-II
unlensed ¼ lnZtype-II − lnZunlensed: ð21Þ

We simulate type-II image strains using Eq. (2) for total
mass M ¼ m1 þm2 ∈ f30; 70; 100; 140gM⊙, mass ratio
q ¼ m1=m2 ∈ f2; 3; 5; 7; 10g, and inclination ι∈ fπ=6;
π=4; π=3; 5π=12; π=2g of the nonspinning BBHs. We scale
the luminosity distance of these injections to signal-to-
noise ratios (SNRs), ρ, of 20 and 50 in a network with
the LIGO-Hanford and LIGO-Livingston detectors at the
Advanced LIGO sensitivity and the Virgo detector at the
Advanced Virgo sensitivity [4]. We choose a realization of
the detector noise that is exactly zero at all frequencies
(called the “zero-noise” realization); this can be thought of
as the most probable realization of the noise. This choice
allows us to isolate the effects of waveform systematics on
parameter estimation from the noise systematics. However,

FIG. 1. The unlensed signal, the type-II signal, and the unlensed signal with a shift in the coalescence phase ϕc by π=4 for the
parametersM ¼ 100M⊙, q ¼ 7, ι ¼ 0 (top panel), and ι ¼ π=3 (bottom panel). For the zero inclination (top panel), i.e., when mainly 22
mode contributes, the GR signal reproduces the type-II image signal very well by adjusting its coalescence phase, while for high
inclination (bottom), the type-II signal is not reproduced by the GR signal fully; i.e., there are additional distortions left.
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a fully rigorous analysis would require adding a nonzero
noise realization to these injections to make it directly
relevant for the LIGO-Virgo observations. We leave this
for future studies. Nevertheless, the SNRs (such as 50)
considered in our work are expected to be high enough to
minimize the effect of noise systematics in our results.
We perform full Bayesian parameter estimation on these

injections (simulations) using type-I [Eq. (14)] and type-II
[Eq. (15)] templates, keeping the priors on the source
parameters the same between the recoveries for each
injection. The priors we choose are uniform in the detec-
tor-frame chirp mass6 and the mass ratio of the binaries,
uniform in comovingvolume for the luminosity distance, and
uniform in sky location and inclination of the binaries. The
parameter estimation runs are performed using BILBY and
BILBY_PIPE [42,43] coupledwith the dynamic nested sampler
DYNESTY [44]. We use IMRPhenomXHM [45] as our waveform
approximant for the runs; this approximant contains the 33,
44, 21, and 32 modes of the gravitational-wave signal in
addition to the dominant 22 mode.

III. RESULTS

Figure 2 shows the Bayes factor between the type-II and
type-I recoveries of type-II injected BBH signals at ρ ¼ 20

and 50, respectively, for various total masses. We choose a
threshold of lnB ¼ 2 for the distinguishability of the
type-II recovery against the type-I recovery of type-II
injected signals [46,47]. Choosing a higher threshold for
the distinguishability would require the lensed events to be
observed at higher SNRs keeping other parameters fixed.
The triangle shapes in Fig. 2 denote the signals which pass
this threshold. We can see that at ρ ¼ 20, independently of
the total mass and the mass ratio, when the inclination
ι≳ 5π=12, the type-II image signals become distinguish-
able from the type-I (or the unlensed) signals. At higher
SNRs, e.g., ρ ¼ 50, even less inclined binaries (ι ∼ π=3)
will allow us to distinguish the lensed signals from the
unlensed ones. This is because, at higher SNRs, the effect
of HMs is more significant. Since lnB ∼ ρ2, we expect that,
at even higher SNRs (e.g., 100 or larger), even smaller
inclinations (∼π=4) should allow us to distinguish the
type-II images. This means that third-generation detector
networks, where SNRs of ∼100 could be typical, would
easily allow us to distinguish the type-II images even when
the inclination is low. This prediction is also consistent with
results from Ref. [7]. Although higher inclinations permit
better measurement of type-II images, they are intrinsically
less detectable; we note that ι ≳ 5π=12; π=3; π=4 make
up ∼5%; 14%; 34% of the total detectable (lensed or
unlensed) population of sources, respectively, based on
the detected distribution of inclinations pdetðιÞ ∼ ð1þ
6 cos2 ιþ cos4 ιÞ3=2 sin ι [48].

FIG. 2. Type-II lensed BBH injections with a network SNRs ρ ¼ 20 (upper row) and ρ ¼ 50 (lower row) shown in the ι − q plane for
different total masses. The color bar shows the ln Bayes factor (lnB) between the type-II and the type-I recoveries. Injections which
cross our threshold of lnB ≥ 2 are plotted using triangles (i.e., distinguishable image types), while the others are plotted using circles.

6The chirp mass M is a mass parameter which describes the
inspiral part of the BBH signals at leading order.
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For the distinguishable type-II image signals, we then
explore the effect on the recovery of source parameters if
they are recovered with type-I image (or, equivalently,
unlensed) templates. The top row in Fig. 3 compares the

recovery of an injected type-II image having ρ ¼ 20,
M ¼ 100M⊙, q ¼ 2, and ι ¼ π=6 with both type-I and
type-II templates. We see that the injected values lie well
within the posterior PDFs for both recoveries, and there are

FIG. 3. Top row: the recovery of source parameters of an injected type-II signal using type-I (blue) and type-II (red) templates for
q ¼ 2,M ¼ 100M⊙, ρ ¼ 20, and ι ¼ π=6. The plots show recovery of chirp massM, mass ratio q, luminosity distance dL, inclination ι,
sky locations δ (dec) and α (RA), and time of arrival tc in the geocenter frame. The orange lines show the injected value. There is no
appreciable difference between the posterior distributions for both the recoveries due to the low inclination and small SNR in the higher
modes. Bottom row: the recovery of source parameters of an injected type-II signal using type-I (blue) and type-II (red) templates for
q ¼ 2, M ¼ 100M⊙, ρ ¼ 20, and ι ¼ 5π=12. There is now a bias in the inclination and the distance, and the injected value is not
recovered within 1σ. The bias in the distance also biases the recovery of the source frame masses. There are also some insignificant
biases in the recovery of the sky locations and time of arrival.
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no discernible differences between the two recoveries.
However, increasing ι to 5π=12 (bottom row in Fig. 3)
keeping the other parameters fixed causes the injected
masses, distance, and inclination values to lie in a region
with low posterior probability if the recovery is made with a
type-I template. This shows that the distortions in the
waveform can cause significant biases in parameter esti-
mation in certain regions of the parameter space. We
investigate this further in Figs. 4 and 5, where we show
results of recoveries with type-I image templates [Eq. (14)]
denoted by solid lines and with type-II image templates
[Eq. (15)] denoted by the dashed lines at SNR of 20 and 50,
respectively, for different total masses of the type-II
injected signals. On the y axis, we show the quantiles
Qrec of the recovery of the injected values for the
significantly affected parameters. For example, a Qrec ¼
90% denotes that the injected value of the parameter is
recovered at a value that forms one edge of the 90%
posterior area; in other words, the injection value is
recovered in the tail of the posterior. Such a case would

represent a type-II signal which would provide a biased
estimate of this parameter upon recovery with the unlensed
template.
We can see from Fig. 4 that, at ρ ¼ 20, for the type-II

signals with lower total mass (M ¼ 30M⊙), the intrinsic
parameters chirp massM and mass ratio q are recovered at
nearly the exact quantiles; i.e., the phase shift does not
affect their recoveries. This could be because, as explained
before, the HMs are not very relevant for the inspiral-
dominated signals at low SNRs. At higher SNRs, however,
the difference between the quantiles of their recoveries
becomes significant at high inclination angles (ι≳ 5π=12)
(Fig. 5). At such high SNRs, for higher total mass systems,
the differences become significant even at the inclination
ι ∼ π=3. This value of the inclination would further
decrease with increasing SNR. We thus expect that the
chirp mass and mass ratio would be affected significantly
for the 3G detectors when ρ ∼ 100 or greater could be
achievable. We note that, even at ρ ¼ 50, there are multiple
binaries for which the quantiles of the chirp mass and mass

FIG. 4. Each panel shows the quantiles (Qrec) of the injection value recoveries against the inclination angle (ι) of the injected BBH
systems for a given total mass (M) (labeled on the right side of the panel) and SNR ρ ¼ 20. The injections are the type-II lensed
nonspinning BBH signals, and the recoveries are with the type-I template (solid lines) and the type-II template (dashed lines), accounting
for the additional phase shift of π=4. At the top of the first panel, we label the parameters of the BBH systems that we are interested in. In
each plot, the different colors denote the different mass ratios of the BBH systems. A lower quantile value denotes a more accurate
inference of a parameter. The anomalous dips in Qrec at high values of ι are due to bimodalities in the recovery of tc, ι, and δ at these
values. We investigate these further in the Appendix.
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ratio recoveries exceed 90%, and, thus, their estimates are
completely biased (see Fig. 5).
The inference of the distance (dL) and the inclination

also get affected significantly at higher SNRs. At lower
SNR (Fig. 4), there is not much difference between
their recovery quantiles. However, the quantiles get
pushed beyond 90% for a range of inclination angles
(π=3≲ ι ≲ 5π=12). At higher SNR (Fig. 5), on the
other hand, the binaries even with the inclination angle
of ∼π=4 face significant differences. We also find that the
declination (δ) and coalescence time (tc) are affected
significantly at higher SNR. We can see from Fig. 5 that
higher total mass systems with the inclination angle of
∼π=3 onward have completely biased estimates of these
parameters. Again, increasing the SNRs further would
lower the inclination at which parameters get biased further.
We thus expect that most of the type-II lensed events in the
3G era will undergo biased estimates of these quantities,
most notably the sky location.
We note that there are some seemingly anomalous

features at ι ¼ π=2 in Figs. 4 and 5, where the value of
Qrec drops as compared to ι ¼ 5π=12. These occur due to
bimodalities in tc, δ, and ι posteriors (see the Appendix for
more details), thus rendering Qrec to be an insufficient
quantifier for the bias at ι ¼ π=2.

IV. CONCLUSION AND FUTURE WORK

Strong lensing produces three types of images: type-I,
type-II, and type-III, corresponding to the minima, saddle,
and maxima, respectively, of the total arrival time of the
lensed GWs. While type-I and -III images do not affect the
frequency profiles of the unlensed BBH signals, the type-II
image can, depending on the morphology of the signals.
For example, if the unlensed BBH signals have support for
HMs, precession, eccentricity, or any combination of these,
the type-II image strains would receive additional distor-
tions due to the phase shift (π=2) caused by strong lensing.
In this work, we explored the possibility of identifying
type-II lensed signals using these distortions in the
observed signals.
Using a set of full parameter estimation recoveries for

type-II lensed injections on a varied parameter space, we
showed that it would be possible to ascertain the type-II
nature of the most lensed BBH signals at high SNRs. This
becomes very relevant for the 3G detectors and beyond,
where such high SNR events could be frequently expected.
This study implies that we should be able to tell if an event
is type-II lensed or not just by the observation of a
single image.
We then showed that the identifiable type-II images,

which are of our interest here, will have sufficient

FIG. 5. The same as Fig. 4 but at ρ ¼ 50.
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distortions caused by the lensing phase shift π=2 that, when
they are recovered with type-I image templates, would
recover significantly biased parameters of the underlying
BBH signals. We quantified these biases for a range of
inclinations, total mass, and mass ratios of the binary. Our
results suggest that the recovery of parameters such as the
chirp mass, mass ratio, coalescence time, luminosity
distance, inclination, and sky position of the binary
becomes significantly biased. Since the first-cut search
for lensed pairs involves demanding consistency between
the sky positions of the images, we suggest that parameter
estimation should be performed using type-II templates on
all signals because, a priori, we would not know the nature
of the image types as well as the parameters of the signals.
In this work, we have considered nonspinning quasicir-

cular BBH signals to concentrate on the effects of only
including higher harmonics of the radiation. Extending this
study to generic spinning BBH signals with eccentricity
would be natural. We, however, expect that precession and/
or eccentricity would cause similar biases [26]. We have
already verified this from a few precessing BBH type-II
injections, but a thorough study will shed more light on
this. We also have not considered the impact of noise
systematics on our ability to identify type-II lensed signals.
We leave these investigations for future work, along with an
exploration of the detectability of these effects for a
population of simulated sources.
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APPENDIX: INVESTIGATING PATTERNS
IN THE BIAS

For some cases in Figs. 4 and 5, there are anomalous dips
in the bias (quantified by Qrec) at ι ¼ π=2. We investigate
these below.
In order to illustrate the causes of these dips, we show the

corner plot of source parameter recovery for a type-II
injection with q ¼ 2, M ¼ 70M⊙, ρ ¼ 50, and ι ¼ π=2
with both type-I and type-II templates (Fig. 6). The
posteriors obtained with the type-II template do not show
any anomalous features, and the injection values lie near the
peak of the posterior. However, this is not the case for type-I
recovery. The first thing to note is that the tc posterior is
bimodal, thus also causing the δ posterior to be bimodal,
since there is a correlation between the two parameters.
This is perhaps not too surprising, since, as we have shown
earlier, type-II effects distort the waveform away from GR
considerably. One of the modes in the tc − δ plane includes
the injected value, while the other is far away from it. This
bimodality also effectively broadens the region where the
posterior has significant support, thus causing theQrec to be
shifted to lower values. This is the reason for the anomalous
behavior seen at ι ¼ π=2, and one can also see that a similar
argument holds for the recovery of ι as well. On the other
hand, the dL posterior peaks at the injected value, but the
posterior width is larger than that in the type-I recovery
case. This, again, causes a decrease in the value of Qrec
estimated for the dL parameter. The points noted above
show that Qrec is not a good enough quantifier of the bias
for these edge cases.
We have also checked that the likelihood values for

samples at both modes are very similar. To check whether
the waveforms themselves at these two modes are similar
and to ensure sanity of the likelihood calculation and the
sampling, we plot the frequency-domain amplitude and
phase of the maximum likelihood waveforms (projected
onto the LIGO-Hanford detector) from both the modes
(Fig. 7). As one can clearly see, the waveforms match very
well in the frequency domain.
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FIG. 6. The recovery of source parameters using type-I (blue) and type-II (red) templates for q ¼ 2,M ¼ 70M⊙, ρ ¼ 50, and ι ¼ π=2.
The type-II recoveries are consistent with the injection values, but the type-I recoveries have correlated bimodalities tc, δ, and ι. One of
these modes is consistent with the injected values, while the other mode is far away from the injected values. The distance posterior does
not have a significant bias with respect to the injected value; however, the width of the posterior is larger than that of the posterior in the
type-II case.

FIG. 7. Comparison of the waveform amplitude jhðfÞj and phase ψðfÞ (projected onto the LIGO-Hanford detector) for the maximum
likelihood samples from the low-tc and high-tc modes. There is considerable agreement between the two waveforms.
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