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Machine learning has become an effective tool for processing the extensive datasets produced by large
physics experiments. Gravitational-wave detectors are now listening to the universe with quantum-
enhanced sensitivity, accomplished with the injection of squeezed vacuum states. Squeezed state
preparation and injection is operationally complicated, as well as highly sensitive to environmental
fluctuations and variations in the interferometer state. Achieving and maintaining optimal squeezing
levels is a challenging problem and will require development of new techniques to reach the lofty targets
set by design goals for future observing runs and next-generation detectors. We use machine learning
techniques to predict the squeezing level during the third observing run of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) based on auxiliary data streams, and offer interpretations of our
models to identify and quantify salient sources of squeezing degradation. The development of these
techniques lays the groundwork for future efforts to optimize squeezed state injection in gravitational-
wave detectors, with the goal of enabling closed-loop control of the squeezer subsystem by an agent
based on machine learning.
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I. INTRODUCTION

Machine learning has seen an abundance of applications
in experimental physics: active control of high energy
particle experiments [1], quantum state tomography [2,3],
Bose-Einstein condensate preparation [4] and adaptive
feedback for phase estimation [5], to name some recent
uses. Laser interferometric gravitational-wave detectors
like LIGO [6], Virgo [7], GEO600 [8], and KAGRA [9]
are complex instruments that require hundreds of control
loops to operate simultaneously. The incorporation of
machine learning into the operation of these detectors is
an active area of research, following the successful appli-
cation of machine learning in gravitational-wave data
characterization and analysis, including glitch classification
[10–13], noise subtraction [14–16], waveform modeling
[17] and signal searches [18]. A first demonstration of
neural network-based alignment of the GEO600 optical
cavities was recently performed [19].
Here we investigate the application of machine learning

to minimize quantum noise in gravitational-wave detectors
by optimizing the injection of squeezed states.
The third observing run (O3) of the gravitational-wave

detector network saw the first demonstration of quantum-
enhanced gravitational-wave detection [20–22]. At high
(≳50 Hz) frequencies, interferometers are limited by
quantum shot noise due to the random arrival times of
the uncorrelated photons that make up the electromagnetic
field striking the readout photodiodes. Squeezed states can

circumvent this limit by inducing correlations between
photons, thereby reducing uncertainty in the readout
quadrature [23]. Squeezed vacuum states enabled a reduc-
tion of quantum noise by up to 3.2 dB in LIGO [20] and
Virgo [21], and up to 6 dB in GEO600 [22].
Although already a triumph in quantum metrology and

astrophysics, future gravitational-wave detectors with even
greater sensitivity require further improvements. Inspection
of the detector data recorded over the course of O3 reveals
that it is difficult to maintain optimal squeezing perfor-
mance throughout the 1-year run, with an average observed
squeezing of 2.23 dB, nearly 1 dB less than the maximum
observed. Moreover, there is significant variability in the
observed squeezing level. For example, the histogram
of squeezing levels observed in the Livingston detector
[Fig. 1(c)] shows a 0.36 dB standard deviation in the
distribution of squeezing levels measured throughout the
run. Similar performance is reported by the Virgo (Fig. 3 in
Ref. [21]) and GEO600 (Fig. 2 in Ref. [22]) detectors.
Indeed, squeezed vacuum states are highly sensitive to a
number of parameters of the squeezer subsystem and the
interferometer: most prominently the temperature of, and
pump power circulating within, the optical parametric
oscillator (OPO), the thermal state of the interferometer,
and the alignment of the optics directing the squeezed state
into the interferometer. Beyond these direct dependencies,
other fluctuations can affect one of many control systems—
power in the locking field or magnitude of the local ground
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FIG. 1. (a) High-level schematic of the Advanced LIGO squeezer subsystem injection into the main interferometer. Control sidebands
are imprinted onto the squeezer laser using acousto-/electro-optic modulators (A/EOMs). These sidebands are used to attain phase
stability of the second harmonic generator (SHG)—used to generate the green pump field—and the optical parametric oscillator (OPO),
which produces the squeezed vacuum state. Thermoelectric coolers keep each crystal at a steady temperature. Steering mirrors (ZM1 and
ZM2) direct the squeezed vacuum into the interferometer. Gray lines trace paths from readbacks from the squeezer feedback loops and
representative witness sensors to the input of the machine learning model. Included among these auxiliary channels are data produced by
photodiodes (both power measurements and alignment error signals), seismometers and thermistors. (b) The network is comprised of a
series of hidden dense layers with which it calculates an estimate of the squeezing level observed in the interferometer. The full list of
channels used as input is given in Table I. (c) A time series of the squeezing level observed throughout O3, measured using the cross-
correlation of the interferometer readout photodiodes, also plotted as a histogram. The dashed line denotes the mean squeezing level of
2.23 dB throughout the run.
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motion for instance—and, in turn, the squeezing level
realized in the interferometer. Additionally, optical filter
cavities [9,24,25] have recently been installed in existing
facilities to provide a reduction in quantum noise across the
entire frequency band, further increasing the complexity
of the squeezed state manipulation and injection. On the
more distant horizon, next-generation gravitational-wave
detectors demand squeezing levels up to 10 dB [26,27].
Extrapolating the effect of current degradation mechanisms
to the high squeezing levels of future detectors: the
fluctuation in optical loss required to explain the O3
squeezing level variation [for the middle 90% of squeezing
levels; Fig. 1(c)] would cause a squeezing source capable
of 10 dB of squeezing to deteriorate to below 6 dB.
Consistently operating at the desired amount of squeezing
in the face of increasingly complex detectors will require
new methods for optimizing and tuning the injection of
squeezed states throughout observing runs.
In the work described in this paper we trained neural

network models to predict the squeezing level in the
interferometer using various squeezer and witness
channels—which monitor the physical environment of
the interferometer—as input. The models were trained
on historical data recorded at the LIGO Livingston
Observatory (LLO) during O3. The exact inputs to the
models were selected using a genetic algorithm, which
additionally allowed us to identify and rank the statistical
correlations present between each of the monitor channels
and the squeezing level. We performed a sensitivity
analysis on the resulting model to further study correlations
with witness channels and identify avenues through which
the squeezer might be optimized. This work is intended to
lay the foundation for future closed-loop control of
squeezer systems using machine learning by demonstrating
the sensing side of the machine learning feedback loop.
Future work will close the loop by actuating on the
squeezer subsystem and interferometer to implement the
optimizations we identify here.
In Sec. II we describe the experimental setup of the

LIGO interferometer and the squeezed state generation.
We lay out and motivate the particular model architecture
used in Sec. III, and outline the specific data channels
we use as inputs to our model (also in the Appendix).
Section IV describes our analysis of the generated models
and presents some findings on the behavior of the LIGO
squeezer. A discussion of a roadmap for the future is
offered in Sec. V.

II. EXPERIMENTAL SETUP

The LIGO detector is a Michelson-based laser interfer-
ometer with 4 km long arms which transduces space-time
perturbations produced by the passage of gravitational
waves into electrical signals at the interferometer readout.
The mirrors reside inside an ultra-high-vacuum system, and
are isolated from the ground by multi-stage pendulums

mounted on a seismically isolated platform. The relative
distance and alignment of the interferometer’s mirrors are
sensed by photodetectors and wavefront sensors respec-
tively, and actively controlled by digital servo systems that
feed control signals back to actuators which steer the
mirrors’ relative longitudinal positions and orientations.
Photon shot noise is a fundamental limit of the inter-

ferometer that arises from statistical fluctuations in the
photon arrival time at the interferometer’s readout port, and
it scales inversely with the square root of the circulating
power. Nearly 250 kW of laser light was circulating in the
LIGO arm cavities during O3, requiring a thermal com-
pensation system to compensate for the thermal lensing
produced by heating from the laser beam. In addition to
maximizing the amount of circulating laser light in the
interferometer arms, the injection of squeezed vacuum
states is a complementary method to further reduce shot
noise. A simplified scheme of the LIGO squeezed vacuum
system is shown in Fig. 1(a), with a full description
available in [20]. It is built around a bow-tie OPO placed
on a seismically isolated platform within the ultrahigh-
vacuum envelope. A 1064 nm wavelength laser (“squeezer
laser” in Fig. 1) is phase-locked to the interferometer laser
operating at the same wavelength. From this laser, a pump
532 nm field is produced by a second harmonic generator
(SHG) and injected via optical fiber into the OPO cavity. A
1064 nm squeezed field is produced by the second-order
nonlinearity in the periodically poled potassium titanyl
phosphate (PPKTP) crystal contained within the OPO. The
squeezing level of the vacuum state produced by the OPO is
determined by the amount of pump light injected and by the
temperature of the nonlinear crystal, both of which are
under feedback control.
The resulting squeezed vacuum field is steered via two

suspended mirrors (“ZMs”) [30] to the output Faraday
isolator which delivers the field into the readout port of the
interferometer. An auxiliary control field consisting of a
single radio-frequency sideband (at þ3.1 MHz relative to
the main laser frequency, generated by two acousto-optic
modulators in series) is injected via a second optical fiber
into the OPO as a proxy for sensing the phase of the
squeezed vacuum field, and is additionally used to control
this phase [31,32].
In full operation, the control field co-propagates with the

squeezed field, and its beat note with the interferometer
field is sensed at the readout photodetectors in transmission
of the output mode cleaner (OMC) [33]. This signal is
then fed back to the squeezer laser to lock the squeezed
quadrature angle. The relative angular alignment between
the squeezed and interferometer fields is sensed by wave-
front sensors placed at a pickoff before the OMC [34], with
alignment signals generated from the beat note between the
control field and a 45 MHz sideband of the interferometer
field, and fed back to the steering optics (ZM1 and ZM2
in Fig. 1).
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With the squeezed field phase-stabilized and well-
aligned to the interferometer, the noise at the interferom-
eter readout will decrease at frequencies where photon
shot noise dominates. The extent to which shot noise gets
suppressed is dictated by the decoherence and degradation
of the squeezed state along its optical path to the readout,
in addition to the amount of squeezing generated within
the OPO. Incoherent losses act to mix the squeezed state
with the unsqueezed vacuum state. For instance, imperfect
mode-matching between the optical mode produced by
the OPO and the interferometer mode is a significant
source of loss and is addressed by alignment of the ZMs.
Moreover, residual fluctuations in the quadrature angle
(“phase noise”) of the squeezed state contaminate the
squeezing with the noise-amplifying antisqueezed quad-
rature, also leading to a reduction in the squeezing level
observed.
We estimate the effective level of quantum noise reduc-

tion from the two photodetector readout signals after the
OMC: the difference between these channels yields the shot
noise alone, the classical noises having been removed
by the common mode rejection. While the difference is
unchanged by the injection of squeezing, the sum will show
the reduction in noise, and we therefore build an estimate of
the squeezing level using the readout sum relative to the
difference. We can improve this slightly by subtracting an
estimate of the classical noise sources from the readout
sum, which itself is calculated by cross-correlating the
readout channels at a reference time without any squeezing.
Finally, the squeezing level is calculated within a frequency
band 1.1–1.9 kHz where quantum noise is dominant and
classical noises are minimal [20].

III. MACHINE LEARNING MODEL TO PREDICT
SQUEEZING LEVELS

The primary goal of this work was to build a machine-
learning-based model to accurately predict the measured
squeezing level using information from auxiliary data
streams (“channels”). A successful model must capture
the squeezing degradation mechanisms described in
Sec. II—loss, mode-matching, and phase noise—and
should illuminate potentially actionable correlations with
the auxiliary channels.

A. Inputs

As input to the model, we selected channels that should
capture the state of both the squeezer subsystem and the
general alignment of the interferometer. (See Table I in the
Appendix for the complete list of channels used.)
As part of the former category, we include the pump

power incident on the OPO crystal (using the power
reflected and transmitted from the OPO cavity as proxies),
and the temperature of the OPO crystal (as controlled by the
thermoelectric cooler), both of which have a direct impact

on the amount of squeezing generated. We additionally
include the temperature of the SHG crystal, used to
generate the OPO pump field.
We include a number of channels to characterize the

interaction between the generated squeezed state and the
interferometer. The pitch and yaw of the two suspended
squeezed state relay optics are the most direct signals that
track this alignment. Other signals used for general align-
ment sensing and control (ASC) of the full interferometer
are also included. We also use channels that track the
amount of thermal compensation applied to the test masses
as a proxy of the thermal state of the interferometer. Finally,
data from seismometers tracking microseismic motion at
various frequency bands from 0.1 to 1 Hz are also included
in our analysis.
We used data from all of these channels over the course

of O3 to train and validate our model. As we are focused
here on long-term drifts in performance of the squeezer,
we take the mean value of each channel over a minute
timescale. For some alignment channels, we also include
the root mean square (RMS) values: the average will show
long-term alignment drifts while the RMS shows alignment
noise. Times that coincide with large transients in the
interferometer are cut from our pool of data, identified by a
short-term elevation of noise or inconsistency in squeezing
estimated from different frequency bands.

B. Architecture

Related previous works have used linear techniques,
such as coherence calculations or lasso regression [35], to
identify correlations between auxiliary channels and the
astrophysical detector range. While the efficacy of these
models has been demonstrated, a more effective model of
the squeezer must be capable of fitting the nonlinearities
associated with squeezed state generation and alignment-
dependent mode-matching losses [36,37]. Compared to
simply fitting to an analytical model, machine learning
techniques also allow us to identify and fit to new,
unexpected dependencies. To this end, we choose to use
neural networks comprised of a series of hidden internal
layers with nonlinear activation functions.
After the initial input layer, we additionally incorporate a

random Fourier features (RFF) layer, mapping input
features to random Fourier modes along random lines in
parameter space. Such RFF layers allow a network to
uniformly sample the Fourier space of a function, thereby
allowing one to circumvent the spectral bias of standard
neural networks toward low frequency features [38,39].
This technique is commonly used in spatial machine
learning applications like image regression and three-
dimensional object regression, and in our system it ensures
we capture both fine and coarse dependencies of our
squeezing level on other parameters. For example, we
aim to capture both small misalignments about the opti-
mum as well as how the squeezing level changes when
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optics are highly misaligned, the former of which would be
typically underfitted by standard neural networks, but is a
more common scenario than the latter. Further, use of such
a layer confers a practical benefit by generally offering
much faster convergence when training the model.
A series of nonlinear dense layers follow this mapping,

before the network outputs the estimated squeezing level.
We conducted a brute-force search of the hyperparameter
space to empirically identify a successful architecture by
first selecting several representative time intervals from
each half of O3 (i.e., O3a and O3b). A model was trained
with the given hyperparameters and evaluated using sep-
arate validation data. Our search space spanned different
activation functions, various counts of sequential dense
layers, different dimensions of said dense layers, and the
dimensionality (and presence) of the RFF layer.
We additionally tested different durations of training

data; longer training intervals increase the amount of
training data available but sacrifice accuracy as the inter-
ferometer undergoes long-term drifts that may not be
captured by the auxiliary witness channels. By using a
training data duration that is shorter than the characteristic
timescale of these long-term drifts, we can still achieve a
model that can accurately predict the squeezing level in the
short term. We ultimately found that one month of training
struck the balance between sufficient training data and
model specificity. The optimal architecture was found to
use two 64-dimensional dense layers with sigmoid activa-
tion functions fitting to 4096 Fourier features output from
the RFF layer.
The model performance is demonstrated in Fig. 2, where

it is shown predicting the squeezing level over approx-
imately one week of O3b immediately following one month
of training. The model is compared against a simple linear
model, as well as a model that additionally allows for cross-
terms between different witness channels. While some
segments of O3 show similar performance for each of
these models, there is a significant fraction of times that do
benefit from capturing the nonlinear behavior to achieve
better predictions, as shown in Fig. 2.
The periods of significant discrepancy between the

observed squeezing and the squeezing level predicted in
Fig. 2 (for instance, around 0.5–1 days) suggest that our
model does not capture all dependencies of the squeezing
level in the interferometer. Although more work is required
to determine the exact cause, this could be due to some
combination of an insufficient set of input channels, a poor
choice of model architecture, not enough training data or
too slow a sampling rate used. However, the sensitivity
analysis performed in Sec. IV is still effective at identifying
correlations and ranking channels within the set used for
this model (with some higher-order error in the rankings
due to these effects).
During our hyperparameter optimization, we addition-

ally tested architectures that are well-suited to time series

data, including long short-term memory (LSTM) networks
and one-dimensional convolutional neural networks (1D
CNN). We ultimately discovered that these alternative
architectures granted marginal improvements in accuracy
(≲5% lower average loss) at the cost of a loss of
interpretability. Future work could further investigate time
series models, for example through use of those that
specialize in interpretability of dependencies over variable
timescales [40].

C. Feature selection

One of the primary goals of this study was to identify
interpretable and actionable dependencies of the squeezing
level on other parameters of the interferometer. To aid with

FIG. 2. Measured squeezing level calculated from cross-
correlation at the interferometer readout compared with model
estimates based on squeezer, alignment and environment aux-
iliary channels. The true and estimated squeezing levels are
plotted for a validation dataset with a duration of just under two
days. Although each datapoint is a 60 s average, we smooth the
data with a rolling window of 20 minutes to aid readability and
emphasize longer-term trends (the presmoothed true squeezing
level is plotted in gray). The models are all trained on the 30 days
of data preceding this validation dataset. The full nonlinear neural
network model (green) is compared with two more simple
models: a linear combination of witness channels (blue) and a
linear model that also allows for cross-terms (orange). The gaps
in data correspond with periods for which the interferometer was
either unlocked or not squeezing, or other excess noise resulted in
a veto from our data analysis pipeline.
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this interpretability, as well as assuage some of the other
issues with high-dimensional regression like over-fitting or
lengthy training processes, we performed feature selection
to identify the most predictive channels among our chosen
inputs, discarding the rest. This was accomplished with a
genetic algorithm, used to select an optimal subset of
channels as inputs for our model [41]. This approach
benefits from being scalable and system-agnostic, but
can be computationally intensive.
We seeded our initial populations with random

subsets of the channels listed in Table I. During each
iteration, models were trained on data from their
respective channels over a selection of time intervals
throughout O3. The average error of each model was
computed from subsequent validation intervals, which
was then used to weight the probability of that subset
propagating to the following generation. The results of
the genetic algorithm are shown in Fig. 3: the top panel
shows the average loss (blue trace) of models in each
generation stochastically decreasing as more accurate
models are preferentially selected. We also kept track
of the lowest loss observed at each iteration (orange trace)

and ultimately used the corresponding channel subset for
the subsequent analyses (marked in Table I).

IV. SENSITIVITY ANALYSIS

After building a model architecture and determining a
predictive set of input channels, we looked for interpretable
correlations with the detector squeezing level. The field
of sensitivity analysis deals with studying how the output
of a model varies with each of its inputs, as well as the
relative importance of each of its features. Here, we applied
sensitivity analysis techniques to identify specific channels
to which the squeezing level is most sensitive, and quantify
the extent of this dependence on alignment and other
interferometer channels.

A. Global sensitivity analysis

Global sensitivity analyses explore the behavior of the
model throughout the full extent of the input feature space,
providing a holistic view of its dependencies.
A byproduct of our feature selection is that we have

already computed a quantitative measure of the importance
of each channel for squeezing level prediction. The average
fraction of models in which each channel is included gives
an indication of how that feature is being weighted. In the
lower panel of Fig. 3, we plot the cumulative average
inclusion of each channel as the genetic algorithm evolves.
As a sanity check, we inspected channels for which we
know the squeezing level has a strong dependence (see the
highlighted curves): laser power and crystal temperature
both appear directly in the analytical form for amount of
squeezing generated by an OPO [36,42]. We likewise know
that a shift in alignment into the interferometer (from
e.g. motion in one of the steering mirrors ZM) should result
in a change in squeezing observed. However, because the
interferometer alignment can also drift, looking at the
change of a single optic in isolation has a less clear-cut
consequence for squeezing. The inclusion fractions for all
channels are given in Table I. In addition to the channels
already highlighted, we saw that some seismometer chan-
nels show strong correlation with the squeezing level, as
well as a handful of alignment channels for other cavities in
the interferometer.
A well-established technique in machine learning liter-

ature for studying global sensitivities is by computing
Sobol indices [43]. This technique requires decomposing a
predictive model fðxÞ, which takes n-dimensional inputs x,
into summands of different dimensions,

fðxÞ ¼ f0 þ
X
i

fiðxiÞ þ
X
i<j

fijðxi; xjÞ þ � � �

þ f12���nðx1; x2;…; xnÞ: ð1Þ

Sobol indices are computed as variances of these constitu-
ent functions, normalized to the variance of the total model

FIG. 3. Results from feature selection of the auxiliary inter-
ferometer channels using a genetic algorithm. The average loss
(model error, blue line) within each generation is plotted as a
function of epoch number, along with the lowest loss (orange
line) model trained so far (top). To compare the relative
importance placed on each channel by the algorithm, we also
plot the fraction of models in which each channel is included,
cumulatively averaged for each generation over its ancestors
(bottom). We highlight properties on which we expect the
squeezing level to depend: the laser power and temperature
within the optical parametric oscillator, as well as the alignment
between the squeezed field and the interferometer (for instance,
the yaw of the second steering mirror, ZM2).
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output [44]. In this way, each Sobol index represents the
contribution of a given channel xi—or the contribution
from its interaction with one or more other channels—to
the output. The first-order indices Si1 encapsulate variations
due to fluctuations in just that channel xi, while the second-
order indices Si;j2 capture variability due to the joint
variation of two channels. These effects, in addition to
higher-dimension components, sum together to yield the
total Sobol indices SiT .
We trained models on four sets of month-long training

data, then used Monte Carlo sampling over each of their
respective input spaces to compute the variances of the
decomposed model outputs. We subsequently evaluated
the Sobol indices associated with each input channel and
average over each model to produce a plot of first-,
second- and total-order indices, shown in Fig. 4. The
computational cost associated with sampling this high-
dimensional input space demands the dimensionality
reduction we performed through feature selection in
Sec. III C—more than a handful of additional channels
would render this approach infeasible.
The first- and total-order sensitivities highlight a par-

ticular sensitivity of the model to drifts in the yaw of the
steering mirrors (ZM1 and ZM2). Fluctuations in pitch,
which manifest through the RMS channels, of the first

steering mirror and the output mode cleaner (OMC) optics
are also shown to be significant, suggesting that improve-
ments in the OMC pitch alignment loops could lead to more
stable squeezing levels. Further investigation is required to
determine the reason for the sensitivity to these particular
degrees of freedom. The second-order indices seem to
mostly track the sensitivities depicted by the first- and total-
order indices.

B. Local sensitivity analysis

We now present a local sensitivity analysis of our
model, in which we study how the model dependencies
vary throughout the input space. For instance, we might
expect the model sensitivities to change at times of low
versus high seismic activity or in different alignments of
the interferometer. To identify these different operational
regimes occupied throughout O3 in our high-dimensional
input data (e.g. “high seismic activity”), we performed a
k-means clustering over all of the input channels (Fig. 5).
In this process, we compute five [45] points in parameter
space that act as “cluster centroids.” Each O3 data
point (time sample) can then be assigned to the cluster
associated with the nearest cluster centroid. The positions
of these centroids are set to minimize the total sum
of distances between data points and their assigned

FIG. 4. (a) First-order and total Sobol indices, showing the global dependence of the squeezing model on each channel when varied
independently (first-order) and jointly with other channels (total) respectively, computed by Monte Carlo sampling. The orange error
bars show the 95% confidence interval for the first-order indices. (b) Second-order Sobol indices, showing the global dependence of the
squeezing model when two channels are varied simultaneously.
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centroids. In this way, we partition our O3 time series
data into time periods of similar behavior.
The partial derivative of the network output can be

computed with respect to each of the input factors and
evaluated at particular fixed points. We trained models over
various time intervals, as in Sec. IVA, and computed partial
derivatives at each of the cluster centroids calculated
from k-means, using them as points representative of the
interferometer behavior in each of the operating regimes.
We then compared the magnitudes of the partial derivatives,
after normalizing by the standard deviation of each input
channel, to evaluate sensitivity to each of the input
parameters. Figure 6 shows this procedure for a month
of training data in O3b, evaluated at a typical O3b
interferometer configuration [Fig. 6(a)] and in a regime
with significant micro-seismic activity and alignment noise
[Fig. 6(b)]. We see that the relative effects of fluctuations
in various alignment signals change during times with
substantial ground motion. We also observe that some
channels to which the squeezing level is globally sensitive

(shown in Fig. 4) are locally insensitive at particular points
in parameter space.
In principle, the derivatives computed can be used to

determine actions that can be taken to optimize squeezing.
For instance, a nonzero derivative in the OPO temperature
suggests that it is suboptimal, and the sign of the derivative
will indicate the direction in which it should be adjusted.
Note, however, that this analysis ignores interactions
between channels, which can somewhat muddy direct
interpretation of these local sensitivity indices (and, in
particular, their signs).

V. ROADMAP FOR THE FUTURE

The work described here demonstrated that machine
learning models are capable of sensing the state of the
squeezer and interferometer (Sec. III), and can produced
actionable diagnostic information about sources of
squeezing degradation (Sec. IV). A fruitful direction for
future work is toward continuous optimization of the
squeezer based on these real-time machine-learning-based
prognoses. An artificial intelligent (AI) agent that replaces
ad hoc and infrequent manual tuning of the squeezing
system with a controller that is always onmay be a critical
step toward achieving the 10 dB suppression of quantum
noise required by the next-generation gravitational wave
observatories [26,27]. This offers a fertile ground for
importing ideas from other field, and the development of
new control methods.
Capturing all of the complexity of gravitational-wave

interferometers in a model can be challenging, which
makes applying analytical control methods such as model-
predictive control difficult. An alternative is to adopt
learning based-approaches, such as model-free reinforce-
ment learning (RL), that are able to produce control
behaviors similar to those from the human operators
by learning via trial-and-error in a physics simulator.
“Learning-to-control” schemes as such have so far
achieved impressive results on complex games such as
the ATARI arcade learning environments (ALE, see
Bellemare et al. [46]), StarCraft, and Dota, without
making explicit assumptions on the underlying decision
processes [47–49]. This also comes with the added benefit
that the AI agent can continuously improve in perfor-
mance during deployment, given additional supervision in
the form of reinforcement.
Past learning-based control methods struggle with

learning and operating under confounding signals. The
feature analysis in Sec. III C helps by removing con-
founding signals through an information-theoretic
approach that has been shown to improve learning on
complex learning tasks [50]. Recent results in sim-to-real
transfer approaches, which show promise in robotics
for implicitly identifying system parameters under
partial observability [51,52], may also be applicable to
gravitational-wave detectors.

FIG. 5. The segmentation of O3 data into k-means clusters,
where each of the five colors represent a quantitatively distinct
operating point. Times with similar interferometer behavior
(according to the k-means clustering) are grouped together by
color. The zoomed-in middle panel shows the cluster partitioning
over a period of ∼3 days. The blue and green clusters are
characterized by heightened levels of seismic noise in comparison
with nominal operating conditions (the purple cluster). The
timeseries in the bottom panel highlights this by showing how
the power in the 0.1–0.3 Hz frequencies in the Y-arm seismom-
eter and the fluctuations in the ZM1 pitch vary over these
∼3 days (from relatively high to low).
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Any move toward machine-learning techniques and
learning-to-control will also necessitate next-generation
infrastructure in the data acquisition, storage, analysis,
and control pipeline [53]. Figure 7 illustrates a simplified

example architecture for a computational and inference
infrastructure capable of running a learned controller.

VI. CONCLUSIONS

The application of machine learning in experimental
physics is growing, and it is providing new methods to
optimize performance. Here we describe an exploration of
trained neural network models that estimate the quantum-
enhanced performance of the LIGO Livingston detector via
squeezing injection, using historical data from the past
observing run O3. We have demonstrated the sensing,
processing and interpretation steps of our training models,
including various sensitivity analysis techniques to identify
correlations between auxiliary channels and the squeezing
observed in the interferometer. Specific alignment signals
for the squeezed state steering mirrors and other cavities
within the interferometer have been found to be the most
correlated. The most computationally expensive processes
in our pipeline are the hyperparameter optimization, feature
selection steps and, to a lesser extent, computation of Sobol
indices. Once a network architecture has been selected,
training, evaluation and local sensitivity analysis is rela-
tively lightweight, making the approaches demonstrated
here inexpensive.
Our analysis shows that machine learning could be used

to continuously monitor the performance of the squeezer
system and the interferometer in a high-dimensional param-
eter space to identify causes of squeezing degradation.

FIG. 6. Partial derivatives shown at different points in parameter space for a neural network trained on ∼1 month of O3b data. The
derivative of the predicted squeezing level with respect to each auxiliary channel ∂SQZ=∂x is shown. Each derivative is multiplied by the
auxiliary channel standard deviation σx, giving the squeezing level variations that result from typical fluctuations in the given channel.
The channels are listed in order of decreasing sensitivity, according to the partial derivatives, during nominal O3b operation. This
analysis hints at the variables on which one should actuate to optimize the squeezing level in the interferometer in a particular regime.

FIG. 7. Proposed workflow for optimization of the squeezer (or
other) subsystem with machine learning. In this scenario, the
latest trained model continuously runs on the interferometer data
as it is recorded, identifying possible optimizations and feeding
back to the LIGO real-time control system. Meanwhile, addi-
tional hardware runs training on the latest data, with the updated
model weights continuously deployed to the production model.
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Such continuous monitoring of squeezing degradation
sources is presently not possible in existing gravitational-
wave detectors, and would be a significant step toward the
realization of persistently high levels of squeezing. The next
step of this work would be to use this newly acquired
information to actuate on the system and maximize squeez-
ing levels. This approach could be extended to other
quantum precision experiments in which maintaining opti-
mal performance for long periods of time is important.
Future gravitational-wave detectors like Cosmic

Explorer [26] will require high levels of squeezing (up
to 10 dB) to reach their sensitivity targets. In the next
decade AI might become not just a useful tool, but an
indispensable one to guarantee optimal performance over
long periods of time. Moreover, similar techniques can
evolve to address many other interferometer control prob-
lems, with the potential to revolutionize the way current
gravitational-wave detectors are controlled, and the way
future observatories are designed.
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APPENDIX: CHANNEL LIST

The channels used as input for this analysis are listed in
Table I.

TABLE I. List of channels used as input for the squeezing level estimator, listed both by their standardized channel name as well as
more readable, abbreviated versions. The mean and rms suffixes refer to the statistic computed over 60 s intervals. The average
inclusion fraction of each channel during the feature selection process (Fig. 3) is also shown: a higher number indicates a greater
importance of the channel for squeezing level estimation. Channels marked with a circle (•) were included in the optimal subset found
during feature selection and used for subsequent sensitivity analysis (Sec. IV).

LIGO channel name Description Average inclusion fraction

Interferometer alignment signals (see Ref. [28])
ASC-CHARD_P_OUTPUT.mean,m-trend CHARD 0.40
ASC-CHARD_P_OUTPUT.rms,m-trend CHARD P (RMS) 0.07

• ASC-CHARD_Y_OUTPUT.mean,m-trend CHARD Y 0.60
ASC-CHARD_Y_OUTPUT.rms,m-trend CHARD Y (RMS) 0.10
ASC-DHARD_P_OUTPUT.mean,m-trend DHARD P 0.36

• ASC-DHARD_P_OUTPUT.rms,m-trend DHARD P (RMS) 0.40
• ASC-DHARD_Y_OUTPUT.mean,m-trend DHARD Y 0.40

ASC-DHARD_Y_OUTPUT.rms,m-trend DHARD Y (RMS) 0.06
ASC-INP2_P_OUTPUT.mean,m-trend INP2 P 0.03

• ASC-INP2_P_OUTPUT.rms,m-trend INP2 P (RMS) 0.99
ASC-INP2_Y_OUTPUT.mean,m-trend INP2 Y 0.02
ASC-INP2_Y_OUTPUT.rms,m-trend INP2 Y (RMS) 0.02

• ASC-MICH_P_OUTPUT.mean,m-trend MICH P 0.93
ASC-MICH_P_OUTPUT.rms,m-trend MICH P (RMS) 0.93
ASC-MICH_Y_OUTPUT.mean,m-trend MICH Y 0.44

• ASC-MICH_Y_OUTPUT.rms,m-trend MICH Y (RMS) 0.95
• OMC-ASC_P1_I_OUTPUT.mean,m-trend OMC1 PITCH 0.82
• OMC-ASC_P1_I_OUTPUT.rms,m-trend OMC1 PITCH (RMS) 0.98
• OMC-ASC_P2_I_OUTPUT.mean,m-trend OMC2 PITCH 0.46

(Table continued)
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