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A new generation of terrestrial gravitational wave detectors is currently being planned for the next
decade, and it is expected to detect most of the coalescences of compact objects in the Universe with masses
up to a thousand times the solar mass. Among the several possible applications of current and future
detections, we focus on the impact to the measure of the luminosity distance of the sources, which is an
invaluable tool for constraining the cosmic expansion history of the Universe. We study two specific
detector topologies, triangular and L-shaped, by investigating how the topology and relative orientation of
up to three detectors can minimize the uncertainty measure of the luminosity distance. While the precision
of the distance measurement is correlated with several geometric angles determining the source position
and orientation, focusing on the bright standard sirens and assuming a redshift to be measured with high
accuracy, we obtain analytic and numerical results for its uncertainty, depending on the type and number of
detectors composing a network, as well as on the inclination angle of the binary plane with respect to the
wave propagation direction. We also analyze the best relative location and orientation of two third
generation detectors to minimize the luminosity distance uncertainty, showing that prior knowledge of the
inclination angle distribution plays an important role in the precision recovery of luminosity distance and
that a suitably arranged network of detectors can drastically reduce the uncertainty measure, approaching
the limit imposed by lensing effects intervening between source and detector at a redshift z ≳ 0.7.
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I. INTRODUCTION

While still in its infancy, gravitational wave (GW)
astronomy is already providing observational data [1–3]
of invaluable importance as well as testing the fundamental
nature of gravity [4,5] and cosmology [6–8].
Second generation (2G) detectors LIGO [9] and Virgo

[10] collected signals from coalescing binaries at the rate of
Oð1Þ event per week during their third observation run, and
a similar or large rate is expected for future observations
runs that are presently happening or in the near future [11],
when the Japanese detector KAGRAwill also be part of the
observational network [12].
The GW detections from coalescing binaries impacted

on several fields in physics, and in this work, we focus on
the determination of the luminosity distance of their
sources, which is a crucial ingredient to reconstruct the
cosmic expansion history.

As is well known [13,14], coalescing binaries are
standard sirens; i.e., their characteristic chirp signal ena-
bles an absolute calibration of the gravitational luminosity,
leading to an unbiased determination of the luminosity
distance, which, together with the redshift, are the two
observables necessary to determine the cosmic expansion
history of the Universe. However redshift is in general not
provided by GW detections, but it can be obtained by the
host galaxy identification, which is possible for electro-
magnetically (EM) bright standard sirens. The most likely
case, although not exclusive, see, e.g., [15–21], of GW
signal accompanied by an EM counterpart is given by
binary neutron star systems with a mass ratio close to unity,
for which tidal forces are larger [22].1 In the case the
neutron star is tidally disrupted outside the effective
innermost stable orbit of the binary, material is ejected
from the system and is expected to produce an EM
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1Tidal forces in the final stage of the inspiral are inversely
proportional to the (square) mass of the object sourcing the
tidal field.
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counterpart [21], in particular a short gamma ray burst and a
kilonova, besides a lower frequency emission lasting up to
years [21,23].
For reference, GW-determined sky localization areas

encompassed ΔΩ of, say, ∼16–few × 103 deg2 in recent
detections [1–3]. Up to a distance of 100Mpc, the number of
galaxiesN100 included in a sky region of areaΔΩ is roughly
N100 ∼ 5 × ΔΩ=ð10 deg2Þ, assuming the average Milky-
Way-like galaxy density to be ∼5 × 10−3 Mpc−3 [24].
Events collected so far by 2G detectors show an over-

whelming majority of binary black holes over binary
systems involving at least one neutron star. In only one
case, the notable binary neutron star (BNS) system that
sourced GW170817 [25], the GW signal was accompanied
by EM counterparts, with consequent host galaxy identi-
fication and redshift determination. While several methods
have been proposed and used to get redshift information

from EM-dark GW detections, using, e.g., statistical
identification of host galaxy [26–28], full cross-correlation
with galaxy catalogs [8,29,30], statistical redshift distribu-
tion of sources [31,32], features in the black hole mass
spectrum [33], neutron star tidal effects imprinted in the
waveform [34], the golden events having the individually
highest constraining power over the cosmic expansion
history are EM-bright standard sirens, where host galaxy
identification enable a redshift determination with negli-
gible error [35].
For third generation (3G) detectors, most of the BNS

coalescences will be visible [36], but the EM counterparts
are not expected to be detected beyond a limiting redshift
z̄ ≃ 0.7, with the bulk of the distribution of bright standard
sirens expected around z ∼ 0.3–0.4 [37,38], making most
of them invisible to 2G detectors [39]; see Fig. 1.
The 3G detectors are currently under active research and

development, and in the present work, we will assume that
the Einstein Telescope (ET) will be a triangular interfer-
ometer with arms at 60° degrees [41], and the Cosmic
Explorer (CE) a single L-shaped interferometer [42] with
arms at 90°, with a dimensionless noise characteristic strain
hc ¼

ffiffiffiffiffiffiffiffi
fSn

p
displayed in Fig. 2, Sn being the standard

single sided noise spectral density, see, e.g., Chap. 7
of [43], while analogue quantities for 2G detectors can
be found in [44].
Within this context, we investigate the relative configu-

ration of ET-like and CE-like detectors that maximizes the
accuracy on the luminosity distance determination of
binary neutron stars, taking into account statistical features
of the sources like inclination angle distribution.
The paper is organized as follows. In Sec. II, we lay out

the tools employed to quantitatively analyze luminosity
distance measures in EM-bright GW detections by the 3G
detectors mentioned above, with the results presented in
Sec. III. Section IV contains the conclusions that can be
drawn from our study.

FIG. 1. Expected redshift distribution of bright standard sirens
assuming an electromagnetic counterpart is detected by Theseus
[37], compared with observed star formation rate [40].

FIG. 2. Left: Luminosity distance reach for equal mass, nonspinning system, assuming fundamental l ¼ m ¼ 2 mode only, for
optimally oriented binaries, given the spectral noise density Sn [45,46] for CE and [ET-D] from [47] for ET. The mass and luminosity
distance of GW170817 are highlighted, as well as the mass region where BNSs are expected. Right: Dimensionless noise characteristic
strain hc, defined in terms of spectral noise hc ≡ ffiffiffiffiffiffiffiffi

fSn
p

for L-shaped CE and triangle-shaped ET.
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II. METHOD

A. Basics

Gravitational radiation in general relativity is endowed
with two polarizations, conventionally indicated by hþ and
h×, which can be suitably decomposed into modes using
spin-weighted spherical harmonics −sYlm of weight
s ¼ −2, according to

hþ − ih× ¼ GM
r

X
l≥2

X
jmj≤l

Hlm
−2Ylmðι;ϕÞ; ð1Þ

where Newton constant G, total rest mass M of the source,
and coordinate distance of the source to the observer r have
been factored out. The luminosity distance dL is related to r
and the redshift z via dL ¼ ð1þ zÞr. Applying Eq. (1) to
the case of a binary system, ι denotes the angle between the
unit vector perpendicular to the binary plane L̂ and the
radiation direction parametrized by the unit vector N̂; ϕ
parametrizes a rotation in the binary plane.
The expansion coefficientsHlm are complex functions of

the intrinsic parameters and the retarded time t − r.
Detector di output contain GW signals hdi , which are
linear combinations of the GW polarizations weighted by
the pattern functions Fþ;×,

hdi ¼ Fþðαi; βi;ψ iÞhþ þ F×ðαi; βi;ψ iÞh×; ð2Þ

where αi, βi are detector dependent angles determined by
the sky position of the source, and the polarization angles
ψ i can be interpreted as the additional angle (beside ι)
relating L̂ to N̂ [48]. Together ψ i, ι, and ϕ compose the
Euler angles determining the relative orientation between
source frame (defined by the orbital plane and its normal L̂)
and the radiation frame whose ẑrad axis is the unit vector N̂
and whose x̂rad − ẑrad plane contains the normal to the
detector’s plane ẑi; see Appendix A for detailed definition
and properties of the polarization angle.

The pattern functions Fþ;× can be written as

Fþðαi; βi;ψ iÞ ¼ cosð2ψ iÞfþðαi; βiÞ − sinð2ψ iÞf×ðαi; βiÞ;
F×ðαi; βi;ψ iÞ ¼ cosð2ψ iÞf×ðαi; βiÞ þ sinð2ψ iÞfþðαi; βiÞ;

ð3Þ

with fþ;× defined as

fþðαi; βiÞ≡ − sinðΩÞ 1
2
ð1þ cos2βiÞ sinð2αiÞ;

f×ðαi; βiÞ≡ − sinðΩÞ cos βi cosð2αiÞ; ð4Þ

where βi is (the complement of) the source elevation and
the azimuth angle αi is measured with respect to the
bisector of the angle formed by the interferometer’s arms.
The pattern functions (4) can be obtained by projecting the
gravitational perturbation tensor onto the interferometer
response tensor 1

2
ðuiuj − vivjÞ, with û; v̂ being the unit

vector pointing along the detector’s arms, and allowing for
the possibility of a variable opening angleΩ between them;
see Fig. 3.2

As per standard treatment, the detectors’ output hdi is
processed via matched filtering [49], which consists in
taking a noise-weighted correlation of the data with a
precomputed waveform model, or template ht, according
to3

hhdi ; htiiðtiÞ

≡ 2

Z
∞

0

½h̃diðfÞh̃�tiðfÞe−2iπfti þ h̃�diðfÞh̃tiðfÞe2iπfti �
SniðfÞ

df;

ð5Þ

FIG. 3. Schematic representation of detector geometry and of radiation frame.

2We understand the Ω dependence in the notation of fþ;×. For
all applications, we will use Ω ¼ π=2 for L-shaped (CE-like)
interferometers and Ω ¼ π=3 for triangle-shaped (ET-like) ones.

3We adopt the convention g̃ðfÞ ¼ R gðtÞe2iπftdt.
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whose output is the time-dependent correlation between
data and the specific template hti translated in time by the
detector dependent quantity ti. SnðfÞ is the noise spectral
density defined in term of detector noise ñðfÞ averaged
over many realizations,

hñðfÞñðf0Þi ¼ 1

2
SnðfÞδðf þ f0Þ: ð6Þ

The correlation in Eq. (5) can be used to define a scalar
product hh1jh2i≡ hh1; h2ið0Þ and consequently, a norm
khk≡ ffiffiffiffiffiffiffiffiffiffiffihhjhip

.
Searches for maximum matched-filtering output by

varying the templates lead to the determination of the best
fit waveform and, in a Bayesian inference scheme, to
probability distribution functions for all waveform template
parameters. Note that the binary constituent masses mi that
can be recovered are the so-called redshifted, or detector

ones, related to intrinsic, or source ones mðsÞ
i via

mi ¼ mðsÞ
i ð1þ zÞ[13]. Optimal matched-filtering leads to

the definition of signal-to-noise ratio of signal h (SNRh),

SNR2
h ≡ hhjhi ¼ 4

Z
∞

0

jh̃ðfÞj2
SnðfÞ

df: ð7Þ

Focusing on the fundamental mode, i.e., taking the
contribution only from l ¼ 2 ¼ jmj in (1), the signal from
the inspiral phase admits a simple analytic description,

h̃þ ¼ ð1þ cos2ιÞ
2

h0ðfÞeiΦgwðfÞ;

h̃× ¼ i cos ιh0ðfÞeiΦgwðfÞ; ð8Þ

where for h0ðfÞ, the analytic expression is known
analytically for the inspiral in the stationary phase approxi-
mation [50],

h0inspðfÞ≡
�
5

24

�
1=2

π−2=3
ðGMcÞ5=6f−7=6

dL
; ð9Þ

with M≡m1 þm2, Mc ≡ ν3=5M, ν≡m1m2=M2.
Similarly, the f-domain phase ΦgwðfÞ has a well-known
analytic, perturbative representation for the inspiral phase
of the ith detector,

Φgwi−inspðfÞ − 2πfti þ ϕ0 þ
π

4
≃

3

128νv5
½1þOðv2Þ�

¼ 3

128ðπGMcfÞ5=3
½1þOðv2Þ�; ð10Þ

where the quantity ðΦgwi−insp − 2πftiÞ is independent of the
detector (ti is the arrival time at the ith detector), the small
parameter of expansion in Eq. (10) is v≡ ðπGMfÞ1=3, and
ϕ0 a constant phase.

Out of the 15 parameters needed to determine the signal
imprinted into a detector by a GW source made of a binary
system in circular motion, see Table I, we are interested in
the precision of luminosity distance determination of EM
bright standard sirens, for which we assume that sky
position and consequently, the host galaxy and then the
redshift, can be determined with negligible uncertainty.
As explained in the Introduction, we focus our analysis

on equal mass binary neutron stars, which are obvious
candidates (even if not exclusive) to produce GW signals
with an EM counterpart. We will make the additional
simplifying assumptions that binary constituent spins can
be neglected, as neutron stars in binaries are observed to
have in general negligible spins, with values≲0.05m2

i [52].
The remaining intrinsic parameters, the individual masses,
are expected to be measured with subpercent accuracy, as
happened for GW170817 [25],4 and as confirmed in
general by Fisher matrix analysis for 3G detectors [53].5

Matched-filtering technique can provide a very accurate
determination in general of the intrinsic parameters, in
particular the chirp mass Mc can be determined with the
accuracy [54],

δMc

Mc
∼

1

Ncyc
×

10

SNR
; ð11Þ

where besides the factor SNR−1 usually obtained in a Fisher
matrix approximation, one has a N−1

cyc uncertainty decrease
with an increasing number of observed cycles Ncyc from the
phaseΦgw dependence onMc, and the numerical factor ∼10
is due to correlation with the other mass parameter ν, which
enters Eq. (10) beyond leading order.
We further neglect in our Bayesian inference search the

arrival time ti, which is usually obtained with ∼msec
accuracy [2] and concentrate on the parameters that have a

TABLE I. Parameters defining the observation of a binary
system observation (whose constituents are treated as a pointlike
object) divided between intrinsic (S⃗1;2 are the binary constituent
spin vectors) and extrinsic (t denotes the arrival time), according
to the distinction introduced in [51]. In bold are those we searched
over via Bayesian inference (dL;ψ ; ι); in gray is the one
marginalized over (ϕ).

Intrinsic parameters Extrinsic parameters

Mc, ν, S⃗1, S⃗2 dL, ψ, ι, ϕ, α, β, t

4For reference, the luminosity distance of GW170817
has been measured with ∼20% accuracy, and it had a network
SNRnet, i.e., the SNR summed over three detectors of
SNRnet ¼ ðP3

i¼1 SNR
2
di
Þ1=2 ∼ 32.

5In particular, in Fig. 13 of [53], it is shown that about 99% of
binary neutron star detections by both 2G and 3G detectors will
have individual masses accuracy below 0.1%.
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larger correlation with the luminosity distance, hence have
stronger impact on its recovery value precision.
Note that also calibration errors can affect the measure of

luminosity distance, and a proxy for the threshold at which
relative calibration error Δc become comparable with stat-
istical ones is Δc ∼ 1=SNR [55]. While GW signals from
binary neutron stars can reach SNR of 103 in 3G detectors
[56], the bulk of their distribution will lie at a SNR≲ few ×
10 [53]. For this reason, projecting to 3G detectors the
Advanced LIGO systematic calibration error in the first half
of the third observation run, estimated < 2% [57], one can
assume that calibration uncertainty should not affect the
overwhelming majority of signals we are discussing.
According to Eq. (2), detectors with different orienta-

tions measure different combinations of hþ and h×; hence,
in principle, with two or more detectors, it is possible to
disentangle the ι − dL degeneracy. However, the two
LIGOs are oriented to have very similar pattern functions
(apart from a sign), [58] and in the GW170817 case, very
little SNR was present in the remaining detector of the
network, Virgo [25].
Another element that can break the degeneracy is

the presence in the signal of a significant contribution

from subdominant modes with l > 2, which are weighted
by a different function of ι than the l ¼ 2, jmj ¼ 2
mode determined by Eq. (8). However subdominant modes
are not expected to be seen in GWs emitted by binary
neutron stars, whose part of the signal visible in the
detectors is in the inspiral phase6 for which subdominant
modes are suppressed by powers of the relative binary
constituent velocity as vl−2. Moreover, odd higher modes
vanish in the limit m1 ¼ m2; hence, they are suppressed for
comparable masses, and in general, subdominant modes
are more important for edge-on viewing angles, i.e.,
ι ∼ π=2 [59]. We will come back on source ι distribution
in Sec. III B.

B. Cutler-Flanagan parametrization

Crucial roles to estimate the luminosity distance meas-
urement uncertainty are played by detector topology,
location, and orientation, and we find it convenient to
investigate this issue using the parametrization of the signal
introduced in [60]. For a single detector di, denoting
υ≡ cos ι, χþ ≡ ð1þ υ2Þ=2 (and χ× ≡ −iυ for future refer-
ence), one can write the SNR as

SNR2
i ¼ 2ðf2þi þ f2×iÞfðχ2þ þ v2Þ þ ðχ2þ − v2Þ cos½4ðψ i þ ψ̄ iÞ�g

Z
∞

0

jh0ðfÞj2
SniðfÞ

df

¼ 2ðf2þi þ f2×iÞðχ2þ þ v2Þ½1þ fðvÞ cosð4ðψ0 þ δψ i þ ψ̄ iÞÞ�
Z

∞

0

jh0ðfÞj2
SniðfÞ

df; ð12Þ

where we have used the detector’s output Eq. (2) in the
SNR expression (7). The newly introduced quantity ψ̄ i is
defined via

cosð4ψ̄ iÞ≡ f2þi − f2×i
f2þi þ f2×i

; sinð4ψ̄ iÞ≡ 2fþif×i
f2þi þ f2×i

; ð13Þ

and in the second line of Eq. (12), we have written
ψ i ¼ ψ0 þ δψ i, where ψ0 is the polarization angle relative
to the Earth north pole unit vector ẑ0 [i.e., using ẑ0 for ẑi in
Eq. (A3), δψ i being defined as a consequence]. Finally, we
adopted the notation,

fðvÞ≡ χ2þ − v2

χ2þ þ v2
¼ ð1 − v2Þ2

1þ 6v2 þ v4
: ð14Þ

The pattern functions fþi;×i depend on a detector location
via their arguments ðαi; βiÞ as per Eq. (4); δψ i depends on
the source location with respect to the detector, but it has

the nontrivial property of not depending on the polarization
angle, see Appendix A.
The main advantage of the SNR formulation in Eq. (12)

is that it separates the contribution to the SNR into a part
that depends on the polarization angle ψ and a part that is ψ
independent. In general, it is difficult to recover ψ, and its
uncertainty affects the measure of the SNR, see Eq. (21),
hence, jeopardizing the precision of dL.
Given that the polarization angle parametrizes rotations

in the þ;× space, the signal in each detector can be
elegantly written in terms of quadratic forms via

h̃di ¼ h0ðfÞeiΦgwi VAðυÞRABð2ψ0ÞRBCð2δψ iÞfCi
¼ h0ðfÞAARABð2δψ iÞfBie2πifti ; ð15Þ

where capital Latin indices A, B, C run over fþ;×g, RAB is
the standard 2 × 2 rotation matrix,

RABðαÞ≡
�
cos α − sin α

sin α cos α

�
: ð16Þ

We have collected in a two-vector, the dependence of the
GW polarizations on ι, i.e., VAðυÞ≡ ðχþ; χ×Þ, and in the

6For reference, the inner most stable circular orbit for a
spinless, equal mass binary system, corresponds to a GW
frequency fGW ≃ 730 Hz½M=ð3M⊙Þ�−1.
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second line of Eq. (15), we have defined the detector
independent quantity AAðυ;ψ0Þ≡ VBðυÞRBAð2ψ0ÞeiΦgw.
The rationale of this parametrization is to separate param-
eters which for a given signal are common to all detectors
[h0ðfÞAA], from those depending on the detector
RABð2δψ iÞfBie2πifti .
Following [54], it is possible to generalize the SNR

parametrization of Eq. (12) to the case of a network made of
ndet detectors,

SNR2
net ≡

Xndet
i¼1

SNR2
i

¼ SNR2
0Real½A�

Aðυ;ψ0ÞABðυ;ψ0Þ�
Xndet
i¼1

ΞABi;

ð17Þ

with

ΞABi ≡ RACð2δψ iÞRBDð2δψ iÞfCifDiωi;

ωi ≡
R
∞
0 jh0ðfÞj2S−1ni ðfÞdfR
∞
0 jh0ðfÞj2S−1navgðfÞdf

;

SNR2
0 ≡ 4

Z
∞

0

df
jh0ðfÞj2
SnavgðfÞ

;

S−1navgðfÞ≡
1

ndet

X
i

S−1ni ðfÞ: ð18Þ

One can then define a symmetric 2 × 2 matrix ΞAB, which
can be diagonalized by a suitable rotation matrix of the
type (16) with an angle ψ̄ , as

ΞAB ≡X
i

ΞABi ¼
X
i

RACð2ψ̄ÞΞ̄CDRDBð2ψ̄Þ; ð19Þ

whose explicit expression is reported in Appendix A. It is
convenient to parametrize the 2 degrees of freedom of
diagonal matrix Ξ̄AB as

Ξ̄AB ¼ σ

�
1þ ϵ 0

0 1 − ϵ

�
; ð20Þ

with σ¼ 1
2
ðΞþþþΞ××Þ and ϵ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΞþþ−Ξ××Þ2þ4Ξ2þ×

p
=

ðΞþþþΞ××Þ, which is bounded by 0 ≤ ϵ ≤ 1. In the
particular case of a single detector, one has that ϵ ¼ 1
(and ω1 ¼ 1), as each ΞABi has vanishing determinant,
being the outer product of two copies of the same vector.
For a generic detector network, the combined SNR2

net of
Eq. (17) can then be written as

SNR2
net ¼ SNR2

0Real½A�
CRCAð2ψ̄ÞΞ̄ABRBDð2ψ̄ÞAD�

¼ SNR2
0σ½ðχ2þ þ v2Þ þ ϵðχ2þ − v2Þ cosð4ðψ0 þ ψ̄ÞÞ�:

ð21Þ

The quantities σ, ϵ depends on the detector network and
on the direction of propagation N̂, but they are independent
of other angles parametrizing the binary plane orientation
(ι;ψ ;ϕ). For a fixed detector configuration, ϵ, σ parametrize
in a simple way the SNR dependence, which respectively
depends and does not depend on the polarization angle ψ .
Note that an analogue but not equivalent parametrization
has been introduced in [61], whose parametrization allows
us to pinpoint the dominant polarization mode, i.e., the
combination of polarizations that contributes the most to
the SNR; see Appendix C.

C. Expected rates

For cosmological applications, it is crucial to have an
accurate measure of the luminosity distance, which one can
expect to be obtained by using multiple observatories
sensitive to different polarization combinations. The rate
of an EM bright standard siren is not supposed to exceed
Oð1Þ per year with current generation detectors [11]; an
estimate for 3G detectors can lead to Oð100Þ per year [37].
As for the expected redshift distribution, an example for
EM-bright standard sirens is reported in Fig. 1, where as a
reference, is also reported the star formation rate,

Rsfr ¼
1

1þ z
dVc

dz
ψDMðzÞ; ð22Þ

where ψDM is the star formation rate taken from [40] and Vc
is the comoving volume.7

In Fig. 2, we report the luminosity distance reach of BNS
for optimally oriented, equal mass, spinless systems (i.e.,
the distance at which SNRi ¼ 8) and the design noise
curves of CE [42] and ET [62].
In the following section, we show nontrivial conse-

quences that can be deduced from the parametrization in
Eq. (21), supporting them with numerical results obtained
with Bayesian inference methods.

III. RESULTS

A. The Bayesian setup

In a standard Bayesian inference framework, one has to
consider the likelihood

L ¼ e−
1
2

P
i
khdi−htik2 ; ð23Þ

7Given the moderate range of expected bright standard sirens,
our dL recovery prior is uniform in comoving volume.
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where the norm has been inherited by the scalar product
defined implicitly in Eq. (5). We will consider the above
likelihood for fixed values of the masses (setting the spins
to zero), sky-position angles, and time of the event. This is a
reasonable simplification of the problem, assuming that the
EM counterpart allowed a precise sky localization and

that the correlation of the detected signal with long
templates allowed a precise determination of the arrival
time and the masses, which determine the chirping phase of
the signal.
By using only the dominant modes l ¼ jmj ¼ 2, one can

cast the likelihood L for data di into the form,

logL ¼ −
Xndet
i¼1

Z
∞

−∞
df

jh̃diðfÞ − h̃tðfÞj2
SniðfÞ

¼ −
Xndet
i¼1

Z
∞

−∞

df
SniðfÞ

½jh̃diðfÞj2 þ jh̃tiðfÞj2 − 2R̃ðfÞ cosð2ϕÞ − 2ĨðfÞ sinð2ϕÞ�; ð24Þ

where we have defined R̃ðfÞ; ĨðfÞ as, respectively, the real and imaginary part of h̃diðfÞh̃�tiðfÞ.
Assuming a flat prior, marginalization over ϕ can be performed analytically using [63,64]

1

2π

Z
2π

0

dxea cosðxÞþb sinðxÞ ¼ I0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p �

; ð25Þ

where IνðxÞ is the Bessel function of the first kind of order ν, and the marginalized likelihood Lϕ will depend only on the
extrinsic parameters dL, ι, and ψ ,

Lϕ ¼ 1

2π

Z
2π

0

Ldϕ ¼ exp

�
−
1

2

Xndet
i

ðkhdik2 þ khtik2Þ
�
I0

�
2

				X
ndet

i

Z
∞

−∞
df

hdih
�
tiϕ¼0

SniðfÞ
				
�
: ð26Þ

When considering the injection data to correlate with
templates, we will work in the zero noise approximation
[65], as is usually done in the literature to estimate average
uncertainties in Gaussian noise.
We run Bilby [66] with the Nestle sampler [67],

which implements the nested sampling algorithm [68], with
300 live points, searching over three parameters dL;ψ ; ι.
Results for every dL injection are averaged over the 300
injections simulating random values of α, β, ι, ψ , which
survives the SNR cutoff of 8 in each detector.
For the simulation efficiency reason, we used TaylorF2

waveform model [69] with a fixed total mass M ¼ 3M⊙,
equal binary component masses, and no spins. We have also
verified in a few cases that no significant deviations occur in
the result when replaced with a waveform complete with a
merger-ringdownmodel, like IMRPhenomD [70,71]; see the
right plot in Fig. 17 for qualitative reference, and we
neglected tidal effects.

B. Impact of ι and source location on dL uncertainty

Expressions (20), (21) permit to highlight the following
fundamental features:
(1) For a single detector, ϵ ¼ 1, σ ¼ 1

2
ðf2þ þ f2×Þ, and

we recover Eq. (12) [and also Eq. (A8) reduces
to Eq. (13)].

(2) For colocated detectors and a source on the top
of them, one has fþ ¼ f× ¼ sinΩ, implying
σ ¼ ndet=2 × sin2 Ω, which is its maximum value.

(3) In the case of a single L-shaped detector (ϵ ¼ 1), the
detected signal is a single combination of the two
polarizations, and one has no information on the
polarization angle. Considering that for a large argu-
ment, the Bessel function has I0ðxÞ ∼ ex=

ffiffiffiffiffiffiffiffi
2πx

p
; the

marginalized likelihood can then be written as

−2 logLϕ ¼
Xndet
i¼1

ðkhdik2 þ khtik2Þ

− 2

�
x −

1

2
logð2πxÞ

�
;

x≡
				X
ndet

i¼1

Z
∞

−∞

hdih
�
tiϕ¼0

Sni
df

				; ð27Þ

and the scalar product between the data and template
can be decomposed analogously to what was done in
Eq. (17) for the SNR,

hhdi jhtii ¼ SNR2
0Real½A�

diA
AtBΞdtiAB�; ð28Þ
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FIG. 4. Examples of two-dimensional PDF for ι vs dL for a single CE-like, L-shaped interferometer (top) and a triangle-shaped one
(bottom) for source parameters giving ϵ ¼ 0.0089 [75]. Note that the volumetric prior at recovery tends to disfavor ι → π=2 for L-
shaped detectors.

FIG. 5. Values of ϵ (left) and σ (right) for a single ET detector (top, ET location marked with a triangle) and for an ET-CE network
(bottom, CE location marked with a diamond).
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FIG. 6. Left: Distribution of σ and ϵ values, defined in Eq. (20), for a triangle-shaped interferometer. Right: Points in the sky presenting
bimodality are confined to the plane of the detector, where blind directions to individual interferometer appear. Operationally, we
defined bimodality to be present when the ratio (smaller or equal to 1) of the height of the peaks of the ι PDF is larger than the PDF value
at ι ¼ π=2.

FIG. 7. Scatter values and averages for relative uncertainty of dL (top) and absolute one of ι (bottom) as a function of ι for various
distances for an ET-like detector (left) and for a single CE one (right), for 300 simulations at each distance. Continuous lines are averages
over intervals of 0.1 radians in ι. Note the dip in dL uncertainty for ι → π=2 in the ET case. The points where CE outperforms ET inΔdL
are due to the better spectral noise sensitivity of the detector, see Fig. 2, hence higher SNR, see Fig. 8. Most of the recovered ι for CE
present bimodality (Δι ∼ 60°), bimodality that happens far more rarely for ET, as shown by the red dots in the left plot of Fig. 6
compared to the majority of gray points in the bottom right plot here clustering around Δι ∼ 60°. For an ET-like detector, there is no dip
in dL uncertainty for z ∼ 1 as the SNR decrease for ι → π=2moves the signal below the SNR ¼ 8 threshold, whereas for CE injections at
z ¼ 1 are just above threshold.
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where ΞdtiAB ¼ RACð2δψdiÞRBDð2δψ tiÞfCfDωi is
the matched-filter analogue of the SNR-related quan-
tity Ξ defined in (17), to which it reduces when the
template equals the data. For a single detector
[ωi ¼ 1 ¼ ϵ, see Eqs. (18) and (19)], the matrix
Ξdti is not symmetric but can still be diagonalized
into the form,

Ξ̄dtiAB ¼ ðF2þ þ F2
×Þ cosð2ðψdi − ψ tiÞÞ

�
1 0

0 0

�
;

ð29Þ

each detector giving a contribution to the log-like-
lihood,

logLiϕ ∝ 2σ cosð2ðψdi −ψ tiÞÞ
× ðjAdiþj2þjAtiþj2−2jAdiþAtiþjÞ; ð30Þ

where here with þ;×, we denoted the “principal”
polarizations diagonalizing ΞdtiAB [see Appendix A
for the matrix diagonalizing ΞdtiAB, and [72] for the
version of Eq. (30) not marginalized over ϕ]. Equa-
tion (30) indicates that for ϵ ∼ 1, the likelihood can
constrain only one polarization, leading to the well-
known bimodal degeneracy between υ and dL, as
shown in top plots of Fig. 4 for any value of the
inclination angle sufficiently away from the π=2 value.

For a network of interferometers, things are quali-
tatively different as they are in general sensitive tomore
thanone combinationof the twoGW-polarizations, and
ϵ in Eq. (20) can assume values between 0 and 1,
depending on the source location; see Fig. 5.
For instance, for a triangle-shaped detector, the
condition ϵ ∼ 1 is realized only by sources located
in a small region of the sky corresponding to the blind
(or almost blind) regions of the individual interferom-
eter composing the triangle. They correspond to
directions in the plane of the interferometers bisecting
their arms, i.e., α ¼ Ω=2, β ¼ π=2 in Eq. (4). See also
Fig. 6 and the additional material in Appendix B,
showing that for a value of ϵ ∼ 1 and a value of ι
sufficiently distant from the symmetric point ι ¼ π=2,
bimodality appears in the dL − ι two-dimensional
probability distribution function (PDF). As expected,
adding detectors into the network reduces the sizes of
ϵ ∼ 1 regions; see the bottom of Fig. 5.

(4) It has been empirically noted, e.g., in [72,73], where
the sky position is fixed, and [74], where sky
localization angles are among the parameters
searched for in the Bayesian inference, that for
ι ∼ π=2, the uncertainty in dL usually drops for
triangle-shaped detector; see Fig. 7. Note that the
drop in uncertainty while varying ι at a fixed redshift
for the triangle-shaped detector is not due to an
increase in SNR, which rather decreases as ι → π=2,

FIG. 8. SNR as a function of ι for various distances for a triangle interferometer (left) and for a single L-shaped detector (right).

FIG. 9. Examples of two-dimensional PDF for ψ vs dL for a single triangle-shaped interferometer showing that ψ determination
accuracy improves as ι → π=2, as expected from Eq. (21), whose ψ -dependent term is maximum for υ ¼ 1, which is ι ¼ π=2. The value
for ϵ is the same as in Fig. 4.
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as shown in Fig. 8. Actually, it is due to υ → 0,
leading to the polarization dependent term to be-
come equally important as the non-ψ dependent
term in (21). In turn, this leads to a better individua-
tion of the polarizations, as exemplified by Fig. 9.
For z ∼ 1, detections disappear for the triangle-
detector as they go below the SNR threshold, while
this happens for the L detector at larger distances
because of its better sensitivity; see Fig. 2.
For “tropical” inclination angles (ι ∼ π=2), the ψ -

dependent term is as important as the ψ-independent
one, with the consequences that while for a L-shaped
detector, ψ cannot be constrained, for a triangle-
shaped one, a bimodality dL − ψ appears; see Fig. 9.
Note that while it is more difficult for a CE-like

detector to determine ι than for a triangle one, Fig. 7
shows that for specific cases, CE can achieve a better
precision due its better sensitivity; see Fig. 2 and top

FIG. 10. The three inclination angle distributions for ι used in
injections, dubbed “isotropic”, “smooth cutoff”, “hard cutoff”.

FIG. 11. Error in distance determination averaged over source location, as a function of the angular distance between two 3G
detectors. Sources are distributed isotropically in the sky before the SNRi > 8 cut in each detector. Source inclinations are distributed
according to smooth-cutoff function, see Fig. 10, Bayesian prior for ι at recovery is isotropic. The bottom right plot refers to two ETs, the
others to two CEs with sources respectively at z ¼ 0.1, 0.55, 1.
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line in Fig. 8. Note that we used a volumetric prior on
dL, which tends to perform better for ι ∼ 0 but which
can introduce bias for a L-shaped detector for a
“tropical” ι (i.e., ι ∼ π), as shown by the last top
graph in Fig. 4.

C. Impact of detector relative orientation and
localization on dL uncertainty

1. Two detectors

To investigate the best relative location and orientation of
two detectors, we place two CE-like detectors on the
Earth’s surface at an angular distance Δθ one from the
other and relative axis orientation Δϕ, with the result
shown in the first three plots of Fig. 11. The signals are
simulated with three different distributions of inclination
angles, all symmetric for ι → π − ι, as reported in Fig. 10
(dubbed isotropic, smooth cutoff and hard cutoff) corre-
sponding to the L̂ direction being isotropic in the two-
sphere, or to ι values concentrated around 0 and π. Signals
are produced for sources at three sample values of redshift:
z ¼ 0.1, 0.55, 1.
The lowest uncertainty is given by detectors either

colocated or at antipodal sites, i.e., located on parallel
planes, and at a Δϕ ¼ 45° degree, so that such a network

will have no blind spots, see Figs. 11,12, which refers
respectively to ι of source distributed according to “smooth
cutoff” or “isotropic” (there is no difference in the results
between “smooth” and “hard cutoff”), and recovered in
both cases with an isotropic prior in ι.
In the same Figs. 11 and 12, we also report the result of

an analogue exercise with two ET-like detectors, sup-
pressing the coordinate Δϕ that does not affect the result.
In this case, we find a moderate gain (a few percent) for
angular separation Δθ ≃ 40° (or Δθ ≃ 140°), which
becomes more pronounced at larger redshift, where
SNRs are smaller and uncertainties larger.
The differences between Figs. 11 and 12 are minimal,

showing that when the prior at recovery is isotropic in the
inclination angle ι, the injection distribution in ι has little
impact on dL recovery precision.

2. Three detectors

Finally, we fix the location of an ET-detector and a CE-
one, corresponding to an angular distance of 77°. In this
case, we verified how the relative luminosity distance
uncertainty averaged over source sky location varies with
the position of a third ET-like detector, with the results
displayed in Fig. 13 for a redshift z ¼ 0.1, 0.5, 1, showing
overall a mild (subpercent) dependence on the location of

FIG. 12. Same as in Fig. 11 with source inclinations distributed isotropically on the two-sphere.
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the third detector. When dealing with three detectors, the
relative measurement error on ΔdL depend very mildly on
the source sky location, as shown by Fig. 20.

D. Impact of ι distribution and type
of network on dL uncertainty

Beside the obvious importance of the number and quality
of detectors in the network, another important feature in the
forecast of luminosity distance uncertainty is the source
distribution of inclination angles, for which we adopted the
three distribution functions in Fig. 10.
Note that it is not a priori clear what distribution will be

seen by a 3G detector. While 2G ones are likely to see a
distribution of small values for minðι; π − ιÞ, which give
larger SNRs, since 3G detector will have a much larger

reach, they should in principle see a distribution closer to
the isotropic one, as observed in [76,77]. However, the
selection of bright standard sirens may bias the observation
towards GW signals accompanied by short GRB, which are
expected to be somehow beamed [23], hence more likely to
be observed for small ι or π − ι. On the other hand, short
GRBs do not have good sky localization, which can be
achieved at high degree of accuracy with optical counter-
parts like kilonovae, that are broadly expected to be
isotropically emitting [78], and hence can support the
expectation of a sin ι, isotropic distribution of sources.
We then summarize the result for the average dL

uncertainty for six different network of detectors: {ET,
CE, CEþ CE, ETþ CE, ETþ ET, ETþ ETþ CE} given
the three different ι source distributions. The ι prior at
recovery is chosen to be equal to the injected cutoff

FIG. 13. Luminosity distance uncertainty of a network of three detectors (ETþ CEþ ET) averaged over source location, depending
on the location of the second ET-like detector. Empty circles denote the 90 trial locations of the third detector, while the first ET and the
CE detector are denoted, respectively, by a yellow triangle and red diamond. The three figures refer to a redshift z ¼ 0.1, 0.5, 1,
respectively, moving clockwise from top left.
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distribution in the top plot of Fig. 14 and equal to an
isotropic distribution in the bottom plot of the same figure.
From Fig. 14, we can draw interesting conclusions about

the impact of the underlying inclination angle distributions
and on the network features:
(1) In the case GW sources are characterized by “polar”

inclination angles, i.e., small values of either ι or π − ι,
folding in such information at recovery leads to a
significant improvement (up to a factor ∼5) in dL
uncertainty determination. This is shown by the

comparison of the two plots in Fig. 14, where on
the top plot, results are shown for injections distrib-
uted at small angles only (see “hard” and “smooth
cutoff” in Fig. 10, using a recovery prior equal to
injection distribution), and the bottom plot has been
obtained using an isotropic prior at recovery, i.e.,
∝ sin ι. In particular, in the top plot, there is virtually
no difference between the cases of hard and smooth
cutoff, and also little difference between injections
isotropic on the sphere or concentrated near the poles.

FIG. 14. Average distance measure error for various network of ET- and CE-like detectors as a function of redshift. The top graph
shows the case of anisotropic distribution of inclination angles with prior at recovery. The bottom one shows the case of isotropic prior at
recovery for all cases of ι injection distribution. See Fig. 10 for ι injection distributions (hard, smooth, iso).
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(2) As expected, adding a 3G detector to an existing
network is beneficial to the dL recovery precision
but less obvious is the effect of adding a CE-like
detector instead of an ET-like one. A CE-CE net-
work can ensure roughly the same precision as
ETþ ETþ CE, and it is slightly better in terms
of dL precision than a ETþ CE system, showing
that the better design sensitivity we adopted for the
CE compared to the ET, see left plot in Fig. 2, has a
non-negligible effect when it comes to forming a
network which has already good sky coverage, like,
e.g., a network of two L-shaped detectors.

For the dispersion of ΔdL=dL values, see Fig. 19 in the
three detector case of Fig. 14.
Overall, uncertainty in dL smoothly increases with

redshift, with the results in broad agreement with the
cumulative distributions shown in [53], see also [79] for
binary black holes, even if a more detailed comparison is
not possible as here, differently from there, we present
results broken at a specific redshift. For the reader inter-
ested in comparing with present observations, we report in
Appendix D the same result of Fig. 14 superimposed to
scatter plots of luminosity distance uncertainties obtained
with 2G detectors Advanced LIGO and Virgo in their first
three observation runs [1–3] and with the standard candle
catalog [80].
Note that for a wide and sensitive enough detector

network (ETþ ETþ CE) or CEþ CE, it is possible at a
moderately high redshift (∼0.7) to almost reach the limit on
dL uncertainty imposed by the lensing intervening between
source and observer, whose approximate value can be
found in [81]. Also in [82], it is argued that with two or
three 3G detectors working at design sensitivity, it may be
worth including delensing in the analysis of the signals,
anticipating to 3G detectors what was foreseen for space
interferometers [83]. Note while some present estimate
indicate that having an EM counterpart of a GW detection
may be challenging for source at redshift larger than ∼0.7
[37], there exist large uncertainties for the expected reach of
next decades target-of-opportunity searches.

IV. CONCLUSIONS

With the goal of contributing to the use of gravitational
wave signals from coalescing binaries as standard sirens
to reconstruct the cosmic expansion history of the
Universe, we analyzed the projected uncertainty measures
of luminosity distances of third generation detectors.
Observatories like the triangular Einstein Telescope, with
arms at 60°, and the L-shaped Cosmic Explorer, with arms
at 90°, are currently planned to start taking data just over a
decade from now, but some of their features, like the exact
location and topology, have not been finalized yet.
Luminosity distance precision measurement affects

directly the measure of cosmological parameters, but
luminosity distance correlates with a relatively large

number of angular variables defining the relative location
and orientation of source and detector. Such correlations
can degrade the expected precision measurements, e.g., the
one relying on a Fisher matrix approximation, thus requir-
ing a numerical Bayesian framework for a consistent
analysis. For the sake of definiteness, we focused on bright
standard sirens of binary neutron stars, for which a host
galaxy can be identified and sky localization obtained with
negligible error, thus reducing the extrinsic angular vari-
ables to correlate with distance, to inclination, polarization,
and phase shift. We neglect arrival time and extrinsic
parameters like masses, which can be constrained with
high accuracy from the GW phasing, and spins that are
expected to be small for neutron star binaries giving rise to
bright standard sirens.
We have neglected completely the effect of possible tidal

deformation of neutron stars, which demand an accurate
modeling of the waveform close to the merger, that is way
beyond the scope of our work.
Our main results can be summarised as follows:
(1) While the presence of bimodality in the luminosity

distance (dL) versus inclination (ι) angle distribution
is a well-known feature of detections by single L-
shaped interferometers, we have quantitatively linked
such impossibility to separate individual polarization
contributions to a single scalar parameter, the ϵD first
introduced in [60] (simply ϵ in this work). This
parameter relates to the information of how much
the subdominant polarization is present in the com-
bined detector output. In particular, we have shown
that detectors like the ones forming a triangular
interferometer, which cover all sky localizations
without blind directions, have ϵ < 1 for virtually all
of the sky, and they can present bimodality in dL − ι
recovery only for specific directions with ϵ ∼ 1.

(2) Another well-known feature of dL vs ι uncertainty is
the reduced error uncertainty for ι → π=2 for tri-
angular interferometers. We found that this is a
generic feature ascribable to an improved precision
in the determination of the polarization angle, whose
better constrained values are correlated with dL
measures.

(3) We have shown quantitative measures of dL un-
certainties for a variety of networks made of up to
three third generation detectors. Besides qualitative
results presented in plots, we showed that given a
network of at least two misaligned detectors, which
then have virtually no blind spots in the sky, the best
way to increase the precision measurement is to add
a more sensitive detector, rather than adding an
equally performing one, even if with more arms.
Moreover, we have shown that with three detectors,
one can almost reach the measurement error level set
by lensing, which start to be at the percent level
from z≳ 0.6.
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(4) We have quantified how the inclination angle dis-
tribution affect the dL uncertainty measures, with the
result that knowing the underlying ι distribution can
improve up to a factor 5 the luminosity distance
uncertainty.

Obvious generalizations of the present work include to
explore the nonsymmetric mass and spinning case.
However, apart for the case of precessing binaries, which
however are not expected for bright standard sirens [84],
these features are expected to induce quantitative, rather
than qualitative, changes of the results obtained here. One
feature that could change the picture substantially is instead
given by matter/tidal effects of a neutron star, which are
relevant and close to the merger phase. Such effects are not
only relevant for understanding the state of matter at high
density inside the neutron stars but have a nontrivial impact
on cosmological parameter estimation, as they introduce
into the phasing of the gravitational waveform a term that
depends explicitly on redshift [34]. This would give a
handle to estimate redshift with gravitational information
alone, which however require accurate development of
accurate and exhaustive matter waveforms; see, e.g., [85]
for a database.
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APPENDIX A: POLARIZATION ANGLE

The radiation frame relative to the ith detector is defined,
taking the ẑrad axis along the line pointing from the source
to the observer (N̂) and the x̂rad axis in the ẑi − ẑrad plane,
being ẑi the unit vector normal to the plane of the detector;
see Fig. 3 for detector and radiation geometry.
The polarization angle ψ i is then conventionally defined

as the angle from x̂rad to the line of ascending nodes, which
is determined by the unit vector parallel to N̂ × L̂, being L̂
the unit vector parallel to the source angular momentum.

One then has

x̂i;rad ≡ ẑi − ðẑi · N̂ÞN̂
jẑi − ðẑi · N̂ÞN̂j ;

ŷi;rad ≡ N̂ × x̂i;rad; ðA1Þ

and

cosψ ¼ x̂i;rad ·
N̂ × L̂

jN̂ × L̂j ;

sinψ ¼ ŷi;rad ·
N̂ × L̂

jN̂ × L̂j ; ðA2Þ

from which it follows,

tanψ i ¼
ðN̂ × ẑiÞ · ðN̂ × L̂Þ

zi · ðN̂ × L̂Þ

¼ L̂ · ½ẑi − ðẑi · N̂ÞN̂�
ẑi · ðN̂ × L̂Þ : ðA3Þ

In the specific case when L̂kN̂, the polarization angle ψ i is
not defined, as it is degenerate with a rotation in the plane of
the orbit. The polarization angle is also undefined if ẑkN̂, in
which case one cannot define the radiation triad.
Note that the angles ι;ψ i, with cos ι≡ L̂ · N̂, determine

the polar angles of L̂, whose explicit components in the
reference frame where N̂kẑ and ẑi is in the x̂ − ẑ plane, are

L̂ ¼ ðsin ι sinψ i;− sin ι cosψ i; cos ιÞ; N̂kẑ: ðA4Þ

We denote by α, β the polar angles defining N̂, (α is the
right ascension and the declination angle δ is related to β
via δ ¼ π=2 − β) in the frame in which the reference vector
ẑi ¼ ð0; 0; 1Þ,

N̂ ¼ ðsin β cos α; sin β sin α; cos βÞ; ẑikẑ: ðA5Þ

The transformation taking from the source frame to the
radiation frame is Rzðψ − π=2ÞRyðιÞRzðϕÞ, and the one
taking N̂ from the form (A5) to the canonical form (0,0,1)
is ½RzðαÞRyðβÞ�−1.
For a detector at latitude λ and longitude u, with N̂ given

by Eq. (A5), one has

ẑi ¼ ðcos λ cos u; cos λ sin u; sin λÞ;
x̂i ¼ ðcos λ cos u − cos α cos β sin λ sin β − cos λ cosðu − αÞ cos αsin2β;

cos λ sin u − sin α cos β sin λ sin β − cos λ cosðu − αÞ sin αsin2β; sin λsin2β − cos λ cosðu − αÞ cos β sin βÞ=N ;

N 2 ≡ 1 − ½cos β sin λþ cos λ cosðu − αÞ sin β�2; ðA6Þ
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and one can then find that ψ i ¼ ψ0 þ δψ i where δψ i is
determined as

N cos δψ i ¼ sin λ sin β − cos λ cosðu − αÞ cos β;
N sin δψ i ¼ − cos λ sinðu − αÞ; ðA7Þ

which shows that δψ i depends only on the location of the
source and not on the reference polarization angle ψ0, as
stated in Sec. II.
We conclude this appendix by reporting the explicit

expression of the angle ψ̄ defined in Eq. (19),

cos 4ψ̄ ¼ Ξþþ − Ξ××

Ξ0

;

sin 4ψ̄ ¼ 2Ξþ×

Ξ0

;

Ξ2
0 ≡ Ξ2þþ þ Ξ2

×× þ 4Ξ2þ× − 2ΞþþΞ××; ðA8Þ

and finally, the relationship between ΞdtiAB and its diagonal
version (29),

Ξ̄ditAB ¼ M−1
ACΞditCDMDB; ðA9Þ

with

MAB ¼
 

Fþ sinð2ψ tÞ−F× cosð2ψ tÞ
Fþ cosð2ψ tÞþF× sinð2ψ tÞ

Fþ cosð2ψÞþF× sinð2ψÞ
F× cosð2ψÞ−Fþ sinð2ψÞ

1 1

!
: ðA10Þ

APPENDIX B: DEGENERACY
BETWEEN dL AND ι

According to the explanation given in Sec. II, see point 3
below Eq. (21), the presence of bimodality is unavoidable
(for ι sufficiently distant from the value π=2) for ϵ ∼ 1. Note
that the blind zones of the individual interferometers
making the ET are very close together; see Fig. 15, so
that for those specific source position the response of ET is
not too dissimilar from the response of L-shaped detector.
Taking, e.g., the case of 2G detectors, the two LIGOs are

almost perfectly aligned, making ϵ ∼ 1 for most of the sky;
the addition of Virgo and KAGRA will not change
drastically the situation as they have larger spectral noise
sensitivity, see Fig. 16 for the σ and ϵ maps and Fig. 17 for
2G detector design spectral noise sensitivities.

APPENDIX C: RELATION TO DOMINANT
POLARIZATION FRAME

In this work, we relied on the parametrization leading to
expression (21) that we borrowed from [60]. In [87], a
similar parametrization has been introduced, identifying the
dominant polarization frame, i.e., the radiation frame for
which the detector network is maximally sensitive to the þ
polarization, by using the general property that different
radiation frames are related by a shift in the polarization
angle, i.e., a rotation around the propagation direction. The
detector signal is then parametrized in [87] as

FIG. 15. Quadratic sum of pattern function ðf2þ þ f2×Þ1=2 for each of the three component of a triangular interferometer with arms at
60°. The blind spots of each individual interferometer lie in the plane of the detector.
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FIG. 16. Values of σ and ϵ for various networks of 2G detectors, spectral noise curves used are displayed in Fig. 17.
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hdet ¼ gkðhþ þ ϵkh×Þ; ðC1Þ

leading to the following mapping of these coefficients into
our σ, ϵ:

gk ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
;

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

1þ ϵ

r
: ðC2Þ

APPENDIX D: 3G LUMINOSITY DISTANCE
UNCERTAINTY COMPARISON WITH 2G
DETECTORS AND STANDARD CANDLES

As a comparison with luminosity distance uncertainties
obtained with 2G GW detectors and standard candles, we
report in Fig. 18 luminosity distance uncertainties from our
3G projections superimposed with the catalogues in [1–3]
and [80].
Finally, we report here the sky distribution of the

injections used for the three detector analysis of Sec. III
C 2 (ETþ CEþ ET), which highlight the location selec-
tion effect of the SNR threshold at large distances.

FIG. 17. Left: Characteristic strain
ffiffiffiffiffiffiffiffi
fSn

p
used to generate maps in Fig. 16, from [86]. Right: Examples of TaylorF2 (dashed) and

IMRPhenomD (solid) waveforms for total mass 3M⊙ and equal binary component masses.

FIG. 18. Same as in Fig. 14, with uncertainties in luminosity distance of 2G detections from [1–3] and standard sirens from [80] added.
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FIG. 19. Histograms representing the dispersions of ΔdL=dL measurements for sample 1,2, and 3 detector case of Fig. 14. Hard cutoff
refers to the ι distributions of the injections as per Fig. 10.
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