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We study the cross-correlation between the stochastic gravitational-wave background (SGWB)
generated by binary black hole mergers across the Universe and the distribution of galaxies across the
sky. We use the anisotropic SGWB measurement obtained using data from the third observing run (O3)
of Advanced LIGO detectors and galaxy overdensity obtained from the Sloan Digital Sky Survey
spectroscopic catalog. We compute, for the first time, the angular power spectrum of their cross-correlation.
Instead of integrating the SGWB across frequencies, we analyze the cross-correlation in 10-Hz-wide
SGWB frequency bands to study the frequency dependence of the cross-correlation angular power
spectrum. Finally, we compare the observed cross-correlation to the spectra predicted by astrophysical
models. We apply a Bayesian formalism to explore the parameter space of the theoretical models, and
we set constraints on a set of (effective) astrophysical parameters describing the galactic process of
gravitational-wave (GW) emission. Parametrizing with a Gaussian function the astrophysical kernel
describing the local process of GW emission at galactic scales, we find the 95% upper limit on kernel
amplitude to be 2.88 × 10−32 erg cm−3 s−1=3 when ignoring the shot noise in the GWemission process and
2.52 × 10−32 erg cm−3 s−1=3 when the shot noise is included in the analysis. As the sensitivity of the LIGO-
Virgo-KAGRA network improves, we expect to be able to set more stringent bounds on this kernel function
and constrain its parameters.
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I. INTRODUCTION

The first three observing runs of Advanced LIGO [1],
Advanced Virgo [2], and KAGRA [3] gravitational-wave
(GW) detectors have resulted in detections of nearly a
hundred mergers of compact binary systems [4]: binary
black holes (BBHs), binary neutron stars (BNSs), and
binary systems composed of one neutron star and one black
hole (NSBH). These discoveries have enabled a series of
investigations including measurements of the rate and
distributions of these binary systems [5], tests of general
relativity [6], independent measurements of the Hubble
constant [7], tests of the neutron star equation of state [8],
and others. This trend is expected to continue in the

upcoming observation runs O4 and O5 [9] of LIGO,
Virgo, and KAGRA.
One of the prime targets of the upcoming observing runs

will be the stochastic gravitational-wave background
(SGWB), which arises as a superposition of uncorrelated
signals ofmany different GW sources [10,11]. The SGWB is
expected to include contributions from many different
production processes in the earlyUniverse, includingmodels
of amplification of primordial tensor vacuum fluctuations
[12–15], inflationary models that include backreaction of
gauge fields [16,17], parametric resonances in the preheating
stage following inflation [18], models of additional “stiff”
energy components in the early Universe [19], phase
transition models [20–26], and cosmic (super)string models
[27–37]. On the other hand, the SGWB of astrophysical
origin is given by the superposition ofGWsignals emitted by
different populations of astrophysical sources, from the onset
of stellar activity until today. In the frequency band of current*yang5991@umn.edu
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Earth-based observatories, sources include BBH, BNS, and
NSBH systems [38–45], rotating neutron stars [42,46–50],
and supernovae [11,51–57].
Both cosmological and astrophysical SGWB compo-

nents are expected to be anisotropic. A primary source of
anisotropy in the received flux is due to the anisotropic
distribution of emitting sources and the anisotropic emis-
sion process. A secondary source of anisotropy is due to
propagation: even if a given SGWB component is isotropic
at the time of emission, anisotropies are created due to the
fact that GW signals propagate in a Universe where cosmic
structures are present and, hence, they feel the effects of the
gravitational potential of matter structures (in the form of
lensing, time delay, integrated time delay; see e.g. [58–60]).
We also note that kinematic anisotropies are expected, due
to the relative motion of our rest frame on Earth with
respect to the emission rest frame [61,62].
This raises a distinct possibility that the SGWB energy

density is correlated with the anisotropy in other (electro-
magnetic) observables, such as galaxy counts (GCs), gravi-
tational (weak) lensing, cosmic microwave background,
cosmic infrared background, and others. Measurements of
these correlations would provide new ways to study the
distribution of matter in our Universe and its evolution.
Typical cosmological SGWB components are expected

to have the same level of anisotropy as the cosmic micro-
wave background (CMB): a scale-invariant angular power
spectrum lðlþ 1ÞCl ∝ const, where l parametrizes the
angular scale, and a level of anisotropy of the order of
∼10−5 with respect to the monopole [63]. In contrast,
extragalactic astrophysical SGWBs have a scaling given by
clustering, resulting in ðlþ 1ÞCl ∝ const, and a higher
level of anisotropy, at the level of ∼10−2 with respect to the
monopole [59,60,64–74].
While most of the cosmological SGWB components are

expected to be stationary and continuous over the obser-
vation time (hence representing irreducible background
components), the astrophysical background in the fre-
quency band of ground-based detectors is expected to have
popcornlike nature due to the discreteness of emissions in
time. As a consequence, the angular power spectrum of the
SGWB from mergers of compact binaries has an important
Poisson shot-noise component, which adds to the clustering
one [65,70,71,74]. Formally, the total SGWB angular
power spectrum is given by Ctot

l ¼ Cl þ Nshot, where the
first term on the right-hand side is the contribution from
clustering while the second component represents shot
noise. This latter term is flat in l space (it is just an offset)
and it is expected to dominate over the clustering con-
tribution; see [65,70,71,74]. Even though shot noise con-
tains astrophysical information, it does not provide any
information about the spatial distribution of sources. A
possible way to overcome this problem, i.e. to separate the
clustering part from the shot noise, is to consider cross-
correlations between a SGWB map and electromagnetic

tracers of structure, such as galaxy distributions [74]. In
addition to serving as independent observables of structure
in the Universe, cross-correlations provide one with power-
ful SGWB anisotropy detection tools, as they typically
have a higher signal-to-noise ratio (SNR) than the SGWB
autocorrelation—see e.g. [64,65,74–76] in the context of
the extragalactic astrophysical background. We are aware
that cross-correlating EM tracers with individual events of
compact binary coalescence is also used, such as in the
calculation of the Hubble constant H0 [77].
In this paper, we focus on correlations between the

SGWB (as measured in the recent observing runs of
Advanced LIGO, Advanced Virgo, and KAGRA) and
the distribution of galaxies across the sky [from the
Sloan Digital Sky Survey (SDSS)]. We assume that the
dominant background components in the ∼100 Hz band is
coming from mergers of extragalactic compact objects, and
we use the astrophysical model of Refs. [64,65,69] to
describe the galactic process of GWemission. We compute
the corresponding angular power spectrum of the cross-
correlation, and we compare it with the angular power
spectrum extracted from data. Our final goal is to perform a
parameter estimation: we introduce an effective paramet-
rization for the astrophysical model describing GW pro-
duction and propagation, and we study the constraints that
can be set on these effective model parameters from a
comparison with data. We stress that the methods devel-
oped here can also be applied to cross-correlations between
SGWB and other electromagnetic tracers of structure in the
Universe.
The paper is structured as follows. In Sec. II we will

review the model predictions for the angular power
spectrum of the cross-correlation between SGWB and
the galaxy counts distribution. In Sec. III, we will present
the frequency-dependent anisotropic SGWB search results
using the latest data from terrestrial GW detectors. In
Sec. IV we review the galaxy catalog that will be used
in our study, namely from the Sloan Digital Sky Survey. In
Sec. V we present the measured SGWB-GC angular power
spectra. In Sec. VI we use the measured angular power
spectra to make estimates of model parameters introduced
in Sec. II. A discussion and our final remarks are presented
in Sec. VII.

II. MODELING SGWB-GALAXY COUNT
ANGULAR POWER SPECTRA

A. Astrophysical models of angular power spectra

The observed GW energy density parameter ΩGW is
defined as the background energy density ρGW per units
of logarithmic frequency f and solid angle e, normalized
by the critical density of the Universe today ρc. It can be
divided into an isotropic background contribution Ω̄GW
and a contribution from anisotropic perturbations δΩGW
[59,60,65]:
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ΩGWðe; fÞ ¼
f
ρc

d3ρGW
d2edf

ðe; fÞ ¼ Ω̄GWðfÞ
4π

þ δΩGWðe; fÞ;

ð2:1Þ

where the isotropic background spectrum can be written as
the integral over conformal distance r (where we treat speed
of light c ¼ 1):

Ω̄GWðfÞ ¼
Z

dr∂rΩ̄GWðf; rÞ; ð2:2Þ

∂rΩ̄GWðf; rÞ ¼
f
ρc

Aðf; rÞ; ð2:3Þ

and the function Aðf; rÞ is an astrophysical kernel that
contains information on the local production of GWs at
galaxy scales. Schematically this kernel can be parametrized
as [74]

Aðf; rÞ ¼ a4

4π

Z
dLGWn̄GðLGW; rÞLGW; ð2:4Þ

where a is the Universe scale factor and n̄G is the average
physical number density of galaxies at distance r with
gravitational-wave luminosity LGW. Different astrophysical
models give quite different predictions for this kernel;
see e.g. [65] for an explorative approach. For the SGWB
due tomergers of compact objects such asBBHandBNS, the
low-frequency band (f ≲ 100 Hz) is dominated by the
inspiral phase contributions and follows a simple power
law ΩGW ∼ f2=3. Looking at predictions of different astro-
physical models (see e.g. [65,69]), one can recognize some
common features in the redshift dependence of the kernel
which in first approximation can be captured by the follow-
ing Gaussian parametrization:

Aðf;zÞ¼AðfÞe−ðz−zcÞ2=2σ2z ¼Amaxf−1=3e−ðz−zcÞ
2=2σ2z ; ð2:5Þ

where we used z ¼ zðrÞ to express the astrophysical kernel
as a function of redshift and frequency. In Fig. 1 we present
the astrophysical kernel as a function of redshift for several
representative frequencies in the band of terrestrial GW
detectors [65]. When making use of the parametrization
in Eq. (2.5), we have three parameters in total θ ¼
ðAmax; zc; σzÞ: kernel amplitude Amax, peak redshift zc,
and peak width σz. Typically the peak of the astrophysical
kernel follows the peak of star formation rate (i.e. zc ≲ 1)
and the width σz depends on the astrophysical model
chosen and is typically of the order σz ∼ 0.5; see [65]
for details. As we can see in Fig. 1, the Gaussian
approximation is valid for redshifts between 0 and 2.
This applies to our analysis below which extends up to
z ¼ 0.8.
Since δΩGW is a stochastic quantity, it can correlate with

other cosmological stochastic observables. An interesting

observable to look at is the cross-correlation of the SGWB
with the distribution of galaxies, i.e. with the galaxy
number counts Δ defined as the overdensity of the number
of galaxies per unit of redshift and solid angle

Δðe; zÞ≡ Nðz; eÞ − N̄ðzÞ
N̄ðzÞ : ð2:6Þ

First, if astrophysical GW sources are located in galaxies,
we would expect the SGWB and the galaxy distribution to
have a high correlation level. Second, cross-correlating
with galaxies helps to mitigate the problem of shot noise
and to possibly extract the clustering information out of
the shot-noise threshold [65,70,71,74]. Finally, by cross-
correlating with the galaxy distribution at different red-
shifts, one could try to get a tomographic reconstruction
of the redshift distribution of sources. In this article, to
maximize the SNR of the cross-correlation we do not bin
the galaxy distribution in redshift, but we rather integrate
the number counts (2.6) over the redshift range covered by
our catalog.
The angular power spectrum of the GW and galaxy

count autocorrelations and for their cross-correlations are
defined as

ð2lþ 1ÞCGW
l ðf; θÞ≡ Xl

m¼−l
halmðf; θÞa�lmðf; θÞi; ð2:7Þ

ð2lþ 1ÞCGC
l ≡ Xl

m¼−l
hblmb�lmi; ð2:8Þ

ð2lþ 1ÞCcross
l ðf; θÞ≡ Xl

m¼−l
halmðf; θÞb�lmi; ð2:9Þ

where the bracket denotes an ensemble average and almðfÞ
and blm are the coefficients of the spherical harmonics
decomposition of the SGWB energy density and galaxy
number counts, respectively. Explicitly

FIG. 1. Astrophysical kernel for the astrophysical model used
as a reference in Ref. [65], as function of redshift and for
frequencies 25.1 and 89.1 Hz, with a power-law-Gaussian fit of
Amax ¼ 4 × 10−37 erg cm−3 s−1=3, zc ¼ 0.6, σz ¼ 0.9.
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δΩGWðe; f; θÞ ¼
X∞
l¼0

Xl
m¼−l

almðf; θÞYlmðeÞ;

ΔðeÞ ¼
X∞
l¼0

Xl
m¼−l

blmYlmðeÞ: ð2:10Þ

It can be shown that the angular power spectra of the
auto- and cross-correlation are given by [59]

CGW
l ðf; θÞ ¼ 2

π

Z
dkk2jδΩGW;lðk; f; θÞj2; ð2:11Þ

CGC
l ¼ 2

π

Z
dkk2jΔlðkÞj2; ð2:12Þ

Ccross
l ðf; θÞ ¼ 2

π

Z
dkk2δΩ�

GW;lðk; f; θÞΔlðkÞ; ð2:13Þ

where k is the wave number. Keeping only the leading-
order contribution to the anisotropy given by clustering
(neglecting line of sight effects), we have

δΩGW;lðk;f;θÞ ¼
f

4πρc

Z
drAðr;f;θÞ½bðrÞδm;kðrÞjlðkrÞ�;

ð2:14Þ
where jl are spherical Bessel functions, while δm is the
dark-matter overdensity, related to galaxy overdensity via
the bias factor that we assume to be scale independent and
with redshift evolution given by bðzÞ ¼ b0

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
and

b0 ¼ 1.5 [78,79]. The corresponding contribution from
galaxy overdensities reads

ΔlðkÞ ¼
Z

drWðrÞ½bðrÞδm;kðrÞjlðkrÞ�; ð2:15Þ

whereWðrÞ is a window function normalized to one which
selects the redshift bin in the galaxy catalog we want to

consider in the cross-correlations. As already mentioned, in
our analysis we do not bin in redshift in order to maximize
the SNR; hence, the function WðrÞ extends to the entire
redshift range of the galaxy catalog.

B. Shot noise

Up to now, in our description of GWsources we implicitly
introduced two assumptions: we assumed that astrophysical
sources are located in galaxies, distributed in space as a
continuous field, and we assumed that the GW emission is
continuous and stationary over the observation time.
However,when considering theSGWBdue toBBHmergers,
the realization of the BBH mergers during the observation
period is subject to Poisson (shot, or popcorn) noise in both
space and time [70,74]. This shot noise introduces additional
angular structure in both the SGWB and the galaxy distri-
bution and therefore has to be accounted for in both the
prediction of Cl ’s (GW, GC, and cross) and in their
covariance matrices. As shown in Ref. [74], the shot-noise
contribution to the cross-correlation angular power spectrum
is independent of l but still dependent on astrophysical
parameters θ ¼ ðAmax; zc; σzÞ. That is, the shot noise offsets
the clustering values given in Eq. (2.11):

Ccross;tot
l ðθÞ ¼ Ccross

l ðθÞ þ Ncross
shot ðθÞ: ð2:16Þ

Hence, while shot noise may (partly) mask the clustering
contribution, it still carries astrophysical information that can
be measured. Further, as discussed in detail in Ref. [74], the
shot noise associated with the cross-correlation is much
smaller than the one associated with the SGWB autocorre-
lation, which is why cross-correlating is a very promising
method to get a first detection of the SGWB anisotropy.
Indeed, assuming that shot noise is the only noise component
(i.e. considering a perfect instrumentwith infinite sensitivity)
one has that the SNR of the cross-correlation scales as [74]

�
S
N

�
2

cross
¼

X
l

ð2lþ 1ÞCcross
l

ðCcross
l þ Ncross

shot Þ2 þ ðCGW
l þ NGW

shotÞðCGC
l þ NGC

shotÞ
; ð2:17Þ

whereCGW
l andNGW

shot denote the angular power spectrum and
the shot noise of theSGWBmap, respectively,whileCGC

l and
NGC

shot are the angular power spectrum and shot noise of the
galaxy map (we have suppressed their dependencies on
parametersθ). The three noise contributions are givenby [74]

NGW
shotðθÞ ¼

�
1þ 1

βT

��
f

4πρc

�
2
Z

dr
r2

1

a3n̄G
A2ðr; f; θÞ;

ð2:18Þ

Ncross
shot ðθÞ ¼

f
4πρc

Z
dr
r2

1

a3n̄G
WðrÞAðr; f; θÞ; ð2:19Þ

NGC
shot ¼

Z
dr
r2

1

a3n̄G
W2ðrÞ; ð2:20Þ

where a3n̄G is the comoving number density of galaxies and
we defined
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βT ≡ T
a3n̄G

d2N
dtdV

; ð2:21Þ

where T is the observation time and d2N =dVdt denotes the
local merger rate. To get these expressions we have assumed
a monochromatic GW luminosity function and that all
galaxies emit GWs.
To get an estimate for the prefactor (2.21), we can use

the observed local rate of BBH mergers, d2N =dVdt∼
100 Gpc−3 yr−1. This estimate for the merger rate, which
neglects the contribution of BNS mergers, provides a lower
bound for the total merger rate in the ∼100 Hz band and
hence leads to a conservative estimate for the GW shot
noise. We also assume a constant comoving galaxy density
a3n̄G ∼ 0.1 Mpc−3. For LIGO-Virgo-KAGRA O3, the
observation time period T ∼ 1 yr, so finally βT ∼ 10−6.
This leads to a large prefactor ∝ β−1T when evaluating the
shot noise for the GW map [Eq. (2.18)], much larger than
the ones of cross-correlation and of galaxies alone. Since the
denominator of Eq. (2.17) scales linearly with the GW shot
noiseNGW

shot (as opposed to scaling quadratically in the SNRof
SGWB autocorrelation), the SNR of the cross-correlation is
typically much larger than the one of the SGWB autocorre-
lation (see [74] for a detailed analysis).

III. MEASUREMENT OF SGWB ANGULAR
POWER SPECTRA

In this section, we review how the SGWB anisotropy is
measured using GW data. We use the publicly available
folded dataset [80,81] from the third observing run (O3) of
Advanced LIGO detectors located in Hanford, Washington
and Livingston, Louisiana. In order to capture the fre-
quency dependence of the model presented in Sec. II, we
analyze the data in 10 Hz frequency bands and build an
unbiased estimator of the SGWB angular power spectrum.

A. Basic concepts: Dirty and clean maps

From an observational point of view, a SGWB is
typically estimated by cross-correlating the output of two
different detectors located at two different points on Earth
and assuming that the noise and the noise signal in the two
detectors are not correlated.
Assuming that the SGWB is unpolarized, Gaussian, and

stationary, the quadratic expectation value of the GW strain
hAðf; eÞ across different sky positions and frequencies can
be expressed as

hh�Aðf;eÞhA0 ðf0;e0Þi¼1

4
Pðf;eÞδAA0δðf−f0Þδðe;e0Þ; ð3:1Þ

where A denotes the GW polarization and Pðf; eÞ encodes
the contribution from all parts of the sky and frequency
to the total SGWB. Given these assumptions, one can
express the anisotropy of the SGWB as

ΩGWðf; eÞ ¼
f
ρc

d3ρGW
dfd2e

¼ 2π2f3

3H2
0

Pðf; eÞ; ð3:2Þ

where H0 is the Hubble constant taken to be H0 ¼
67.4 kms−1Mpc−1 [82]. In what follows, we further
assume that ΩGW can be factorized into frequency- and
direction-dependent terms by separatingPðf; eÞ as1 [83,84]

Pðf; eÞ ¼ PðeÞHðfÞ: ð3:3Þ

In our analysis, we model the spectral dependence HðfÞ as
a power law:

HðfÞ ¼
�

f
fref

�
α−3

; ð3:4Þ

where α is the spectral index and fref denotes a reference
frequency. Throughout this analysis, we set the reference
frequency to 25 Hz and choose the power-law index α ¼
2=3 as predicted for a compact binary coalescence SGWB.
The angular distribution PðeÞ can be expanded in terms of
any set of basis functions defined on the two-sphere. The
choice of this basis will not affect the physical search
results. However, to reduce the computational burden and
ease the interpretation of the results, one usually chooses
either pixel or spherical harmonic basis for the analysis,
depending on the sky distribution of sources. A spherical
harmonic (SpH) basis is suitable for searching for a diffuse
background considered in this work. In SpH basis, one can
expand the anisotropy map over the basis functions Ylm as

PðeÞ ¼
Xlmax

l¼0

Xl
m¼−l

PlmYlmðeÞ: ð3:5Þ

We will discuss the choice of lmax below. Following the
maximum-likelihood (ML) method for mapping the GW
anisotropy [83,85], a standard ML solution for PðeÞ in SpH
basis can be written as (in the limit of low signal-to-noise
ratio)

P̂lm ¼
X
l0;m0

ðΓ−1Þlm;l0m0X̂l0m0 ; ð3:6Þ

where

X̂lm ¼
X
t

X
f

γlmðf; tÞ
HðfÞ

P1ðf; tÞP2ðf; tÞ
Ĉðf; tÞ; ð3:7Þ

1The factorization does not amount to a loss of generality when
conducting stochastic search analysis in small frequency bands,
as we expect the signal to have a smooth power spectral profile.
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Γlm;l0m0 ¼
X
t

X
f

γ�lmðf; tÞ
H2ðfÞ

P1ðf; tÞP2ðf; tÞ
γl0m0 ðf; tÞ;

ð3:8Þ
where Ĉðf; tÞ is the cross-correlation spectrum computed
by multiplying Fourier transforms of the strain time series
from the two GW detectors used in the analysis [83]. The
summation is done over time segments denoted by t
(typically data is divided into short segments, each lasting
1–3 min) and over frequency bins denoted by f (typically
1=4 or 1=32 Hz binning is used). As discussed below, we
will repeat the analysis in 10-Hz-wide bands, summing
over all frequency bins between 20 and 30 Hz, 30 and
40 Hz, etc.
The quantity X̂lm is usually referred to as the dirty map

(it represents the SGWB sky seen through the response
matrices of a baseline created by a pair of detectors)
whereas the Γlm;l0m0 is called the Fisher information matrix
(it encodes the uncertainty associated with the dirty map
measurement). In both equations, Piðf; tÞ is the noise
power spectral density of detector i, and γlm captures
the geometrical factors associated with the two geographi-
cally separated detectors with different orientations (usu-
ally referred to as the overlap reduction function [83,86]).
The observed P̂lm, the clean map, obtained through the

deconvolution shown in Eq. (3.6) is an unbiased estimator
of the angular distribution of the SGWB, hP̂lmi ¼ Plm. It
is also worth noting that, in the weak-signal limit, one can
show that

hX̂lmX̂
�
l0m0 i − hX̂lmihX̂�

l0m0 i ≈ Γlm;l0m0 ;

hP̂lmP̂
�
l0m0 i − hP̂lmihP̂�

l0m0 i ≈ ðΓ−1Þlm;l0m0 : ð3:9Þ
The above equation implies that Γlm;l0m0 is the covariance
matrix of the dirty map, and ðΓ−1Þlm;l0m0 is the covariance
matrix of the clean map. In particular, since the dirty map is
obtained by averaging over many time segments and
frequency bins, by the central limit theorem the resulting
X̂lm’s are multivariate Gaussian variables with zero means
and the covariance matrix given by Γlm;l0m0. Further, since
the clean map is obtained by a linear transformation of the
dirty map [cf. Eq. (3.6)], the P̂lm’s are also multivariate
Gaussian variables with zero means and the covariance
matrix given by ðΓ−1Þlm;l0m0.
One can then introduce an estimator for the SGWB

angular power spectrum, which describes the angular scale
of structure in the clean map as

Ĉl ¼ 1

2lþ 1

Xl
m¼−l

jP̂lmj2: ð3:10Þ

We will see in the next section that this estimator is biased,
and we will describe how one can obtain an unbiased
estimator from it. Also, note that by conducting the analysis

in narrow frequency bands (10 Hz wide in our case), these
estimators will encode frequency dependence.

B. Unbiased regularized estimator

In practice, due to the existence of blind directions in GW
detector response, the SGWB searches are often insensitive
to certainlmmodes. Consequently, Fishermatrices are often
singular and cannot be inverted. Therefore we use a regu-
larized pseudoinverse, which conditions the original matrix
to circumvent other numerical errors, to obtain our estima-
tors. One can employ different regularization techniques to
perform this pseudoinversion [83,87–89]. One of the most
common regularization procedures used in the literature is
the singular value decomposition (SVD) technique. In the
SVD procedure one can decompose Γlm;l0m0 (which is a
Hermitian matrix) as

Γ ¼ USV�; ð3:11Þ

whereU andV are unitarymatrices andS is a diagonalmatrix
whose nonzero elements are the positive and real eigenvalues
of the Fisher matrix. Then the problematic lm modes will
correspond to the smallest elements of S. To illustrate the
general nature of these eigenvalues, we have plotted the
relative size of the eigenvalues for a typical Fisher matrix
(computed from the 20–30 Hz GW dataset with lmax ¼ 10)
in Fig. 2. Then to condition the ill-conditioned matrix, a
threshold on the eigenvalue (Smin) is chosen. The choice is
made by considering the proper trade-off between the quality
of the deconvolution and the increase innumerical noise from
less sensitive modes.2 Any values below this cutoff are
considered too small, and one can replace them either with

FIG. 2. SVD eigenvalues of the Fisher matrix in the 20–30 Hz
band are shown. Regularization of the Fisher matrix is accom-
plished by replacing eigenvalues smaller than Smin with Smin,
where Smin is defined to be 10−2 of the maximum eigenvalue and
is depicted by the horizontal part of the orange line.

2It is worth noting that the regularization problem becomes
severe as one considers smaller frequency bands. A proper trade-
off between the variance of the estimator and the subsequent
biases needs to be thoroughly explored in such cases.
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infinity or with the smallest eigenvalue above the cutoff.
Throughout thiswork,wewill set the thresholdSmin to be102

times smaller than the largest eigenvalue; all eigenvalues
smaller than Smin are replaced by Smin. These choices and
the subsequent regularized eigenvalues are also illustrated
in Fig. 2.
Given the regularized inverse Fisher matrix Γ−1

R , the ML
solution in Eq. (3.6) takes the form [83,85]

P̂R
lm ¼

X
l0;m0

ðΓ−1
R Þlm;l0m0X̂l0m0 ; ð3:12Þ

still obeying multivariate Gaussian distribution. The covari-
ance matrix of this clean map (under weak-signal approxi-
mation) also takes a slightly different form compared to the
one given in Eq. (3.9). It can be written as (we have dropped
the indices for the Fisher matrix for simplicity)

Klm;l0m0 ¼ hP̂R
lmP̂

R�
l0m0 i− hP̂R

lmihP̂R�
l0m0 i ¼ Γ−1

R ΓΓ−1
R : ð3:13Þ

From the expectation value and uncertainty in the estima-
tors defined in Eq. (3.9), one can show that the regularized
SGWB angular power spectrum estimators obey

hĈR
li ≈ Cl þ

1

2lþ 1

X
m

ðΓ−1
R Þlm;lm; ð3:14Þ

hðĈR
lÞ2i − hĈR

li2 ≈
2

ð2lþ 1Þ2
X
mm0

jðΓ−1
R Þlm;lm0 j2: ð3:15Þ

One can see from the expressions of estimators of the clean
map and the angular power spectra that both depend on
inverting the Fisher information matrix Γlm;l0m0 . Thus, our
estimators are biased. The unbiased estimators of the
SGWB angular power spectrum are given by

Ĉ0
l ¼ Ĉl −

1

2lþ 1

X
m

ðΓ−1
R Þlm;lm: ð3:16Þ

C. Choice of lmax

The choice of lmax in the expansion in Eq. (3.5) is
ultimately determined by the detector sensitivity and the
frequency dependence of the searched SGWB model [89].
However, when the Fisher matrix is ill defined, the
regularization procedure introduces a bias that increases
with lmax. In particular, larger lmax implies a larger Fisher
matrix, regularization of a larger number of eigenvalues,
and hence larger bias.
One way to assess this is to examine the diagonal entries

of the Fisher and regularized inverse Fisher matrices, as in
Fig. 3. The Fisher matrix diagonal elements decrease
significantly as l increases for the same m. If the Fisher
matrix could be inverted, the diagonal elements of the

inverse Fisher matrix would correspondingly increase with
l for a fixed m. Figure 3 (bottom) indeed shows this
increasing trend, but the trend saturates (reaches a plateau)
after l ¼ 5 because of the regularization. Propagating this
to K in Eq. (3.13) implies that the covariance matrix for the
clean map could have artificially low values (implying
artificially good sensitivity) if one uses too large value of
lmax. We therefore choose lmax ¼ 5 in our analysis to avoid
this regularization bias.

D. Final angular power spectrum estimator

We note that the definition of the SGWB anisotropy in
the theoretical model of Sec. II [cf. Eq. (2.10)] and in the
SGWB search formalism [Eqs. (3.2)–(3.4)] have different
normalizations. To build estimators that are directly com-
patible with the model prediction [Eq. (2.7)], note that the
frequency dependence of the angular power defined in the
SGWB search is [cf. Eqs. (3.2)–(3.4)]:

K≡ 2π2f3

3H2
0

�
f
fref

�
α

: ð3:17Þ

We can then define frequency-dependent estimators of the
spherical harmonic coefficients of the clean map, whose

FIG. 3. Diagonal entries of the SGWB Fisher matrix and its
inverse Fisher matrix (real part only) are shown for the 20–30 Hz
band, with regularization defined in the text. The indices
along the x axis are ðl;mÞ¼ ð0;0Þ;ð1;0Þ…;ðlmax;0Þ;ð1;1Þ;…;
ðlmax;1Þ;…;ðlmax−1;lmax−1Þ;ðlmax;lmaxÞ, with lmax ¼ 10.
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expectation values are consistent with their theoretical
counterparts in Eq. (2.10):

âlmðfÞ ¼ KP̂lm: ð3:18Þ

The covariance matrix for these coefficients is given by a
similar scaling:

KGW
lm;l0m0 ¼ K2Klm;l0m0 : ð3:19Þ

We then introduce the properly normalized, frequency-
dependent estimators of the SGWB angular power
spectrum:

ĈGW
l ðfÞ ¼ 1

2lþ 1

Xl

m¼−l
jâlmðfÞj2: ð3:20Þ

Referring to Eq. (3.16), the unbiased angular power
spectrum of the SGWB autocorrelation is then

Ĉ0GW
l ðfÞ ¼ ĈGW

l ðfÞ − K2

2lþ 1

X
m

ðΓ−1
R Þlm;lm: ð3:21Þ

We apply these definitions to the publicly available
folded dataset [80,81] from the third observing run (O3)
of Advanced LIGO detectors located in Hanford,
Washington (H) and Livingston, Louisiana (L). We perform
the analysis in 10 Hz frequency bands from 20 to 100 Hz
with lmax ¼ 5 and use the PYSTOCH pipeline [90,91] to
compute the unbiased Ĉ0GW

l estimators of the angular power
spectra and the corresponding âlm. The Ĉ0GW

l estimators
and their variance [calculated from Eq. (3.15) times K2] in
these frequency bands are shown in Fig. 4, as a function of
l for different frequencies and as a function of frequency
for various values of the multipole l (top and bottom
panels, respectively). This figure shows that the SGWB
auto power in all frequency bins and at all l’s is consistent
with zero at 2σ, implying there is no evidence for an
anisotropic SGWB in these data. Note that the error bars
increase at higher frequencies, which is a consequence of
the lower strain sensitivity of LIGO detectors at higher
frequencies and of the power-law frequency dependence in
Eq. (3.17). It is worth noting here that the SGWB auto
power and the error bars are consistent with the noise
as in the case of results published in Ref. [92]. It is not
straightforward to have a one-to-one comparison, given
our analysis is performed in 10 Hz frequency bands in
contrast to the broadband one shown in Ref. [92]. However,
the SGWB auto power is in good agreement with the all-
sky all-frequency SGWB angular power spectra shown
in Ref. [93].

IV. MEASUREMENT OF GALAXY OVERDENSITY
ANGULAR POWER SPECTRA

In our study, we use the galaxy number count from
SDSS [94] for computing the galaxy overdensity angular
power spectra. The SDSS imaging data cover around
1.5 × 104 deg2, or one-third of the sky. Within the range
of r-band magnitude between 17 and 21 (17 < mr ≤ 21),
after removing quasars and stars, there are 52.4 million
galaxies in its photometric catalog and 2.8 million galaxies
in its spectroscopic catalog. We remove stripe No. 82,
which is scanned many more times compared to other
stripes in the survey and is hence much brighter. This leaves
us with 43.4 and 1.7 million galaxies in the two catalogs,
respectively.
We use the galaxies in the SDSS spectroscopic catalog,

whose redshift range extends to 0.8, with a median redshift
of 0.39. We address systematic issues in the survey
following [75]. In particular, we select only galaxies with
r band seeing < 1.5 and extinction < 0.13. Galaxy counts
in pixels that are affected by these data quality cuts are
replaced by the average galaxy counts of the remaining
unaffected neighboring pixels. This leads to the final sky
map of the galaxy number count in HEALPix-based

FIG. 4. Unbiased Ĉ0GW
l estimators with standard deviation

error bars of the SGWB angular power spectrum are shown in
10-Hz-wide frequency bands (20–30, 50–60, and 80–90 Hz) as a
function of l (top) and as a function of frequency for l ¼ 2, 3, 4
(bottom).
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representation [95], with the systematic effects accounted
for. This sky map is shown in equatorial coordinates in
Fig. 5. The pixels with information cover around 20% of
the full sky.
Based on this galaxy count sky map, we calculate the

galaxy overdensity as a function of the sky direction and
expand it in spherical harmonics as defined in Eq. (2.10).
To account for the pixels with missing information, we
apply a binary mask to the galaxy overdensity sky map in
pixel basis, where we mask out every pixel without
information (due to no observations or high systematics),
before applying the spherical harmonic transformation. The
obtained spherical harmonic coefficient estimators, b̂lm’s,
are then used to compute the angular power spectrum for
the galaxy overdensity autocorrelation:

ĈGC
l ¼ 1

fsky

1

2lþ 1

Xl

m¼−l
jb̂lmj2: ð4:1Þ

Here, the factor fsky denotes the fraction of the sky covered
by the survey and is needed to account for the missing
power in the sky map when performing the spherical
harmonic transformation. We note that the same scaling
must also be applied when computing the cross-correlation
angular power spectrum between SGWB and GC partial-
sky maps. The resulting GC angular power spectrum of the
SDSS spectroscopic catalog is shown in Fig. 6, including
uncertainties defined by the cosmic variance. The maxi-
mum l used in this figure is determined by the angular
resolution in Fig. 5 and is larger than the maximum l
obtained from the SGWB analysis above. Furthermore, due
to the partial-sky coverage, there is a lower limit on l that
can be estimated as lmin ¼ π=θ, where θ is the spot size in
the sky in radians. Hence we will use l ≥ 2 for the SDSS
spectroscopic catalog sky map (Fig. 5).

V. MEASUREMENT OF CROSS-CORRELATION
ANGULAR POWER SPECTRA

We now introduce an unbiased estimator for the angular
power spectrum of the cross-correlation. We use the
frequency-dependent SGWB multipoles âlmðfÞ (estimated
in 10 Hz frequency bins and introduced in Sec. III D) and
the SDSS sky map multipoles, b̂lm, introduced in Sec. IV.
We define the estimator of their cross-correlation angular
power spectrum as

Ĉcross
l ¼ 1

fsky

1

2lþ 1

Xl
m¼−l

b̂�lmâlm: ð5:1Þ

As noted above, the 1=fsky factor accounts for the incom-
plete sky coverage of the SDSS survey. To compute the
covariance of this estimator, KC, we assume that the galaxy
map multipoles have much smaller uncertainties than their
SGWB counterparts. This is a safe assumption since each
pixel in the SDSS map in Fig. 5 counts thousands of
galaxies (implying uncertainties at the level of a few
percent), while the SGWB sky map is dominated by
detector noise and shows no evidence of a signal.
Consequently, Eq. (5.1) can be regarded as a linear trans-
formation of the SGWB multipoles âlm, implying that the
resulting Ĉcross

l are also multivariate Gaussian with the
covariance matrix given by the appropriate propagation of
the covariance of the SGWB multipoles KGW:

ðKCÞl;l0 ¼
1

f2sky

1

ð2lþ 1Þð2l0 þ 1Þ
X
m;m0

b̂�lmKGW
lml0m0 b̂l0m0 :

ð5:2Þ

This covariance matrix does not take into account the
cosmic variance or the shot noise contributions discussed in
Sec. II B; cf. Eq. (2.17). Following Refs. [74,96], these
contributions are diagonal and should be added to the above

FIG. 6. The angular power spectrum ĈGC
l for galaxy count

overdensity, corrected for the partial-sky coverage, from the
SDSS spectroscopic catalog of 2 ≤ l ≤ 95. Uncertainties asso-
ciated with the cosmic variance are shown.

FIG. 5. Galaxy number count sky map in equatorial coordinates
from the SDSS spectroscopic catalog. We have selected galaxies
with r-band magnitude between 17 and 21 after removing quasars
and stars and applied a mask to correct for systematics. The color
bar stands for galaxy count in each HEALPix basis pixel with
resolution of Nside ¼ 32.

MEASUREMENT OF THE CROSS-CORRELATION ANGULAR … PHYS. REV. D 108, 043025 (2023)

043025-9



covariance matrix. Our final covariance is therefore
given by

ðKtot
C Þll0 ¼ ðKCÞll0 þ δll0

ð2lþ 1Þ
½ðCGW

l ðθÞ þ NGW
shotðθÞÞðCGC

l þ NGC
shotÞ

þ ðCcross
l ðθÞ þ Ncross

shot ðθÞÞ2�: ð5:3Þ

We note that the shot noise is Poissonian in origin, so it
can spoil the multivariate Gaussian nature of the Ĉcross

l
estimators. In the limit when the cross-correlated signal is
small, the shot-noise contribution to the covariance matrix
will be relatively small compared to the SGWB instru-
mental noise contribution, and the distribution will be
approximately Gaussian. This will be the case in our
simulation analyses presented below. It is important to
note, however, that as the SGWB instrumental noise
improves and the cross-correlated signal becomes more
significant, the shot-noise contribution will alter the Ĉcross

l
distribution away from Gaussian. The parameter estimation
scheme presented below will have to be correspondingly
adapted.

The angular power spectra of the cross-correlation
between the measured SGWB sky maps (in 10 Hz width
frequency bands from 20 to 100 Hz) and galaxy over-
density in the SDSS spectroscopic catalog are shown in
Fig. 7. Error bars are also shown, defined as the square root
of the diagonal terms of the KC matrix, indicating no
evidence for a cross-correlation signal. We observe that the
noise level of cross-correlation Ĉcross

l increases with fre-
quency. This is not surprising—in the absence of a cross
correlation signal, the covariance of Ĉcross

l is given by the
SGWB covariance in Eq. (5.2), which also increases with
frequency; cf. Fig. 4.

VI. PARAMETER ESTIMATION

Having measured the angular power spectra Ĉcross
l of the

cross-correlation between the SGWB sky maps and the
galaxy overdensity of the SDSS spectroscopic catalog,
we now turn our attention to extracting the astrophysical
information from these measurements. We implement a
Bayesian inference framework, where the posterior distri-
bution of the astrophysical model parameters θ is given by

pðθjĈcross
l Þ ∝ LðĈcross

l jCcross
l ðθÞÞπðθÞ; ð6:1Þ

where πðθÞ denotes the prior distribution of the model
parameters and L denotes the likelihood of observing the
data for given model parameters. As discussed above, in the
limit when the cross-correlation signal is small, the Ĉcross

l ’s
will approximately follow the multivariate Gaussian dis-
tribution with the covariance matrix given by either KC if
shot noise is ignored or by Ktot

C if shot noise is included. In
particular, if shot noise is ignored,

lnLðĈljClðθÞÞ

¼ 1

2
ln jKCj−

1

2
ðĈl −ClðθÞÞTK−1

C ðĈl −ClðθÞÞ: ð6:2Þ

Notice that here we are omitting the superscript “cross” to
simplify the notation. If shot noise is included in the
analysis, KC is replaced by Ktot

C and ClðθÞ is modified as in
Eq. (2.16). This likelihood is GW frequency dependent
since it can be computed for each 10-Hz-wide band in the
SGWB analysis. The overall likelihood is obtained by
multiplying the likelihoods for individual frequency bands
(or equivalently by summing up the individual log-
likelihoods). Finally, since KC does not depend on model
parameters, the first term dependent on jKCj can be
dropped. This is not the case when using Ktot

C , which
depends on model parameters through the shot-noise terms
in Eq. (5.3).
Our astrophysical model describing the galactic process

of GW emission is given in Sec. II, with the shot-noise
terms defined in Sec. II B. This model is parametrized by an
astrophysical Gaussian kernel that has three parameters

FIG. 7. Angular power spectra Ĉcross
l and standard deviation

error bars of the cross-correlation between the measured SGWB
sky maps (in 10-Hz-wide frequency bands) and the galaxy
overdensity of the SDSS spectroscopic catalog, with l ≥ 2 up
to lmax ¼ 5 are shown for several example frequency bands (top)
and for several values of l (bottom).
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θ ¼ ðAmax; zc; σzÞ, with the Gaussian peak appearing near
z ¼ 1. Since the SDSS galaxy catalog used in our analysis
extends only up to redshift z ∼ 0.8, our analysis will not be
able to assess the Gaussian peak: at small redshift, the
kernel can be approximated by a linear function mono-
tonically increasing with redshift [65]. In other words, the
parameters zc and σz will appear degenerate in our analysis,
since increasing the mean zc or decreasing the variance σz
both result in a faster increase of the linear function. We,
therefore, choose to fix σz ¼ 0.7, which is compatible with
the astrophysical model predictions, and our parameter
space becomes two-dimensional: θ ¼ ðAmax; zcÞ.
In the following analyses, we will scan the parameter

space θ and compute the posterior distribution given by
Eq. (6.1) using the measured Ĉcross

l presented in Sec. V, for
both cases when we ignore the presence of shot noise and
when we include the shot noise. These analyses will yield
the first upper limits on the astrophysical kernel param-
eters. To demonstrate that our formalism correctly recov-
ers the kernel parameters, and to study how inclusion of
shot noise impacts the recovery, we will also perform
recoveries of simulated signals. That is, we will choose
parameters θ, compute the corresponding Ccross

l ðθÞ’s and
add them to the measured Ĉcross

l . We will then repeat the
calculation of the posterior distribution to recover the
chosen θ parameters.

A. Results without shot noise

As a first step, we calculate the posterior distribution
using the likelihood of Eq. (6.2), ignoring the shot-noise
contribution (in both the signal and in the covariance
matrix) and without adding any simulated signals. As
noted above, we evaluate the likelihood in every 10-Hz-
wide frequency bin between 20 and 100 Hz and then
multiply these likelihoods to obtain the overall likelihood.
We assume uniform prior distributions in the two param-
eters: Amax ∈ ½1 × 10−38; 5 × 10−32� erg cm−3s−1=3 and
zc ∈ ½0; 1� [65]. These ranges are both astrophysically well
motivated and consistent with the sensitivity of our Ĉcross

l
measurements. We define a uniform linear grid in this
parameter space and evaluate the model Cl’s, the like-
lihood, and the posterior at each grid point. The result (for
the entire 20–100 Hz band) is shown in the upper-left panel
of Fig. 8. While there is a slight preference for larger values
of zc, no constraint can be placed on this parameter.
However, a 95% confidence upper limit on Amax can be
placed, A95%

max ¼ 2.88 × 10−32 erg cm−3s−1=3.
We next add a simulated signal to the measured Ĉcross

l ’s.
The simulated signal is computed for Amax ¼ 2.5 ×
10−32 erg cm−3 s−1=3 and zc ¼ 0.6. We again evaluate the
posterior distribution, with the linear grid adjusted to be
around these simulated values. The recovery (for the entire
20–100 Hz band) is shown in the lower-left panel of Fig. 8.
Note that the simulated parameter point is well within the

recovered two-dimensional 68% and 95% contours, and the
one-dimensional distributions include the simulated values
within 95% confidence, even though the zc posterior is
not very informative. Hence, our framework successfully
recovers the simulated signal in the absence of shot noise.

B. Results with shot noise

Inclusion of shot noise requires two modifications. First,
shot noise adds an offset to the angular power spectrum,
as in Eq. (2.16). This offset is independent of l, but it is
dependent on the astrophysical model parameters θ.
Second, the shot noise also modifies the covariance matrix,
as in Eq. (5.3). This modification is also dependent on
astrophysical parameters θ. Consequently, while shot noise
will make harder the recovery of clustering anisotropy,
it may actually improve the accuracy for estimation of
astrophysical parameters.
As in the no-shot-noise case, we start by computing the

posterior distribution in Eq. (6.1) using the measured
Ĉcross
l and replacing Ccross

l ðθÞ → Ccross;tot
l ðθÞ and KC →

Ktot
C in Eq. (6.2). The results are shown in the upper-right

panel of Fig. 8. Again, there is no evidence of signal, even
though there is a small (statistically insignificant) prefer-
ence for higher values of Amax. While the zc posterior is
again not informative, we can place a 95% confidence
upper limit on Amax: A95%

max ¼ 2.52 × 10−32 erg cm−3s−1=3.
Note that this upper limit is stronger than in the no-shot-
noise case, indicating that addition of shot noise actually
improves the sensitivity of this analysis to Amax. The
Bayes factor between the model without shot noise and
the model with shot noise is 0.475, preferring the
inclusion of shot noise.
We next include a simulated signal. In order to keep

the shot-noise contribution small (so as to maintain the
approximate multivariate Gaussian distribution of Ĉcross

l ’s)
we choose 2 times smaller value of Amax ¼ 1 ×
10−32 erg cm−3 s−1=3 for this simulation. We keep the
peak redshift the same as in the no-shot-noise case,
zc ¼ 0.6. The lower-right panel of Fig. 8 shows the
recovery results. While Amax is not fully resolved at
95% significance, the Amax posterior distribution peaks
at 9.0 × 10−33 erg cm−3s−1=3, which is consistent with the
simulated amplitude. The zc posterior is still not inform-
ative, but it does indicate slight preference for larger
values of zc, consistently with the simulated value of 0.6.
We note that the simulated value of Amax is below the 95%
upper limit on Amax from the no-shot-noise analysis,
indicating that it would not have been observable in the
no-shot-noise analysis. This is another indication that
inclusion of shot noise in the analysis improves the
sensitivity to Amax. The Bayes factor between the model
without shot noise and the model with shot noise when we
add the same signal of Amax ¼ 1 × 10−32 erg cm−3s−1=3 is
0.428, preferring the inclusion of shot noise.
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VII. CONCLUSION AND DISCUSSION

In this paper, we have studied the cross-correlation
between the SGWB (as measured in the recent observing
runs of Advanced LIGO, Advanced Virgo, and KAGRA)
and the distribution of galaxies across the sky measured by

the SDSS survey, and we have extracted for the first time
the angular power spectrum of the cross-correlation, in
different GW frequency bands. In our study, we assumed
that the dominant contribution to the SGWB in the 100 Hz
band comes from mergers of extragalactic compact objects.
The resulting cross-correlation angular power spectrum is

FIG. 8. Results of the parameter estimation for the cross-correlation between the SGWB (20–100 Hz) and the galaxy overdensity from
the SDSS spectroscopic catalog plotted using ChainConsumer [97]. Each panel shows two-dimensional posterior with 65% and
95% confidence contours, as well as one-dimensional marginalized posteriors with 95% confidence intervals for the two model
parameters: Amax in units of erg cm−3 s−1=3 and zc. Left column panels correspond to the no-shot-noise case, while the right column
panels include the shot noise. The upper row panels present upper limits on model parameters (no simulated signal is added). The lower
panels show recoveries when a simulated signal is added to the data. The dashed lines indicate the values of simulated parameters. See
text for further details.
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noise dominated (we do not have a detection yet). However,
this spectrum can be compared with predictions from an
astrophysical model of the SGWB due to BBH mergers,
allowing us to set bounds on model parameters. We
assumed that the GW emission is well captured by the
quadrupole formula; hence, when modeling the angular
power spectrum we could factorize out the frequency
dependence. We then introduced a simplified parametriza-
tion for the redshift-dependent astrophysical kernel charac-
terizing GW emission at galactic scales: we described this
kernel in terms of a global amplitude and a peak position,
corresponding to the redshift bin that contributes the most to
the total background budget. We explored this 2D parameter
space in a Bayesian inference framework, and we found an
upper bound for the amplitude of the kernel to be Amax ¼
2.52 × 10−32 erg cm−3 s−1=3 while the peak redshift is left
unconstrained. We demonstrated that while including shot
noise in the analysis reduces the ability to recover clustering
contributions to the anisotropy, it actually improves the
sensitivity to the astrophysical kernel parameters. We
checked the robustness of our analysis via injection-
recovery tests. The Bayes factor comparing the model
without shot noise and the model with shot noise is less
than 1, showing the preference for inclusion of shot noise.
We stress that in our modeling of the cross-correlation,

we assumed that the dominant contribution to the
anisotropy comes from clustering; i.e. we assumed that
the cross-correlation is dominated by the overdensity term
(which wewill refer to as δδ term, where δ stands for galaxy
overdensity).3 This is a safe assumption in the redshift
range [0, 0.8] that we considered in this work and as long as
we do not slice it into smaller bins: the clustering term gives
indeed the dominant contribution to the anisotropic part of
the GW energy density [69]. However, if one wants to take
a tomographic approach and try to better reconstruct the
redshift dependence of the astrophysical kernel by cross-
correlating with a redshift-binned galaxy catalog, some
additional care is needed. The reason why is the following:
at the angular scales we have access to, the anisotropic part
of ΩGW is dominated by contributions of low redshift
sources, e.g. sources at z < 0.1. Then if we cross-correlate
it with galaxies in a low redshift bin (e.g. z ¼ 0.05), the
dominant contribution in the cross-correlation comes from
the clustering (δδ) term because the two overdensity terms
appearing in the expressions of galaxy number counts and
GW energy density have the same support. However, if we
correlate with a high redshift bin (e.g. z ¼ 2), then the
density terms in the two observables do not have the same
support. In this case, the dominant contribution to the cross-
correlation comes from the (de)magnification term in the
galaxy number counts, because it includes contributions of

gravitational potentials integrated along the line of sight
[this term corresponds to the κ term in Eq. (13) of [98] ].
This term has a minus sign; hence, the δκ term in the cross-
correlation, if dominant, will give rise to an anticorrelation.
However, if one integrates the galaxy catalog over redshift,
the term δδ (on the redshift range where the two have same
support) gives the dominant contribution to the cross-
correlation. It follows that considering only clustering is
enough for our current purposes.
We stress that the method developed here can be easily

adapted and applied to cross-correlations between SGWB
and other electromagnetic tracers of structure in the
universe. In particular, it can be interesting to perform a
joint study of cross-correlation of the SGWB with galaxy
counts, weak lensing, CMB, cosmic infrared background,
and others. A statistical formalism that enables a joint
analysis of these datasets may improve the overall sensi-
tivity of the approach and enable distinguishing different
contributions to the BBH SGWB model (e.g. stellar and
primordial contributions that may be correlated with differ-
ent electromagnetic tracers). It would also be interesting to
test our pipeline using realistic simulations of the GW sky
(simulating the galaxy field and GW emission on galactic
scales). Such simulations could enable studies of multiple
BBH contributions to the SGWB.
As the sensitivity of the GW detector network improves,

the sensitivity of the approach presented here will also
improve, enabling more stringent constraints on the astro-
physical kernel and its effective parameters. Advanced
LIGO, Advanced Virgo, and KAGRA will conduct the
fourth observing run in 2023–2025, to be followed with the
fifth observing run in 2026–2028. The improved detector
sensitivity, extended observation time, and availability of
multiple detector pairs for the analysis will improve the
sensitivity to Ĉcross

l by 20–30 times relative to this work.
The next generation of ground-based detectors, such as
Einstein Telescope [99] and Cosmic Explorer [100], will
enable another∼1000 times improvement in sensitivity. Yet
another approach could be to use the Bayesian search to
estimate the BBH SGWB anisotropy [101], which could
also lead to ∼1000 times sensitivity improvements relative
to the approach presented here. These improvements are
expected to reach and explore the astrophysically interest-
ing region of the parameter space.
Finally, we note that a significant constraint in this work

came from the need to regularize the Fisher matrix in order
to invert it. This regularization introduces a potential bias in
our analysis, which forced us to constrain the analysis to a
relatively small number of spherical harmonics coefficients
and to lmax ¼ 5. There are two ways to remedy this
situation in the future. First, availability of more than
two GW detectors for this analysis can naturally regularize
the Fisher matrix—different baseline pairs have different
blind directions, effectively complementing each other and
removing the zero eigenvalues of the Fisher matrix.

3In other words, we neglected line of sight effects in the
expression of GWoverdensity and galaxy number counts; see e.g.
[59] for details and derivations.
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Second, it may be possible to conduct this analysis using
the dirty SGWB sky maps. This approach would avoid
inverting the Fisher matrix, but it comes with the challenge
of mapping the model Ccross

l ’s into the “dirty space” to
enable defining a likelihood function. Studies of this
approach are ongoing.

Code and data availability. The gravitational-wave
data that support the findings of this study are openly
available [102]. The SDSS data are available at the SDSS
official Web site, where the photometric catalog
(“photoObj”) is under the “imaging data” [103], and the
spectroscopic catalog is under the “optical spectra” [104].
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APPENDIX: PARAMETER ESTIMATION IN
10 HZ FREQUENCY BINS

We present parameter estimation results in each 10-Hz-
wide frequency bin from 20 to 100 Hz (labeled by their
center frequency) in the following figures: upper limits
of parameters without and with shot noise effects (Figs. 9
and 11, respectively); injection recovery without and
with shot noise effects (Figs. 10 and 12, respectively).
For Fig. 10, we simulated the signal with Amax ¼ 2.5 ×
10−32 erg cm−3s−1=3 and zc ¼ 0.6. For Fig. 12, we simu-
lated the signal with Amax ¼ 1 × 10−32 erg cm−3s−1=3 and
zc ¼ 0.6. While the recovered contours are still consistent
with the simulated parameter values, the contours are rather
large due to the smallness of the simulated Amax.
Combining all frequency bands gives a much stronger
estimate of Amax as shown in the lower-right panel of Fig. 8.
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FIG. 9. Upper limits of parameters Amax in units of erg cm−3 s−1=3 and zc for SGWB measured in different frequency bands, without
including the shot noise.
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FIG. 10. Recovery of a simulated signal with parameters Amax ¼ 2.5 × 10−32 erg cm−3 s−1=3 and zc ¼ 0.6, using SGWB measured in
different frequency bands and without including shot noise.
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FIG. 11. Upper limits on parameters Amax in units of erg cm−3 s−1=3 and zc for SGWB measured in different frequency bands,
including the shot noise.
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FIG. 12. Recovery of a simulated signal with parameters Amax ¼ 1 × 10−32 erg cm−3 s−1=3 and zc ¼ 0.6, using SGWB measured in
different frequency bands and including shot noise.

KATE Z. YANG et al. PHYS. REV. D 108, 043025 (2023)

043025-18



[1] LIGO Scientific Collaboration, Advanced LIGO, Classical
Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical
Quantum Gravity 32, 024001 (2015).

[3] T. Akutsu et al. (KAGRA Collaboration), Overview of
KAGRA: Calibration, detector characterization, physical
environmental monitors, and the geophysics interferom-
eter, Prog. Theor. Exp. Phys. 2021, 05A102 (2021).

[4] R. Abbott et al., GWTC-3: Compact Binary Coalescences
Observed by LIGO and Virgo During the Second Part of
the Third Observing Run, arXiv:2111.03606.

[5] R. Abbott et al., The Population of Merging Compact
Binaries Inferred Using Gravitational Waves Through
GWTC-3, Phys. Rev. X 13, 011048 (2023).

[6] R. Abbott et al., Tests of general relativity with GWTC-3,
arXiv:2112.06861.

[7] R. Abbott et al., Constraints on the cosmic expansion
history from GWTC-3, Astrophys. J. 949, 76 (2023).

[8] B. P. Abbott et al. (LIGO Scientific Collaboration and the
Virgo Collaboration), GW170817: Measurements of Neu-
tron Star Radii and Equation of State, Phys. Rev. Lett. 121,
161101 (2018).

[9] B. Abbott et al., Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO, Ad-
vanced Virgo and KAGRA, Living Rev. Relativity 23, 3
(2020).

[10] M. Maggiore, Gravitational wave experiments and early
universe cosmology, Phys. Rep. 331, 283 (2000).

[11] T. Regimbau, The astrophysical gravitational wave stochas-
tic background, Res. Astron. Astrophys. 11, 369 (2011).

[12] L. P. Grishchuk, The amplification of gravitational waves
and creation of gravitons in the isotropic universes, Lett.
Nuovo Cimento 12, 60 (1975).

[13] R. Bar-Kana, Limits on direct detection of gravitational
waves, Phys. Rev. D 50, 1157 (1994).

[14] A. A. Starobinskiı̆, Spectrum of relict gravitational radia-
tion and the early state of the universe, Sov. J. Exp. Theor.
Phys. Lett. 30, 682 (1979).

[15] M. S. Turner, Detectability of inflation-produced gravita-
tional waves, Phys. Rev. D 55, R435 (1997).

[16] N. Barnaby, E. Pajer, and M. Peloso, Gauge field pro-
duction in axion inflation: Consequences for monodromy,
non-Gaussianity in the CMB, and gravitational waves at
interferometers, Phys. Rev. D 85, 023525 (2012).

[17] N. Seto and A. Taruya, Measuring a Parity-Violation
Signature in the Early Universe via Ground-Based Laser
Interferometers, Phys. Rev. Lett. 99, 121101 (2007).

[18] R. Easther and E. A. Lim, Stochastic gravitational wave
production after inflation, J. Cosmol. Astropart. Phys. 04
(2006) 010.

[19] L. A. Boyle and A. Buonanno, Relating gravitational wave
constraints from primordial nucleosynthesis, pulsar timing,
laser interferometers, and the CMB: Implications for the
early universe, Phys. Rev. D 78, 043531 (2008).

[20] E. Witten, Cosmic separation of phases, Phys. Rev. D 30,
272 (1984).

[21] C. J. Hogan, Gravitational radiation from cosmological
phase transitions,Mon.Not.R.Astron. Soc.218, 629 (1986).

[22] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational
Waves from First-Order Cosmological Phase Transitions,
Phys. Rev. Lett. 69, 2026 (1992).

[23] C. Caprini, R. Durrer, and G. Servant, Gravitational wave
generation from bubble collisions in first-order phase
transitions: An analytic approach, Phys. Rev. D 77,
124015 (2008).
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