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We construct a numerical model of steady-state, general relativistic (GR) super-Eddington accretion flows
in an optically thick, advection-dominated regime, motivated by tidal disruption events wherein super-
Eddington accretion assumes a pivotal role. Our model takes into account the loss of angular momentum due
to radiation and the scale-height derivative in the basic equations of the GR slim disk. For comparison
purposes, we also provide a new analytical solution for a radiation-pressure-dominant GR slim disk, which
neglects the angular momentum loss due to radiation and the scale-height derivative. We find that the
radiation pressure enhances by incorporating the scale-height derivative into the basic equations. As a result,
the surface density near the disk’s inner edge decreases, whereas the disk temperature and scale-height
increase, brightening the disk spectrum in the soft x-ray wave band. Notably, an extremely high-mass
accretion rate significantly enhances the effect of the scale-height derivative, affecting the entire disk. In
contrast, the inclusion of the radiation-driven angular momentum loss only slightly influences the disk surface
density and temperature compared with the case of the scale-height derivative inclusion. The x-ray luminosity
increases significantly due to scale-height derivative for Ṁ=ṀEdd ≳ 2, where ṀEdd is the Eddington accretion
rate with 0.1 energy conversion efficiency. In addition, the increment is higher for the nonspinning black hole
than the spinning black hole case, resulting in a one order of magnitude difference for Ṁ=ṀEdd ≳ 100. We
conclude that incorporating the scale-height derivative into a GR slim-disk model is crucial as it impacts the
disk structure and its resultant spectrum, particularly on a soft x-ray wave band.
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I. INTRODUCTION

A tidal disruption event (TDE) occurs when a star is
disrupted by a black hole’s tidal gravity that exceeds the
star’s self-gravity [1,2]. The radius below which tidal
disruption happens is the tidal radius given by rt ≃
ðM=M⋆Þ1=3R⋆ [3], where M is the black hole mass, and
M⋆ and R⋆ are the stellar mass and radius respectively. The
disrupted debris returns to the pericenter following a
Keplerian orbit with a mass fallback rate Ṁfb ∝ t−5=3, where
t is the time. However, the time variation of Ṁfb at early
times and the magnitude of Ṁfb at the peak depends on the
stellar density [4], stellar rotation [5], and stellar orbital
eccentricity [6]. If the infalling debris loses its angular
momentumon a timescale shorter than the orbital time of the
fallback debris, the accretion rate can be equivalent to the
mass fallback rate. However, the fallback debris interacts
between head and tailed parts due to the general relativistic
(GR) apsidal motion, and the resultant energy dissipation by

stream-stream collisions results in the formation of an
accretion disk [7–9]. The resultant disk can be circular
or elliptical depending on the energy dissipation
efficiency [10]. The disk viscosity dominates the subsequent
evolution of the formed disk. As the viscous timescale is
usuallymuch longer than the orbital time, themass accretion
rate is not likely to equal the mass fallback rate [11–13].
As the ratio of the tidal radius to the black hole horizon

is inversely proportional to M2=3, an increase in the mass
of the black hole results in the tidal disruption radius
approaching the event horizon. This highlights the impor-
tance of considering GR dynamics for TDEs with higher-
mass black holes. The innermost stable circular orbit, rISCO,
decreases for a prograde black hole spin [14] so that the
impact of the black hole spin on the accretion dynamics,
disk spectra, and light curves can be more significant than
in the nonspinning black hole case. This motivated
Novikov and Thorne [15] to construct a model of a GR
steady-state geometrically thin disk with alpha viscosity.
Recently, Balbus and Mummery [16] have constructed a
GR model of a time-dependent, optically thick, geometri-
cally thin disk in the context of TDEs. Mageshwaran
and Bhattacharyya [17] have developed a GR model of

*tmageshwaran2013@gmail.com
†tmageshwaran@chungbuk.ac.kr
‡kimi@chungbuk.ac.kr

PHYSICAL REVIEW D 108, 043021 (2023)

2470-0010=2023=108(4)=043021(21) 043021-1 © 2023 American Physical Society

https://orcid.org/0000-0002-6187-4073
https://orcid.org/0000-0003-4799-1895
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.043021&domain=pdf&date_stamp=2023-08-21
https://doi.org/10.1103/PhysRevD.108.043021
https://doi.org/10.1103/PhysRevD.108.043021
https://doi.org/10.1103/PhysRevD.108.043021
https://doi.org/10.1103/PhysRevD.108.043021


a time-dependent, optically thick, geometrically thin disk
with a mass fallback rate at the constant outer radius in the
case of both full and partial stellar disruptions. These
models are gas-pressure dominant, so that should be
consistent with the standard disk model when the accretion
rate is mildly lower than the Eddington rate in the non-
relativistic, steady-state limit [18,19]. The radiation pres-
sure becomes significantly remarkable as the accretion rate
exceeds the Eddington rate. However, a radiation-pressure
dominant, optically thick disk, where the advective energy
transport is not properly treated, is known to result in a
Lightman-Eardley thermal instability [20]. Therefore,
Abramowicz et al. [21] has introduced the advection
cooling in the energy conservation equation of the optically
thick disk at super-Eddington accretion rate and has
constructed the optically thick, advection-dominant disk
in the nonrelativistic limit, so-called slim-disk model.
A GR steady-state solution of optically thick, advection-

dominated accretion flows with alpha viscosity has
been formulated in the Kerr spacetime by Lasota [22],
Abramowicz et al. [23], Gammie and Popham [24],
Beloborodov [25]. Sadowski [26], and Sadowski et al. [27]
have revisited them and, especially, Sadowski [26] found a
way to solve them efficiently and numerically (hereafter
SA09). The SA09 model has been used by Wen et al.
[28–30] to fit the x-ray spectra of TDEs ASASSN-14li and
ASASSN-15oi at different epochs to estimate the black
hole mass and spin by using the mass accretion rates as a
parameter. In these disk models, the angular momentum loss
due to the radiation in the angular-momentum conservation
equation and the scale-height derivative in the advection
energy flux has been neglected for their simple treatment in
the basic equations. However, these two quantities are likely
to significantly impact the disk structure. The radiation-
driven angular momentum loss augments the radial inflow
velocity, thereby exerting influence on both surface density
and temperature. Wen et al. [29] examined the effect of the
angular momentum loss due to the radiation and found that it
was somewhat effective for a low-mass accretion rate and
also decreases slightly the disk luminosity by reducing
viscous stress. However, it is scarcely delineated whether
this trend persists at sufficiently elevated mass accretion
rates. On the other hand, the scale-height derivative is likely
to affect the disk temperature because of changing the disk-
energy allocation among viscous heating, radiative cooling,
and advective cooling. However, little has been known about
how the scale-height derivative has an influence on the disk
structure and emission. In any case, either term can produce
a difference in the disk emission. Even if this difference is
small, it can produce a significant luminosity difference in
x-rays emitted from the inner edge radius due to the
exponential decay of the thermal x-ray spectrum, as the
Wein law suggests.
In this paper, we develop a new stationary GR slim-disk

model by including the two terms (i.e., the angular

momentum loss due to the radiation and the scale-height
derivative) in the basic equations. Our model adopts the
alpha viscosity prescription and the opacity comprising
both Thomson electron scattering and Kramer absorption
opacity. Based on the model, we especially examine the
effect of the newly added scale-height derivative on the disk
structure and emission. In Sec. II, we describe the detailed
formulation of our GR slim-disk model. For comparison
purposes, we present a new analytical solution for GR slim-
disk basic equations without the two terms in Sec. II A and
provide full numerical solutions for the basic equations in
Sec. II B. The impact of the two terms on the disk structure
and spectrum is first described in Sec. III A for two
significantly different accretion rate cases, and then how
the disk structure and emission depend on the mass
accretion rate with and without including the term of the
scale-height derivative in Sec. III B. Section III C describes
the importance of advective cooling in the entire disk
region. The differences in black hole spin are also
explained in each subsection of Sec. III. We discuss our
results in Sec. IVand summarize our conclusions in Sec. V.

II. GENERAL RELATIVISTIC STATIONARY
SLIM-DISK MODEL

In this section, we present the relativistic slim disk
equations derived in the Kerr space-time metric. We trans-
form the Kerr metric in the Boyer-Lindquist coordinate to
cylindrical coordinate ft; r;ϕ; zg and the metric on the
equatorial plane is limited to first order in z=r.We follow the
authors [23,31] to get the four velocities (ui) in the equatorial
plane. The Kerr metric in the cylindrical coordinate and
the four velocities are given in Appendix A. Following
Abramowicz et al. [23], the stress-energy tensor is given by

Tαβ ¼ ρuαuβ þ pgαβ þ Sαβ þ ταβ; ð1Þ

where ρ is the density, p is the pressure, Sαβ is the viscous
stress tensor, ταβ ¼ qαuβ þ uαqβ with radiative energy flux
qα. The mass conservation is given by ðρuiÞ;i ¼ 0 and the
radial, and angular momentum conservations are given by
Tir
;r ¼ 0 and ðTi

kξ
kÞ;i ¼ 0 respectively, where ξk ≡ δkϕ is the

azimuthal Killing vector and δkϕ is the Kronecker delta.
We solve the conservation equations for a stationary

∂t ¼ 0 and axisymmetric ∂ϕ ¼ 0 relativistic accretion disk
with angular momentum loss due to the radiation. We take
the vertical flow to zero in our model and obtain the
vertically integrated conservation equations. The derivation
of the conservation equations are given in Appendix A, and
here, we write them in terms of the dimensionless variables.
In the steady state, the mass-conservation equation

results in

Ṁ ¼ −2πrgcΣΔ
1=2
k

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð2Þ

T. MAGESHWARAN and KIMITAKE HAYASAKI PHYS. REV. D 108, 043021 (2023)

043021-2



where Σ is the disk midplane surface density, rg ¼ GM=c2

is the black hole radius, V is the radial velocity, and
Δk ¼ x2 − 2xþ j2 with x ¼ r=rg and dimensionless black
hole spin j ¼ a=rg (see also Appendix A). The radial
momentum conservation equation is given by

V
ð1 − V2Þ2

dV
dx

þ c2s
c2

1

P
dP
dx

¼ A1; ð3Þ

where cs¼
ffiffiffiffiffiffiffiffi
p=ρ

p
is the sound speed with the disk pressure

p, P ¼ R
pdz ≈ 2pH is the vertically integrated pressure

with the disk scale-height H, Ak ¼ x4 þ x2j2 þ 2xj2, and

A1 ¼
rg
c2

A
rð1 − V2Þ

¼ γ2LAk

x4Δk
ðx3 − j2Þðω − ωþ

KÞðω − ω−
KÞ; ð4Þ

ω ¼ 2jx
Ak

þ x3Δ1=2
k

A3=2
k

l
γL

; ð5Þ

ω�
K ¼ � 1

x3=2 � j
; ð6Þ

γ2L ¼ 1

1 − V2
þ x2l2

Ak
; ð7Þ

where A is given by Eq. (A28), ω is the angular velocity
with respect to the stationary observer, and ω�

K is the
angular velocity of a circular orbit in the Kerr metric.
The positive and negative signs indicate the prograde and
retrograde directions, respectively.
Here, we define the nondimensional parameter

l ¼ L=ðrgcÞ as the disk angular momentum per unit
mass (L) normalized by rgc. The angular momentum
conservation equation of the disk is then given by

dðxS̄rϕÞ
dx

¼ 1

2π
Ṁc

dl
dx

−
r2g
c
xlQrad; ð8Þ

where S̄rϕ ¼ −cνΣðΔ1=2
k A3=2

k γ3L=x
5Þðdω=dxÞ with the tur-

bulent viscosity ν. We assume that radiative energy flow is
along the vertical direction andQrad represents the radiative
energy flux. The scale height of the disk using the first
order approximation of z=r and the vertical-hydrostatic
equilibrium is given by [32]

H ¼ 1ffiffiffiffiffiffiffiffiffi
ζðxÞp cs

c
rg; ð9Þ

where ζðxÞ≡ ½l2 − j2ðϵ2 − 1Þ�=ð2x4Þ and ϵ ¼ ut.
The total pressure in the disk is given by p ¼ prad þ pgas,

where prad ¼ aradT4=3 is the radiation pressure with T as

the midplane temperature of the disk and arad is the
radiation constant, and pgas ¼ kBρT=ðμmmpÞ is the gas
pressure, where Σ ¼ 2ρH is the density,mp is the mass of a
proton, kB is the Boltzmann constant, and μm is the mean
molecular weight taken to be the ionized-solar mean
molecular weight of 0.65. The viscous stress in the
comoving rotating frame is obtained using the orthonormal
tetrad basis and is given by trϕ ¼ −x2S̄rϕ=ðγLA1=2

k Δ1=2
k rgÞ

[22,33]. Assuming an alpha viscosity, trϕ ¼ −αP such that
the viscosity is given by

ν ¼ −2α
rg
c
Hp
Σ

x3

Akγ
2
L

�
dω
dx

�
−1
: ð10Þ

The energy conservation is given byQvis ¼ Qadv þQrad,
whereQvis is the viscous heating flux,Qadv is the advection
cooling flux, andQrad is the radiative cooling flux. They are
given by [28,31]

Qvis ¼ νΣ
�
c
rg

�
2 γ4LA

2
k

x6

�
dω
dx

�
2

; ð11Þ

Qrad ¼
θ

3

σT4

κΣ
; ð12Þ

Qadv ¼
1

2π

Ṁc2s
r2gx2

ξðrÞ; ð13Þ

respectively, where θ ¼ 64 in this paper which is same
as in Wen et al. [28,29] whereas θ ¼ 32 in SA09, σ is
the Stefan-Boltzmann constant, κ ¼ κes þ κa with κes ¼
0.34 cm−2 g−1 and κa ¼ 3.2 × 1022T−7=2Σ=H cm−2 g−1,
and βgas ¼ pgas=p is the ratio of gas to total pressure. In
addition, ξðrÞ is defined as [23]

ξðrÞ≡ −
T
c2s

∂s
∂ lnðrÞ

¼ −
4 − 3βgas
Γ3 − 1

x
T
dT
dx

þ ð4 − 3βgasÞ
�
x
Σ
dΣ
dx

−
x
H
dH
dx

�
;

ð14Þ

where s is the specific entropy and Γ3 is the third adiabatic
exponent,

Γ3 ¼ 1þ ð4 − 3βgasÞðγgas − 1Þ
βgas þ 12ð1 − βgasÞðγgas − 1Þ

with the gaseous specific heat ratio, γgas [34].
Note that the second term on the right-hand side of

Eq. (8) and the term including dH=dx of Eq. (14) show
the angular momentum loss due to the radiation and the
scale-height derivative, respectively. Both terms have
been neglected in the past GR slim-disk models
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(e.g., Sadowski [26]). In the next subsection, for compari-
son purposes, we provide an analytic solution for the
GR basic equations (2), (3), (8), (9), and (11)–(13),
where we adopt radiation pressure only and neglect the
angular momentum loss due to radiation and scale-height
derivative.

A. Analytical solution for a radiation pressure
dominant disk without the angular momentum loss

due to radiation and scale-height derivative

Here we derive an analytical solution for the GR disk
with radiation pressure only and no angular momentum
loss due to the radiation. The angular momentum of the
disk is taken to be the circular angular momentum,
LK ¼ lKrgc, where lK is given by

lK ¼ � x2 ∓ 2j
ffiffiffi
x

p þ j2

x3=4ðx3=2 − 3
ffiffiffi
x

p � 2jÞ1=2 ð15Þ

and the positive sign is here for the prograde orbit, and the
negative sign is for the retrograde orbit [14]. For a disk with
no angular momentum loss due to the radiation, Eq. (8)
reduces to be xS̄rϕ ¼ Ṁc

2π ½lK − lK;in�, where lK;in is the
angular momentum at the inner radius and the viscous
stress is assumed to be zero there. Moreover, by setting
l ¼ lK at Eq. (7) and ω ¼ ωþ

K, Eq. (11) reduces to

Qvis ¼
3

4π

GMṀ
r3

fðx; jÞ; ð16Þ

where fðx; jÞ is defined as a boundary correction factor
given by

fðx; jÞ ¼
�
1 −

lK;in

lK

��
1 −

2j

x3=2
þ j2

x2

�

×

�
1 −

3

x
þ 2j

x3=2

�
−1
�
1þ j

x3=2

�
−1
: ð17Þ

Furthermore, this equation reduces to Qvis ¼
ð3=4πÞðGMṀ=r3Þ½1 − lK;in=lK� at the nonrelativistic
limit, where lK;in=lK ¼ ffiffiffiffiffiffiffiffiffiffi

xin=x
p ¼ ffiffiffiffiffiffiffiffiffiffi

rin=r
p

.
We approximate the advective energy in Eq. (13) as

Qadv ¼ ð1=2πÞðṀc2s=r2Þ, where ξðrÞ ≃ 1 is assumed [18].
Because ξðrÞ is a kind of logarithmic entropy gradient and
thus a slowly varying quantity, the logarithmic derivative
terms, and the corresponding coefficients are of the order of
unity except for near the horizon. Therefore, ξðrÞ ≃ 1 is a
crude but reasonable assumption for deriving the analytical
solution. For a radiation-pressure dominant disk with the
Thomson opacity (κ ¼ κes) and p ¼ prad ¼ aradT4=3, the
hydrostatic equilibrium c2s ¼ prad=ρ ¼ 2pradH=Σ results
in cs ¼ ð8=θÞðκesrg=c2Þð1=

ffiffiffiffiffiffiffiffiffi
ζðxÞp ÞQrad. The energy con-

servation equation results in

Qrad ¼ Qvis

"
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 384

θ2

�
Ṁ

ηṀEdd

�
2 fðx; jÞ
x5ζðxÞ

s #−1

; ð18Þ

where ṀEdd ¼ ð1=ηÞ4πGM=ðκescÞ ≃ 2.2 × 10−2M⊙=yr ×
ðη=0.1Þ−1ðM=106M⊙Þ is the Eddington accretion rate with
the radiative efficiency, η, and its fiducial value is 0.1. The
surface density and the midplane temperature are then
given by

Σ ¼ 1

128π

1

α

c5

r3gκ2es

Ṁθ2

Q2
rad

xζðxÞ½lK − lK;in�
Δ1=2

k A1=2
k γL

; ð19Þ

T ¼
�
3

θ

κesΣ
σ

Qrad

�
1=4

; ð20Þ

respectively.

B. Full solutions for the GR disk basic equations

In this section, we derive the complete solution for the
GR disk basic equations, including angular momentum loss
due to the radiation and the scale-height derivative. After
some manipulations, we can rewrite the momentum and
energy conservation equations in terms of three differential
equations of V, l, and T as follows:

dV
dx

¼ Vð1 − V2ÞN
D

; ð21Þ

1

T
dT
dx

¼ 1þ βgas
4 − 3βgas

�
a4e3 − a3e4
a3e2 þ a2e3

þ a3e1 − a1e3
a3e2 þ a2e3

N
D

�
; ð22Þ

dl
dx

¼ a4e2 þ a2e4
a3e2 þ a2e3

−
a2e1 þ a1e2
a3e2 þ a2e3

N
D

; ð23Þ

where

N
D

≡ r2ða3e4−a4e3Þþ r3ða4e2þa2e4Þþ r4ða3e2þa2e3Þ
r1ða3e2þa2e3Þþ r2ða3e1−a1e3Þþ r3ða2e1þa1e2Þ

ð24Þ

and each component of ri, ai and ei ði ¼ 1 ∼ 4Þ are a
function of M; x; j; V;l, and T, and their detailed func-
tional forms are described in Appendix B.
For the GR disk with no angular momentum loss due to

the radiation, Abramowicz et al. [23] have demonstrated
that the flow crosses the horizon with the V2 > c2s , whereas
the flow is subsonic at a point far from the black hole. At
some point, therefore, the flow must pass through a sonic
point where V2 ≈ c2s , meaning N ¼ 0 and D ¼ 0. This is
the condition that a solution for the basic equations of the
GR slim disk should satisfy. The SA09 model has handled
lin as a free parameter and found solutions to satisfy the
sonic point condition by varying lin. However, we cannot
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solve the angular momentum equation analytically because
the term for the angular momentum loss due to radiation is
included there.
We integrate Eqs. (21)–(23) inwardly starting at the

radius rout which represents the size of the accretion disk.
We estimate the boundary values assuming ω ¼ ωþ

K,
advection energy flux Qadv ¼ 0, and radiation driven
angular momentum loss term, xlQrad ¼ 0 (SA09, [29,30])
that results in xS̄rϕ ¼ ð1=2πÞṀcðl − linÞ. We find a
numerical solution with a sonic point by handling lin as
a free parameter. Specifically, we can have the following
relations by using xS̄rϕ ¼ ð1=2πÞṀcðl − linÞ, Qadv ¼ 0,

cs ¼
ffiffiffiffiffiffiffiffi
p=ρ

p
, and ω ¼ ωþ

K at the disk outer region:

θ

3

σT4

κes þ κa

1

Σ
¼ 1

2π
Ṁ

�
c
rg

�
2 γLA

1=2
k

x2Δ1=2
k

�
−
∂ωK

∂x

�
ðl − linÞ;

ð25Þ

2
jx
Ak

þ x3Δ1=2
k

A3=2
k

l
γL

¼ ωþ
K ; ð26Þ

1

2π

1

α

Ṁc
rg

xðl− linÞ
Δ1=2

k A1=2
k γL

¼ kBT
μmmp

Σþ 2

3
ffiffiffiffiffiffi
2π

p aradT4

�
1

α

Ṁ
Σ
rg
c

�
1=2

×

�
xðl− linÞ

ζðxÞγLΔ1=2
k A1=2

k

�
1=2

: ð27Þ

We solve these equations for given M; j;lin, and Ṁ to
obtain V, l, and T at the considered outer radius.
These quantities work as the boundary condition for
Eqs. (21)–(23). By varying lin, we find such boundary
values as the solution satisfies the sonic point condition.
With the given boundary values, we solve Eqs. (21)–(23),
which includes angular momentum loss due to the radiation
and the scale-height derivative for the disk region smaller
than the outer radius, using the implicit Runge-Kutta
method iteratively over lin until the sonic-point condition
is satisfied and we have a true solution.

C. Disk spectrum calculation

Assuming the black body radiation from the entire disk,
the effective temperature is given by Teff ¼ ðQrad=2σÞ1=4
through the Stefan-Bolzmann law. The observed spectral
flux density is given by

Fν;obs ¼
Z
Ω
IνðTeff ; νobsÞdΩ; ð28Þ

where Iν is the specific intensity, dΩ is the differential solid
angle subtended by the emission point to the observer and
is given by dΩ ¼ dS cos θlos=D2

L, where S is the area of
emission, DL is the luminosity distance of the source to the
observer and θlos is the angle between observer line-of-sight

and disk normal vector. In a relativistic formulation, the
area of disk in fr;ϕg plane is given by dS ¼ ffiffiffiffiffiffiffiffiffiffiffiffigrrgϕϕ

p drdϕ,

and is dS¼ r2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak=Δk

p
dxdϕ, where Ak¼x4þx2j2þ2xj2

and Δk ¼ x2 − 2xþ j2. The gravitational redshift effect is
included by using the Lorentz invariant Iν=ν3 [35] in such
a way as IνðνobsÞ ¼ g3IνðνemÞ, where νem is the emitted
frequency and g is the redshift factor. The observed flux
density is then given by [16]

Fν;obs ¼
cos θlos
D2

L

Z
Ω
g3Iν

�
Teff ;

νobs
g

�
dS; ð29Þ

where the radial-integral range is taken to be from the
inner-disk radius to the circularization radius rc ¼ 2rt.
The spectral luminosity is then calculated to be

νLν ¼ 4πD2
LνobsFν;obs;

¼ 8π2 cos θlosr2gνobs

Z
xc

xin

g3Iν

�
Teff ;

νobs
g

� ffiffiffiffiffiffi
Ak

Δk

s
dx;

ð30Þ

where xin ≡ rin=rg and xc ≡ rc=rg, and we adopt for the
specific evaluation that θlos ¼ 0° and g ¼ 1=ut, where ut is
the time component of the four-velocity (see Appendix A
for details).

D. Model setup and parameters

Our model has free parameters that are the black hole
mass M and spin j, the stellar mass M⋆ and radius R⋆, the
angular momentum at the inner radius lin, and the mass
accretion rate Ṁ. We adopt the black hole mass as M ¼
107M⊙ with assuming the disruption of a solar-type star,
targeting a TDE candidate ASAS-SN 14li [36,37]. The
inner- and outer-disk radii that we adopt are given by the
ISCO radius (cf. [14]) and rout ¼ 2500 rg, respectively.
For the comparison purpose, we introduce black hole spin
parameters and adopt j ¼ 0 and 0.998 for them. Regarding
Ṁ, we describe it in the following sections.
Moreover, the four scenarios are examined in our GR

solutions. As depicted in Table I, a model that incorpo-
rates both the effect of radiation-induced angular momen-
tum loss and the derivative of the scale height (Model I),
a model that accounts for radiation-induced angular
momentum loss without incorporating the derivative of
the scale height (Model II), a model that accounts for
the derivative of the scale height without considering
radiation-induced angular momentum loss (Model III),
and a model that neglects both of these physical effects
(Model IV). In the next section, we provide the solutions
with the above parameters for the four models repre-
sented in Table I.
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III. RESULTS

In this section, we first delineate the distinctions between
Models I through VI for two extreme Ṁ scenarios.
Subsequently, we elucidate the dependence of the mass
accretion rate on the disk structure and emission to
scrutinize the influence of the scale-height derivative more
comprehensively. Lastly, we expound upon the significance
of advective cooling throughout the entire disk region.

We also compare our Model II and Model IV with the
earlier works, i.e., SA09 model and models of Wen et al.
[28,29] for the confirmation purpose of our model validity
(see Appendix C for the details).

A. Two distinct mass accretion rate cases

To clarify the differences between the four models,
we choose the following two cases: Ṁ ¼ 1.08ṀEdd and
600ṀEdd. Note that Ṁ ¼ 1.08ṀEdd is a best-fit solution at
one epoch for TDE ASAS-SN 14li x-ray spectrum by Wen
et al. [28] and that Ṁ ¼ 600ṀEdd is adopted as an extreme
end of the mass accretion rate [28]. Such a high-mass
accretion rate is considered from the theoretical viewpoint
to know how the extreme mass-accretion rate impacts the
radiation-driven angular momentum loss and scale-height
derivative terms on the disk accretion flow.
Figure 1 depicts the radial dependence of the surface

density, scale-height-to-radius ratio, effective temperature,
and disk spectrum with j ¼ 0.998 and Ṁ ¼ 1.08ṀEdd for
the four models represented in Table I. From the figure, we
find that the effective temperature and H=r increase,
whereas the surface density decreases with the inclusion
of the scale-height derivative. The scale-height derivative
influence strongly on the higher-energy side of the resultant

FIG. 1. The radial dependence of the surface density, scale-height-to-radius ratio, effective temperature, and corresponding disk
spectrum with j ¼ 0.998 and Ṁ ¼ 1.08ṀEdd. The blue, red, green and black lines correspond to Models I, II, III, and IV respectively.

TABLE I. The four models to consider for our GR solutions.
Model I incorporates both radiation-driven angular momentum
loss and the derivative of the scale height. Model II incorporates
radiation-driven angular momentum loss but does not consider
the derivative of the scale height. Model III incorporates the
derivative of the scale height but does not consider radiation-
driven angular momentum loss. Model IV does not incorporate
either physics. For these models, we take θ ¼ 64 in Eq. (12).

Model
Angular momentum loss

due to radiation
Scale-height
derivative

I ✓ ✓
II ✓ ✗
III ✗ ✓
IV ✗ ✗
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disk spectrum. On the other hand, the radiation-driven
angular momentum loss plays the opposite role of the scale-
height derivative. In other words, it tends to decrease the
effective temperature and H=r and increase the surface
density. Overall, both physical terms only affect the inner
region of the disk, and the scale-height derivative impacts
these physical quantities more significantly than the angu-
lar momentum loss due to the radiation.
Panel (a) of Fig. 2 shows the comparison between the

angular momentum transfer with and without the radiation-
driven angular momentum loss. Here we define LII ≡
ðr2g=cÞxlQrad and LI ≡ ð1=2πÞṀcdl=dx. These two terms
are seen in Eq. (8), which represents the angular momen-
tum conservation. Panel (b) of Fig. 2 depicts the compari-
son of the radial derivative between the surface density and
the scale height, which are appeared on the right-hand side
of Eq. (13). Note that we confirm that the radial derivative
of the disk temperature is comparable with the other two
radial-derivative terms for all the models. From the two
panels, we note that both terms are important in the inner
part of the disk but insignificant in the outer region of
the disk. Specifically, it is clear from panel (a) that the
radiation-driven angular momentum loss is less important
and the scale-height derivative is more important in the
inner region of the disk.
Figures 3 and 4 represent the radial dependence of the

same physical quantities as in Figs. 1 and 2, respectively,
but for Ṁ ¼ 600ṀEdd. From the figure, we find that the
effect of the scale-height derivative on these quantities
is much more remarkable in the entire region of the disk
than the Ṁ ¼ 1.08ṀEdd case. This suggests the effect of
the scale-height derivative is more effective as the mass
accretion rate is higher. Panel (a) of Fig. 4 gives a consistent
result with this trend. In addition, note that the radiation-
driven angular momentum loss more inefficiently works on

the disk structure even if the mass accretion rate signifi-
cantly increases. This property is seen in panel (b) of Fig. 4
because both lines are completely overlapped there.
Figure 5 displays the radial dependence of the same

physical quantities as in Fig. 1, except that j ¼ 0. It is noted
from the figure that the surface density profile differs
remarkably from the j ¼ 0.998 case. Moreover, only this
model represents the sharp change near the inner radius in
the radial surface density profile. Let us explain the cause in
more detail below. We confirm that the radiation pressure
dominates the gas pressure near inner radii for all the
models, except that j ¼ 0 and Ṁ ¼ 1.08ṀEdd, where the
dominant pressure transits from radiation to gas pressure
at the inner disk region. Since the analytical solution
of the surface density, as seen in Eq. (17), indicates that
Σ ∝ ðl − linÞ=Q2

rad ∝ 1=ðl − linÞ, the surface density
increases rapidly near the inner radius. On the other hand,
the Novikov-Thorne solution has shown that the surface
density goes to zero at the inner radius for a gas pressure-
dominant case [15]. Combining the two solutions suggests
that when the disk transit from radiation to gas pressure
near the inner disk radius, the surface density changes from
the case where it increases to the case where it decreases
sharply. This rapid change creates a hump near the inner
disk radius. If the disk does not make such a transition, the
surface density changes monotonically, as seen in all other
models. In addition, the analytical solution of the radiation
pressure-dominated disk assumes a zero viscous stress at
the inner radius, whereas the full solution has no such
assumption, and the boundary condition is set only at the
outer radius. Moreover, the analytical solution has no
angular momentum loss due to radiation, but our full
solution includes it. These two factors can also produce
unusual behavior near the inner radius. For example, the
dΣ=dr is zero at certain points where surface density is

FIG. 2. (a) Radial dependence of the ratio of LII ¼ ðr2g=cÞxlQrad and LI ¼ ð1=2πÞṀcdl=dx with j ¼ 0.998 and Ṁ ¼ 1.08ṀEdd.
Here LI and LII are the first and second terms of the right-hand side of Eq. (8), respectively. The disk properties are depicted in Fig. 1.
The blue and red lines correspond to Models I and II, where angular momentum loss due to radiation is included in the model. (b) The
radial dependence of the ratio of d lnðΣÞ=d lnðrÞ to d lnðHÞ=d lnðrÞ, which is seen in the right-hand side of Eq. (13). The blue and green
lines correspond to Models I and III, which include the scale-height derivative term in solved basic equations.
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locally flat, causing the ratio of surface density derivative
to scale-height derivative near zero at those points. This
produces the two sharp droppings as seen in panel (b)
of Fig. 6.
Figure 7 depicts the radial dependence of the same

physical quantities as in Fig. 3, except that j ¼ 0. It is
noted from the figure that in comparison with j ¼ 0 and
1.08ṀEdd case, the effective temperature is much higher,

and the resultant peak of the disk spectrum is around
1016 Hz. While the surface density decreases due to the
scale-height derivative, the H=r and effective temperature
is higher. Panels (a) and (b) of Fig. 8 represent quantita-
tively how important the radiation-driven angular momen-
tum loss and the scale-height derivative terms are to the
basic equations. We find that the effect of the angular
momentum loss due to radiation is negligibly small for both

FIG. 3. The same format as Fig. 1 but for Ṁ ¼ 600ṀEdd.

FIG. 4. The same format as Fig. 2 but for Ṁ ¼ 600ṀEdd.
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with and without scale-height derivative models as the
mass accretion rate increases. Also, the ratio of surface-
density derivative d lnΣ=d ln r and scale-height derivative
d lnH=d ln r indicates that the scale-height derivative is
important over the entire disk. These tendencies are similar
to the spinning black hole case that is depicted in Fig. 3.

Overall, the angular momentum loss due to radiation
hardly has an influence on the disk structure and tends to be
more insignificant with an increase in the mass accretion
rate. The disk luminosity decreases by the inclusion of
radiation-driven angular momentum loss, and the decrease
in luminosity is negligible for a high-mass accretion rate.

FIG. 5. The same format as Fig. 1 but for j ¼ 0.

FIG. 6. The same format as Fig. 2 but for j ¼ 0.
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This result is consistent with Wen et al. [29] in that they
demonstrated that the effect of the radiation-driven angular
momentum loss is significant for a lower-mass accretion
rate. In contrast, the scale-height derivative included in the
advection energy flux term significantly impacts the disk
structure. The effect spreads near the inner edge of the disk

to the entire disk as the mass accretion rate increases. The
disk spectrum is more luminous due to the inclusion of
the scale-height derivative, and its increment is higher as the
mass accretion rate increases. The luminosity difference is
more remarkable due to Wein’s law exponential decay of the
spectrum around the soft x-ray wave band of 1016−17 Hz.

FIG. 7. The same format as Fig. 3 but for j ¼ 0.

FIG. 8. The same format as Fig. 4 but for j ¼ 0.
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B. Ṁ-dependence on the disk structure and emission

In Sec. III A, we investigate the effect of the two terms on
the disk structure for two extreme cases of mass-accretion
rate. We find there that the radiation-driven angular
momentum loss has a weak impact on the disk structure
for both low- and high-mass accretion rate cases. In

contrast, the impact on the accretion flow due to scale-
height derivative significantly increases with the mass
accretion rate. Here, therefore, we examine in more detail
how the disk structure and spectral luminosity evolve with
mass accretion rate under the effect of scale-height deriva-
tive (Model III) and no scale-height derivative (Model IV).
Figure 9 illustrates the radial dependence of the surface

density, scale-height-to-radius ratio, and corresponding
disk spectrum for the j ¼ 0 case, while 10 has the same

FIG. 9. Radial profiles of the surface density (panel a), the
scale-height-to-radius ratio (panel b), and the disk spectrum
(panel (c) for the j ¼ 0 case. The different colors represent
different mass-accretion rates. The solid and dashed lines denote
Models III and IV, respectively. FIG. 10. The same format as Fig. 9 but for the j ¼ 0.998 case.
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format but for the j ¼ 0.998 case. The scale-height
derivative affects the disk structure weakly at a low-mass
accretion rate for nonspinning black holes; however, the
impact is significant for high-spinning black holes. This
suggests that the increase in black hole spin increases the
impact of scale-height derivative even at the low-mass
accretion rate. The scale-height derivative term affects the
disk structure and spectrum crucially at Ṁ=ṀEdd ≳ 2 even
for a nonspinning black hole. In the case of a highly
spinning black hole, it has a significant influence on the
disk structure near the ISCO radius, even for the sub-
Eddington accretion rate.
The disk spectrum increases by including the scale-

height derivative, and the increment in the spectrum
increases with the mass-accretion rate. This results in
the brightening of the disk spectrum in the soft x-ray
wave band. The observed luminosities in the x-ray
(0.2–2.0 keV) and Swift UVW2 (1120–2640 Å) are given
by L ¼ 4πD2

L

R
Fν;obsdνobs, where Eq. (29) gives Fν;obs.

Figures 11 and 12 depict Ṁ-dependence of x-ray and

UVW2 luminosities for both j ¼ 0 and 0.998, respectively.
We note the increase in the x-ray luminosity due to the
scale-height derivative is much larger than that in the Swift
UVW2 luminosity. The increment in the x-ray luminosity is
twice or more than for Ṁ=ṀEdd ≳ 2. Thus, the scale-height
derivative is more important for the soft x-ray observations
when Ṁ=ṀEdd ≳ 2. While the luminosity of the j ¼ 0.998
case is somewhat larger than that of the j ¼ 0 case, the
increment of the j ¼ 0.998 case is much smaller than that
of the j ¼ 0 case. Notably, for the nonspinning BH case,
the increment in the x-ray luminosity results in a one order
of magnitude difference for Ṁ=ṀEdd ≳ 100.

C. Importance of advective cooling for the entire disk

For a radiation pressure-dominated slim disk, the ratio of
advection to radiation cooling rates yields

Qadv

Qrad
¼ 1

4

1

η

Ṁ
ṀEdd

rg
r
H
r
ξðrÞ; ð31Þ

FIG. 11. Ṁ-dependence of x-ray (0.2–2 keV) and Swift UVW2 (1120–2640 Å) luminosities for the j ¼ 0 case. The solid green and
black lines represent each luminosity of Model III and Model IV, respectively. Each line is complemented between ten data points of
mass-accretion rates.

FIG. 12. The same format as Fig. 11 but for the j ¼ 0.998 case.
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where Eqs. (13) and (18) with θ ¼ 64 are used for the
derivation. Assuming that ξðrÞ ∼ 1 for simplicity, Eq. (31)
means that the advective cooling rate is lower than the
radiative cooling rate if H=r ≪ 1 at r ≫ rg. Moreover,
this large/small relationship also holds even if Ṁ ≫ ṀEdd

because Ṁ=ṀEdd is comparable to r=rg. However, if
H=r ∼ 1 and Ṁ ≫ ṀEdd, Qadv is comparable with Qrad
even at r ≫ rg. To confirm whether this condition is
physically satisfied, we calculate H=r, by using Eqs. (9)
and (18), to be

H
r
¼

ffiffiffi
2

p cs
c

ffiffiffiffiffi
r
rg

r

¼ 3

2

1

η

Ṁ
ṀEdd

rg
r

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4

�
1

η

Ṁ
ṀEdd

rg
r

�
2

s #−1

ð32Þ

at the Keplerian rotation regime (r ≫ rg). This equation
indicates thatH=r≳ 1 at r ¼ 1000rg for the Ṁ ¼ 600ṀEdd

case, yieldingQadv=Qrad ∼ 1 from Eq. (31). By substituting
Eq. (32) into Eq. (31), Qadv=Qrad can be more explicitly
written as

Qadv

Qrad
¼ 3

8
ξðrÞ

�
1

η

Ṁ
ṀEdd

rg
r

�
2

×

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4

�
1

η

Ṁ
ṀEdd

rg
r

�
2

s #−1

: ð33Þ

Above equation confirms that Qadv=Qrad ≳ 1 for η ¼ 0.1,
Ṁ ≃ ðr=rgÞṀEdd, and ξðrÞ ∼ 1, demonstrating that the
advective cooling is important for the disk structure even
at the far outer-disk region if Ṁ ≫ ṀEdd.
This scaling presumption holds even if the ξðrÞ ∼ 1

assumption is relaxed. Figure 13 the radial profile of
the ratio of advective to radiative cooling rates. The solid
green and dashed black lines represent jQadvj=Qrad of
Models III and IV, respectively. The figure illustrates that
Qadv=Qrad ∼ 1 at r ∼ 1000rg when Ṁ ¼ 600ṀEdd, while
Qadv=Qrad ≪ 1 at the same radius when Ṁ ¼ 1.08ṀEdd.
Note that the sharp droppings seen in panels (a), (b), and (d)
of Fig. 13 are caused by taking the absolute value ofQadv at
Qadv ¼ 0 in the logarithmic scale. The zero value of Qadv is
due to a change from positive to negative values or vice
versa (see also SA09). We confirm that advective cooling is

FIG. 13. Radial dependence of the ratio of advective to radiative cooling rates, jQadvj=Qrad, for Ṁ ¼ 1.08ṀEdd and 600ṀEdd. The
upper and lower panels depict the j ¼ 0 and j ¼ 0.998 cases, respectively. The solid green and dashed black lines represent jQadvj=Qrad
of Models III and IV, respectively.
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crucial even for the disk’s outer region if the mass accretion
rate is much larger than the Eddington accretion rate.

IV. DISCUSSION

We have studied the impact of the angular momentum
loss due to radiation and scale-height derivative on a
steady-state GR slim disk. We find that the term of the
angular momentum loss due to the radiation ðr2g=cÞxlQrad

is weaker than the term being proportional to the accretion
rate ð1=2πÞṀcdl=dx so that becomes significantly less
effective for higher-mass accretion rate. In addition,
because both the viscous heating and advective fluxes
increase with the mass accretion rate, as can be seen from
Eqs. (11) and (13), the net radiation flux, which is given by
Qrad ¼ Qvis −Qadv, little increases with the mass accretion
rate, especially in the super-Eddington regime. This also
means the effect of the radiation-driven angular momentum
loss also does not work effectively for a higher-mass
accretion rate.
Next, the impact of the scale-height derivative on the

disk structure is prominent in contrast to that of the
radiation-driven angular momentum loss. The disk-scale
height increases due to the stronger radiation pressure at the
more highly super-Eddington regime, resulting in a higher
disk temperature. The stronger radiation pressure also
decreases the surface density because the ratio of gas to
total pressure, βgas, becomes lower. The disk scale-height
derivative makes the surface density significantly lower.
Note that the lower surface density implies that the radial
disk velocity is higher if the mass accretion rate is constant.
The black hole spin also impacts the disk structure

mainly at the radius where the GR effects are significant
and surely makes the disk structure deviate from the
Newtonian one, although the mathematical dependence
of the black hole spin on the surface density, disk temper-
ature, and spectrum cannot be written explicitly as they are
obtained numerically, unlike the NK solutions [15]. It is
noted from Figs. 1 and 5 that for Ṁ ¼ 1.08ṀEdd, the
effective temperature rapidly decreases at the ISCO in the
j ¼ 0 case. In contrast, it increases with the radius without
any significant dropping in the case of j ¼ 0.998, extend-
ing the disk spectrum to a higher-energy side. This differ-
ence is seen in the range of ν≳ 1016.5 of the disk spectrum
in Figs. 1(d) and 5(d). It is noted from Figs. 3 and 7 that
for Ṁ ¼ 600ṀEdd, the surface density rapidly decreases
around the ISCO in the j ¼ 0 case, whereas it increases
with radius even beyond r ¼ 2rg in the j ¼ 0.998 case.
However, because the effective temperature around the
inner edge radius does not change depending on the black
hole spin, there is a slight difference in the resultant
spectrum. Also, we find that these properties regarding
the black hole spin effect on the disk structure show the
same tendency between the model comprising the two key
terms and the model without them.

Let us discuss how important the inclusion of the scale-
height derivative is for identifying parameters such as black
hole mass and spins. Indeed, [30] have statistically given a
constraint on the black hole mass and spin by comparing
the observed x-ray spectra of ASAS-SN 14li with both
models of [28,29]. Note that Wen et al. [28] applied the GR
disk model without including both the angular momentum
loss due to radiation and the scale-height derivative to the
ASAS-SN 14li x-ray observations, while Wen et al. [29]
included only the radiation-driven angular momentum loss
into the GR slim disk, which is consistent with our
solutions for Models I and III. [29] calculated the disk
emission by using the photon ray-tracing method. The
resultant x-ray spectra yield consistent results with those
of Wen et al. [28] because the radiation-driven angular
momentum loss term has a significantly weak impact on the
disk structure. Nonetheless, the model of Wen et al. [29]
provides a better 1σ contour than that of Wen et al. [28].
[30] have demonstrated that, unlike the case of Wen et al.
[28], the parameters are well constrained within 1σ contour
when the radiation-driven angular momentum loss is
included, even in spite of the weak impact on the disk
structure and emission. As we described in Secs. III A
and III B, the scale-height derivative term is much more
effective on the disk structure and emission than the
radiation-derive angular momentum loss term. Therefore,
we will make detailed calculations of the disk spectra by
combining our GR model with the GR photon ray tracing
code and then compare them with the TDE observations,
making it possible to estimate the black hole mass and spin
more precisely.
The flux sensitivity of the Swift x-ray telescope (XRT) is

flim ¼ 8 × 10−14 ergs−1 cm−2. The luminosity distance of
the ASAS-SN 14li is DL ¼ 90 Mpc [36], such that lumi-
nosity detection limit for the ASAS-SN 14li is Llim ¼
4πD2

Lflim ¼ 7.75 × 1040 erg s−1ðDL=90 MpcÞ2. The x-ray
luminosity shown in Figs. 11 and 12 is significantly higher
than the detection limit of the telescope for both cases
with and without scale-height derivative. In addition, the
photometric accuracy of Swift XRT is ∼10%, which
implies that the x-ray luminosity of ≳1041 erg s−1 can be
well-measured.
In TDEs, the stellar debris is circularized to form an

accretion disk with or without still infalling debris [10]. If
the accretion timescale is smaller than the fallback time-
scale of the infalling debris, we expect the mass accretion
rate to follow the mass fallback rate Ṁfb. The luminosity
will be then L ∝ Ṁfb ∝ tn, where n ¼ −5=3 for full TDEs
and n ≃ −9=4 [38]. However, the TDE light curves in the
soft x-ray wave band have shown different power-law
evolution [39] and indicates that the viscous accretion
timescale of the TDE disk is usually longer than the
fallback timescale. Because the fallback mass is likely to
inject into the TDE disk from the outer edge at Ṁfb, there is
an issue with how the mass accretion rate relates to the mass
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fallback rate and also depends on radius and time. In
addition, according to the past literature on the non-GR
and time-dependent ADAF models [31,40–42], they have
demonstrated the limit cycle behavior, which is caused by
thermal instability, on the light curves. However, those
models are assumed to be in a steady state at the initial time,
and then the mass is supplied at the outer radius at a
constant rate. This is clearly a different initial condition
from that of TDEs. Therefore, there can be another problem
with how the initial condition affects the limit cycle
behavior. These questions motivate us to contract a time-
dependent model of the optically thick ADAF in the TDE
context in the near future.

V. CONCLUSIONS

We have constructed a steady-state, optically thick,
advection-dominated GR accretion disk with the alpha-
viscosity prescription and both gas and radiation pressures
by taking account of the angular momentum loss due to the
radiation and scale-height derivative. Notably, the scale-
height derivative term in the basic equations has hitherto
been overlooked in extant literature (e.g., [22–30]).
We have studied the impact of these two physics on the

disk structure and emission. Our primary conclusions are
summarized as follows:
(1) For comparison purposes, we have newly derived

an analytical solution for a stationary radiation-
pressure-dominant GR slim disk with zero viscous
stress at the inner radius.

(2) The angular momentum loss due to radiation only
slightly increases the surface density, disk temper-
ature, and resultant spectrum near the disk’s inner-
edge radius. In addition, these effects become
negligibly small as the mass accretion rate increases.
This indicates that the radiation-driven angular
momentum loss has little impact on the disk surface
density, temperature, and spectrum for highly super-
Eddington accretion flows.

(3) In contrast to the radiation-driven angular momen-
tum loss case, the scale-height derivative reduces the
disk surface density while it increases the disk
temperature and scale height. These effects signifi-
cantly increase as the mass accretion rate increases,
affecting the entire disk region at an extremely high
accretion rate.

(4) The increment in the x-ray (0.2–2.0 keV) luminosity
due to scale-height derivative is significant for
Ṁ=ṀEdd ≳ 2. Moreover, the increment is higher
for the nonspinning black hole than the spinning
black hole case, resulting in a one order of magni-
tude difference for Ṁ=ṀEdd ≳ 100. These results
indicate solving a set of basic equations with the
scale-height derivative for a super-Eddington accre-
tion flow with Ṁ=ṀEdd ≳ 2 is crucial, especially for
comparing with soft x-ray observations.
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APPENDIX A: BASIC QUANTITIES OF
GENERAL RELATIVISTIC DISK EQUATIONS

The Kerr metric in the Boyer-Lindquist coordinate is
transformed to a cylindrical coordinate ft; r;ϕ; zg. The
space-time metric in the geometrical units (c ¼ G ¼ 1)
with the signature (−þþþ), is given by [17]

dS2 ¼ −
�
1 −

2Mðr2 þ z2Þ3=2
ðr2 þ z2Þ2 þ a2z2
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dt2 −

4Mar2
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In the limit of thin disc z ≪ r, the metric tensors are
given by

gtt ¼ −1þ 2M
r

−
Mð2a2 þ r2Þz2

r5
; ðA2Þ

gtr ¼ grt ¼ 0; ðA3Þ

gtϕ ¼ gϕt ¼ −
2Ma
r

þMð2a3 þ 3ar2Þz2
r5

; ðA4Þ

gtz ¼ gzt ¼ 0; ðA5Þ

grr ¼
r2

r2 − 2Mrþ a2

þ ½2a4 þ 3a2ðr2 − 2MrÞ þMð4Mr2 − 3r3Þ�z2
r2ðr2 − 2Mrþ a2Þ2 ;

ðA6Þ

grϕ ¼ gϕr ¼ 0; ðA7Þ
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�
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r
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a2ðr4 þMrð2a2 þ 5r2ÞÞz2

r6
; ðA9Þ

gϕz ¼ gzϕ ¼ 0; ðA10Þ

gzz ¼ 1þ
�
a2 − r2

r2
þ r2

r2 − 2Mrþ a2

�
z2

r2
; ðA11Þ

which is the same as the metric tensor given in
Zhuravlev [43]. At the equatorial plane (z ¼ 0), the
space-time metric reduces to

dS2 ¼ −
�
r − 2M

r

�
dt2 −

4Ma
r

dtdϕþ r2

Δ
dr2

þ A
r2
dϕ2 þ dz2; ðA12Þ

where Δ ¼ r2 − 2Mrþ a2 and A ¼ r4 þ a2r2 þ 2Ma2r.
In Boyer-Lindquist coordinates using orthonormal tetrad in
the local nonrotating frame (LNRF) [14], the contravariant
components of four velocities are given by [23,31]

ut ¼ γLA1=2

rΔ1=2 ; ðA13Þ

ur ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p Δ1=2

r
; ðA14Þ

uϕ ¼ r2L
A

þ 2Ma
γL

A1=2Δ1=2 ; ðA15Þ

uz ¼ 0; ðA16Þ

where V is the radial velocity in the corotating frame, L is
the angular momentum per unit mass, and γL is the Lorentz
factor in LNRF near the equatorial plane given by

γ2L ¼ 1

1 − V2
þ r2L2

A
: ðA17Þ

The covariant component of four velocities is given by

ut ¼ −
γLrΔ1=2

A1=2 −
2Mar
A

L; ðA18Þ

ur ¼
r

Δ1=2

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ðA19Þ

uϕ ¼ L; ðA20Þ

uz ¼ 0: ðA21Þ

The viscous stress tensor is given by Sαβ ¼ −2ησαβ,
where σαβ ¼ gαiσiβ, and σiβ is given by

σiβ ¼
1

2

�
∂ui
∂Xβ þ

∂uβ
∂Xi − 2Γλ

iβuλ þ uνðuiuβÞ;ν
�

−
1

3
uν;ν½giβ þ uiuβ�; ðA22Þ

where Γ is the Christoffel symbol and X≡ ft; r;ϕ; zg
represent four coordinates. For a subsonic flow such that
angular velocity is smaller than the sound speed ∼

ffiffiffiffiffiffiffiffi
p=ρ

p
,

the σrϕ is given by

σrϕ ¼ 1

2

Δ1=2A3=2γ3L
r5

dΩ
dr

; ðA23Þ

where Ω ¼ uϕ=ut. The dynamic viscosity η ¼ νρ, where ν
is the kinematic viscosity. The viscous stress is then
given by Srϕ ¼ −2νρσrϕ, and after vertical integration, it
is given by

S̄rϕ ¼ −νΣ
Δ1=2A3=2γ3L

r5
dΩ
dr

; ðA24Þ

which is the same as the viscous stress obtained by
Lasota [22].
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The mass-conservation equation is given by ðρuiÞ;i ¼ 0,
which after vertical integration, results in [31]

∂

∂t
ðΣutÞ þ 1

r
∂

∂r
ðrΣurÞ ¼ 0; ðA25Þ

where Σ ¼ R
ρdz ¼ 2Hρ and H is the scale height of the

disk. For a steady disk, mass accretion rate Ṁ ¼ −2πrΣur
is a constant and is given by [23]

Ṁ ¼ −2πΣΔ1=2 Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p : ðA26Þ

The radial-conservation equation is given by Tir
;i ¼ 0,

which results in [31]

∂V
∂t

¼Δ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p

γLA1=2

�
−

V
1−V2

∂V
∂r

þA
r
−
1−V2

ρ

∂p
∂r

�
; ðA27Þ

where

A ¼ −
MA

r3ΔΩþ
KΩ−

K

ðΩ − Ωþ
KÞðΩ −Ω−

KÞ
1 − Ω̃2R̃2

; ðA28Þ

with Ω�
k ¼ �M=ðr3=2 � aM1=2Þ, Ω̃ ¼ Ω − 2Mar=A, and

R̃ ¼ A=r2Δ1=2. For the steady case and after the vertical
integration, we have

V
1 − V2

dV
dr

¼ A
r
−
1 − V2

Σ
dP
dr

; ðA29Þ

where P ¼ R
pdz ¼ 2Hp.

The angular momentum conservation equation is given
by ðTi

kξ
kÞ;i ¼ 0 [31], where ξk ≡ δkϕ is the azimuthal

Killing vector and δkϕ is the Kronecker delta. It results in

ρut
∂uϕ
∂t

þ ρur
∂uϕ
∂r

þ 1

r

∂ðrSrϕÞ
∂r

þ ∂

∂z
ðuϕqzÞ ¼ 0; ðA30Þ

and performing vertical integration, we get

Σut
∂uϕ
∂t

þ Σur
∂uϕ
∂r

þ 1

r

∂ðrS̄rϕÞ
∂r

þ uϕQrad ¼ 0; ðA31Þ

where Qrad ¼ 2qz is the radiative flux. For a steady case,
we get [23]

dðrS̄rϕÞ
dr

¼ Ṁ
2π

dL
dr

− rQradL: ðA32Þ

The viscous stress in the comoving rotating frame
obtained using the orthonormal tetrad basis is given by

trϕ ¼ −r2S̄rϕ=ðγLA1=2Δ1=2Þ [22,33]. Assuming an alpha
viscosity, trϕ ¼ −αP, we have

S̄rϕ ¼ αP
γLA1=2Δ1=2

r2
; ðA33Þ

ν ¼ −α
P
Σ

r3

γ2LA

�
dΩ
dr

�
−1

¼ −2α
Hp
Σ

r3

γ2LA

�
dΩ
dr

�
−1
: ðA34Þ

The vertical-hydrostatic equilibrium results in the scale
height given by [32]

P
ΣH2

¼ L2 − a2ðϵ2 − 1Þ
2r4

≡ ζ; ðA35Þ

where ϵ ¼ ut is the conserved energy for test particle
motion.
The energy conservation equation is given by Qvis ¼

Qrad þQadv. Each term are written by [31]

Qvis ¼ νΣ
γ4LA

2

r6

�
dΩ
dr

�
2

¼ −αP
Aγ2L
r3

dΩ
dr

; ðA36Þ

Qrad ¼
θ

3

σT4

κΣ
; ðA37Þ

Qadv ¼
1

2π

Ṁ
r2

P
Σ
ξðrÞ; ðA38Þ

where θ ¼ 64 is adopted in our models and in those of
Wen et al. [28,29], whereas θ ¼ 32 in SA09. In addition,
ξðrÞ is defined as

ξðrÞ≡ −
T
c2s

∂s
∂ lnðrÞ

¼ −
4 − 3βgas
Γ3 − 1

d lnT
d ln r

þ ð4 − 3βgasÞ
�
d lnΣ
d ln r

−
d lnH
d ln r

�
;

ðA39Þ

where s is the specific entropy, βgas ¼ pgas=p is the ratio of
gas to total pressure, and Γ3 is the third adiabatic exponent,

Γ3 ¼ 1þ ð4 − 3βgasÞðγgas − 1Þ
βgas þ 12ð1 − βgasÞðγgas − 1Þ

with the gaseous specific heat ratio, γgas.
Employing the following dimensionless quantities x ¼

r=rg, j ¼ a=M, and l ¼ L=ðrgcÞ, we obtain A ¼ r4gAk,

Δ¼ r2gΔk, Ω¼ðc=rgÞω, and γL¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1−V2Þþx2l2=Ak

p
,

where Ak¼x4þx2j2þ2xj2, Δk ¼ x2 − 2xþ j2, and ω ¼
2jx=Ak þ x3Δ1=2

k l=A3=2
k , respectively. The conservation
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equations shown in Sec. II are written in unit of these
dimensionless variable.

APPENDIX B: EACH COMPONENT
OF ai, ei, AND ri

We present the each component of ai, ei, and ri that
appears in the Eqs. (21), (22), and (23) given in Sec. II B to
obtain the full GR slim-disk solution.

r1 ¼
V2

1 − V2
−
c2s
c2

þ 2
c2s
c2

�
1 − βgas
1þ βgas

�
χ2; ðB1Þ

r2 ¼ 2
c2s
c2

; ðB2Þ

r3 ¼ 2
c2s
c2

�
1 − βgas
1þ βgas

�
χ3; ðB3Þ

r4 ¼ A1 þ
c2s
c2

�
1

2Δk

dΔk

dx
− 2

�
1 − βgas
1þ βgas

�
χ4

�
; ðB4Þ

a1 ¼ 2χ2

�
1 − βgas
1þ βgas

�
−

1

γ2L

�
1þ x2l2

Ak

�
; ðB5Þ

a2 ¼ 2; ðB6Þ

a3 ¼
x2l
Akγ

2
L
− 2

�
1− βgas
1þ βgas

�
χ3 −

8<
:

1
2π

Ṁc
xS̄rϕ

Model∶ I& II

1
l−lin

Model∶ III& IV
;

ðB7Þ

a4 ¼ −2
�
1 − βgas
1þ βgas

�
χ4 þ

1

2γ2Lð1 − V2Þ
d
dx

�
log

�
x2

Ak

��

−

8<
:

r2g
c
xlQrad
xS̄rϕ

Model∶ I& II

0 Model∶ III& IV
; ðB8Þ

e1 ¼ α
x2lV

γLA
1=2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p −
�
2
	
4−3βgas
1þβgas



χ2x Model∶ I& III

ð4− 3βgasÞx Model∶ II& IV
;

ðB9Þ

e2 ¼ x
�
1þ βgas
Γ3− 1

þ
�
4− 3βgas Model∶ I& III

0 Model∶ II& IV

�
; ðB10Þ

e3 ¼ −α
x2

γLA
1=2
k V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

þ
8<
: 2

	
4−3βgas
1þβgas



χ3x Model∶ I& III

0 Model∶ II& IV
; ðB11Þ

e4 ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

V
γ2LAk

xΔ1=2
k

χ5 − 2π
r2gx2

Ṁc2s
Qrad

þ
8<
:

2
	
4−3βgas
1þβgas



χ4x Model∶ I& III

ð4 − 3βgasÞ x
2Δk

dΔk
dx Model∶ II& IV

; ðB12Þ

χ1 ¼ γL
d
dx

"
xΔ1=2

k

A1=2
k

#
þ 2jl

d
dx

�
x
Ak

�

þ 1

2

l2

γL

xΔ1=2
k

A1=2
k

d
dx

�
x2

Ak

�
; ðB13Þ

χ2 ¼ 1þ 1

2

j2ϵ
ζðxÞx4

xΔ1=2
k

A1=2
k

V2

γLð1 − V2Þ ; ðB14Þ

χ3 ¼
1

2

l − j2ϵω
ζðxÞx4 ; ðB15Þ

χ4 ¼
1

2Δk

dΔk

dx
þ 1

2

j2ϵχ1
ζðxÞx4 þ

2

x
; ðB16Þ

χ5 ¼ 2j
d
dx

�
x
Ak

�
þ l
γL

d
dx

�
x3Δ1=2

k

A3=2
k

�

−
1

2

l3

γ3L

x3Δ1=2
k

A3=2
k

d
dx

�
x2

Ak

�
: ðB17Þ

APPENDIX C: COMPARISON WITH THE
EARLIER MODELS

In this section, we compare our models (Model II
and Model IV) with the earlier three models (SA09,
(Wen et al.) [28,29]). The mass conservation equation
[Eq. (A26)] is commonly used among all the models. In the
radial-momentum conservation equation, SA09, and Wen
et al. [28,29] neglect the 1 − V2 term of the right-hand side
of Eq. (A29), while our models include it. In the angular
momentum conservation equation, Model II and the model
of Wen et al. [29] include the radiation-driven angular
momentum term [i.e., the second term of the right-hand
side of Eq. (A32)], while all the other models drop it.
Regarding the energy equation, the value of the radiative
cooling rate’s coefficient, θ, [see Eq. (A37)] is different
between SA09 and the other models; θ ¼ 64 is adopted
for our models and Wen et al. [28,29], whereas θ ¼ 32
for SA09.
Solving these basic equations numerically, we get the

radial profiles of the surface density and other disk
quantities for respective models. Figure 14 compares the
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surface density’s radial profile of Model IV with those of
Wen et al. [28] and SA09, whereas Fig. 15 compares the
surface density’s radial profile of Model II with that of Wen
et al. [29]. For all the models, we adopt the two different
spin parameters j ¼ 0 and j ¼ 0.998 and the two different
mass accretion rates Ṁ ¼ 1.08ṀEdd and 600ṀEdd. Note
again that the three models seen in Fig. 14 include no
radiation-driven angular momentum and scale-height
derivative terms, whereas the two models appeared in
Fig. 15 include only the radiation-driven angular momen-
tum loss.
From Fig. 14, we find that the surface density of Model

IV deviates from that of the SA09 model, while Model IV
case is overlapped with the surface density profile of Wen
et al. (2020). These behaviors are independent of the mass
accretion rate and black hole spin, and are interpreted by
using the simple analytical solutions as follows: Eq. (19)
demonstrates that the surface density is proportional to
ðθ=QradÞ2, where Qrad is also a function of θ. Adopting
fðx; jÞ ¼ 1 and ζðxÞ ¼ 1=ð2x3Þ, corresponding to the
nonrelativistic limit, in Eq. (18), Qrad is simply written as

Qrad ≈Qvis

"
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 1

η2
768

θ2

�
ṁ
x

�
2

s #−1

; ðC1Þ

where ṁ≡ Ṁ=ṀEdd. This equation shows that Qrad is
proportional to θ if ṁ=x ≫ 1, indicating the surface density
is independent of θ. This is consistent with the fact that, in
the relevant disk region, the radial profiles of the surface
density of Model IV is overlapped with those of the SA09
model. However, Qrad is independent of θ if ṁ=x ≪ 1,
indicating the surface density is proportional to θ2. This
produces a significant (roughly factor 4) deviation in the
radial profiles of the surface density between Model IVand
the SA09 model.
Next, it is found from Fig. 15 that there is no difference

in the radial profiles of the surface density between Model
II and the model of Wen et al. [29], even though there are a
few differences in the basic equations between them. This
means the ð1 − V2Þ term of the right-hand side of Eq. (A29)
has effectively no impact on the disk structure.

FIG. 14. Comparison of the surface density’s radial profiles betweenModel IV, the model of Wen et al. [28], and the SA09 model. Two
different mass accretion rates Ṁ ¼ 1.08ṀEdd and Ṁ ¼ 600ṀEdd, and the two different black hole spins j ¼ 0 and 0.998 are adopted for
each model.
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