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We study the blackbody properties and the thermodynamic equilibrium quantities of a photon gas in the
framework of nonlinear electrodynamics. In this vein,we take into account the photon propagation in a uniform
external magnetic field in the weak field approximation, where an angular anisotropic energy density
distribution appears in the frequency spectrum. The special case when the photon propagates perpendicular to
the background magnetic field is also discussed, which allows us to probe the strong field regime. We then
derive a modified blackbody spectral distribution and the Stefan-Boltzmann law in this situation. Consid-
erations about Wien’s displacement law and the Rayleigh-Jeans formula are contemplated as well. Deviations
from the thermodynamic quantities at thermal equilibrium such as energy, pressure, entropy, and heat capacity
densities are obtained from the Helmholtz free energy. As an application, we study three nonlinear
electrodynamics, namely, the Euler-Heisenberg, the generalized Born-Infeld, and the logarithmic electrody-
namics. Possible implications on stellar systems with strong magnetic fields such as magnetars are discussed.
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I. INTRODUCTION

Over the past few decades, there has been a growing
interest in using nonlinear electrodynamics to probe physi-
cal processes in the regime of strong electromagnetic fields.
These studies include investigations in the physics of high
intensity lasers [1–4], intense magnetic fields in compact
astrophysical objects [5–7], and radiation propagation
inside some materials [8,9], among others [10].
As is well known, quantum electrodynamics (QED)

describes with a very high and accurate precision all the
electromagnetic phenomena in both classical and quantum
scales [11]. Nevertheless, the vacuum polarization induces
small deviations from the standard results of QED, leading
to the appearance of new phenomena such as birefringence,
photon-photon scattering, vacuum dichroism, and photon
acceleration, among others [3]. It is important to remark
that these effects become relevant when there exist electric
and magnetic fields up to a critical value, εc ≈m2

ec3=eℏ≈
1018V=m ≈ 109T, in some region of the space, where me is
the electron rest mass [12].
The phenomenological features associated with the QED

vacuum polarization are usually studied in the framework
of nonlinear electrodynamics [10,13,14]. In this sense,
a straightforward manner to emulate vacuum polarization
effects is by introducing external background fields in
the standard theoretical models [12]. In this scenario,

phenomena such as birefringence can be easily studied
by describing electromagnetic waves propagating in
empty space.
From the theoretical perspective, nonlinear electrody-

namics have been extensively investigated in a wide range
of areas such as gravity, cosmology, and condensed matter
systems [15–34]. Nonlinear electrodynamics also appears
as an important ingredient in some fundamental scenarios
such as string and M theory [35,36]. From the experimental
point of view, in turn, the investigation of electromagnetic
phenomena in the strong field regime is a straightforward
manner to probe not only properties of the QED in the
nonperturbative regime, but also effects in quantum field
theory in general. Several experimental efforts are currently
in progress in order to probe nonlinear effects of the
electromagnetic field, which include the measurement of
light by light scattering in Pbþ Pb collisions at the Large
Hadron Collider [37], the photon splitting in strong
magnetic fields [38], and experiments with laser beams
crossing magnetic fields [39], among others [40]. Indeed,
deviations from QED are also to be inspected by some
experiments under way, which include the Station of
Extreme Light (SEL), Europe’s Light Infrastructure (ELI
Project), and the ExaWatt Center for Extreme Light
Studies (XCELS). These recent developments in exper-
imental physics, which probe some fundamental sym-
metries in physics, also encourage a new look at the
possibility of a physics beyond the Standard Model
(SM) of particle physics and fundamental interactions.
Effective field theories are vastly used to describe several

phenomena at high energies [41,42]. Here, we will explore
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the photon propagation in the presence of a background
magnetic field and the consequences to the thermodynam-
ics of blackbody radiation through the study of three
nonlinear models, namely, Euler-Heisenberg electrody-
namics, the generalized Born-Infeld theory, and the loga-
rithmic Lagrangian.
The structure of this paper is organized as follows. In

Sec. II we review the main features of gauge and Poincarè
invariant nonlinear electrodynamics theories. In Sec. II A,
the wave propagation in a background electromagnetic
field is derived, while in Sec. II B, the modified dispersion
relation is obtained. Aspects related to the blackbody
spectral density and thermodynamic equilibrium properties
of the system are discussed in Sec. II C. The implications
on the Euler-Heisenberg, generalized Born-Infeld, and
logarithmic electrodynamics are contemplated, respec-
tively, in Secs. III A, III B, and III C. The regime of strong
fields is studied in Sec. III D. Some comments about the
obtained results are discussed in Sec. III E. Our final
remarks and further perspectives can be found in Sec. IV.
We shall adopt the Gaussian units unless otherwise

specified. In our conventions, the signature of the
Minkowski metric is ðþ;−;−;−Þ.

II. GENERAL FRAMEWORK

In this section, we will give a brief review of the main
features of nonlinear electrodynamics theories. To accom-
plish that, we will restrict our analysis to the class of gauge
and Lorentz invariant Lagrangians L ¼ LðF ;GÞ formed by
the invariant bilinear forms

F ≡ −
1

4
FμνFμν ¼ 1

2
ðE2 −B2Þ; ð1Þ

G≡ −
1

4
FμνF̃μν ¼ E ·B; ð2Þ

where Fμνð≡∂μAν − ∂νAμÞ is the field strength of the
electromagnetic field and F̃μν ¼ ð1=2ÞϵμναβFαβ is the dual
stress tensor. To preserve the parity symmetry, only
quadratic terms in the fields will be considered.
The full description of the system consists of the

dynamical equation for the electromagnetic field

∂ν

�
∂L
∂Fμν

�
¼ 0; ð3Þ

plus the Bianchi identity

∂αFμν þ ∂μFνα þ ∂νFαμ ¼ 0: ð4Þ

Taking the invariant bilinear forms (1) and (2) into
account, the field equation for the parity-conserving non-
linear theory takes the following form:

c1∂νFμν −
1

2
Mμναβ

∂νFαβ ¼ 0; ð5Þ

where

Mμναβ ¼ d1FμνFαβ þ d2F̃μνF̃αβ

þ d3ðFμνF̃αβ þ F̃μνFαβÞ þ c2ϵμναβ; ð6Þ

and

c1 ¼
∂L
∂F

����
E;B

; c2 ¼
∂L
∂G

����
E;B

; d1 ¼
∂
2L

∂F 2

����
E;B

;

d2 ¼
∂
2L
∂G2

����
E;B

; d3 ¼
∂
2L

∂F∂G

����
E;B

: ð7Þ

The tensor Mμναβ is symmetric with respect to exchange
of the pairs of indices μν and αβ, and antisymmetric with
respect to exchange of indices within each pair. In addition,
when one inserts the tensor Mμναβ into the equation of
motion, the Levi-Civita tensor contribution drops out
because of the Bianchi identity, while the remaining pieces
reproduce the photon dynamical equation in the framework
of nonlinear electromagnetism. Note also that the coeffi-
cients c1, c2, d1, d2, and d3 are all evaluated at the external
fields E and B.

A. Photon propagation in an external
electromagnetic field

The photon propagation in an external electromagnetic
field will be described as weak field disturbances propa-
gating around this background field. At this level, the
equation of motion for the electromagnetic wave is linear,
and the influence of the external field will be encoded in the
coefficients in (7).
We now pass to the calculation of the field equation for

the photon in the present scenario. We start by adopting the
linearization procedure and splitting the electromagnetic
field Fμν as

Fμν ¼ Fμν
B þ fμν; ð8Þ

where Fμν
B describes a classical background electromag-

netic field and fμν is a perturbation wave field. Inserting the
relation (8) into Eq. (3), and assuming that the background
field satisfies the field equations, one finds

∂νðΩμναβfαβÞ ¼ 0; ð9Þ

where

Ωμναβ ¼ ∂
2L

∂Fμν∂Fαβ

����
B
: ð10Þ
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The above tensor holds the same symmetries as the
tensor Mμναβ, and the subscript B means that Ωμναβ is
evaluated at the background electromagnetic fields.
Next, considering the invariant bilinear forms (1) and (2),

the field equations associated to the perturbation
field fμν are

c1∂νfμν −
1

2
Mμναβ

B ∂νfαβ ¼ 0: ð11Þ

We are now bound to consider the regime of slow
varying but arbitrary background electromagnetic fields. In
this context, and considering the decomposition in Fourier
modes of the field fμν, Eq. (9) takes the form

Ωμναβkνfαβ ¼ 0: ð12Þ

Furthermore, the Bianchi identity now reads as

∂αfμν þ ∂μfνα þ ∂νfαμ ¼ 0; ð13Þ

which restricts the wave field fμν to be of the form

fμν ¼ ∂μaν − ∂νaμ; ð14Þ

where aμ is the gauge field associated to the stress
tensor fμν.
In terms of the gauge field aμ, Eq. (12) yields

Ωμναβkνkβaα ¼ 0; ð15Þ

where the tensorial quantity Ωμναβ can be written as

Ωμναβ ¼ c1ðημαηνβ − ημβηναÞ −Mμναβ
B ; ð16Þ

which contains an isotropic part plus an anisotropic
contribution Mμναβ

B , which comes from the nonlinearity
of the electromagnetic field.

B. Modified dispersion relation

As discussed in the previous section, the equation of
motion associated to the weak disturbance is linear, where
the coefficients depend on the external background field.
To get a better understanding about the wave propagation in
this situation, we will derive the dispersion relation for
the electromagnetic wave in the presence of background
magnetic fields.
Let us then start off our considerations by taking into

account the standard procedure to find the electromagnetic
wave frequencies, which consists of solving the system of
linear equations

Aμαϵα ¼ 0; ð17Þ

where the tensor Aμα is defined to be

Aμα ¼ Ωμναβkνkβ; ð18Þ

and we have defined the normalized polarization tensor
ϵμ ¼ aμ=

ffiffiffiffiffi
a2

p
.

According to definition (16), the above tensor can be cast
under the form

Aμα ≡ c1ðημαk2 − kμkαÞ −Mμναβkνkβ: ð19Þ

The corresponding theory is gauge invariant, which
means that there exist spurious modes, and a gauge fixing
becomes necessary. One possible choice is to adopt the
temporal gauge a0 ¼ 0. This choice has the advantage that
immediately removes 1 degree of freedom from the gauge
field aμ.
In what follows, we then adopt the temporal gauge,

which decomposes the system of linear equations in

A0iϵi ¼ 0 ð20Þ

and the reduced system

Aijϵj ¼ 0: ð21Þ

Our main purpose in this work is to find the blackbody
radiation laws in the presence of a background magnetic
field. Therefore, it will be considered an external uniform
magnetic field B, where the electric field will be neglected,
i.e.,E ¼ 0. Note that only the coefficients c1, d1, and d2 are
nonzero in this configuration.
With these assumptions, and assuming kμ ¼ ðw=c;kÞ,

Eq. (20) provides us with

k · ϵ ¼ −
d2
c1

ðk ·BÞðB · ϵÞ: ð22Þ

Next, taking into account the above relation, Eq. (21)
takes the form

��
w2

c2
− k2

�
δij þ

d1
c1

ðk ×BÞiðk ×BÞj

−
d2
c1

ðk ·BÞkiBj þ
d2
c1

w2

c2
BiBj

�
ϵj ¼ 0: ð23Þ

A necessary and sufficient condition for the eigenvalue
problem above to have solutions different from the trivial
one is to find the vanishing determinant of the matrix (23).
An explicit calculation gives us

detAij ¼
�
w2

c2
− k2

�
P4ðkÞ: ð24Þ

THERMODYNAMICS OF BLACKBODY RADIATION IN … PHYS. REV. D 108, 043020 (2023)

043020-3



The determinant is a sixth-order polynomial. However,
the physically relevant part is given by the fourth-order
polynomial P4ðkÞ in the variables w and k, which is
explicitly given by

P4ðkÞ ¼ Pw4 þQw2 þ R; ð25Þ

where

P ¼ 1

c4

�
1þ d2

c1
B2

�
; ð26Þ

Q ¼ 1

c2

�
−2k2 þ d1

c1
ðk ×BÞ2 − d2

c1

h
ðk ·BÞ2 þ k2B2

i

þ d1d2
c21

ðk ×BÞ2B2

�
; ð27Þ

R ¼ k4 −
d1
c1

k2ðk ×BÞ2 þ d2
c1

k2ðk · BÞ2

−
d1d2
c21

ðk ·BÞ2ðk ×BÞ2: ð28Þ

The dynamical polarization states are given by linearly
independent solutions of the eigenvalue problem (21)
under the nontrivial solutions of the condition detAij ¼ 0,
which, according to (25), provide us with four solutions.
On the other hand, because of the CPT invariance, if
k ¼ ð−w;kÞ is a solution, then −k ¼ ðw;−kÞ is a solution
as well. Therefore, we have a two-dimensional space of
polarization states.
The wave frequencies, therefore, take the following

form:

w1ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d1
c1

ðk̂ ×BÞ2
s

; ð29Þ

w2ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2ðk̂ ×BÞ2
c1 þ d2B2

s
: ð30Þ

The frequencies above are associated to the wave
propagation in a magnetized medium from the nonlinear
electrodynamics perspective. Furthermore, these dispersion
relations are distinct, which leads to the phenomenon
of birefringence [14]. We also remark that d1 → 0 and
d2 → 0, or, equivalently, whenever B → 0, the standard
photon frequencies are recovered. The conditions
c1 > d1ðk̂ ×BÞ2 and c1 þ d2ðk̂ ·BÞ2 > 0 ensure that
frequencies (29) and (30) are real and positive definite.
The corresponding frequencies can be written in terms of

the angle θ between the wave vector k and the external
magnetic field B, which gives us

w1ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d1
c1

B2sin2θ

s
; ð31Þ

w2ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2B2

c1 þ d2B2
sin2θ

s
: ð32Þ

Here one notes that whenever the wave vector k and
the background magnetic field B are perpendicular
to each other, the frequencies reduce to w1ðkÞ ¼
ckð1 − d1B2=c1Þ1=2 and w2ðkÞ ¼ ckð1þ d2B2=c1Þ−1=2,
respectively.
The group velocities, in turn, related to the above

frequencies, are given by [43]

vð1Þg ¼ c

h
c1k̂ − d1B × ðk̂ ×BÞ

i
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d1

c1
ðk̂ ×BÞ2

q ; ð33Þ

vð2Þg ¼ c

h
c1k̂þ d2Bðk̂ ·BÞ

i
ðc1 þ d2B2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2ðk̂×BÞ2

c1þd2B2

q ; ð34Þ

which have components in the directions of k̂ and B.
Furthermore, whenever B → 0, one recovers the Maxwell
theory, and the group velocity goes to vg ¼ k̂w=k.
We would like to stress that the nonlinear features of the

quantum vacuum were treated as a classical medium. An
alternative description implies considering the modifications
in the vacuum as an effective geometry for the photon
propagation [13,14]. In such a case, photons propagate as
null geodesics in a background metric that deviates from the
Minkowski one due to the nonlinearities of the electromag-
netic field. Although these formalisms describe distinct
situations, both approaches are described in the soft photon
approximation and provide exactly the same results for the
frequency modes. At this point, it is perhaps worth
remarking that there exist three different situations where
the effective metric emerges in nonlinear electrodynamics,
which are due to G. Boillat [13], Bialynicka-Birula and
Bialynicki-Birula [14], and Novello and coworkers [44].
The effective metrics in Boillat and Bialynicka-Birula and
Bialynicki-Birula are entirely equivalent, while the Novello
effective metric is only conformally equivalent to the
mentioned ones [45]. The difference between both
approaches is due to the schematic procedure adopted by
the authors to obtain the effective geometry. While Boillat-
Birula frameworks take the eikonal approximation into
account, Novelo geometry is derived considering the
Hadamard theory, which provides distinct coefficients when
compared with the Boillat-Birula metrics. However, these
effective metrics can be connected through a conformal
factor, which can vanish in some special cases [45].
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To conclude this section, we would like to emphasize
that our approach is equivalent to the Boillat-Birula frame-
works. Nevertheless, different from these works, here we
have explored the gauge structure of the system to get
the wave frequencies of the nonlinear electromagnetic
wave [46].

C. Blackbody radiation and thermodynamic
properties of the photon gas

Our goal in this section is to use the techniques of
statistical mechanics to derive the frequency spectrum and
the thermodynamic quantities of a photon gas in the
framework of nonlinear electrodynamics. The fundamental
object for this analysis is the partition function Z. In our
approach, it will be considered nonzero temperatures below
the electron rest mass me, i.e., kBT ≪ mec2, which will
enable us to use the effective field theory to compute the
free energy of the photon field. Indeed, at the temperatures
well below the electron rest mass, the electron-positron
concentration is exponentially small, i.e., proportional to
exp ð−mec2=kBTÞ, and the contributions to the thermody-
namic properties of the blackbody radiation mainly come
from the photon sector [47,48]. Furthermore, the partition
function will be formulated in the grand canonical potential
for the photon gas with zero chemical potential assuming
the Bose-Einstein statistics [49,50].

1. The partition function and the spectral energy density

As stated above, we need to find the partition function in
order to derive the blackbody radiation and the thermody-
namic quantities at thermal equilibrium. To begin with, one
notes that the number of available states N for a given
system is

N ¼
Z

dx
Z

dk
ð2πÞ3 : ð35Þ

In spherical coordinates, the above equation can be
written as

N ¼ V
ð2πÞ3

Z
dΩ

Z
∞

0

dkk2; ð36Þ

where V is the volume of the reservoir and dΩ is the solid-
angle element.
To find the number of states N for which the photon

frequency lies between ν and νþ dν, one needs to transform
the above k integral to the frequency ν space. To achieve
that, it is necessary to take into account both the phase vp
and group vg velocities previously derived. However, in the
general case, one gets a very complicated integral. To
circumvent this problem, we consider the weak field
approximation, which is obtained by imposing the following
conditions: c1 ≫ d1ðk̂ ×BÞ2 and c1 ≫ −d2ðk̂ · BÞ2.

This condition means that our approach will be restricted
to situations in which one has small deviations from the
Maxwell theory. In this regime, the modulus of the phase and
the group velocities for each mode are equal and given,
respectively, by [14]

vð1Þp ¼ vð1Þg ¼ c

�
1 −

d1
2c1

ðk̂ ×BÞ2
�
; ð37Þ

and

vð2Þp ¼ vð2Þg ¼ c

�
1 −

d1ðk̂ ×BÞ2
2ðc1 þ d2B2Þ

�
: ð38Þ

Therefore, if one substitutes k2 by the dispersion
relations (29) and (30), in the weak field approximation,
one promptly gets

dk1;2 ¼
2π

c
dν
Λ1;2

ð39Þ

for each mode, where Λ1;2 are defined as

Λ1 ¼ 1 −
d1
2c1

B2sin2θ; ð40Þ

Λ2 ¼ 1 −
d2B2sin2θ

2ðc1 þ d2B2Þ : ð41Þ

Hence, the number of available states N reads as

N ¼ N1 þ N2 ¼
V
c3

Z
dΩ

Z
∞

0

dνν2ΔΛðB; θÞ; ð42Þ

where ΔΛðB; θÞ is given by

ΔΛðB; θÞ≡
�

1

Λ3
1

þ 1

Λ3
2

�
≈ 2þ ϵsin2θ; ð43Þ

and

ϵ ¼ 3d1B2

2c1

�
1þ ðd2=d1Þ

1þ ðd2=c1ÞB2

�
: ð44Þ

Note that ΔΛðB; θÞ depends on the magnitude of the
background magnetic field B and the θ angle between the
wave vector k and the magnetic field B. In the special
case when the photon propagation is perpendicular to the
magnetic field, the factor ΔΩðBÞ depends only on the
magnitude of the magnetic field. Furthermore, whenever
B → 0, ΔΛ ¼ 2, and the number of available states of a
photon gas in the Maxwell theory is recovered. We also
remark that when the photon propagation is parallel to the
background magnetic field (θ ¼ 0), ΔΛ ¼ 2, and the
photon propagates at the speed of light.
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Having characterized the regime of validity of our
formalism, we are now ready to obtain the partition function
Z in this situation. Following the standard methodology, the
logarithm of the partition function Z reads as

logZ ¼ −
V
c3

Z
dΩ

×
Z

∞

0

dνν2ΔΛðB; θÞ log ð1 − e−βhνÞ: ð45Þ

From relation (45), one can derive the frequency spec-
trum and the related thermodynamic quantities.
The spectral energy density u, per unit volume, in

thermal equilibrium at temperature T is then given by

uðν; TÞ ¼
�
8πν2

c3

��
1þ ϵ

3

	 hν
ðeβhν − 1Þ : ð46Þ

A quick glance at the energy density (46) clearly shows
us that the contribution from the nonlinearities is encoded
in the ϵ parameter. In the limit ϵ ¼ 0, i.e., whenever B → 0,
or, equivalently, d1 → 0 and d2 → 0, the internal energy
density uðν; TÞ reduces to the Planck distribution at the
temperature T, as expected. Furthermore, the number 3 in
ϵ=3 has a geometric origin since it arrives from the angular
integration of the factor ΔΛðB; θÞ in (45).
At low frequencies, the frequency distribution (46)

assumes the form

uðν; TÞ ¼
�
8πν2

c3

��
1þ ϵ

3

�
ðkBTÞ: ð47Þ

From the above relation, we arrive at the conclusion that
the Rayleigh-Jeans law is modified due to a background
magnetic field. On the other hand, the Wien’s displacement
law is not changed in this context.
Integrating (46) over all the frequencies, the total energy

density obtained is

uðTÞ ¼ aT4; ð48Þ

with

a ¼ 4

c

�
2π5k4B
15h3c2

��
1þ ϵ

3

�
ð49Þ

being an effective coefficient that retains the nonlinear
modifications.
With regard to the angular dependence, the energy

density contribution for each solid-angle element is
given by

uðT;ΩÞdΩ ¼
�
2π4κ4B
15h3c3

�
T4

�
1þ ϵ

2
sin2θ

�
dΩ: ð50Þ

Thus, the angular energy distribution induces the
appearance of a quadrupole (l ¼ 2) term to the power
angular spectrum, which gives an anisotropic contribution
to the frequency spectrum. Furthermore, we could have
expanded the factor (43) at higher orders in the binomial
approximation, which would give additional contributions
to the power angular spectrum of the order l ¼ 2n. To
achieve this, we would have to impose new constraints in
the magnitude of the magnetic field B. This result can play
an important role in the anisotropies of the cosmic
microwave background.

2. Radiance and the modified Stefan-Boltzmann law

The radiance is defined by the total energy emitted per
unit time and per unit area of the cavity surface. For a
photon gas in the Maxwell theory, the spectral radiance
Bðν; TÞ emitted from the blackbody surface is isotropic and
depends only on the frequency ν and the temperature T.
Here, on the other hand, the spectral radiance

Bðν; θ; TÞ ¼ ν2

c2

�
hν

eβhν − 1

�
ΔΛðB; θÞ; ð51Þ

depends also on the background magnetic field B and
the angle θ between the wave vector k and the external
magnetic field.
Regarding the radiance, the explicit form can be found

by solving the following integral:

RðTÞ¼
Z

2π

0

dϕ
Z

π=2

0

dθsinθcosθ
Z

∞

0

Bðν;θ;TÞdν: ð52Þ

By means of this integral, it is straightforward to find the
Stefan-Boltzmann law, which provide us with

RðTÞ ¼ σeffT4; ð53Þ

where

σeff ¼ σ

�
1þ ϵ

4

�
ð54Þ

is the effective Stefan-Boltzman constant and σ ¼
ð2π5k4B=15h3c2Þ is the usual Stefan-Boltzman constant.
The factor ϵ carries the nonlinear modifications in the
Stefan-Boltzmann constant.
As is well known, the radiance and the energy density are

proportional to each other, being related by purely geo-
metric factors. On the other hand, in the present context,
this relation is not preserved anymore, and there exists a
dependence on the specific nonlinear model, as one can see
by evaluating the relations (49) and (54). Indeed, the
emergence of an angular dependence in the spectral
radiance (51) changes the solid-angle integral of the
radiance (52), and the connection between the energy
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density and the radiance through geometric factors is lost.
More specifically, it is the appearance of the quadrupole
moment in the frequency spectrum induced by the non-
linearity that breaks the relation between the mentioned
quantities. In the particular case where the wave propaga-
tion is perpendicular to the external magnetic field, there is
no dependence on the angle (while there still exists the
influence of the magnetic field), and the connection
between the radiance and the energy density through the
factor c=4 is recovered. This feature will be commented on
in Sec. III D.

3. Thermodynamic quantities

We can further investigate the consequences of the
nonlinearity in the photon gas sector by evaluating the
thermodynamic variables. In this sense, we first obtain
the free energy F, namely,

F ¼ −V
�
8π5k4BT

4

45h3c3

��
1þ ϵ

3

�
: ð55Þ

The pressure p, the energy u, the entropy s, and the heat
capacity cV at constant volume densities are, respectively,
given by

p ¼ a
3
T4; u ¼ aT4; s ¼ 4

3
aT3; ð56Þ

and

cV ¼ 4aT3; ð57Þ

with a being defined on relation (49).
Relations (55), (56), and (57) show us that the electro-

magnetic wave propagation in a magnetized medium
modifies these quantities, leading to deviations of the free
energy and the corresponding derived thermodynamic
equilibrium quantities. On the other hand, the equation
of state that relates energy and pressure densities is
maintained even in the presence of background magnetic
fields, i.e., p ¼ u=3.

III. APPLICATION TO NONLINEAR
ELECTRODYNAMICS MODELS

We now apply the above framework to three nonlinear
electrodynamic models: the Euler-Heisenberg, the gener-
alized Born-Infeld, and logarithmic electrodynamics.
In addition, we will explore the wave propagation
perpendicular to the external magnetic field. In this case,
the angular dependence vanishes, and we can compute the
integral (45) without any approximation, which allows us
to study the regime of strong magnetic fields for the Born-
Infeld and the logarithmic electrodynamics.

A. The Euler-Heisenberg effective Lagrangian

The Euler-Heisenberg theory is a full nonperturbative
effective action that describes the quantum electrodynamics
vacuum polarization effects at one loop order in the
presence of a uniform background electromagnetic
field [51,52]. These effects become relevant above the
critical field Ec, the so-called Schwinger limit, where there
is the production of real electron-positron pairs.
The density Lagrangian of the aforementioned model is

given by

LEH ¼F −
1

8π2

Z
∞

0

ds
s3

e−m
2s

×

2
64ðesÞ2GRcosh

�
es

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ iG

p 	
I cosh

�
es

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ iG

p 	 þ2

3
ðesÞ2F −1

3
75;
ð58Þ

where R and I are related to the real and imaginary parts,
respectively.
In the weak field limit of the Euler-Heisenberg electro-

dynamics, the Lagrangian density reduces to [53,54]

LEH ¼ F þ 2α2ℏ3

45m4
ec5

ð4F 2 þ 7G2Þ; ð59Þ

where α ¼ e2=ℏc.
The weak field limit of the Euler-Heisenberg electrody-

namics is justified if the dimensionless expansion param-
eter 4παℏ3jFj2=ðm4

ec4Þ is much smaller than unity [14].
This is the case, for instance, for strong magnetic fields
in neutron stars that may be as large as 1012 Gauss [55],
where processes such as photon splitting and pair con-
version are expected to occur in the vicinity of these
compact objects [56].
In accordance with our formalism previously developed,

the dispersion relation in the presence of a uniform back-
ground magnetic field takes the form [43]

w1ðkÞ ¼ ck

�
1 −

8α2ℏ3

45m4
ec5

ðk̂ ×BÞ2
�
; ð60Þ

w2ðkÞ ¼ ck

�
1 −

14α2ℏ3

45m4
ec5

ðk̂ ×BÞ2
�
: ð61Þ

Here, the factor ΔΛ is given by

ΔΛ ≈ 2þ 22α2ℏ3

15m4
ec5

B2sin2θ; ð62Þ

while the effective sigma obtained is

σeff ¼
�
1þ 11α2ℏ3

30m4
ec5

B2

�
σ: ð63Þ
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B. Generalized Born-Infeld electrodynamics

The main motivation of Born and Infeld to propose their
theory was to ensure the finiteness of the electric field self-
energy [57]. Recently, there has been a renewed interest
in the Born-Infeld theory in the context of string theory,
quantum gravity models, and theories with magnetic
monopoles [17,35,58–63].
The generalized Born-Infeld Lagrangian density is given

by [25,64]

LBIðF ;GÞ ¼ b2
�
1 −

�
1 − 2

F
b2

−
G2

b4

�
p
�
; ð64Þ

where b is a scale parameter and p is a real number
0 < p < 1. The standard Born-Infeld electrodynamics is
recovered when p ¼ 1=2.
Following the procedure described in Sec. II B, the

dispersion relation takes the form [43]

w1ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ð1 − pÞ ðk̂ × BÞ2

B2 þ b2

s
; ð65Þ

w2ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðk̂ ×BÞ2
B2 þ b2

s
: ð66Þ

Now, considering the particular case p ¼ 1=2, both
frequencies w1 and w2 reduce, in the weak field limit,
i.e., b ≫ B, to

wðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

B2

b2
sin2θ

s
: ð67Þ

The frequencies above are always real. It is important to
note that in order to derive the spectral distribution, the
frequencies are constrained to be real and positive definite.
In the framework of Born-Infeld theory, the factor ΔΛ

assumes the form

ΔΛ ≈ 2þ 3
B2

b2
sin2θ: ð68Þ

The effective sigma, in turn, is given by

σeff ¼
�
1þ 3B2

4b2

�
σ: ð69Þ

As commented above, from the nonlinear electrodynam-
ics perspective, the relations above indicate to us that the
quantities related to the blackbody radiation and to the
thermodynamics parameters depend on the magnitude of
the uniform external magnetic field, the angle between the
wave vector and the background magnetic field, and the
parameters of each specific nonlinear model.

C. Logarithmic electrodynamics

Another nonlinear model we intend to explore is the
logarithmic electrodynamics [24], where the Lagrangian
density is given by

LlnðF ;GÞ ¼ −β2 ln
�
1 −

F
β2

−
G2

2β4

�
: ð70Þ

Maxwell electromagnetism is recovered in the limit
β → ∞. The dispersion relation for each mode yields [43]

w1ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðk̂ × BÞ2
2β2 þ B2

s
; ð71Þ

w2ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðk̂ ×BÞ2
B2 þ β2

s
: ð72Þ

To ensure that the energy density is positive definite, the
condition B <

ffiffiffi
2

p
β must be satisfied [43].

In the weak field limit (β ≫ B), both frequencies
reduce to (67), which provides the same frequency modes
as the Born-Infeld theory. Therefore, the logarithmic
electrodynamics does not show birefringence in the men-
tioned regime. In addition, ΔΛ and σeff are given by
relations (68) and (69), respectively.

D. Electromagnetic wave propagation perpendicular
to the background magnetic field

In what follows, we will take into account the
special case where the electromagnetic waves propagate
perpendicular to a uniform external magnetic field. In this
configuration, we have θ ¼ π=2, and the coefficients Λ1;2

in relations (40) and (41) reduce to

Λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d1
c1

B2

s
; ð73Þ

Λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d2B2

c1 þ d2B2

s
: ð74Þ

As a consequence, the factor ΔΛ depends only on the
magnitude of the background magnetic field B and assumes
the form

ΔΛðBÞ¼
�
1−

d1
c1
B2

�
−3=2

þ
�
1−

d2B2

c1þd2B2

�−3=2
: ð75Þ

Now, with the mentioned assumptions, the task of
solving the integral (45) is easier since there is no
angular dependence anymore. In this context, it allows
us to probe the regime of strong magnetic fields, i.e., one
only needs to ensure that the conditions c1 > d1B2 and
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1 − d2B2=ðc1 þ d2B2Þ > 0 are satisfied. In such a case, the
spectral energy density distribution reads as

uðν; TÞ ¼
�
4πν2ΔΛðBÞ

c3

�
hν

ðeβhν − 1Þ : ð76Þ

With regard to the effective sigma, since there is not the
angular dependence anymore, i.e., the anisotropy in the
energy density distribution vanishes, one promptly obtains

σeff ¼
�
σ

2

�
ΔΛðBÞ: ð77Þ

Note that in the absence of the angular dependence, the
energy density and the radiance are related to each other by
purely geometric factors.
In lab setups it is feasible to arrange the physical system

in such a way that one has an electromagnetic wave
propagating perpendicular to a uniform external magnetic
field. On the other hand, with respect to astronomical
observations, where the luminosity coming from compact
objects can be measured, for instance, this condition is a
very restrictive one.
We also call attention to the fact that the in ultrastrong

field regime, i.e., whenever B ≫ b in Born-Infeld theory, or
B ≫ β in logarithmic electrodynamics, the frequencies do
not depend on the magnitude of the external magnetic field,
relying only on the angular variable θ [43]. In this regime,
our framework cannot be applied.
In the next section, the factor ΔΛ and the effective sigma

σeff will be computed in the regime of strong fields
assuming magnetic field intensities of the order of the
critical magnetic field εc.

1. Born-Infeld theory

Let us then compute the above quantities for the Born-
Infeld theory under the conditions above mentioned.
Taking into account the Lagrangian (64), both the frequen-
cies for p ¼ 1=2 read as

wðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

B2

B2 þ b2

s
; ð78Þ

which gives us

ΔΛ ¼ 2
ðB2 þ b2Þ3=2

b3
: ð79Þ

Concerning the factor ΔΛ, if one assumes, in units of
ℏ ¼ c ¼ kB ¼ 1, a magnetic field intensity B ¼ 3 MeV2

and b ¼ 3 MeV2, one obtains ΔΛ ≈ 5, 65. In this scenario,
the effective Stefan-Boltzmann constant takes the value
σeff ¼ 2; 82σ. The number of accessible states, on the other

hand, allows ΔΛ=2 ≈ 2, 82 more photons to each fre-
quency mode.

2. Logarithmic electrodynamics

The logarithmic electrodynamics is induced by radiative
corrections in the regime of slowly varying fields, which
increases logarithmically with the field strengths even in
the regime of strong field intensities. As a consequence, the
logarithmic Lagrangian is valid for values of electric and
magnetic fields stronger than the critical value.
Performing the computation of the frequencies for each

mode, we obtain [43]

w1ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2B2

2β2 þ B2

s
; ð80Þ

w2ðkÞ ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

B2

B2 þ β2

s
: ð81Þ

From the above frequencies, it should be clear that the
Born-Infeld and the logarithmic electrodynamics differ at
the regime of strong fields. In logarithmic electrodynamics,
there is the appearance of birefringence, a phenomenon that
is absent in the Born-Infeld theory.
Next, following the same procedure as before, the factor

ΔΛ takes the form

ΔΛ ¼
�
2β2 − B2

2β2 þ B2

�−3=2
þ
�

β2

β2 þ B2

�−3=2
: ð82Þ

Let us then assume a magnetic field B ¼ 3 MeV2

and β ¼ 3 MeV2. These values provide us with a factor
ΔΛ ≈ 8. The effective Stefan-Boltzmann constant, in turn,
takes the value σeff ≈ 4σ and NLE ≈ 4N.
We would like to highlight that for magnetic fields B

with an intensity greater than
ffiffiffi
2

p
β, there will be the

emergence of imaginary terms in the frequency modes.
In this respect, the electromagnetic waves will be attenu-
ated and will not contribute to the thermalization process,
leading to no contribution to the emission frequency
spectrum.
Before concluding this section, we also would like to

point out that the computations of the frequencies in the
Euler-Heisenberg electrodynamics in the strong magnetic
field regime are more complicated since they involve the
full nonperturbative effective action (58), and it will not be
considered here.

E. Some further remarks about blackbody radiation
in nonlinear electrodynamics

Let us now discuss some further consequences of the
nonlinearity in the thermodynamics of blackbody radiation.
From the preceding sections, we have shown that the
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parameter that carries information about the nonlinearity of
the magnetic field, ΔΛ, is always greater than 2 in the
analyzed models, leading to a modification in the value of
the Stefan-Boltzmann constant (54). As a consequence, the
energy density of the photon gas (48), for instance, will
have more stored energy than in Maxwell electrodynamics.
Physically, the photon propagation in the background
magnetic field leads to an energy transfer to the photon
gas, increasing, in this way, its energy. Analogously, the
pressure, entropy, and heat capacity densities associated
with the photon ideal gas in Eqs. (56) and (57) will increase
as well.
With regard to the spectral density deviations due to

nonlinearity, we plotted, in Fig. 1, the frequency spectrum
arising from the Maxwell theory and from the Born-Infeld
and logarithmic electrodynamics when the photon propa-
gation is perpendicular to the background magnetic field.
The graph shows that, for a given temperature, the non-
linear models present an increase in the blackbody curve in
comparison to the standard Planck distribution. This fact
can be understood by evaluating the density of states
gðν; BÞ, which is given by

gðν; BÞ ¼ 4πν2

c3
ΔΛðBÞ: ð83Þ

According to relation (83), the nonlinearities of the
magnetic field lead to more accessible states to the photon

gas and cause an increase in the number of photons for
each frequency.
To conclude this section, we remark that all the models

under consideration reduce to a similar form in the weak
field approximation, i.e., all models have corrections to the
usual Maxwell term F which are proportional to F 2 and
G2. It guarantees that the constraints c1 ≫ d1ðk̂ × BÞ2 and
c1 ≫ −d2ðk̂ · BÞ2 are satisfied in order to take into account
the angular dependence.

IV. FINAL REMARKS

In this paper we have investigated the consequences
of electromagnetic waves propagating in a magnetized
medium. Specifically, we have derived the blackbody
radiation laws in this situation, such as the spectral
distribution and the Stefan-Boltzmann law. Particularly,
we have included the angular dependence at the frequency
spectrum, which has shown us the emergence of a quadru-
pole term in the regime of weak fields. The Rayleigh-Jeans
formula was contemplated as well. Furthermore, we have
shown that the connection between the energy density and
the radiance by geometric factors is lost in the weak field
approximation, while it is restored at the strong one. The
modified free energy led to small deviations of the
thermodynamic quantities. We also studied the free energy,
as well as the energy, pressure, entropy, and heat capacity
densities. As an application, we have considered three
distinct nonlinear electrodynamics, namely, the Euler-
Heisenberg, the generalized Born-Infeld, and logarithmic
electrodynamics. The strong field regime was also probed
in the special case when the wave propagation is
perpendicular to the background magnetic field. We would
like to remark that our approach can be used with any
nonlinear electrodynamics model within the validity of our
assumptions. On the other hand, our framework does not
treat the self-interaction of the photons rigorously, only
effectively. Away to generalize this framework and take the
photon self-interaction into account could be by consider-
ing the procedures of field theory at finite temperature [65].
As a future prospect, we intend to extend our analysis

and investigate the thermodynamics of blackbody radiation
in Lorentz symmetry violating theories in connection with
nonlinear electrodynamics. Such scenarios seem plausible
in neutron stars with strong magnetic fields, which could, in
principle, unveil phenomena of physics beyond the SM.
Features related to the blackbody phenomenon in
compact extra dimensions similar to what have been done
by Ramos [66] can also be contemplated. In this sense, it
might be worthwhile to explore nonlinear models which
depend exclusively on powers of F and then study the role
of the extra dimensions in the blackbody radiation.
Finally, we would like to stress that there is intense

research in modeling the emission spectrum of magnetars
in the region of soft x rays. Magnetars are neutron stars

FIG. 1. Graph of the spectral energy density distribution of the
evaluated models for T ¼ 0.5 keV when the photon propagation
is perpendicular to the external magnetic field. Here, we adopted
c ¼ ℏ ¼ kB ¼ 1. The conversion of Tesla T to the natural system
is 1T ¼ 6.8 × 10−16 GeV2. In addition, in each model, we have
considered a background magnetic field intensity B ¼ 3 MeV2.
For both Born-Infeld and logarithmic electrodynamics, we set
β ¼ 3 MeV2 and b ¼ 3 MeV2. The blue line corresponds to the
Planck spectrum, while the dashed orange and green are
associated with Born-Infeld and logarithmic electrodynamics,
respectively. According to Wien’s law, νmax ≈ 0.45 T, and the
peak is localized at νmax ≈ 225 eV.
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having extreme magnetic field intensity of the order of
1011T. The study of their spectrum can be valuable to
understanding features related to the powerful magnetic
field in such compact objects. Usually, the emission
spectrum is modeled by taking into account a superposition
of two blackbody components or a blackbody plus a power
law model. A computational implementation of our results
and the use of the observational data from the Chandra
X-ray Observatory, XMM-Newton and Suzaku, can be very
promising and have the potential to improve the observed
x-ray luminosity of magnetars as well as be used to test the
linearity of Maxwell theory and to set constraints on
nonlinear electrodynamic models. A manner to incorporate
magnetars in our formalism and study features related to the
magnetic fields of such objects could be by taking into
account the Born-Infeld theory, for instance. In this sense,
recent observations of the hydrogen atom spectrum from
the Born-Infeld electrodynamics perspective suggests that
the scale factor b should be larger than 1011T [62,67], while
measurements of light by light scattering at the LHC in
Pb − Pb collisions would restrict the scale factor b to be
larger than 1019T [68]. Nevertheless, because of the
kinematic cuts in ATLAS analysis, smaller values of the
scale factor b cannot be reached [68], making it possible, in

this way, to use magnetars to probe the range 1011T ≤ b ≤
1019T in both weak and strong regimes of our formalism.
Last but not least, we would like to call attention to the

fact that the nonlinearity in the regime of strong magnetic
fields can have an important role in the physical properties
of magnetars during the cooling process, impacting the
internal structure of these objects, such as the equation of
state of the dense matter, superfluidity of several baryon
species, and the neutrino emission mechanisms. In this
sense, a distinct luminosity pattern would be expected
coming from magnetars in comparison to neutron stars,
which could be useful to distinguish such objects, besides
providing valuable information about the interior of mag-
netars. We hope that these interesting features will stimu-
late further work on the subject.
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