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Astrophysical observations of neutron stars probe the structure of dense nuclear matter and have the
potential to reveal phase transitions at high densities. Most recent analyses are based on parametrized
models of the equation of state with a finite number of parameters and occasionally include extra
parameters intended to capture phase-transition phenomenology. However, such models restrict the types
of behavior allowed and may not match the true equation of state. We introduce a complementary approach
that extracts phase transitions directly from the equation of state without relying on, and thus being
restricted by, an underlying parametrization. We then constrain the presence of phase transitions in neutron
stars with astrophysical data. Current pulsar mass, tidal deformability, and mass-radius measurements
disfavor only the strongest of possible phase transitions (latent energy per particle ≳100 MeV). Weaker
phase transitions are consistent with observations. We further investigate the prospects for measuring phase
transitions with future gravitational-wave observations and find that catalogs ofOð100Þ events will (at best)
yield Bayes factors of ∼10∶1 in favor of phase transitions even when the true equation of state contains
very strong phase transitions. Our results reinforce the idea that neutron star observations will primarily
constrain trends in macroscopic properties rather than detailed microscopic behavior. Fine-tuned equation
of state models will likely remain unconstrained in the near future.

DOI: 10.1103/PhysRevD.108.043013

I. INTRODUCTION

Recent astronomical data, such as gravitational waves
(GWs) from coalescing neutron star (NS) binaries [1,2]
observed by LIGO [3] and Virgo [4], x-ray pulse profiles
from hotspots on rotating NSs observed by NICER [5–8],
and mass measurements for heavy radio pulsars [9–11],
have advanced our understanding of matter at supranuclear
densities [12–20]. Nonetheless, there is still considerable
uncertainty in the equation of state (EOS) of cold, dense
matter, which relates the pressure p to the energy density ε,

or rest-mass density ρ. The data favor a sound speed
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dε

p
that exceeds the conjectured conformal

bound of
ffiffiffiffiffiffiffiffi
1=3

p
expected for weakly interacting ultra-

relativistic particles [13,20–22]. The potential violation of
this bound at high densities may point to a state of matter
with strongly coupled interactions.
Such strong couplings call into question the accuracy of

perturbative expansions of interactions between neutrons,
protons, and pions at high densities, and raise the pos-
sibility that other degrees of freedom may be a more natural
description. Theoretical studies have investigated whether
the smooth crossover from hadron resonance gas to quark-
gluon plasma observed with lattice quantum chromo-
dynamics (QCD) at low-baryon chemical potential and
high temperature implies the existence of a critical endpoint
in the QCD phase diagram [23] and how EOS calculations
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at low density and temperature connect to perturbative
QCD (pQCD) calculations at high densities (∼40 times
nuclear saturation ρsat) [24–26]. Other work predicts a
variety of phase transitions stemming from a range of
microphysical descriptions for dense matter [22,23,27–34].
Many theorized phase transitions in NS matter are

characterized by a softening of the EOS, i.e., a decrease
in cs. This occurs because the NS is supported by
degeneracy pressure, and additional degrees of freedom
(e.g., hyperons or quarks) initially do not contribute
significantly to the pressure due to their low number
density n. This manifests as an interval of nearly constant
pressure (small cs) over a density range in which the new
degrees of freedom first appear. A decrease in pressure
support relative to an EOS without a phase transition leads
to more compact NSs. Such compactification can lead to
bends or kinks in the relation between macroscopic
observables, such as the gravitational mass M, radius R,
tidal deformability Λ, and moment of inertia I. The
strongest phase transitions can even give rise to discon-
nected sequences of stable NSs separated by a range of
central densities for which no stable NSs exist. This
manifests as, e.g., two or more disconnected branches in
the M-R relation and twin stars with the same mass but
different radii [27,35–41]. Moreover, the relative loss of
pressure support from the phase transition often reduces the
maximum mass (MTOV) for cold, nonrotating NSs.
Current observational evidence for a sudden softening in

the EOS is inconclusive. Both the PREX neutron skin
measurement [42] and the existence of 2M⊙ pulsars [11]
suggest a relatively stiff EOS (near ρsat and above ∼3ρsat,
respectively). In contrast, the relatively small tidal deform-
ability of GW170817 points to a moderately soft EOS
around ∼2ρsat [12,20]. While this stiff-soft-stiff sequence
resembles the morphology of a phase transition, the actual
statistical evidence for or against this scenario remains
inconclusive [14,20,43]. Furthermore, while observations
favor a violation of the conformal bound around ∼3ρsat,
they do not strictly rule out EOSs with cs ≤

ffiffiffiffiffiffiffiffi
1=3

p
at higher

densities [20]. Additionally, the CREX Collaboration’s
neutron skin measurement favors lower pressures near
ρsat than PREX [44]. At present, consistency between
ab initio theoretical models, laboratory experiments, and
astrophysical data within statistical uncertainties does not
require a phase transition [45,46].
Several features of NSs’ macroscopic properties have

been proposed as a way to identify a phase transition in
NS matter with forthcoming GW observations. During a
compact binary’s inspiral (before the objects touch), the
relevant observable is the (adiabatic or static) tidal deform-
ability [47–49], which is strongly correlated with the radius.
Both are expected to be smaller for NSs with exotic cores
than their nucleonic counterparts. Chen et al. [50] leveraged
this fact to search for phase transitions via a change in the
slope of the inferred M-R relation, parametrized as a

piecewise linear function. Chatziioannou and Han [51]
pursued a related method, modeling the detected binary
merger population hierarchically and searching for a sub-
population with smaller radii. Parametrizing the M-Λ
relation itself, Landry and Chakravarti [52] sought to
identify twin stars in the binary NS population based on
gaps in the joint distribution of masses and binary tidal
deformabilities. Proposals for identifying phase transitions
based on the presence of disconnected stable branches
in the M-R or M-Λ relation, independently of a para-
metrization, have also been investigated [14,20,53].
However, approaches that directly model macroscopic
observables cannot easily enforce physical precepts like
causality and thermodynamic stability, nor do they offer an
obvious pathway to microscopic EOS properties. At best,
one can constrain proxies for microphysical phase transi-
tions, such as the difference between radii at different
masses, e.g., ΔR≡ R1.4 − R2.0 [14,16,20,54]. Moreover,
macroscopic signatures test a sufficient, but not necessary,
condition for exotic phases. A phase transition may not be
strong enough to leave a measurable imprint on NS
observables. This ambiguity is known as the masquerade
problem [30].
An alternative approach is to directly model the EOS and

connect it to macroscopic NS observables by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations [55,56].
A plethora of phenomenological EOS parametrizations
adapted to phase transitions have been proposed [38,43,57].
For example, Pang et al. [58] modeled the EOS as a
piecewise polytrope, including a segment with vanishing
adiabatic index (cs ¼ 0) to represent the phase transition.
They performed model selection on a catalog of simulated
GWobservations to test whether they favored the presence
of a phase transition. Tan et al. [57] performed a similar
analysis with a more complex parametric EOS model,
which nonetheless retained the characteristic morphology
of regions of large cs bracketing a range of densities with
small cs. We discuss these and other approaches at length
in Sec. V.
However, it is also possible to model the EOS directly

without introducing a parametrization. Flexible non-
parametric models, such as the Gaussian process (GP)
representation introduced in Refs. [13,53,59], avoid the
ad hoc correlations across density scales that are inevitable
in parametric representations with a finite number of
parameters [60]. While some interdensity correlations are
desirable (e.g., those dictated by causality, thermodynamic
stability, or predictions from nuclear theory), phenomeno-
logical parametric models implicitly impose much stronger
prior assumptions by virtue of their chosen functional form.
Nonparametric models need not impose such correlations.
They can also provide a faithful representation of theo-
retical uncertainty at low densities without sacrificing
model flexibility at high densities [45,46,61]. However,
the lack of phenomenological parameters can make it
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difficult to map features in the EOS to underlying micro-
physics. In order to address this, a generic mapping from
the EOS to a set of physically interpretable microscopic
parameters is needed.
We develop such a mapping: a phenomenological

approach to identifying physically meaningful properties
of phase transitions via softening in the EOS. We show that
a nonparametric model’s lack of obvious physically inter-
pretable parameters does not fundamentally limit its utility
for inferences about phase transitions in NSs. We propose
and test model-independent features that characterize a
broad range of phase transition phenomenology. Our
procedure goes beyond existing nonparametric tests based
on the number of distinct stable NS sequences in the M-R
(or M-Λ) relation [13,20,53] and enables us to directly
extract information about the onset and strength of both
large and weak phase transitions that respectively do and do
not create multiple stable branches. As such, it provides an
alternative to parametric phase transition inferences, whose
inflexible parametrizations may introduce systematic biases
if they do not closely match the true EOS [60,62–64].
We introduce our methodology in Sec. II. Section II A

reviews the basic phenomenology of phase transitions and,
motivated by these considerations, Sec. II B proposes novel
features that can be used to identify the presence of a phase
transition and extract physically relevant properties without

the need for a direct parametrization. Our new features are
based on the mass dependence of the moment of inertia (I)
and the density dependence of the speed of sound, although
similar features can also be derived from other macroscopic
observables. We apply our methodology to current astro-
physical data in Sec. III. Current astrophysical data (Fig. 1)
disfavor the strongest of possible phase transitions, but only
when those transitions occur within NSs between∼1–2M⊙.
Even the presence of multiple stable branches cannot be
unambiguously ruled out, although they are disfavored
compared to EOS with a single branch and smaller phase
transitions. Section IVexamines the prospects for detecting
and characterizing phase transitions with large catalogs of
simulated GW detections. We obtain Bayes factors of
∼10∶1 in favor of phase transitions with Oð102Þ events,
a larger catalog than is likely [65] within the lifetime of
advanced LIGO [3] and Virgo [4]. We discuss our con-
clusions in the context of previous studies in the literature
as well as possible future research in Sec. V.

II. PHENOMENOLOGICAL IDENTIFICATION
OF PHASE TRANSITIONS

We begin by reviewing the basic phenomenology of
phase transitions from microscopic and macroscopic per-
spectives in Sec. II A and then introduce our novel

FIG. 1. (Left) one-dimensional 90% symmetric marginal posterior credible regions for the radius as a function of mass conditioned on
current data. We show results with only pulsar masses (denoted PSR) and pulsar masses, GW observations, and NICER x-ray pulse
profiling (denoted PGX). We additionally showmaximum-likelihood EOSs from subsets of the prior conditioned on the size of the latent
energy per particle ΔðE=NÞ of phase transitions that overlap with the central densities of NSs between 1.1–2.3M⊙ [small: ΔðE=NÞ ≤
10 MeV and large: ΔðE=NÞ ≥ 100 MeV]. (Right) correlations between the radius at two reference masses,M ¼ 1.4 and 2.0M⊙. While
the one-dimensional marginal distributions are similar, EOSs with small ΔðE=NÞ show stronger correlations between R1.4 and R2.0 than
EOSs with large ΔðE=NÞ. This is because the radius can change rapidly when ΔðE=NÞ is large, as is evident in the
maximum-likelihood EOS.
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model-independent features in Sec. II B. We discuss our
ability to identify phase transitions in the context of the
masquerade problem in Sec. II C.

A. Phase transition morphology

The basic phenomenology associated with the phase
transitions we consider is a softening of the EOS over some
density range. The following microscopic picture is often
invoked. Consider two species of degenerate, noninteract-
ing fermions with light (ml) and heavy (mh > ml) rest
masses, respectively. At zero temperature, the system will
fill all states up to the Fermi energy (EF) choosing between
light and heavy fermions to balance their chemical poten-
tials. The partial pressure contributed by each fermion will
be determined by their respective number densities. The
relation between EF and the fermion rest masses then
determines the system’s composition.
If EF < mh, only light fermions exist. As the density

increases, the pressure must increase as additional light
fermions are added to high-momentum states. However, if
EF ≥ mh, heavy fermions in low-momentum states can
become energetically favorable. These heavy fermions
contribute to the rest-mass (and energy) density but have
a much lower partial pressure due to their relatively low
number density. The total pressure, then, remains nearly
constant at the pressure set by the light fermions at EF. This
will continue until enough heavy fermions appear that a
significant fraction of additional particles are light fermions
(to balance the chemical potential of heavy fermions) or the
partial pressure of the heavy fermions becomes comparable
to that of the light fermions. At that point, the pressure will
once again increase with density.
The actual microphysics in a NS is complicated by

interactions between particles, but the expected softening
based on this heuristic picture is often present in more
complicated models. Figure 2 shows the typical behavior
of a first-order phase transition with examples constructed
from a hadronic model (DBHF [66]) at low densities and a
constant sound-speed (CSS) extension [38] to higher
densities. These EOSs have a sharp boundary separating
the two different phases (Maxwell construction); ε is
discontinuous across the boundary and cs vanishes within
the transition. The EOS in Fig. 3 employs a mixed phase
(Gibbs) construction that exhibits more complicated
sound-speed behavior [67], taking into account global
charge neutrality (valid for small surface tension between
the two phases [68]) when hadronic and quark matter
coexist. The sound-speed decreases across the phase
transition, but does not necessarily drop all the way to
zero. The EOS also shows an approximately density-
independent sound speed towards high densities (due to
the specific vMIT model for the pure quark phase), which
can be well represented by the generic CSS parametriza-
tion. In both figures, cs initially increases at low densities,
then suddenly decreases across the density range

corresponding to the phase transition before recovering
and plateauing at a value set by the CSS extension
(Maxwell case) or by the microscopic model describing
the high-density pure phase (Gibbs case).
While the microscopic details of the phases and their

interface may vary, the phase transitions can be charac-
terized phenomenologically by a few parameters, such as
the onset density (or pressure) at which the phase transition
begins, the density at which it ends, and the latent energy of
the transition. We consider the difference in energy per
particle across the phase transition

ΔðE=NÞ≡
�
ε

n

�
end

−
�
ε

n

�
onset

: ð1Þ

We compute the energy per particle from the energy density
ε and rest-mass density ρ assuming a typical nucleonic
mass of mn ¼ 938.5 MeV via E=N ¼ mnðε=ρÞ.
We wish to associate these microscopic properties of the

phase transition with the behavior of macroscopic observ-
ables (such as the masses and radii of NSs) that can be
probed astronomically. Strong phase transitions can pro-
duce sharp features, such as bends or kinks, in the M-R
relation. Figures 1 and 2 show examples. However, EOSs
with less abrupt phase transitions, such as the example in
Fig. 3, may not have a perceptible impact on NS properties.
Moreover, even if a bend or kink is readily apparent in, e.g.,
the M-R relation, it is not immediately clear how to best
extract the relevant microphysical parameters of the phase
transition.

B. Phase-transition feature extraction

We now introduce a set of statistics to identify phase-
transition-like behavior in nonparametric EOS realizations.
These statistics are motivated by common features
observed in EOSs with phase transitions, such as the ones
in Figs. 2 and 3, and nonparametric EOS realizations with
multiple stable branches. Our statistics comprise both
macroscopic and microscopic features of the EOS and
are not tied to an underlying parametrization. A key
macroscopic feature associated with phase transitions is
the presence of bends or kinks in the M-R, M-Λ, and M-I
relations.1 We consider the M-I relation, but our procedure
also works with other NS observables.
We identify phase transitions by looking for character-

istic behavior in the derivative of the moment of inertia
along a NS sequence. Specifically, we examine the loga-
rithmic derivative

DI
M ≡ d log I=d logpc

d logM=d logpc
; ð2Þ

1A feature in one of these relations is accompanied by a similar
feature in the others.
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FIG. 2. Examples of CSS EOSs based on DBHF [66] with a causal extension (cs ¼ c) beyond the end of the phase transition. We show
examples with (top) weak and (bottom) strong phase transitions, defined by whether there are multiple stable branches. For each EOS,
we show (top left) the pressure and (bottom left) the sound-speed as a function of baryon density, (top center) the moment of inertia and
(bottom center) the novel feature introduced in Sec. II B [Eq. (2)] as a function of gravitational mass, and (top right) the M-Λ and the
(bottom right) M-R relations. Stable (unstable) branches are shown with dark solid (light dashed) lines. Each curve is labeled with
connections between macroscopic phenomenology and microphysical features. (black annotations) The maximum mass of cold,
nonrotating stars (MTOV) and, where relevant, the beginning and end of stable branches. (red annotations) The beginning and end of
features as identified by the procedure in Sec. II B. (red shading) The extent of the identified features.
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where pc is the central pressure. To aid in categorization,
we map the logarithmic derivative to a finite interval by
considering its arctangent.2 For example, if j arctanðDI

MÞj >
π=2, then dM=dpc < 0 and the NS is unstable. If
j arctanðDI

MÞj < π=2, then dM=dpc > 0 and the NS is
stable. Importantly, the logarithmic derivative is typically
constant for EOSs not undergoing a phase transition, but it
varies rapidly across the density interval associated with
rapid changes in compactness. Sudden changes in compact-
ness can be caused by a phase transition or the final
collapse to a black hole (BH) near MTOV. Appendix A
provides a simple example of this behavior with an
incompressible Newtonian star.
A phase transition is identified by a sharp decrease in

arctanðDI
MÞ. The change can be discontinuous, but need not

be. Similarly, arctanðDI
MÞ may decrease enough that the

star loses stability, but it does not have to. One can often
identify a feature in arctanðDI

MÞ regardless of the exact
behavior of cs or whether there are multiple stable
branches. Thus, it can identify both weak or strong phase
transitions, including those with mixed phases.
More concretely, Fig. 4 demonstrates our algorithm

for one EOS drawn from our nonparametric prior process.

We implement the following scheme for identifying phase
transitions in arbitrary EOS realizations:
(1) Identify candidate ends of phase transitions as local

minima in arctanðDI
MÞ. We first search for local

minima in arctanðDI
MÞ bracketed by stable NSs. This

excludes the sudden decrease in arctanðDI
MÞ asso-

ciated with the collapse to a BH above MTOV. Each
such feature is associated with a phase transition,
and the density at which this DI

M feature occurs is
taken to be the end of the phase transition (εe). In the
absence of a suitable local minimum, we deem the
EOS to have no phase transition.

(2) Identify a candidate onset density for an end point.
We then associate each localminimum in arctanðDI

MÞ
with the largest local maximum in cs that precedes it
(i.e., occurs at lower densities). Specifically,we select
a running maximum in cs, defined as the local
maximum that is larger than all preceding local
maxima. The density at which this cs feature occurs
becomes the candidate for the onset density εt. If there
is no preceding local maximum in cs, then we deem
the EOS to have no phase transition.

(3) Repeat step (2) until an acceptable onset density is
found. We require the minimum c2s between the
candidate onset and end densities to be at least 10%
smaller than c2s at the onset. If this threshold on the
fractional change (Rc2s ) is not met, the candidate
onset density is rejected, and the preceding running

FIG. 3. Analogous to Fig. 2 but for more complicated phase transition phenomenology associated with mixed phases (Gibbs
construction) from Han et al. [67], obtained by implementing specific hadronic and quark models. Again, the features introduced in
Sec. II B correctly identify the beginning and end of the phase transition even though there is no discontinuity in cs at the onset and the
phase transition corresponds to a wide range of masses. The broad extent of the phase transition is not readily apparent from the
macroscopic properties alone, which show a sharp feature only at the end of the phase transition.

2Technically, we consider arctan2ðd log I=d logpc; d logM=
d logpcÞ which preserves information about the relative signs of
the numerator and denominator within Eq. (2).
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local maximum is considered in its place. This
procedure is repeated until Rc2s is large enough
(candidate is accepted) or there are no more local
maxima in c2s (candidate phase transition is rejected).
See Appendix B for more discussion of thresholds
within the feature selection process.

(4) Repeat steps (2) and (3) for remaining local minima
in arctanðDI

MÞ. We identify exactly one onset density
for each end density.

If there is more than one local minimum in arctanðDI
MÞ,

several of them may be associated with the same onset
density. In that case, we define the multiplicity of the phase
transition as the number of local minima in arctanðDI

MÞ
associated with the same running local maximum in cs. We
use the multiplicity of the phase transition as a proxy for the
complexity of the phase-transition morphology. For exam-
ple, the complexity of the sound speed’s behavior within
the phase transition could indicate the (dis)appearance of

FIG. 4. The feature extraction algorithm: (left) the sound-speed as a function of baryon density and (right) arctanðDI
MÞ [Eq. (2)] as a

function of the gravitational mass. The algorithm progresses from top to bottom, first with the identification of local minima in
arctanðDI

MÞ and then pairing each with a corresponding running local maximum in cs. The number of features reported corresponds to
the number of unique running local maxima in cs selected; in this case 1. The multiplicity of each feature corresponds to the number of
local minima in arctanðDI

MÞ that are paired with the same running local max in cs; in this case 3. For demonstration purposes, we show
how the algorithm would progress if we had Rc2s > 1.7. If the threshold on the drop in the sound-speed Rc2s was ≤ 1.7, the algorithm
would accept the first pairing (second row) and instead report two features: one at lower densities with multiplicity two and one at higher
densities with multiplicity one. This would be the case for the main results presented in Secs. III and IV, which use a threshold Rc2s ¼ 1.1.
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(new) species of particles within the system or be related
to inflection points in the particle fractions. See, e.g.,
examples of the equilibrium sound speed profiles in
Constantinou et al. [69,70] exploring various conditions.
Complementarily, the number of selected running local
maxima in c2s defines the number of DI

M features within the
EOS. These basic counting exercises provide a classifica-
tion scheme for simple (multiplicity 1) and complex
(multiplicity > 1) cs structure within the phase transition
along with the number of transitions.
After this procedure, each phase transition is character-

ized by an onset density (or pressure or stellar mass) and an
end density (largest density of all local minima in
arctanðDI

MÞ associated with the onset). Based on these
points, we define various properties of the phase transition.
We focus on ΔðE=NÞ in Secs. III and IV.
Of course, the points identified by the aboveprocedure are

only proxies for the true onset and end of the phase
transition. While the correspondence is excellent for
Maxwell constructions (Fig. 2), it may not be perfect for
more complicated models. See, e.g., Fig. 15. Moreover,
because the feature identification hinges on the presence of
local minima in arctanðDI

MÞ, we sometimes cannot identify
phase transitions that occur nearMTOV, i.e., that terminate in
collapse to a BH. As such, it may be difficult to determine
whether NSs collapse to BHs because of a sudden decrease
in cs at high densities or whether cs remains large and the
NS’s self-gravity wins without assistance. Empirically, we
find a correlation between the sharpness of the bend in
arctanðDI

MÞ near the collapse to a BH and the existence of a
phase transition at those densities, but we leave further
investigations of this to future work.
Additionally, the specific onset, end, and latent energy

values we extract for the phase transition are sensitive to the
threshold on Rc2s . A lower threshold would favor the
identification of a greater number of weaker phase tran-
sitions at the risk of selecting small upward fluctuations in
cs (unconstrained by current data) as the onset even if more
plausible features in cs exist at lower densities. A higher
threshold would retain only the strongest phase transitions.
In what follows, we choose to ignore phase-transition-like
features with Rc2s < 1.1 as an attempt to balance these
extremes, but the exact choice is ad hoc. See Appendix B
for more discussion.

C. Connections between macroscopic and
microphysical behavior: The masquerade problem

We expect ΔðE=NÞ to be related to phase transition’s
impact on macroscopic properties. However, this mapping
is complicated because the same ΔðE=NÞ can lead to very
different changes in NS properties depending on the onset
density and pressure. In order to explore this relation, we
consider how much the phase transition causes the macro-
scopic properties to diverge from what they would have
been without it. This provides a natural interpretation to the

masquerade problem, as it will be difficult to distinguish
between two nearby M-I curves that never diverge from
each other without extremely precise observations.
While it is not trivial to construct such a divergence

without an underlying parametrization (one cannot just “turn
off” the phase transition), Fig. 5 shows an example; the
difference between the change in the (logarithm of the)
moment of inertia across the phase transition and what it
would have been if the transition was not present. We
measure the actual Δ ln I directly from the identified onset
and end of a transition, and approximate what it would have
been without a phase transition via the following observa-
tion. In the absence of phase-transition-like behavior,DI

M is
roughly constant, hDI

Mi. Appendix A shows that hDI
Mi ¼

5=3 for incompressible Newtonian stars, andwe empirically
find values near hDI

Mi ∼ 1.7 for general EOSs in full General
Relativity. Therefore, we approximate the change in the
moment of inertia that would have occurred without the
phase transition as hΔ ln Ii ¼ hDI

MiΔ lnM, whereΔ lnM is
again defined by the onset and end of the transition.
Figure 5 shows Δ ln I − hΔ ln Ii as a function of the

phase transition’s latent energy per particle. We see that
large jΔ ln I − hΔ ln Iij are only possible with large
ΔðE=NÞ, but large ΔðE=NÞ do not always lead to large
divergences. Again, this demonstrates the masquerade
problem; large microphysical changes may not always
manifest as observable features within macroscopic NS
observables. Additionally, large ΔðE=NÞ tend to produce
end masses (NS mass with central density at the end of the

FIG. 5. Correlations between the divergence between macro-
scopic properties caused by a phase transition Δ ln I − hΔ ln Ii
and the latent energy per particle of the associated phase
transition ΔðE=NÞ for all transitions that begin at masses greater
than 0.7M⊙. Color indicates the proximity of the phase tran-
sition’s end to MTOV. Large divergences in macroscopic proper-
ties can only be caused by phase transitions with large ΔðE=NÞ,
but not all phase transitions with large ΔðE=NÞ cause large
divergences in macroscopic properties.
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phase transition) close toMTOV. This is because large phase
transitions imply very compact stellar cores (due to
relatively low pressures at high densities), which are likely
to collapse to BHs if even a small amount of additional
matter is added. Similarly, transitions with very large
ΔðE=NÞ may lead to direct collapse to a BH. Because
our identification algorithm (Sec. II B) struggles to detect
features that cause the stellar sequence to collapse to a BH,
this may cause a selection in the maximum ΔðE=NÞ for
which we can identify DI

M features in Fig. 5. Empirically,
we only identify ΔðE=NÞ ≲ 300 MeV.

III. CONSTRAINTS WITH CURRENT
ASTROPHYSICAL OBSERVATIONS

Equipped with the procedure defined in Sec. II B, we
now turn to current astrophysical observations. Following
Legred et al. [20], we consider GW observations
(GW170817 [1,71] and GW190425 [2]) assuming that
all objects below (above) MTOV are NSs (BHs), NICER
observations of pulsar hotspots (J0030þ 0451 [5] and
J0740þ 6620 [7]),3 and radio-based mass measurements
of pulsars (J0348þ 0432 [9] and J0740þ 6620 [10,11]).
We use a model-agnostic nonparametric EOS prior,

which by construction includes little information from
either nuclear theory or experiment at any density beyond
the requirements of thermodynamic stability and causality.
See e.g., Essick et al. [53]. This prior allows us to
isolate the impact of astrophysical observations on the
high-density EOS (≳ρsat) without introducing modeling
artifacts, as are common in phenomenological para-
metric models [60]. Compared to other nonparametric
efforts [7], our nonparametric prior was constructed with
the goal of maximizingmodel freedom. It therefore already
contains many EOS realizations that exhibit characteristics
of phase transition phenomenology, including EOSs with
multiple stable branches. While additional theoretical and/
or experimental low-density information could be consid-
ered, see e.g., Refs. [45,46,61], we leave those to future
work and focus on astrophysical observations. Similarly,
we do not incorporate pQCD calculations at high
densities [24,25] as initial explorations indicated that these
constraints are model-dependent.4

Current observations span masses roughly between
1.2–2.1M⊙.

5 What is more, the answer to questions such
as, “how many phase transitions does the EOS have?”
depends on the mass or density range considered, and we
do not wish to confound our inference with the presence of
DI

M features that occur at masses below the smallest
observed NS. As such, we divide the prior into multiple
sets defined by whether or not the EOS has a DI

M feature
that overlaps with a specific mass range. That is, whether
the range of densities spanning the feature overlaps with the
range of central densities for stellar models within a
specified mass interval. We consider three mass ranges:

(i) M ∈ ½0.8; 1.1ÞM⊙: features that occur below the
current observed set of NSs.

(ii) M ∈ ½1.1; 1.6ÞM⊙: features that could influence
observed NSs, particularly in the peak of the dis-
tribution of known galactic pulsars [73,74].

(iii) M ∈ ½1.6; 2.3ÞM⊙: features that may influence ob-
served NSs, but at high enough masses that indi-
vidual GW systems are unlikely to confidently
bound the tidal deformability away from zero.

Individual EOSs may belong to multiple sets if they have
multiple or large DI

M features or just happen to straddle a
boundary.
Table I presents ratios of maximized and marginal

likelihoods conditioned on different datasets. The ratio
of maximized likelihoods for all astrophysical data [pulsars
(P), GWs (G), and x-ray observations (X)] for different
subsets of our prior (A and B) is

maxLA
BðPGXÞ ¼

maxε∈ApðPGXjεÞ
maxε∈BpðPGXjεÞ

; ð3Þ

where the maximization is over different EOSs ε. The
Bayes factor is the ratio of marginal likelihoods

BA
BðGXjPÞ ¼

pðGXjP;AÞ
pðGXjP;BÞ ; ð4Þ

where, for example,

pðGXjP;AÞ ¼
Z

DεpðGXjεÞpðεjP; AÞ; ð5Þ

and

pðεjP; AÞ ¼ pðPjεÞpðεjAÞR
DεpðPjεÞpðεjAÞ : ð6Þ

We report these statistics for both the number of stable
branches and the number of DI

M features, conditioned on
several minimum ΔðE=NÞ thresholds. We present both

3We use the headline results from Miller et al. [7] rather than
Riley et al. [8] because the former implements the measured
cross-calibration between NICER and XMM. Note that [8] also
presents posteriors conditioned on the nominal published cross-
calibration, although their headline results implement looser
priors. See also [72].

4Specifically, when evaluating the pQCD likelihood at 10ρsat we
find that pQCD results influence NS near MTOV in agreement
with [25]. However, those constraints are weaker when we use the
central density of stars with M ¼ MTOV, in agreement with
Ref. [26]. Therefore, the exact impact of pQCD constraints on
the inference of the EoS at lower densities is still somewhat
uncertain because it changes with the choice of where the integral
constraints are applied.

5The smallest observed mass we consider is likely the
secondary in GW190425 [2], although there is considerable
uncertainty in the event’s mass ratio. The largest observed mass is
J0740þ 6620 [11].
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statistics because each has its relative strengths and weak-
nesses. While Occam factors may be important for Bayes
factors, they do not affect the ratio of maximized like-
lihoods. At the same time, the maximized likelihoods may
correspond to an extremely rare EOS, whereas the Bayes
factors provide an average over typical EOS behavior. We
therefore should trust statements about which both statistics
broadly agree.
Overall, we expect stronger constraints on features that

overlap with the observed mass range. In Figs. 6, 7, and
Table I, we indeed find the strongest constraints on
phase transitions that occur in NSs less massive than
1.6M⊙, although constraints for M ∈ ½0.8; 1.1ÞM⊙ and
M ∈ ½1.1; 1.6ÞM⊙ are comparable. Indeed, in Fig. 6 the
posterior for the latent energy is more constrained with
respect to the prior for masses below 1.6M⊙. Furthermore,
Table I shows that the Bayes factor using all astro-
physical data disfavors the presence of large DI

M features
[ΔðE=NÞ ≥ 100 MeV] at low and medium masses
(0.8–1.1M⊙ and 1.1–1.6M⊙) approximately three times
as strongly as at high masses (1.6–2.3M⊙).
As shown in Legred et al. [20], all NS observations are

consistent with a single radius near ∼12.5 km. We therefore
expect the data to disfavor the existence of strong phase
transitions and place an upper limit on ΔðE=NÞ. Figure 6
bears this out. It shows posterior distributions on the
properties of the DI

M feature with the largest ΔðE=NÞ that
overlaps with the specified mass range (i.e., features with
larger ΔðE=NÞ may exist in the EOS, but they do not
overlap with the mass range). Astrophysical data place an
upper limit on the largest phase transition within an EOS,
but are less informative about weaker phase transitions.
Figure 6 shows the onset energy density and pressure as

well as the energy density at the end of the phase transition.
Beyond limiting the possible size of DI

M features, astro-
physical data also disfavor phase transitions with large

onset densities and pressures. This likely corresponds
to the observation that the sound-speed must increase
rapidly around 3ρsat in order to support ∼2M⊙ pulsars
against gravitational collapse while remaining compatible
with observations at lower densities, primarily from
GW170817 [20]. The peak in the posteriors for the onset
parameters is likely due to a combination of the (peaked)
prior and these upper limits. This trend is also encountered
in the behavior of the p–ε bounds for EOSs with multiple
stable branches. That is, Fig. 8 in Legred et al. [20] suggests
it is more likely for phase transitions to begin below ρsat
than above it when the EOS supports multiple stable
branches.
Figure 1 provides an additional perspective on current

constraints by showing one-dimensional symmetric credi-
ble regions for the radius as a function of the gravitational
mass. While current astrophysical data generally disfavor
EOSs with large ΔðE=NÞ, Fig. 1 nevertheless shows that
there are EOSs with large ΔðE=NÞ that are consistent with
observations. In particular, the maximum-likelihood draw
from the full PGX posterior conditioned on ΔðE=NÞ ≥
100 MeV places a sharp feature in the M-R curve at high
masses, just above J0740þ 6620’s observed mass. Such
behavior maximizes the likelihood from the PSR masses
due to the assumption that the EOS itself is what limits the
largest observed NS mass. See discussions in Refs. [13,75].
Furthermore, the maximum-likelihood EOS favors smaller
radii at low masses (in line with GW170817) and larger
radii at high masses (in line with J0740þ 6620). Notably,
the model-agnostic nonparametric prior was not designed
to favor this specific behavior, which instead emerges from
the data without direct supervision or fine-tuning.
We quantify the degree to which data prefer EOSs with

different numbers and types of features in Table I and
Fig. 7. Table I shows the ratio of maximized likelihoods as
well as the ratio of marginal likelihoods for EOSs with

TABLE I. Ratios of maximized and marginalized likelihoods for different types of features based on current astrophysical
observations: (P) pulsar masses, (G) GWobservations from LIGO/Virgo, and (X) x-ray timing from NICER. See Eqs. (3) and (4) for an
explicit definition of this notation. We consider multiple mass ranges (features must span stellar masses that overlap with the specified
range) and latent energies (where appropriate, there must be at least one feature with latent energy larger than the threshold). We show
the statistics for both the number of stable branches and DI

M features. Error estimates for Bayes factors (B) approximate 1σ uncertainty
from the finite Monte Carlo sample size. See Tables in Appendix D for additional combinations of subsets of astrophysical data.

Stable branches DI
M features

M ½M⊙� maxLn>1
n¼1ðPGXÞ Bn>1

n¼1ðPGXÞ Bn>1
n¼1ðGXjPÞ minΔðE=NÞ [MeV] maxLn>0

n¼0ðPGXÞ Bn>0
n¼0ðPGXÞ Bn>0

n¼0ðGXjPÞ
0.8–1.1 0.47 0.362� 0.036 2.219� 0.162 10 0.57 1.222� 0.020 0.684� 0.011

50 0.49 0.366� 0.011 0.588� 0.016
100 0.26 0.117� 0.008 0.292� 0.021

1.1–1.6 0.14 0.030� 0.006 0.291� 0.055 10 0.57 1.043� 0.020 0.552� 0.010
50 0.49 0.463� 0.013 0.552� 0.010
100 0.26 0.152� 0.009 0.267� 0.017

1.6–2.3 0.20 0.147� 0.028 0.120� 0.026 10 0.52 1.012� 0.035 0.385� 0.013
50 0.49 0.898� 0.034 0.385� 0.013
100 0.29 0.383� 0.023 0.256� 0.016
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different numbers of features. We compare EOSs with a
single stable branch against EOSs with multiple stable
branches, as well as EOSs with and without at least oneDI

M
feature above a certain ΔðE=NÞ. Generally, these statistics
are consistent with Fig. 6; the astrophysical data disfavor
large phase transitions [multiple stable branches or large
ΔðE=NÞ] more strongly than weaker ones. However, the

statistical evidence is still weak, and further observations
are required to definitively rule out even the presence of
multiple stable branches.
Figure 7 expands on Table I by examining the preference

for different numbers of features, rather than just their
absence or presence. That is, Table I in effect provides a
summary of Fig. 7 by marginalizing over all EOS with

FIG. 6. Marginalized (unshaded) priors and (shaded) posteriors for parameters that characterize phase transitions based on current
astrophysical data from pulsar masses, GWs, and x-ray mass-radius measurements. For each EOS we report the properties of the
transition with the largest ΔðE=NÞ that overlaps with each mass interval. We report (left to right), the latent energy (ΔðE=NÞ), the onset
energy density (εt), the onset pressure (pt), the energy density at the end of the transition (εe), and the onset mass scale (Mt) for three
mass-overlap regions: 0.8–1.1M⊙, 1.1–1.6M⊙, and 1.6–2.3M⊙.
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more than one stable branch or at least one DI
M feature.

Overall, although current astrophysical observations cannot
rule out the presence of a phase transition, they more
strongly disfavor the presence of multiple features. The
astrophysical posterior strongly disfavors EOSs with more
than two stable branches and less strongly disfavor EOSs
with more than one largeDI

M feature. This suggests that one
may not need to consider arbitrarily complicated EOS
in order to model the observed population of NSs, or at
least that there is a limit to how exotic astrophysical
NSs are.
Finally, current astrophysical data carries little informa-

tion about the multiplicity of any phase transitions, should
they exist. Conditioning on the presence of a phase
transition, we find Bayes factors between ∼0.8–1.5 in
favor of multiplicity > 1 compared to multiplicity 1 for the
feature with the largest ΔðE=NÞ within each EOS, even for
the strongest phase transitions. This should be expected.
We cannot yet confidently determine whether a phase
transition exists, and it would therefore be surprising if
we could already identify even basic features of the phase
transition.

IV. FUTURE PROSPECTS WITH
GRAVITATIONAL WAVE OBSERVATIONS

Building upon current data, we now consider future
prospects from GW observations of inspiraling compact
binaries. Section IVA explores the prospects for detecting
the presence of phase transitions, and Sec. IV B considers
our ability to characterize them. In brief, we find that we
will not be able to confidently detect the presence of even
relatively extreme phase transitions with catalogs of 100
events. Rather, we will need at least 200 events or more.
However, we will be able to rule out the presence of
multiple stable branches at low mass scales with 100 GW
events. Nevertheless, we will be able to infer the correct
ΛðMÞ for all M simultaneously regardless of what the true
EOS is, and obtain ∼6%ð50%Þ relative uncertainty in
Λ1.2ðΛ2.0Þ after 100 GW detections.
To explore a range of potential behavior, we simulate

catalogs of GW events assuming a few representative CSS
EOSs based on DBHF [66]. We consider

(i) DBHF [66]: a hadronic EOS without phase tran-
sitions.

FIG. 7. Ratios of probabilities conditioned on different numbers of features. Compare to Table I; see Eqs. (3) and (4) for an explicit
definitions of our notation. (Left) distributions over the number of stable branches and (right) distributions over the number ofDI

M features
for EOSs with ΔðE=NÞ ≥ 10, 50, and 100 MeV, respectively for different mass-overlap regions: (top) 0.8–1.1M⊙, (middle) 1.1–1.6M⊙,
and (bottom) 1.6–2.3M⊙. We show the ratio of maximum likelihoods (black dots) and the posterior divided by the prior (circles and x’s).
As in Table I, we consider (PGX, red circles) the ratio of the posterior conditioned on PSRmasses, GWcoalescences, and x-ray timing and
compare it to our nonparametric prior as well as (blue x’s) the posterior conditioned on only PSR masses. Error bars approximate 1σ
uncertainties from the finite size of our prior sample. In general, a single stable branch without strong DI

M features is preferred.
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(ii) DBHF_3504: a modification to DBHF with a weak
phase transition at ∼1.9M⊙ and a causal CSS
extension at higher densities.

(iii) DBHF_2507: a modification to DBHF with a strong
phase transition at ∼1.5M⊙ and a causal CSS
extension at higher densities. This is the strong
Maxwell CSS example in Fig. 2.

These EOSs are not drawn from our nonparametric prior,
and in fact their sharp features are relatively extreme
examples of possible EOS behavior. As such, we expect
them to be rigorous tests of the inference framework.
The simulated catalogs assume a network signal-to-noise

ratio (S=N ) detection threshold of 12, and they approxi-
mate measurement uncertainty in the masses and tidal
parameters according to the procedure described in Landry
et al. [13]. We inject a population of nonspinning NSs
uniform in component masses between 1.0M⊙ and MTOV.
Injections are drawn assuming pðS=N Þ ∼ ðS=N Þ−4, con-
sistent with a uniform rate per comoving volume at low
redshift. We assume the mass, spin, and redshift distribu-
tions are known exactly and therefore ignore selection
effects. For more details, see Refs. [13,20].
For computational expediency, we consider the ability of

GW observations alone to constrain phase transition phe-
nomenology. That is, we do not impose lower bounds on
MTOV from pulsar masses in order to retain a large effective
sample size within the Monte Carlo integrals. We do

assume, however, that all objects below MTOV are NSs,
and, therefore, placing a lower limit on ΛðMÞ from GW
observations will de facto place a lower limit onMTOV. See
Appendix C for more discussion.

A. Prospects for detecting phase transitions

We first consider detection of a phase transition with a
catalog of GW events. Figure 8 shows the statistics from
Table I for various simulated catalog sizes for injected
EOSs both with and without a phase transition. Generally
speaking, we recover the expected behavior; confidence in
the presence (or absence) of a phase transition grows as the
catalog increases. Moreover, when a phase transition is
present, evidence grows the most in the mass range where
the phase transition occurs.

1. The number of stable branches

We begin by considering the number of stable branches,
with the left panels of Fig. 8 showing Bayes factors for
multiple stable branches (n > 1) vs a single stable branch
(n ¼ 1). As none of the injected EOSs have a phase
transition at low masses and GW observations should be
able to confidently bound Λ ≫ 0 at low masses, we quickly
obtain relatively high confidence that there is only a single
stable branch within 0.8–1.1M⊙. We find Bayes factors as
large as∼100∶1 in favor of a single branch after 100 events.

FIG. 8. Bayes factors vs catalog size comparing (left-most column) multiple stable branches vs a single stable branch and (right three
columns) at least one DI

M feature vs no DI
M features. We consider features that overlap with three mass ranges: (top row) 0.8–1.1M⊙,

(middle row) 1.1–1.6M⊙, and (bottom row) 1.6–2.3M⊙. We also show three different injected EOSs: (blue, no phase transition) DBHF,
(orange, weak phase transition at ∼1.9M⊙) DBHF_3504, and (green, strong phase transition at ∼1.5M⊙) DBHF_2507. Shaded regions
denote 1σ uncertainties from the finite size of our Monte Carlo sample sets. Different realizations of catalogs will also produce different
trajectories; these should only be taken as representative.
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For moderate masses (1.1–1.6M⊙), we again see the
expected evidence in favor of a single stable branch for
both DBHF (no phase transition) and DBHF_3504 (phase
transition at ∼1.9M⊙). The Bayes factors are only ∼10∶1
after 100 events, but nonetheless the trend is clear. In
contrast, DBHF_2507 (phase transition at ∼1.5M⊙ and
multiple stable branches) exhibits a notably different
pattern. Although a strong preference is not developed
either way, Bayes factors begin to (correctly) favor multiple
stable branches after 100 events.
Finally, we are not able to confidently distinguish

between EOSs with a single stable branch or multiple
stable branches in the mass range 1.6–2.3M⊙. This is
because the individual events’ uncertainties on Λ are much
larger than the true Λ in this mass range.6 It will therefore
take the combination of many GW events to be able to
precisely resolve the true value of Λ at high masses.

2. The number and properties of DI
M features

The remaining panels of Fig. 8 show similar trends for
DI

M features. We show Bayes factors for at least one DI
M

feature (n > 0) vs no DI
M features (n ¼ 0). In general, the

strongest preference for a DI
M feature is for DBHF_2507,

which has the largest phase transition among the three
EOSs we consider. The evidence in favor of at least oneDI

M
feature is nevertheless smaller for the largest ΔðE=NÞ
(≥100 MeV) compared to more moderate values
(≥50 MeV). This is true for all mass ranges, suggesting
that we will be able to constrain a feature’s ΔðE=NÞ more
easily than we may be able to constrain the mass range over
which it occurs. Additionally, we will need very large
catalogs to confidently detect the presence of a DI

M feature.
At best, we find Bayes factors of ∼10∶1 after 100 events.
This matches previous estimates, which place the required
number of events between 200–400 [51,52,58]. See Sec. V
for more discussion. Furthermore, while there will not be
unambiguous statistical evidence in favor of a DI

M feature at
high masses (1.6–2.3M⊙), we do see an upward trend for
DBHF_3504. This suggests that, even though our individual-
event uncertainties on tidal parameters are large at these
masses, we will nevertheless eventually be able to detect
small phase transitions at high masses given enough events.
Occam factors are readily apparent in these results,

causing systematic shifts of comparable magnitude for all
three injected EOSs. These tend to favor the presence ofDI

M
features, as it is likely that very stiff EOSs at intermediate
densities (unlikely to haveDI

M features) are quickly ruled out
by GWobservations. As such, some fraction of the prior is
ruled out after only a few detections thereby reducing the
evidence even though there are still many EOSs withoutDI

M
features that match the data well. Furthermore, selecting

EOSs with at least one feature at highmasses requiresMTOV
to be at least as high as the lower edge of this mass range
because of how ourDI

M feature extraction algorithm works.
Such EOSs are better matches to the data for all the true
EOSs considered. Even a few detections can quickly rule out
MTOV ≪ 1.6M⊙, which penalizes EOSs for which our
algorithm did not detect aDI

M feature above 1.6M⊙ because
the EOS’s MTOV was below 1.6M⊙. Nevertheless, these
Ocaam factors are typically ≲2, implying that large Bayes
factors can still be interpreted at face value.
Finally, it may be difficult to completely rule out the

presence ofDI
M features even if the true EOS does not have

any phase transitions. Figure 8 shows a possible exception
at the lowest masses considered, but even there the Bayes
factors are only ∼1=2 after 100 events. This is yet another
manifestation of the masquerade problem; EOSs with and
without DI

M features can produce similar M-I relations,
even for relatively large ΔðE=NÞ.

B. Prospects for characterizing phase transitions

In addition to detecting the presence of a phase tran-
sition, we wish to determine its properties should it exist.
Fundamental to this is the ability to infer the correct M-Λ
relation. That is, to infer the correct ΛðMÞ for all M
simultaneously. Figure 9 demonstrates that our nonpara-
metric inference is capable of this, regardless of the true
EOS used to generate injections. This is often not the case
for parametric models of the EOS (see Refs. [52,58] and
discussion in Sec. V). Figure 9 shows one-dimensional
marginal posteriors for ΛðMÞ atM ¼ 1.2, 1.4, 1.6, 1.8, and
2.0M⊙ for different catalog sizes and each of the three
injected EOSs. We find that the low-density (low-mass)
EOS is relatively well measured. Λ1.2 will have a relative
uncertainty (standard deviation divided by the mean)
between 6% (DBHF_3504) and 7% (DBHF_2507) atM ¼
1.2M⊙ after 100 detections. However, it will generally take
more events before we can confidently resolve features at
higher masses, even without the presence of a phase
transition. With catalogs of 100 events, we are only able
to constrain Λ2.0 to between 40% (DBHF_3504) and 55%
(DBHF_2507). In agreement with Fig. 8, it is likely to take
more than 100 events to unambiguously distinguish
between EOSs with and without phase transitions. For
example, the Λ2.0 posterior for DBHF_2507 still has
nontrivial support at the location of the DBHF’s Λ2.0,
and vice versa, even with the full catalog of 100 events.
Even though we identify phase transition features from

macroscopic relations, we expect the inferred microscopic
properties to be robust given the one-to-onemapping between
p–ε and, e.g.,M-R [76]. Figure 10 shows how constraints on
the onset mass (Mt) andΔðE=NÞ evolvewith the catalog size
for DBHF (no phase transition) and DBHF_2507 (strong
phase transition). In order to highlight constraints on the
transitionmass, Fig. 10 additionally reweighs the posterior so
that it corresponds to a (as much as possible) uniform prior in

6Λ typically scales as Λ ∝ M−5 and rapidly decreases at high
masses.
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the transition mass. It only shows EOSs that have at least one
identified DI

M feature that overlaps with 0.8–2.3M⊙.
Characterizing onset properties is challenging because

of the wide variability in softening behavior during the
course of the phase transition. That is, the onset density
as identified by a running local maximum in cs may not
correspond to any immediately obvious features in macro-
scopic relations, as is the case in Fig. 3. Therefore, we may
expect a long tail towards low onset masses even if the end
of the transition is well determined.
Additionally, we sometimes observe unintuitive behavior

when we condition on the presence of features that do not
exist (left panel). For example, the marginal posterior for
Mt (conditioned on the existence of at least one feature)
peaks at Mt ≳ 1.6M⊙ for DBHF. Transitions that begin at
these masses are difficult to detect with GW observations
alone; see Figs. 8 and 9. Therefore, these EOSs are not
strongly constrained by observations, particularly com-
pared to EOSs that have transitions that begin at lower
masses. This explains why the posterior tends to disfavor
lowMt, and the peak at higher masses should be interpreted
primarily as a lower limit.
However, transitions that begin at very high masses

(Mt ≳ 1.8M⊙) are also disfavored by the data. This is

unintuitive, as we expect weaker tidal constraints for high
mass systems.However, by conditioning on the presence of at
least one identified DI

M feature, which in turn are only
identified by our algorithm if the EOS does not collapse to
a BH as part of the transition, we de facto require EOSs with
large onset masses to be rather stiff. That is, only the stiffest
EOS can have an DI

M feature begin at high mass and not
collapse directly to a BH. At the same time, these EOSs are
ruled out by observations at smallermasses,which favormore
compact stars and soft EOSs. Therefore, a high Mt is
disfavored by low-mass observations and the correlation
induced within the prior by requiring at least one identified
DI

M feature at high mass.
We contrast this with DBHF_2507, in which there is a

phase transition near 1.5M⊙ (right panel). Here, we find a
similar peak in the one-dimensional marginal posterior
forMt, but there is additional information in the joint posterior
for Mt and ΔðE=NÞ. The joint posterior for DBHF mostly
follows the prior, particularly for Mt ∼ 1.6M⊙, whereas for
DBHF_2507 it is shifted relative to the prior towards the
injected values and disfavors large ΔðE=NÞ. These consid-
erations highlight the fact that low-dimensional marginal
posteriors conditioned on specific, sometimes ad hoc, fea-
tures will require care to interpret correctly. It may be better,

FIG. 9. Sequences of one-dimensional marginal posteriors for ΛðMÞ at (left to right) 1.2, 1.4, 1.6, 1.8, and 2.0M⊙ for different
simulated EOSs: (top, blue) DBHF, (middle, orange) DBHF_3504 (phase transition at ∼1.9M⊙) and (bottom, green) DBHF_2507
(phase transition at ∼1.5M⊙). These posteriors show the distributions of ΛðMÞ > 0 (i.e., they only consider EOSs with MTOV ≥ M).
These posteriors are conditioned only on simulated GWevents (no real observations), and a line’s color denotes the number of simulated
GWevents within the catalog (light to dark: fewer to more events) along with the true injected values (vertical black lines). The prior is
shown for reference (gray shaded distributions). For very small Λ, primarily associated with DBHF_2507 at high masses, the true value
falls near the lower bound in the prior. The primary effect of additional observations is to reduce support for larger values of Λ. While
significant uncertainty inΛðMÞ remains after 100 events, the nonparametric prior is able to correctly inferΛðMÞ at allM simultaneously,
including sharp changes in ΛðMÞ over relatively small mass ranges.
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then, to consider sets of marginal distributions for macro-
scopic observables, such as Fig. 9, at the same time. At the
very least, the latter can provide context for inferred con-
straints on proxies for microphysical properties.

V. DISCUSSION

We summarize our main conclusions in Sec. VA
before comparing them to existing work in the literature
in Sec. V B. We conclude by discussing possible extensions
to our study in Sec. V C.

A. Summary

We introduced a new algorithm to identify phase
transitions within the EOS of dense matter based on NS
properties and the underlying cs behavior. This algorithm
does not rely on a parametrization, and as such works for
both parametric and nonparametric representation of the
EOS. Our approach improves upon previous studies by
demonstrating that physically meaningful density scales
can be extracted directly from NS observables. We further
demonstrated that nonparametric EOS inference can re-
cover the correct macroscopic properties, such as ΛðMÞ, at
all masses simultaneously. As such, we suggest that
extracting physical quantities from nonparametric EOS
draws is preferable to directly modeling of the p–ε relation
with ad hoc parametric functional forms, as different
choices for the parametrization can introduce strong model
dependence on the conclusions [60].

This approach is similar in spirit to efforts to constrain
the nuclear symmetry energy and its derivatives (slope
parameter: L) with nonparametric EOSs [45,46]. Studies
based on parametric EOS models described in terms of L
have suggested tension between terrestrial experiments and
astrophysical observations [17,77,78]. References [45,46]
instead extracted L from nonparametric EOS realizations
by imposing β-equilibrium at ρsat without relying on an
explicit parametrization far from ρsat. They demonstrated
that any apparent tension was due to model assumptions
rather than the data, as nonparametric models were able to
accommodate both terrestrial constraints on L and astro-
physical observations of NSs.
Returning to this work, we showed that current astro-

physical data disfavor only the strongest phase transitions
and the presence of multiple phase transitions. However,
the data are still consistent with two stable branches and/or
one moderate phase transition. We also showed that we will
not be able to confidently detect the presence of a phase
transition with catalogs of ≤100 GW events. Although we
do not directly estimate how many events will be needed
for computational reasons, extrapolating Fig. 8 suggests
that we may need several hundred events to reach Bayes
factors ≳100, often taken as a rule-of-thumb for confident
detections [79]. We can, however, expect to confidently
rule out the presence of multiple stable branches at low
masses after 100 events. While the exact rates of NS
coalescences and future GW-detector sensitivities are still

FIG. 10. Joint posteriors for ΔðE=NÞ and transition onset mass (Mt) inferred from simulated GW catalogs for (left, blue) DBHF and
(right, green) DBHF_2507. Gray curves denote the (reweighed) prior, color denotes the size of the catalog, and contours in the joint
distribution are 50% highest-probability-density credible regions. Solid lines denote the true parameters for DBHF_2507; there are no
such lines for DBHF because it does not contain a phase transition. As in Fig. 6, extracted parameters correspond to the feature with the
largest ΔðE=NÞ, but here we only require features to overlap the broad range 0.8–2.3M⊙.
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uncertain, it is unlikely that we will obtain a catalog of this
size within the lifetime of the advanced LIGO and Virgo
detectors [65].

B. Comparison to other work

As discussed briefly in Sec. I, several authors have
proposed tests based on features in the distribution of
macroscopic observables. Chen et al. [50] investigated a
piecewise linear fit of theM-R relationwith two segments that
captures phase transitions through a change in the slope.
However, beyond possible systematics associated with the
simplicity of the piecewise linear model, their quantitative
conclusions hinge on the assumption that the measurement
uncertainty on R from GWevents is roughly the same for all
masses. This is unrealistic for massive systems in which the
relative uncertainty in the tidal deformability grows quickly.
Chatziioannou and Han [51] pursued a related method that
models the population of detections hierarchically and
searches for a second population with significantly different
radii at highmasses.7 They found that phase transitions could
be identified with Oð100Þ events if hybrid stars emerge at
∼1.4M⊙. Landry and Chakravarti [52] introduced a method
for identifying the presence of twin stars, which can arise due
to strong first-order phase transitions, in the population of
merging binary NSs based on gaps in the joint distribution of
masses and binary tidal deformabilities. However, these
and related approaches that directly model theM-Λ relation
[81,82] offer no obvious pathway to microscopic EOS
properties nor the ability to enforce physical precepts such
as causality and thermodynamic stability. What is more, not
all microscopicmodels that contain phase transitions produce
macroscopic observables with this phenomenology (the
masquerade problem), and this phenomenology might be
caused by other effects, such as a mix of binary NS and NS-
BH binaries at the samemasses [80] or even darkmatter [83].
Alternative approaches involve modeling the p–ε rela-

tion directly. Several authors have attempted this with
parametric models of varying complexity. Pang et al. [58]
introduced a piecewise-polytropic model for first-order
phase transitions and carried out model selection between
models that do and do not support phase transitions,
respectively. They concluded that a strong phase transition
could be identified with 12 GWevents, each with signal-to-
noise ratio S=N > 30.8 However, in addition to technical

issues associated with their Bayes factor calculation, their
results appear to be affected by model systematics within
their EOS parametrization. They arrive at counterintuitive
conclusions: weaker phase transitions are detected more
easily than stronger ones (their Fig. 5), and the inference
precision is largely unaffected by the observation of more
events (their Fig. 9).9 We speculate that the cause is the fact
that their parametric EOS model does not closely reproduce
either of their injected EOSs, leading to model systematics
[60]. If systematic issues are less severe for the injected
EOS with a weak phase transition than the one with a strong
transition, the former could be more easily distinguished
from EOSs without phase transitions.
Two other recent studies have looked at the astrophysical

evidence for or against the presence of phase transitions.
Both Tan et al. [57] and Mroczek et al. [86] constructed
EOS models by adding features to the speed of sound
such as spikes, dips, and plateaus. As explained in
Tan et al. [57], these features are motivated by specific
theoretical expectations of phase transition phenomenol-
ogy. Mroczek et al. [86] employs underlying EOS real-
izations drawn from a few simple GP priors, resulting in
what they call a modified Gaussian process. In comparison,
our nonparametric prior inherently generates broad ranges
of phase transition morphology without the need to modify
realizations post hoc. Mroczek et al. [86] must add features
by hand because their original GP was constructed with
long correlation lengths and small variances. As such, it
only produces smooth EOSs without phase-transition-like
features. Additionally, Mroczek et al. [86] report a Bayes
factor for models with or without such features, finding no
strong evidence either way. Though this generally agrees
with our conclusions, the quantitative comparison might be
affected by the fact that their prior is first “pruned” by
rejecting EOSs that do not fall within broad boundaries that
represent realistic EOS. Inevitably, these boundaries carry
information about current astrophysical observations.
Therefore, it may not be surprising that subsets of different
priors (each chosen to resemble current astrophysical data)
predict the current observed data with comparable fre-
quency, which is what is implied by a Bayes factor ∼1.
Several other authors have investigated models intended

to test specifically for the presence of deconfined quarks in
NS cores, e.g., Refs. [87–89]. Many of these studies base
the evidence for the presence of quark matter on the
behavior of the polytropic index (γ ¼ d logp=d log ε) in
addition to using various parametric and nonparametric
representations of the EOS and approximations to astro-
physical likelihoods. For example, Annala et al. [89]
present approximate ranges for γ, cs, and other statistics
and propose that massive NS cores likely contain matter

7Chen and Chatziioannou [80] proposed a similar technique to
distinguish between binary NS and NS-BH systems. In this case,
a reduced inferred radius is attributed to the presence of a BH in
the binary (which does not exhibit tidal effects) rather than a
softening in the EOS.

8Assuming merging binaries are uniformly distributed in
volume within a Euclidean universe, the S=N is distributed as
pðS=N Þ ∝ ðS=N Þ−4. This means that to observe 12 events with
S=N > 30 requires a total of > 187 events above the detection
threshold used in Sec. IV (S=N ¼ 12) and 324 events above the
more realistic detection threshold S=N ¼ 10 [84,85].

9For most parameters, statistical uncertainty roughly scales as
N−1=2, where N is the number of detections. Systematic un-
certainty is independent of N.
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displaying approximate conformal symmetry, which may
be indicative of a transition to deconfined quarks. These
studies typically focus on the composition of matter at the
highest densities possible within NSs (near MTOV). Some
studies have even claimed evidence for the presence of
deconfined quark matter based on γ at high densities. Our
DI

M features are more agnostic about the composition of
new matter and are sensitive over a broad range of masses.
They should therefore provide a complementary approach
to direct modeling based on assumptions about NS com-
position and microphysical interactions.
Finally, several other authors have introduced EOS

models with many parameters and increased model free-
dom, some of which are implemented as neural networks of
varying complexity [90–94]. Our conclusions based on
current observations are broadly consistent with these other
approaches, and therefore we only remark that our DI

M
feature could be extracted from any EOS, regardless of the
underlying model (or lack thereof). It should be straight-
forward to investigate phase transition phenomenology
with realizations from any EOS prior in the literature,
although this is beyond the scope of our current study.

C. Future work

Finally, we discuss possible extensions and the impact
that additional assumptions may have on our analysis.
As mentioned in Sec. III, we intentionally condition our

nonparametric prior on very little information from nuclear
theory or experiment beyond causality and thermodynamic
stability. It would be of interest to better understand how
terrestrial experiments or ab initio theoretical calculations
such as chiral EFT at low densities may impact our
conclusions. For example, Fig. 3 from Essick et al. [61]
shows that improved constraints at very low densities
(≲ρsat=2) can improve uncertainty in the pressure at higher
densities (∼3ρsat) when combined with astrophysical
data. Furthermore, theoretical calculations suggest a mod-
erate value of L, which would remove even the hint
that a phase transition may occur at low densities found
in Essick et al. [46] when they assumed L was large.
At the other extreme, it is worth discussing the impact of

pQCD calculations further. Several conflicting reports exist
in the literature, suggesting that the pressures at very high
densities (∼40ρsat) limit the pressures achieved in the
highest-mass NS [25,95], while other studies point out
that these conclusions depend on the details of how the
densities relevant for NSs are extrapolated to the pQCD
regime [26]. Indeed, the current proposal for mapping
pQCD calculations to lower densities [24] implements
something similar to a maximization over the extrapolation
rather than marginalizing over the EoS within the extrapo-
lation region (candidate EoS are given equal weight as long
as they can be connected to high-density pQCD preditions
regardless of how many such connections exist or
the relatively (prior) probability of any of the possible

connections), although Ref. [95] marginalizes over a
nonparametric extrapolation based on GPs for at least
part of the extrapolation region (up to ∼10ρsat but not
all the way to ∼40ρsat). Alternatively, Refs. [88,89,96]
[Annala:2021gom] implement parametric models spanning
the entire extrapolated region, although their parametric
models contain a relatively small number of segments (4
segments for a piecewise polytrope in [88] and 3-5 stitching
points for a piecewise linear cs-construction in [96]). The
precise impact of constraints from such parametric infer-
ences with small numbers of parameters can depend
strongly on the exact functional forms assumed [60].
The fact that the impact of pQCD constraints depends
on the choice of how the extrapolation is performed and/or
where the extrapolation begins suggests that they depend
on the prior assumptions for EoS behavior within the
(unobserved and unobservable) extrapolation region
between the central density of MTOV stars and the
pQCD regime. Further study is needed to disentangle
the impact of such prior choices from the physical limits
imposed by thermodynamic consistency between densities
relevant for NSs and the pQCD calculations.
Additional information about the EOS will be imprinted

in postmerger signals from coalescing NS systems. An
extensive literature exists (e.g., Refs. [97,98]) mostly
focusing on the ability to resolve the dominant frequency
of the post-merger emission thought to be associated with
the fundamental 2-2 mode of the massive remnant.
Additional work will be needed to connect our nonpara-
metric inference based on tides observed during the GW
inspiral to the complicated physics at work during the post-
merger. See, e.g., Wijngaarden et al. [99] for a way to
model the full GW signal. This may include extending
our nonparametric EOS representation to include finite-
temperature effects [100].
In addition to incorporating more information within the

inference, we may be able to dig deeper into features of the
current data. As mentioned in Sec. II B, our procedure
does not identify phase transitions that results in the
direct collapse to aBH, althoughwedo find that the sharpness
of the final decrease in arctanðDI

MÞ may correlate with
whether the collapse was due to only self-gravity or assisted
by a sudden decrease in cs. Future work may develop
additional features targeting this phenomenology, as it could
have implications for the behavior of merger remnants that
may or may not power electromagnetic counterparts depend-
ing on how long the remnant survives [101–103].
Assuming a phase transition is identified, an open

challenge is to extend the inference to determine the order
of the phase transition (e.g., first- vs second-order). A
smooth crossover from hadronic to quark matter may, for
example, be mimicked by either a weak first-order phase
transition or a second-order one [104]. Condensation of
pions or kaons may also give rise to a second-order phase
transition [105]. Our feature is able to detect a variety of
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possible morphologies, but additional statistics will need to
be developed to further categorize the cs behavior within
the phase transition’s extent.
Finally, we would also be remiss if we did not remind the

reader that our feature specifically targets phenomenology
associated with decreases in cs and associated increase of
compactness. If, instead, a smooth crossover as realized in,
e.g., quarkyonic matter [22,23,33] only manifests as a
sudden increase in the speed of sound, the features
introduced here will not detect it. Additional features
targeting such behavior would need to be developed. To
that end, it may be of general interest to more carefully
study the types of correlations between cs at different
densities that are preferred by astrophysical data. In the
future, we will interrogate our nonparametric posteriors to
not only constrain cs but also how quickly cs can vary. For
example, we do not expect periodic, extremely rapid
oscillations in cs to have a significant impact on NS
properties, and therefore they may only be very weakly
constrained by the data. See, e.g., Tan et al. [57] for more
discussion. However, this will likely require more advanced
sampling techniques to efficiently draw representative sets
from our nonparametric processes. See Appendix C.
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APPENDIX A: INCOMPRESSIBLE NEWTONIAN
STARS WITH TWO PHASES

We examine the feature extraction procedure laid out in
Sec. II B within a simpler context: incompressible stars
with two phases in Newtonian gravity. Despite its simplic-
ity, this demonstrates the main features of more realistic
stars while greatly simplifying the mathematics.
We consider incompressible stars with a piecewise

constant density ρ as a function of the pressure p separated
by a transition pressure pT

ρðpÞ ¼
�
ρL if p ≤ pT

ρH if p > pT
: ðA1Þ

We combine this EOS with the Newtonian equations of
stellar structure

dm
dr

¼ 4πr2ρ; ðA2Þ

dp
dr

¼ −
Gmρ

r2
; ðA3Þ

and a central pressure pc, where m is the enclosed mass up
to radius r.
For pc ≤ pT, the solution is trivial as the star is described

by a single fluid,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pc

2πGρ2L

s
; ðA4Þ

M ¼ 4π

3
ρLR3; ðA5Þ

I ¼ 2

5
MR2; ðA6Þ

for the radius R, mass M and moment of inertia I. In this
case, the star is always stable as dM=dpc > 0 and DI

M ¼
d log I=d logM ¼ 5=3 is constant.
For pc > pT, the star contains a core of high-density

matter with radius

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðpc − pTÞ
2πGρ2H

s
: ðA7Þ

The entire star’s macroscopic properties are then implicitly
determined by

pT ¼ 4πGρLðρH − ρLÞR3
c

3

�
1

Rc
−
1

R

�
þ 2πGρ2L

3
ðR2 − R2

cÞ;

ðA8Þ

M ¼ 4π

3
½ðρH − ρLÞR3

c þ ρLR3�; ðA9Þ
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I ¼ 8π

15
½ðρH − ρLÞR5

c þ ρLR5�; ðA10Þ

In this case, the star can become unstable (dM=dpc < 0) if
ρH is much larger than ρL. Regardless of stability, DI

M is
discontinuous whenever ρH ≥ ρthr ≡ 3ρL=2. Figure 11
shows that

lim
pc→pþ

T

d log I
d logM

¼

8>><
>>:

þ5=3 if ρH < ρthr

þ5=4 if ρH ¼ ρthr

−5=3 if ρH > ρthr

: ðA11Þ

Similar threshold behavior is encountered in other para-
meters combinations, for example the mass, radius or tidal
deformability, as also shown for relativistic polytropic NSs
with first-order phase transitions [35].

APPENDIX B: THE ROLE OF THRESHOLDS
WITHIN FEATURE EXTRACTION

As part of the feature identification algorithm introduced
in Sec. II B, we included a threshold on the amount the
sound-speed must decrease within a candidate DI

M feature.
We now discuss the motivation for and impact of this and
other thresholds in more detail.
We represent our uncertainty in the EOS as a random

process for cs as a function of pressure with support for
every possible causal and thermodynamically stable EOS.
We can therefore think of the behavior of our feature
extraction algorithm in terms “fluctuations” in cs under
different realizations of this random process. Specifically,
by selecting the running local maximum, we de facto set a
threshold on cs that subsequent local maxima must pass if
they are to be associated with the start of a phase transition.
This means that small fluctuations in the height of
subsequent local maxima, either above or below the
previous running local maximum, can change the features
extracted. These changes can sometimes be dramatic, as the
proxy for the onset density selected may jump to a much
lower density. By imposing a threshold on Rc2s , we make
this type of selection explicit within the algorithm.
Although this does not remove the issue of small fluctua-
tions qualitatively changing the estimated onset density, it
at least provides a more concrete way to control the types of
features selected. Figure 4 demonstrates the impact of a
large threshold on Rc2s for one EOS realization.
Although not used within our main analysis, we imple-

ment an additional threshold on the change in arctanðDI
MÞ

observed within the candidate phase transition. That is, we
define Δ arctanðDI

MÞ as the difference between the maxi-
mum arctanðDI

MÞ for any density between the onset and
end points and the local minimum in arctanðDI

MÞ that
defines the end point. If this value is small, it will likely be
difficult to detect such a feature from macroscopic proper-
ties of NSs. One may wish to remove them at the time of
extracting features. In practice, though, we choose to record
all features, regardless of how small Δ arctanðDI

MÞ is, and
then filter them post hoc by selecting subsets of features
with different ΔðE=NÞ.
Figure 12 shows the impacts of threshold on both Rc2s

andΔ arctanðDI
MÞ for an EOS realization with rapid oscilla-

tions in cs. Our main results require Δ arctanðDI
MÞ ≥ 0

(satisfied axiomatically) and Rc2s ≥ 1.1.

APPENDIX C: COMPUTATIONAL CHALLENGES

As discussed in Sec. IV, our current nonparametric
sampling methods (i.e., direct Monte Carlo sampling)
may not scale to catalogs of ≳100 detections. This is
perhaps not surprising. That is, the total likelihood becomes
increasingly peaked with more detections, and the majority
of realizations from the nonparametric prior will have
vanishingly small likelihoods. As such, they do not

FIG. 11. Stellar sequences for incompressible two-phase
Newtonian stars with ρL ¼ 2ρsat ¼ 5.6 × 1014 g=cm3, pT ¼
5 × 1034 dyne=cm2, and various values of ρH . We plot (top)
the M-I relation and (bottom) arctanðDI

MÞ as a function of the
stellar mass. Stable branches are shown with solid lines, and
unstable branches are shown with dotted lines. The bottom panel
inset focuses near the discontinuity for curves with; ticks on the
y-axis correspond to the values in Eq. (A11).
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contribute to the posterior. With our current set of
∼310; 000 prior samples, we retain ∼19; 300 effective
samples in the posterior conditioned on real astrophysical
data. Heavy pulsar mass measurements alone rule out the
largest portion of our prior, about 80%. See, e.g., Fig. 4 of
Essick et al. [61].
The number of effective samples is substantially higher

in our simulation campaigns if we do not include massive
pulsars (Fig. 13). Since our main goal is to explore how
well GWs can constrain phase transitions, we only consider
catalogs of simulated GW events in Sec. IV and do not
include the heavy pulsars.
Although the existing set of EOS realizations from the

nonparametric prior process will be sufficient for the
catalog sizes expected over the next few years (current
data and an additional Oð10Þ GW detections [13]), analyz-
ing larger simulated catalogs might be challenging.
Figure 13 shows the number of effective EOS samples
in the posterior as a function of the simulated GW catalog
size and for different simulated EOS. Solid lines only
include simulated GW events; dashed lines include both

FIG. 12. An additional example of the impact of thresholds within the feature extraction algorithm with an EOS realization with a
relatively short correlation length. (Top) trivial thresholds; (middle) threshold on the size of Δ arctanðDI

MÞ; (bottom) threshold on the
amount c2s must decrease (analogous to Fig. 4). The rapid oscillations in c2s are identified when selecting based on Rc2s but they are
rejected when selecting based on Δ arctanðDI

MÞ; their relatively small ΔðE=NÞ do not produce significant changes in the M-I relation.

FIG. 13. The effective number of EOS samples from the
posterior process as a function of catalog size for (solid) catalogs
comprised of only mock GWobservations and (dashed) catalogs
that include real pulsar mass measurements in addition to mock
GW observations. For each of the three true EOS considered in
Sec. IV, we find an approximately exponential decrease of the
number of effective samples with the catalog size.
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heavy pulsars and simulated GWevents. Although there are
differences between the injected EOS, we observe an
approximately exponential decay in the number of effective
posterior samples with the size of the catalog. This implies
we will need exponentially more draws from the current
prior in order to analyze larger catalogs, which is computa-
tionally untenable in the long run.
However, given the expected rate of detections over the

next few years, brute force may still be sufficient in the
short run. That is, given the low computational cost of
producing additional EOS realizations, we may be able to
draw more samples from the existing prior processes, solve
the TOV equations, and compute the corresponding astro-
physical weights fast enough to keep up. With the current
implementation, this takes Oð10Þ sec =EOS, which is
tractable compared to the expected rate of GW detections
of OðfewÞ=year.
However, this approach will not work indefinitely. We

would be much better off spending (finite) computational
resources in regions of the (infinite dimensional) vector-
space of EOS with significant posterior support. This is one
motivation for sampling from the posterior using a
Monte Carlo Markov Chain (MCMC) rather than direct
Monte Carlo sampling. Some authors in the broader GP
literature have investigated implementations of GPs within
MCMC schemes. These typically involve evolving a
handful of reference points used to model the GP’s mean
function along with the hyperparameters of the covariance
kernel (see, for example, Titsias et al. [106]). This de facto
parametrizes the EOS prior with a handful of hyper-
parameters, at which point standard techniques for sam-
pling from parametric distributions in hierarchical
inference can be employed. Other authors have suggested
neural networks as a computationally efficient way to
generate EOS proposal, but many (if not all) of these
proposal are also de facto parametric representations of the
EOS itself or uncertainty in the EOS, which are then
sampled with standard techniques [90–94].
An alternative method to focus computational efforts in

high-likelihood region is to use the posterior from initial
analyses with small catalogs to draw additional EOS
proposals for future (larger) catalogs, similar to simulated
annealing [107]. The rate of detection is likely to be slow
enough that new posteriors could be periodically developed
(along with emulators to efficiently draw more samples)
without the need for extensive automation. As long as the
noise at the time of each event is independent, this may be a
computationally efficient path forward. However, we leave
exploration of such methods for future work.

APPENDIX D: ADDITIONAL
REPRESENTATIONS OF CURRENT
ASTROPHYSICAL CONSTRAINTS

Here we present additional representations of the con-
straints on phase transition phenomenology with current

astrophysical data. Similar to Fig. 1, Fig. 14 shows
posteriors for macroscopic observables conditioned on
EOSs with either small [ΔðE=NÞ ≤ 10 MeV] or large
[ΔðE=NÞ ≥ 100 MeV] phase transitions for masses
between 1.1–2.3M⊙. In general, we see that there are
weaker correlations between macroscopic properties at low
masses (1.4M⊙) and high masses (2.0M⊙) for EOSs with
large phase transitions than for EOSs with small phase
transitions, even though the marginal uncertainty for each is
approximately the same. Notable exceptions are that EOS
with small ΔðE=NÞ can support smaller R1.4 and larger
MTOV than EOS with large ΔðE=NÞ.
Tables II–V show additional detection statistics for

different types of features conditioned on different subsets
of the data, analogous to Table I. We report different
combinations of (P) pulsar mass measurements, (G) GW
tidal measurements, and (X) x-ray pulse profiling with
NICER. Tables II and III report the evidence for multiple
stable branches. Tables IV and V report the evidence for
DI

M features. Note that one can compute additional Bayes
factors for different combinations of the data based on these
numbers. For example,

BðGXjPÞ ¼ BðGXPÞ
BðPÞ ðD1Þ

APPENDIX E: ADDITIONAL EXAMPLES OF
PHASE TRANSITION PHENOMENOLOGY

This appendix includes additional examples of phase
transition phenomenology using both EOSs with known
microphysical descriptions (Fig. 15) as well as realizations
from our nonparametric prior (Figs. 16 and 17).
Figure 15 shows an EOS with mixed phases, analogous

to Fig. 3. The more complicated structure in cs demon-
strates two shortcomings of the new feature introduced in
Sec. II B. The feature does not always identify the correct
beginning and end of the phase transition; the micro-
physical model used to construct this transition has the
mixed phase extend beyond the end of the identified
region. The true end of the phase transition occurs near
ρ ∼ 1015 g=cm3 and M ∼ 1.5M⊙. Also, some features may
be difficult to identify as they are overwhelmed by the final
collapse to a BH, which often means there is no local
minimum in arctanðDI

MÞ. This is the case for the true end of
this transition.
Figures 16 and 17 show a few realizations from our

nonparametric prior with particularly complex behavior,
such as multiple strong phase transitions leading to three
disconnected stable branches. These demonstrate that our
DI

M feature identifies and classifies a broad range of
behavior, some of which may not have been anticipated
with parametric descriptions. For example, Tan et al. [57]
and Mroczek et al. [86] introduced a variety of parametric
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features in the sound-speed and attempted to classify
which types of features led to observable effects within
macroscopic relations. Our procedure can identify relevant
density scales associated with these behaviors and others
without access to the underlying parametric construction.
This flexibility is due to the fact that our nonparametric

prior contains support for multiple different correlation

length scales and marginal variances in the speed of
sound, particularly compared to some others in the
literature, e.g., Refs. [7,86,95]. This is achieved by
marginalizing over covariance-kernel hyperparameters
as described in Essick et al. [53] so that the overall prior
process contains Oð150Þ different GPs, each of which
generates different types of correlation behavior.

FIG. 14. Distributions of radii and tidal deformabilities at reference masses as well as MTOV conditioned on current data. These
distributions de facto exclude EOSs with MTOV < 2M⊙ by requiring Λ2.0 > 0 (enforced through the logarithmic scale). As in Fig. 1,
there are much weaker correlations between low-mass and high-mass observables.
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TABLE III. Additional ratios of marginal likelihoods for the number of stable branches based on current observations.

Stable branches

M ½M⊙� Bn≥2
n¼1ðPÞ Bn≥2

n¼1ðGÞ Bn≥2
n¼1ðXÞ Bn≥2

n¼1ðPGÞ Bn≥2
n¼1ðPGXÞ Bn≥2

n¼1ðGjPÞ Bn≥2
n¼1ðGXjPÞ

0.8–1.1 0.169� 0.012 0.872� 0.010 0.115� 0.010 0.421� 0.043 0.362� 0.036 2.485� 0.181 2.219� 0.162
1.1–1.6 0.102� 0.009 1.369� 0.014 0.042� 0.005 0.029� 0.005 0.030� 0.006 0.282� 0.064 0.291� 0.055
1.6–2.3 1.007� 0.043 0.586� 0.017 0.384� 0.028 0.088� 0.027 0.147� 0.028 0.088� 0.026 0.120� 0.026

TABLE IV. Additional ratios of maximized likelihoods for the number of DI
M features based on current

observations.

DI
M features

M ½M⊙� minΔðE=NÞ [MeV] maxLn≥1
n¼0ðPÞ maxLn≥1

n¼0ðGÞ maxLn≥1
n¼0ðXÞ maxLn≥1

n¼0ðPGÞ maxLn≥1
n¼0ðPGXÞ

0.8–1.1 10 1.00 1.01 0.95 0.88 0.57
50 1.00 1.01 0.73 0.86 0.49
100 1.00 1.01 0.68 0.31 0.26

1.1–1.6 10 1.00 1.01 0.83 0.85 0.57
50 1.00 1.01 0.73 0.78 0.49
100 1.00 1.01 0.68 0.31 0.26

1.6–2.3 10 1.00 0.91 0.83 0.78 0.52
50 1.00 0.91 0.73 0.78 0.49
100 1.00 0.83 0.68 0.31 0.29

TABLE V. Additional ratios of marginal likelihoods for the number of DI
M features based on current astrophysical observations.

DI
M features

M ½M⊙�
minΔðE=NÞ

[MeV] Bn≥1
n¼0ðPÞ Bn≥1

n¼0ðGÞ Bn≥1
n¼0ðXÞ Bn≥1

n¼0ðPGÞ Bn≥1
n¼0ðPGXÞ Bn≥1

n¼0ðGjPÞ Bn≥1
n¼0ðGXjPÞ

0.8–1.1 10 1.781� 0.014 1.244� 0.005 1.519� 0.016 0.897� 0.017 1.222� 0.020 0.504� 0.009 0.684� 0.011
50 0.624� 0.008 1.379� 0.007 0.451� 0.008 0.355� 0.011 0.366� 0.011 0.570� 0.017 0.588� 0.016
100 0.373� 0.010 1.393� 0.010 0.254� 0.009 0.067� 0.005 0.117� 0.008 0.180� 0.013 0.292� 0.021

1.1–1.6 10 1.865� 0.016 1.250� 0.006 1.420� 0.016 0.778� 0.018 1.043� 0.020 0.417� 0.009 0.563� 0.010
50 0.950� 0.012 1.426� 0.008 0.682� 0.011 0.368� 0.011 0.463� 0.013 0.388� 0.012 0.481� 0.013
100 0.516� 0.011 1.377� 0.009 0.350� 0.011 0.073� 0.004 0.152� 0.009 0.142� 0.009 0.267� 0.017

1.6–12.3 10 2.671� 0.028 0.457� 0.006 1.761� 0.030 0.512� 0.020 1.012� 0.035 0.192� 0.007 0.387� 0.013
50 2.265� 0.029 0.512� 0.007 1.596� 0.030 0.469� 0.020 0.898� 0.034 0.207� 0.009 0.399� 0.015
100 1.366� 0.027 0.604� 0.009 0.914� 0.026 0.170� 0.010 0.383� 0.023 0.124� 0.008 0.256� 0.016

TABLE II. Additional ratios of maximized likelihoods for the number of stable branches based on current
astrophysical observations: (P) pulsar masses, (G) GW observations from LIGO/Virgo, and (X) x-ray timing from
NICER.

Stable branches

M½M⊙� maxLn≥2
n¼1ðPÞ maxLn≥2

n¼1ðGÞ maxLn≥2
n¼1ðXÞ maxLn≥2

n¼1ðPGÞ maxLn≥2
n¼1ðPGXÞ

0.8–1.1 1.00 0.84 0.45 0.79 0.47
1.1–1.6 1.00 0.81 0.33 0.23 0.14
1.6–2.3 1.00 0.75 0.68 0.69 0.20
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FIG. 15. An additional example of an EOS with mixed phases (Gibbs construction) from Han et al. [67], analogous to Fig. 3.
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FIG. 16. Several realizations from our nonparametric prior, each with a single stable branch but with different numbers of phase
transitions.
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FIG. 17. Additional realizations from our nonparametric prior, each with multiple stable branches. Typically, we always identify a
phase transition associated with the loss of stability between stable branches, even if the stable branches are small (bottom row).
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