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In this work, a modified two-flavor Nambu-Jona–Lasinio-type model is utilized, in which the contact
current-current interaction is Fierz-transformed into quark-antiquark interactions and quark-quark
interactions, which are directly related to the chiral condensate and diquark condensate, respectively.
Under mean-field approximation, the chiral condensate and the diquark condensate are studied on the same
footing. We discuss in detail the competition between the chiral condensate and the diquark condensate,
which are exclusively paired with u and d quarks, while also investigating the order of the chiral phase
transition through an analysis of the resulting chiral susceptibility.
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I. INTRODUCTION

Quarks may readily pair up [1–3] in high-density quark
matter, forming Cooper pairs, similar to electrons in metals
[4,5]. Because quantum chromodynamics (QCD), the first-
principle theory of quarks, is an asymptotically free theory
[6,7], color superconducting (CSC) quark matter at asymp-
totically high densities can be analyzed through a well-
controlled weak coupling approach [8–11]. Though the
superconducting gap and critical temperature calculated
using this approach are rather small, around 1 MeV [3],
the corresponding pairing gaps of strongly interacting
matter, calculated from e.g., the Nambu-Jona–Lasinio
(NJL) model, were found to be far greater, on the
order of 100 MeV [12–14]. These studies highlighted
the relevance of CSC matter for the QCD phase diagram,
and recognized its potential significance to neutron star
studies [15–21] and possibly even in heavy-ion collisions
[8,9,22]. The possible existence of CSC quark matter thus
became an appealing field of research [15,22–27]. Not only
doesCSCmatter enrich theQCDphase structure [23,28–30],
its presence can also contribute to a deeper understanding of
heavy-ion collisions and neutron stars. For a comprehensive
review of this topic, see Refs. [31–34].

For the methods to calculate the magnitude of the gap
parameters in the CSC phases [33], there are two distinct
paths that have been followed. One path commences from
first principles and relies on the property of asymptotic
freedom of QCD, by utilizing renormalization group
techniques, or through the Schwinger-Dyson equation
[22,35,36]. The other path involves a semiphenomenolog-
ical method, such as the above-mentioned NJL model
[37,38], in which the interaction between quarks is sub-
stituted by a four-fermion interaction, which originates
from instanton exchange [13,14] or induced by single-
gluon exchange [24,39].
Quarks differ from electrons in that they carry color and

flavor degrees of freedom, which allows for numerous
potential pairing patterns [23,28–30]. At sufficiently high
density and low temperature, the thermodynamically
favored phase is the color-flavor-locked (CFL) phase
[24,39,40]. This phase involves the pairing of lighter up
(u) and down (d) quarks with heavier strange (s) quarks.
And the gapless CFL (gCFL) phase [41] was proposed at
some critical value of the strange quark mass. Additionally,
other phases have been discovered at low temperatures,
including the two-flavor color-superconducting (2SC)
phase [13,36], the gapless 2SC (g2SC) phase [23,42], a
metallic CFL (mCFL) phase, and a uSC phase [43]. This
work focuses on the 2SC phase in quark matter consisting
of only u and d quarks. In this particular phase, the
Fermi momenta of different quark flavors are approxi-
mately equal, and the u and d quarks form Cooper pairs
in the color-antitriplet, flavor-singlet, spin-zero channel
[13,22,44]. We will use NJL-type models to study the 2SC
phase for potential applications in strongly interacting
matter within compact stars.
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In NJL-type models, for the contact current-current
interaction, Fierz transformation can explicitly display all
forms of quark-antiquark interaction channels ðq̄qÞ and
quark-quark interaction channels ðqqÞ [26,37,38,45,46],
which enables us to derive a general four-fermion inter-
action. Under mean-field approximation, the quark-antiquark
interaction channels produce the chiral condensate hq̄qi,
which serves as the order parameter for the chiral phase
transition. Meanwhile, the quark-quark interaction channels
contribute to the diquark condensate hqqi, which can be
viewed as the order parameter for color superconductivity
[29,38,47]. As a result, the dynamical mass generation and
diquark condensate are described self-consistently at equal
levels. However, the weighting factor α cannot be well
defined under mean-field approximations and is typically
adjusted within a range of 0 to 1 to be consistent with finite-
density constraints.
Assuming equal contributions from the quark-antiquark

interaction channels and Fierz-transformed diquark inter-

action channels, a coupling ratio of h1=g
ð0Þ
s ¼ 3=4 has

been commonly adopted in previous studies [34,38,48,49],

where h1 and gð0Þs denote the coupling constants of the
scalar diquark interaction and scalar quark-quark interac-
tion, respectively. However, there is no physical basis
for assuming this equal combination. Thus, we are also
interested in utilizing the current modified NJL-type model
to systematically investigate the effect of changing the

h1=g
ð0Þ
s ratio. Additionally, at finite densities, the existence

of Lorentz noninvariant expectation values becomes pos-
sible, and the ground state of 2SC phase is characterized
by more condensates than merely the Lorentz-invariant
ones Δ1 (the scalar diquark condensate) [26]. Therefore,
we further take into account the vector diquark con-
densate Δ2, which is Lorentz noninvariant and transforms
like the time component of a four-vector. Furthermore,
vector interactions among quarks significantly impact the
quark chemical potential and pressure, leading to sub-
stantial changes in the properties of the phase transition
and the stiffness of equation of state [50–52]. Thus, we
incorporate both scalar (q̄λaq) and vector color-octet
(q̄γμλaq) channels in our present study. As demonstrated
below, both scalar and vector color-octet interactions
contribute to the differences in both the quark condensate
and the quark number densities between paired and
unpaired quarks.
This paper is organized as follows. In Sec. II, we

introduce the effective Lagrangian of the NJL-type model.
We derive both the chiral gap equation and the color
superconducting gap equation in the mean-field approxi-
mation. In Sec. III, we derive the thermodynamic potential
and provide expressions for significant expectation values.
In Sec. IV, we analyze the chiral and CSC phase transi-
tions of high-density and zero-temperature QCD matter for
various parameter values of α. We summarize the results
in Sec. V.

II. THE MODIFIED NJL-TYPE MODEL

Assuming that gluon degrees of freedom can be frozen
into point-like effective interactions between quarks, one
can obtain the NJL-type models in which the interaction is
replaced by a contact current-current interaction [12,37,38]
as follows:

L ¼ q̄ðiγμ∂μ −mþ μγ0Þqþ Lð4Þint ; ð1Þ
where the interaction term between two currents is
given by:

Lð4Þint ¼ −g
X8
a¼1
ðq̄γμλaqÞ2: ð2Þ

Here, γμ are the Dirac gamma matrices and λa are the
generators of SUð3Þc. q is the quark field operator with
color, flavor, and Dirac indices. m is the diagonal mass
matrix for quarks, which includes the bare quark masses
and introduces a small explicit symmetry breaking. In the
following, we start with how to obtain the present version
of the extended two-flavor NJL-type model and analyze
which interactions we considered.
By applying the Fierz transformation to the two-quark-

current interaction term in Eq. (1), it can be decomposed
into q̄q and qq channels respectively [37,38]. This allows
us to combine the interactions with the Fierz-transformed
ones using a weighting factor α, thus enabling a complete
simultaneous description of q̄q and qq channels. As a
result, the effective Lagrangian comprising q̄q interactions
is supplemented with a corresponding qq interacting part as
follows:

Leff ¼ q̄ðiγμ∂μ −mþ μγ0Þq
þ αF q̄qðLð4Þint Þ þ ð1 − αÞF qqðLð4Þint Þ: ð3Þ

In Eq. (3), F q̄qðLð4Þint Þ represents the total Fierz-transformed

quark-antiquark interactions, and F qqðLð4Þint Þ indicates all
diquark interactions after employing the Fierz transforma-
tion to the two-current interaction term in Eq. (2).
It is important to note that since the Fierz transformation

and the mean-field approximation are noncommutative,
changing α modifies the ratios of the diquark coupling
constant to the quark-antiquark coupling constant, and the
chiral condensates and diquark condensates influence each
other in the mean-field approximation. We will discuss this
point in more detail in the effects of changing α in Sec. IV.

A. The interactions we considered at finite densities

In Eq. (3), the Fierz-transformed interactions contain
various channels. In this section, we discuss which chan-
nels contribute to a nonzero expectation value at finite
densities. The explicit expressions of q̄q channels and qq in
Eq. (3) are listed in Eq. (4) and Eq. (5), respectively,
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F q̄qðLð4Þint Þ ¼ þ
2ðN2

c − 1Þ
N2

cNf
g

�
ðq̄qÞ2 þ ðq̄iγ5qÞ2−

1

2
ðq̄γμqÞ2 − 1

2
ðq̄γμγ5qÞ2

�
þ ðN

2
c − 1Þ
N2

c
g

�
ðq̄τnqÞ2 þ ðq̄iγ5τnqÞ2

−
1

2
ðq̄γμτnqÞ2 −

1

2
ðq̄γμγ5τnqÞ2

�
−

1

NcNf
g

�
ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2−

1

2
ðq̄γμλaqÞ2 −

1

2
ðq̄γμγ5λaqÞ2

�

−
1

2Nc
g

�
ðq̄λaτnqÞ2 þ ðq̄iγ5λaτnqÞ2−

1

2
ðq̄γμλaτnqÞ2 −

1

2
ðq̄γμγ5λaτnqÞ2

�
; ð4Þ

F qqðLð4Þint Þ ¼
Nc þ 1

2Nc
g

�
ðq̄iγ5CτAλA0 q̄TÞðqTCiγ5τAλA0qÞ þ ðq̄CτAλA0 q̄TÞðqTCτAλA0qÞ

−
1

2
ðq̄γμγ5CτAλA0 q̄TÞðqTCγμγ5τAλA0qÞ −

1

2
ðq̄γμCτSλA0 q̄TÞðqTCγμτSλA0qÞ

�

−
Nc − 1

2Nc
g

�
ðq̄iγ5CτSλS0 q̄TÞðqTCiγ5τSλS0qÞ þ ðq̄CτSλS0 q̄TÞðqTCτSλS0qÞ

−
1

2
ðq̄γμγ5CτSλS0 q̄TÞðqTCγμγ5τSλS0qÞ −

1

2
ðq̄γμCτSλS0 q̄TÞðqTCγμτSλS0qÞ

�
: ð5Þ

In Eq. (4), the notation τn and λa corresponds to
operators in the SU(2) flavor space and SU(3) color
space, respectively. The expressions provided previously
feature an implied summation over a ¼ 1;…; N2

c − 1 and
n ¼ 1;…; N2

f − 1. The interaction representation outlined
in Eq. (4) holds the chiral symmetry of QCD at the tree
level, facilitating the examination of the phase transitions of
chiral symmetry breaking and restoration. In Eq. (5), the
superscript T denotes transposition of the matrix of charge
conjugation, which is represented as C ¼ iγ2γ0. Moreover,
τA;S and λA;S denote the antisymmetric or symmetric
generators of the SUðNfÞ and SUðNcÞ groups, respectively,
acting in the flavor space and color space. Per the
restrictions imposed by the Pauli principle, the diquark
condensates must be antisymmetric, and the diquark
interactions that satisfy all the symmetry requirements
are listed in Table I.
For the discussion of the ground state of QCD matter at

finite baryon densities, several observations can be made:
(i) As the chiral SU(2) symmetry is broken by the

presence of bare quark mass in the QCD vacuum,
it is natural to consider the chiral condensate hq̄qi in
the ground state of QCD matter. This condensate is
directly related to the scalar color-singlet channel
(q̄qÞ2 in Eq. (4) under mean-field approximation.

(ii) In Eq. (5), a strong scalar attraction is observed
between u and d quarks with antiparallel spins
(JP ¼ 0þ) in the color antitriplet channel. This
interaction is described by the term ðq̄iγ5CτAλA0 q̄TÞ
ðqTCiγ5τAλA0qÞ. Following the ideas of BCS
theory [4,5], it is reasonable to expect that a color
superconductor’s ground state would possess a non-
zero expectation value in the attractive channels,
such as the most notable diquark condensate
δ1 ¼ hqTCγ5τ2λA0qi.

(iii) As one approaches finite densities, the vector inter-
action in Eq. (4) becomes consequential and leads to
Lorentz noninvariant expectation values such as the
density itself ρ ¼ hq̄γ0qi [29,38,53]. When inter-
actions conform to the Pauli principle, the two-flavor
color superconductor’s ground state should consider
the diquark condensate δ2 ¼ hqTCγ0γ5τ2λA0qi. This
condensate originates from the vector diquark inter-
action ðq̄γμγ5CτAλA0 q̄TÞðqTCγμγ5τAλA0qÞ.

(iv) The diquark condensates present in a color super-
conductor break the color gauge symmetry sponta-
neously via the Anderson-Higgs mechanism,
resulting in the breaking of the color gauge group
into an SUð2Þc subgroup. The conventional choice
of the condensate pointing in the “blue” direction
indicates that only two colors (“red” and “green”)
participate in the diquark condensate, implying the
absence of color SU(3) invariance in such states.
However, it is likely that the quark condensate
receives different contributions from red (or green)
and blue quarks, denoted by ϕr and ϕb, respectively,
leading to a nonvanishing expectation value ϕ8 ¼
hq̄λ8qi ¼ 2ffiffi

3
p ðϕr − ϕbÞ associated with the scalar

color-octet interaction ðq̄λ8qÞ2. It’s important to
note that δ1 and δ2 leave a color SU(2) subgroup

TABLE I. Dirac operators and generators of U(2) and U(3), and
their symmetries under transposition. τiði ¼ 1–3Þ denote Pauli
matrices, and λiði ¼ 1–8Þ denote Gell-Mann matrices.

Antisymmetric Symmetric

Dirac Cγ5ðSÞ; CðPÞ; Cγμγ5ðVÞ CγμðAÞ; CσμνðTÞ
U(2) τ2 (singlet) 1; τ1; τ3 (triplet)

U(3) λ2; λ5; λ7 (antitriplet) 1; λ1; λ3; λ4; λ6; λ8 (sextet)
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invariant, and therefore, all green quantities are iden-
tical to the red ones. Similarly, density differences
are expected between red (or green) and blue
quarks, where aside from the total number density
ρ ¼ 2ρr þ ρb, there could be a nonvanishing expect-
ation value ρ8¼hq̄γ0λ8qi¼ 2ffiffi

3
p ðρr−ρbÞ associated

with the vector color-octet interaction ðq̄γ0λ8qÞ2.
At finite densities, only specific components of the

interactions in Eq. (3) lead to nonvanishing expectation
values under mean-field approximation. The relevant effec-
tiveLagrangianused to describe such interactions is givenby:

Leff ¼
1

2
½q̄ðiγμ∂μ −mþ μγ0Þqþ q̄cð−iγμ∂μ −m − μγ0Þqc�

þ α
N2

c − 1

N2
c

gðq̄qÞ2 − α
1

2Nc
g
X8
a¼1
ðq̄λaqÞ2

− α
N2

c − 1

2N2
c

gðq̄γ0qÞ2 þ α
1

4Nc
g
X8
a¼1
ðq̄γ0λaqÞ2

þ ð1 − αÞNc þ 1

2Nc
gðq̄iγ5τAλA0qcÞðq̄ciγ5τAλA0qÞ

− ð1 − αÞNc þ 1

4Nc
gðq̄γ0γ5τAλA0qcÞðq̄cγ0γ5τAλA0qÞ;

ð6Þ

where the antisymmetric Pauli matrix τA and the generators
λA0 are τ2 and λ2;5;7, respectively.Here,we define the effective
coupling constants as follows:

gð0Þs ¼ α
N2

c − 1

N2
c

g; gð8Þs ¼ −α
1

2Nc
g;

gð0Þv ¼ −α
N2

c − 1

2N2
c

g; gð8Þv ¼ α
1

4Nc
g;

h1 ¼ ð1 − αÞNc þ 1

2Nc
g; h2 ¼ −ð1 − αÞNc þ 1

4Nc
g: ð7Þ

As an example, a coupling ratio of h1=g
ð0Þ
s between 0.5 and 3

corresponds to a variation of α from 0.6 to 0.2. The

commonly-used case is h1=g
ð0Þ
s ¼ 3=4 (or equivalently

α ¼ 0.5), as mentioned before.

B. Mean-field approximation
and massive quark propagator

In order to determine the thermodynamic properties of
quark matter, we transform the interactions into a bilinear
form of quark fields using mean-field approximation. This
approach is solvable, leading to the following effective
Lagrangian:

Leff ¼ þ
1

2
½q̄ðiγμ∂μ −M þ μ̃γ0Þqþ q̄cð−iγμ∂μ −M − μ̃γ0Þqc� þ

1

2
½q̄cð−Δ�1Þγ5τ2λA0qþ q̄Δ1γ5τ2λA0qc�

þ 1

2
½q̄cΔ�2γ0γ5τ2λA0qþ q̄Δ2γ0γ5τ2λA0qc� − gð0Þs hq̄qi2 − gð8Þs hq̄λ8qi2 − gð0Þv hq̄γ0qi2 − gð8Þv hq̄γ0λ8qi2

− h1hq̄iγ5τ2λA0qcihq̄ciγ5τ2λA0qi − h2hq̄γ0γ5τ2λA0qcihq̄cγ0γ5τ2λA0qi; ð8Þ

in which we introduce the effective quark masses,

M ¼ M0 þM8λ8;

M0 ¼ m − 2gð0Þs ϕ; M8 ¼ −2gð8Þs ϕ8; ð9Þ

the effective quark chemical potentials,

μ̃ ¼ μ0 þ μ8λ8;

μ0 ¼ μþ 2gð0Þv ρ; μ8 ¼ 2gð8Þv ρ8; ð10Þ

and the diquark gaps,

Δ1 ¼ −2h1δ1 ¼ −2h1hq̄cγ5τ2λA0qi;
Δ2 ¼ 2h2δ2 ¼ 2h2hq̄cγ0γ5τ2λA0qi;
Δ�1 ¼ 2h1hq̄γ5τ2λA0qci;
Δ�2 ¼ 2h2hq̄γ0γ5τ2λA0qci; ð11Þ

with qcðxÞ ¼ Cq̄TðxÞ and q̄cðxÞ ¼ qTðxÞC.

Next, we adopt an approach inspired by the BCS
theory [4,5]. This approach involves formally doubling
the number of degrees of freedom by treating q and qc as
independent variables. We introduce the bispinor field Ψ in
the following manner:

ΨðxÞ ¼ 1ffiffiffi
2
p

�
qðxÞ
qcðxÞ

�
: ð12Þ

Subsequently, the effective Lagrangian can be expressed
in the momentum space as follows:

Leff ¼ Ψ̄S−1Ψþ V; ð13Þ
where V is the interaction potential,

V ¼ −gð0Þs hq̄qi2 − gð8Þs hq̄λ8qi2

− gð0Þv hq̄γ0qi2 − gð8Þv hq̄γ0λ8qi2
− h1hq̄iγ5τAλA0qcihq̄ciγ5τAλA0qi
− h2hq̄γ0γ5τAλA0qcihq̄cγ0γ5τAλA0qi; ð14Þ
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and the inverse propagator of the q fields at four-momentum p is

S−1ðpÞ ¼
�
γμpμ −M0 −M8λ8 þ μ0γ

0 þ μ8γ
0λ8 Δ1γ5τ2λ2 þ Δ2γ

0γ5τ2λ2

−Δ�1γ5τ2λ2 þ Δ�2γ0γ5τ2λ2 γμpμ −M0 −M8λ8 − μ0γ
0 − μ8γ

0λ8

�
: ð15Þ

To facilitate the interpretation of the results and for the
sake of convenience, it is beneficial to perform linear
combinations on the properties of red and blue quarks.
For instance, we can express the red and blue constituent
quark masses as Mr ¼ M0 þ ð1=

ffiffiffi
3
p ÞM8 and Mb ¼ M0 −

ð2= ffiffiffi
3
p ÞM8, respectively. It is important to note that we

have made an assumption of ϕg ¼ ϕr for the quark-
antiquark condensate in order to preserve the unbroken
SUð2Þc subgroup, as mentioned in Sec. II A. Consequently,
the following equation is obtained:

Mr ¼ m −
2

3
ð6gð0Þs þ 2gð8Þs Þϕr −

2

3
ð3gð0Þs − 2gð8Þs Þϕb;

Mb ¼ m −
2

3
ð6gð0Þs − 4gð8Þs Þϕr −

2

3
ð3gð0Þs þ 4gð8Þs Þϕb;

μ̃r ¼ μþ 2

3
ð6gð0Þv þ 2gð8Þv Þρr þ

2

3
ð3gð0Þv − 2gð8Þv Þρb;

μ̃b ¼ μþ 2

3
ð6gð0Þv − 4gð8Þv Þρr þ

2

3
ð3gð0Þv þ 4gð8Þv Þρb: ð16Þ

Equation (16) sheds light on the mechanism responsible for
spontaneous chiral symmetry breaking, by which quarks
obtain a dynamic mass, in addition to the minor impact by
the bare quark mass. The vector interactions contribute
to the expectation value of the quark number density,
causing the physical chemical potential μ to shift to μ̃.

III. THERMODYNAMIC PROPERTIES

In finite-temperature field theory [54], the linearization
of Leff in the vicinity of the expectation values and the
application of Matsubara formalism yield the thermody-
namic potential per volume of quark matter as follows:

ΩðT; μÞ ¼ −T
X
n

Z
d3p
ð2πÞ3

1

2
Tr ln

�
1

T
S−1ðiωn;pÞ

�
− V:

ð17Þ

Here, ωn represents the fermionic Matsubara frequencies,
while S−1ðpÞ refers to the inverse propagator of the Ψ field
at four-momentum p, which is given by the expression
presented in Eq. (15). In the scenario of two flavors and
three colors, the inverse propagator results in a 48 × 48
matrix. To calculate the trace in the equation for the
thermodynamic potential per volume ΩðT; μÞ, we must
work within this 48-dimensional space. By performing the
Matsubara sum, we obtain:

ΩðT; μÞ ¼ −4
Z

d3p
ð2πÞ3

�
2

�
Eþ þ E−

2
þ T lnð1þ e−Eþ=TÞ

þ T lnð1þ e−E−=TÞ
�
þ ðϵb þ T lnð1þ e−ϵþ=TÞ

þ T lnð1þ e−ϵ−=TÞÞ
�
þ V; ð18Þ

where physically irrelevant constant terms have been sup-
pressed. In Eq. (18), the 4 in front of the integral represents
the spin and flavor degeneracy, while the 2 in the first line
of the integrand takes into account the two paired colors.
The second term in the large parentheses pertains to the
blue quarks that do not partake in a diquark condensate, and
their dispersion laws incorporated in this expression are the
conventional ones:

ϵ� ¼ ϵb � μ̃b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

b

q
� μ̃b: ð19Þ

And the dispersion laws of red and green quarks are

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

r þ μ̃2r þ jΔ1j2 þ jΔ2j2 � 2s
q

; ð20Þ

with

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ̃2r þ jΔ2j2Þp⃗2 þ t2

q
; t ¼ Mrμ̃r − ReðΔ1Δ�2Þ:

ð21Þ

In the physical scenario we are interested in, which is
characterized by finite density and zero temperature,
β ¼ 1=T tends to infinity, resulting in

ln ð1þ e−βxÞ → −βxΘð−xÞ; ð22Þ

and the Fermi-Dirac distribution transforms into a step
function, whereby:

nFðxÞ ¼
1

1þ eβx
→ Θð−xÞ: ð23Þ

By utilizing these relations, we can simplify the grand
thermodynamic potential mentioned in Eq. (18). This
simplification results in the following equation:
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ΩðT; μÞ ¼ −4
Z

d3p
ð2πÞ3 fðEþ þ E−Þ

þ ½ϵb − ϵþΘð−ϵþÞ − ϵ−Θð−ϵ−Þ�g þ V

¼ −4
Z

d3p
ð2πÞ3 ðEþ þ E− þ ϵbÞ

þ 4

Z
d3p
ð2πÞ3 ϵ−Θð−ϵ−Þ þ V

¼ Ωvacuum þ Ωb þ V; ð24Þ

with ϵ� ¼ ϵb � μ̃b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

b

q
� μ̃b. Here, the Ωvacuum

is the vacuum energy that needs to be regularized.
So far, we have successfully derived the thermodynamic

potential with finite chemical potential and zero temper-
ature constraints. In order to ensure thermodynamic con-
sistency, the condensates must be obtained through
appropriate differentiation of the thermodynamic potential.
The self-consistent solutions are those that correspond to
the stationary points of the potential, which are defined by:

δΩ
δM0

¼ δΩ
δM8

¼ δΩ
δμ0
¼ δΩ

δμ8
¼ δΩ

δΔ1

¼ δΩ
δΔ2

¼ 0: ð25Þ

In cases where there are multiple stationary points, the stable
solution is determined by the minimum value of ΩðT; μÞ.
Therefore, using Eq. (25), we can obtain the necessary
expressions for the various expectation values as follows:

ϕr ¼ −4
Z

d3p
ð2πÞ3

1

2s

�
1

Eþ
½Mrsþ μ̃rt� þ

1

E−
½Mrs − μ̃rt�

�
;

ϕb ¼ −4
Z

d3p
ð2πÞ3

Mb

ϵb
½1 − nðϵ−Þ�;

ρr ¼ 4

Z
d3p
ð2πÞ3

1

2s

�
1

Eþ
½μ̃rðsþ p⃗2Þ þMrt�

þ 1

E−
½μ̃rðs − p⃗2Þ −Mrt�

�
;

ρb ¼ 4

Z
d3p
ð2πÞ3 nðϵ−Þ;

δ1 ¼ −4
Z

d3p
ð2πÞ3

1

s

�
1

Eþ
½Δ1s − Δ2t� þ

1

E−
½Δ1sþ Δ2t�

�
;

δ2 ¼ 4

Z
d3p
ð2πÞ3

1

s

�
1

Eþ
½Δ2ðsþ p⃗2Þ − Δ1t�

þ 1

E−
½Δ2ðs − p⃗2Þ þ Δ1t�

�
: ð26Þ

IV. NUMERICAL RESULTS

In this section, we will investigate the phase structure at
finite chemical potential through numerical calculations.

Specifically, we will analyze the competition behavior
between the chiral condensate and diquark condensate
by varying the parameter α. For a given α value, the other
model parameters are adjusted to reproduce the QCD
vacuum properties. Afterward, we set the bare quark mass
m, the coupling constant αg, and the cutoff Λ to fit the
pion mass, pion decay constant, and quark condensate. To
do so, we adopt the parameter set from Ref. [55], where

m ¼ 5.5 MeV, gð0Þs ¼ 5.074 × 10−6 MeV−2, and the three-
momentum cutoff Λ ¼ 631 MeV is used to regulate the
ultraviolet divergences. It is worth mentioning that the
presence of a small current quark mass m induces partial
restoration of chiral symmetry at large densities, leading to
a small chiral condensate in the CSC phase. This nature has
been referred to as the coexistence region [28].
We first present the results in the typical situation for

α ¼ 0.5, i.e., the relation between h1 in the scalar diquark

channel and gð0Þs in the scalar quark-antiquark channel is

3=4, namely h1 ¼ 3=4gð0Þs , as usually adopted by previous
works [38,53]. Figure 1 illustrates the behavior of various
quantities, including the effective red quark mass Mr, the
diquark gap Δ1, the effective red quark chemical potential
μ̃r, the mass differenceMr −Mb, and the diquark gap −Δ2,
as functions of the quark chemical potential μ. We observe
that, for μ̃r < Mr, the effective quark mass remains con-
stant at its vacuum value and the red (or green) quark
number density remains zero. In this case, the effective
quark chemical potentials μ̃r are equal to the external
chemical potential μ, as predicted by Eq. (16). As we
increase μ, chiral symmetry begins to restore, resulting in a
decrease of the effective quark massMr, while the external
chemical potential starts to exceed μ̃r. In the case of
α ¼ 0.5, the effective quark mass Mr decreases smoothly,
and the chiral phase transition is a crossover (see more
related discussions of the chiral susceptibility below). In a
finite-density environment, the vector interactions contrib-
ute to the expectation value of the quark number density,
modifying the quark chemical potential when μ surpasses
the vacuum mass. As seen in Fig. 1, for μ̃r;b > Mr;b, the
quark number density begins to increase smoothly from
zero at a typical chemical potential.
Moreover, we find a scalar diquark gap Δ1 at around

∼100 MeV, which is consistent with previous studies
[38,53]. Similar to the BCS theory, an increase in the
quark chemical potential leads to an increase in the density
of states at the Fermi surface, resulting in a smooth growth
of the gap parameter Δ1 when μ≳ 290 MeV. Since we
consider the scalar color-cotet channels ðqλ8qÞ2 in the
Lagrangian [Eq. (6)], the quark-antiquark condensates of
red ϕr and blue ϕb quarks are expected to be different,
leading to a small mass difference, as depicted in the
lower panel of Fig. 1. Meanwhile, the vector diquark gap
parameter Δ2 becomes nonzero at μ ≳ 290 MeV. We will
come back with a more detailed analysis of Δ2.
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Next, we investigate the impact of varying the parameter

α, which corresponds to changing the ratio of h1=g
ð0Þ
s , on

the competition between the quark-antiquark channels and
diquark channels, and its possible impact on the phase
transition. The results will be systematically discussed in
the following section. For simplicity, we define the critical
chemical potential μχ for the chiral phase transition as the

point at which the chiral condensate exhibits the maximum
change, and we define the critical chemical potential μΔ1

for
the CSC phase transition as the point at which the diquark
condensate starts to appear.
The effective red (or green) quark masses for different

values of α are presented in Fig. 2. It can be observed that
the quark masses experience a significant vacuummass due
to the spontaneous chiral symmetry breaking at μ ¼ 0.
However, up to a critical value of μ ∼ 280 MeV, no further
change in the quark masses is observed. Beyond this critical
value, the chiral symmetry starts to restore. By varying the
parameter α, the intensity of the scalar quark-antiquark
fields is altered, which, in turn, modifies the characteristics
of the chiral phase transition. A more detailed analysis
reveals that for α ¼ 0.2, 0.3, 0.4, a first-order phase
transition occurs at μχ ∼ 280 MeV. However, as α is
increased, the curves become smoother, and the chiral
phase transition becomes a crossover. Nevertheless, no
significant impact on the behavior of Mr at finite quark
chemical potential is observed at large α, i.e., α≳ 0.6.
To facilitate a clearer understanding of the chiral phase

transition, we utilize the chiral susceptibility, defined as

χr ¼
∂σr
∂mr

: ð27Þ

The resulting plot is depicted in Fig. 3. The presence of a
singular point on the susceptibility curve at α ¼ 0.4, occur-
ring at a critical chemical potential of μχ ¼ 280 MeV,
indicates a first-order phase transition. On the other hand,
for α exceeding a critical threshold of around α ≳ 0.5, the
curve appears smoother, pointing to a transition to the
crossover phase.
One interesting finding among our results is the diquark

gap Δ1, which is presented in Fig. 4. Specifically, at
α ¼ 0.2, the scalar diquark gap parameter Δ1 assumes a
value exceeding the effective energy scale of the chosen
parameters in NJL model, reaching nearly 850 MeV.
However, for α ≥ 0.25, the corresponding gap parameter

FIG. 2. Effective red quark mass Mr as function of quark
chemical potential for various selected values of α.

FIG. 1. Various quantities obtained as functions of the quark
chemical potential for α ¼ 0.5. Upper panel: effective red quark
mass Mr, effective red quark chemical potential μ̃r, and diquark
gap Δ1 as functions of quark chemical potential. The black star
denotes the typical value of μ̃r at which it first starts to deviate
from the external chemical potential μ. Middle panel: red, green,
and blue quarks’ number densities ρr;g;b as functions of quark
chemical potential. Lower panel: Mr −Mb, −Δ2, as functions of
quark chemical potential.
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Δ1 stabilizes at a more reasonable value of approximately
610 MeV. Consequently, we restrict our discussions to
the range of parameter values starting from α ¼ 0.25

(or equivalently h1=g
ð0Þ
s ¼ 2.25) onwards. For α ¼ 0.3

and 0.4, we observe that the diquark condensate remains
zero in the region where the constituent quark mass retains
its value in the vacuum. As we increase the quark chemical
potential, both the chiral and CSC phase transitions occur
nearly simultaneously near the critical chemical potential
μχ ¼ μΔ1

∼ 280 MeV, with both transitions being of the
first order. When α ¼ 0.5 and 0.6, the chiral phase tran-
sition shifts to a crossover, and the scalar diquark con-
densates Δ1 demonstrate a continuous increase from zero.
The influence of the strength of the diquark coupling

constant on the properties of the chiral and superconducting
phase transitions can be explained using Eq. (6). Smaller
values of α (α≲ 0.5) correspond to stronger coupling
constants in the diquark channels. Accordingly, the ratio

of h1=g
ð0Þ
s is large, causing the scalar diquark condensate

Δ1 to escalate rapidly from zero to a nonzero value (e.g.,

∼400 MeV for α ¼ 0.3, with h1=g
ð0Þ
s ¼ 1.75), as observed

in Fig. 4. Previous NJL calculations with scalar diquark
interaction found similarly large Δ1 diquark gap [27]. In
contrast, for α ¼ 0.5, 0.6, the critical chemical potentials
for chiral phase transition are μχ ∼ 315 MeV and μχ ∼
325 MeV in Fig. 2, and the scalar diquark condensates Δ1

only appear around ∼290 MeV and ∼316 MeV, respec-
tively, as shown in Fig. 4. These findings suggest that
greater magnitudes of diquark condensates (smaller values
of α) not only lead to the maximum gap Δ1 becoming
greater, but also to the diquark condensates arising at
a lower chemical potential. Additionally, the region of
mixed broken phase μχ − μΔ1

is wider for α ¼ 0.5 than for
α ¼ 0.6. When μ < μΔ1

, chiral symmetry is broken. In the
region between μΔ1

and μχ , both chiral and color sym-
metries are broken. When μ > μχ , partial restoration of
chiral symmetry occurs, and color superconductivity domi-
nates. Moreover, for α exceeding 0.6, the attractive diquark
interaction channel is weak, and the diquark condensates
become too small to observe.
Figure 5 illustrates the behavior of the vector diquark

condensate Δ2, which has a sign opposite to Δ1 and is more
than one order of magnitude smaller. For α ¼ 0.3 and 0.4,
the magnitude of −Δ2 decreases as chemical potential
increases. The behavior of Δ2 as a function of chemical
potential, shown in Fig. 5, is closely connected to the nature
of the phase transition. Specifically, for α ¼ 0.3 and 0.4, the
chiral phase transition is a first-order transition, as pre-
viously observed in Figs. 2 and 3; accordingly, −Δ2 jumps
from zero to a nonzero value at the threshold chemical
potential. For α ¼ 0.5 and 0.6, when the chiral phase
transition becomes a crossover, nonzero values of −Δ2 also
appear near ∼290 MeV and ∼316 MeV, respectively, in
agreement with the corresponding results for Δ1.
Our results indicate that the parameter α has a significant

impact on the characteristics of the phase transition, which
arise from the interplay between the q̄q and qq channels. A

higher value of α corresponds to a lower h1=g
ð0Þ
s ratio,

resulting in a weakened diquark coupling strength h1 at the
FIG. 4. Diquark gap Δ1 as function of quark chemical potential
for various selected values of α.

FIG. 5. Diquark gap Δ2 as function of quark chemical potential
for various selected values of α.

FIG. 3. Chiral susceptibility as function of quark chemical
potential at zero temperature for α ¼ 0.4, 0.5, 0.6, highlighting
the transition from a first-order phase transition to a crossover.
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fermi surface. Consequently, the diquark gap Δ1 decreases,
and both the chiral phase transition and color supercon-
ductivity phase transition become crossovers from first-
order transitions. This phenomenon is reminiscent of the
findings in the NJL model when studying the chiral phase
transition without diquark condensates: a first-order phase
transition transforms into a second-order transition or a
smooth crossover when the coupling strength in the
repulsive vector channel exceeds a certain value [51].

V. SUMMARY AND CONCLUSION

The existence of the CSC phase at finite densities makes
the QCD phase diagram more complex and fascinating. In
this study, we employ the Fierz transformation to incor-
porate diquark interactions self-consistently within a modi-
fied NJL-type model. Through mean-field approximation,
we analyze the chiral condensate and the diquark con-
densate on equal footing in the two-flavor case, while also
discussing the order of the chiral phase transition by
examining the chiral susceptibility.
We observe that the nature of the phase transition and

the magnitude of the diquark gap depend on the relative
strengths of q̄q and qq interacting channels, which are
quantified by the parameter α assigned to each channel. Our
investigation reveals that for α values exceeding 0.25,
unphysically large diquark gaps are obtained, pointing to
a restriction on the maximum allowed value of α. Within
the range of α values ranging from 0.25 to 0.6, changes in
the relative strength are observed, giving rise to a trans-
formation of both the chiral and CSC phase transitions from
first order to crossover. When α surpasses 0.6, the effective
mass versus chemical potential relationship becomes indis-
tinguishable, and the diquark gap becomes too small to be
detectable.

We conducted a detailed analysis of the competition
mechanism among different phases. In our model, the
chiral condensate and diquark condensate compete for
the same quark, with the larger of the two condensates
suppressing the smaller one. Thus, smaller α, or a larger

magnitude of h1=g
ð0Þ
s , promotes the formation of CSC and

increases the diquark gap Δ1. Our results indicate a
physical magnitude of scalar diquark gap Δ1 of approx-
imately 400 MeV or greater, while the vector diquark
condensate Δ2 is found to be small. The presence of
diquark condensates leads to spontaneous breaking of
the color gauge symmetry, resulting in slight distinctions
between the condensates of red and blue quarks involved in
pairing. However, this effect is found to be negligible in
our study.
To gain a better understanding of the CSC phase, future

research within this framework must constrain the range of
α. This constraint is particularly important when contrast-
ing theoretical results with available observations, such as
those concerning CSC compact stars [15,56–59]. For such
purposes, neutral conditions must be imposed since the
stellar matter will be in beta equilibrium. Additionally,
despite the heavier mass of strange quarks compared to up
and down quarks, their appearance in the core of compact
stars remains a possible scenario. Comprehensive inves-
tigations in this area are already underway.
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