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The existence of quark matter inside the heaviest neutron stars has been the topic of numerous recent
studies, many of them suggesting that a phase transition to strongly interacting conformal matter inside
neutron stars is feasible. Here we examine this hybrid star scenario using a soft and a stiff hadronic model,
a constituent quark model with three quark flavors, and applying a smooth crossover transition between
the two. Within a Bayesian framework, we study the effect of up-to-date constraints from neutron star
observations on the equation-of-state (EOS) parameters and various neutron star observables. Our results
show that a pure quark core is only possible if the maximum mass of neutron stars is below ∼2.35M⊙.
However, we also find, consistent with other studies, that a peak in the speed of sound, exceeding 1=3, is
highly favored by astrophysical measurements, which might indicate the percolation of hadrons at ∼3–4n0.
Even though our prediction for the phase transition parameters varies depending on the specific
astrophysical constraints utilized, the position of the speed of sound peak only changes slightly, while
the existence of pure quark matter below ∼4n0, using our parametrization, is disfavored. On the other hand,
the preferred range for the EOS shows signs of conformality above ∼4n0. Additionally, we present the
difference in the upper bounds of radius estimates using the full probability density data and sharp cutoffs
and stress the necessity of using the former.

DOI: 10.1103/PhysRevD.108.043002

I. INTRODUCTION

Neutron stars (NSs) are one of the end points of stellar
evolution formed in core-collapse supernovae with a
progenitor mass of 8M⊙ or more. NSs are so compact
that the central energy density can reach several times the
one of nuclear matter at saturation. At these high densities,
new particles could emerge and/or matter is transformed to
a new phase characterized by approximate chiral symmetry
restoration, which is dubbed the hadron-quark phase
transition (see, e.g., Ref. [1] for an introduction).
In the last few years, observations of NSs revealed

several breakthrough measurements of their global
properties. So it is now well established that pulsars,
rotation-powered NSs, can have masses of around two
solar masses [2–6], as determined from the timing of the
pulses of NSs in binary systems with corrections from

general relativity, such as the pulsar PSR J0740þ 6620

with a mass of M ¼ 2.08� 0.07M⊙ [6]. NSs with a low-
mass stellar companion, so-called black-widow or redback
pulsars, can have even higher masses. These masses are
extracted from the observation of the stellar companion and
amount to M ¼ 2.11� 0.04M⊙ for PSR J1810þ 1744,
M ¼ 2.22� 0.10M⊙ for PSR 1311-3430, and even
M ¼ 2.35� 0.17M⊙ for PSR J0952-0607 [7–9].
Furthermore, the mass and radius of NSs could be

constrained directly with the phase-resolved observations
of the hot spots on the surface of the NS with the NICER
mission for PSR J0030þ 0451 [10–12] and PSR J0740þ
6620 [13–15]. Analysis of the gravitational wave (GW)
event GW170817 of a binary NS merger reveals that NSs
must have a rather small radius. The limit on the tidal
deformability inferred from the GW has been extracted
for low and high spins of the merging NSs and under
different assumptions of the property of NS matter, i.e., the
equation of state (EOS) by the LIGO/Virgo scientific
collaboration [16–18]. The limit on the radius has been*takatsy.janos@wigner.hu
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inferred by various groups to be less than R ≤
13.2–13.7 km for a 1.4M⊙ NS (see Refs. [19–22]).
Because of the high densities present in the cores

of the most massive NSs, it is possible that hybrid stars
exist with cores containing deconfined quark matter. The
possibility of such a hadron to quark phase transition
in NSs has been the topic of numerous recent studies.
Many of them have investigated the impact of a strong
first-order phase transition on astrophysical observables
[23,24], as such a phase transition is proposed by effective
quark-meson models. However, recent astrophysical mea-
surements seem to rule out strong first-order phase
transitions at low densities, while making their existence
unlikely at higher densities as well [25–28]. Another way
to look for an indication of deconfinement inside NSs is to
investigate if the conformal limit is approached. Multiple
studies suggest that the existence of conformal matter
inside NSs is feasible, which might indicate the existence
of hybrid stars [29,30]. Contrary to a first-order phase
transition, many recent studies propose an alternative
scenario with a peak appearing in the speed of sound
and reaching above the conformal limit [30–32]. This
possibility is naturally achieved in models of the so-
called quarkyonic matter (e.g., [33,34]). Recent inves-
tigations of color superconductivity using functional
methods also independently found such a peak in their
models [35–37].
Despite recent developments in the fields of the complex

Langevin method or alternative expansion schemes [38–40],
the sign problem still poses a huge challenge for first-
principle calculations of quantum chromodynamics (QCD).
Therefore, when trying to describe strongly interacting
matter at finite densities and low temperature, an effective
treatment of the strong degrees of freedom is reasonable.
The nuclear EOS below saturation density is well

established. Here, two- and three-body interactions are
determined by experimental data mostly based on
nucleon-nucleon scattering and properties of light nuclei
(e.g., [41,42]). For these microscopic methods, the source
of uncertainties usually stems from the interactions applied,
as well as the calculation methods themselves [43,44]. In
addition to higher-body interaction becoming more impor-
tant at higher densities, one might also need to account
for new degrees of freedom, such as hyperons or quarks.
Chiral effective field theory (EFT) provides a robust way to
estimate these uncertainties [45,46]. According to state-of-
the-art calculations, the uncertainties of the nuclear EOS
above ∼1.1n0 become increasingly significant, with n0
being the baryon density at nuclear saturation [47,48].
Hadron resonance gas models provide a different way to
calculate the low-density EOS, while accommodating
lattice data [49,50]. Another common way to account for
the low-density behavior of hadronic matter is to apply a
relativistic mean field model with parameters set by nuclear
properties at saturation (e.g., [51–53]).

On the opposite side of the phase diagram, at very high
densities, due to the asymptotic freedom, one can resort to
perturbative QCD methods [54,55]. This area, however,
despite what its name might suggest, is remarkably
challenging due to an infinite number of diagrams that
need to be accounted for at a given order. In fact in the
past several decades, only few advancements have been
reported in this field, with recent studies calculating the
leading contributions to N3LO [56]. Considering the zero
temperature EOS, this method gives reliable results at
μB ≳ 2.5 GeV, or equivalently, nB ≳ 40n0.
Therefore, there is more than an order of magnitude

in density, where the EOS is largely uncertain. Several
approaches exist in this region as well, apart from the
ones that extrapolate from saturation properties of nuclear
matter [57], one might also use Nambu–Jona-Lasinio (NJL)
or linear sigma-type models, which are based on the global
symmetries of QCD, especially on chiral symmetry and the
premise of chiral symmetry restoration at high densities
(e.g., [58–62]). In this region, the phase boundaries are also
ambiguous. Quark deconfinement can occur at virtually
any densities in this uncertain domain, while there are also
strong indications for the existence of a color supercon-
ducting phase at densities reachable inside the cores of
massive NSs [63–65]. Extensive studies of the NJL-type
models exist in the literature, with nonlocal interactions
also being considered in recent studies [66–68].
Many recent studies investigate this topic in a model-

agnostic way, using general, parametrized equations of
state [29,32,69,70] or using a constant speed of sound
construction, with no underlying microphysical input for
the quark part of the EOS [71,72]. In this paper, we instead
utilize equations of state derived from a ULð3Þ × URð3Þ
chirally symmetric constituent quark-meson model devel-
oped by our group [73–76]. At zero density and finite
temperature, this model manages to comply with lattice
results remarkably well [74], while the parameters of this
model are also carefully determined using meson vacuum
phenomenology, which is not typical of similar studies.
This way, our approach incorporates physical constraints
from vacuum phenomenology and QCD thermodynamics
at finite temperature. On the other hand, NS observations
provide additional constraints for our model parameters
undetermined by the parametrization. We use a hybrid
approach in describing NSs with quark cores, utilizing
relativistic mean field models at low densities [the Steiner-
Fischer-Hempel (SFHo) and the density-dependent (DD2)
models [51–53] ], equations of state from our constituent
quark model at high densities, while a smooth interpolation
is applied between the two parts. Similar studies, using
NJL-type models, are also available in the literature (see,
e.g., Refs. [77–80]). We are going beyond previous works
by utilizing a general concatenation scheme and presenting
an in-depth analysis of the allowed parameter regions of
our constituent quark model, including the most recent
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astrophysical constraints. We also investigate how our results
compare to studies using a model-agnostic approach.
This paper is organized in the following way. In Sec. II,

we review the method we used to construct hybrid equations
of state for cold NS matter, then after summarizing recent
results from NS observations we introduce our Bayesian
framework. In Sec. III, we show the results from our
Bayesian analysis and demonstrate how different astrophysi-
cal measurements influence the outcome of these.

II. METHODS

In this section, we first review how our hybrid EOS is
constructed, then after an overview of the calculation of
NS observables and recent observations, we proceed to
describe the details of our Bayesian analysis, devoting
special attention to how our posterior probabilities are
calculated.

A. Equation of state

To be able to investigate the effect of variations in the
properties of our quark model on stable sequences of NSs,
we need to construct a reliable EOS covering a large range
in density from below saturation density up to nB ≈ 5–6n0,
where n0 is the baryon density at nuclear saturation.
As already mentioned in Sec. I, we use a hybrid

approach, combining equations of state from hadronic
and quark matter. For the hadronic part, we use two
relativistic mean field models, the Steiner-Fischer-
Hempel model [51] and the density-dependent model of
Typel et al. [52,53]. We obtained both equations of state
from the CompOSE database [81]. Both models are
consistent with chiral EFT calculations at low densities,1

but differ in the stiffness at higher densities; while the SFHo
EOS is relatively soft, the DD2 EOS is quite stiff, with
maximally stable NS masses of ∼2.05M⊙ and ∼2.42M⊙,
respectively.
For the quark part, we utilize the (axial) vector meson

extended linear sigma model (eLSM), developed and thor-
oughly investigated in several previous papers [73–76] with
investigations about the large-Nc behavior as well [87]. This
is a three-flavor quark-meson model containing constituent
quarks and the complete nonets of (pseudo)scalar and (axial)
vector mesons. The advantage of this model—altogether
with the parametrization procedure and the approximations
that were used—is that it reproduces the meson spectrum
(and also various decay widths) quite well at T ¼ μB ¼ 0,
and moreover, its finite temperature version also agrees well
with various lattice results [74]. The detailed description of
the approximation we use in this paper can be found in

Ref. [88], wherewe have also already provided a comparison
between the sequences of static (nonrotating) NSs predicted
by the model and astrophysical observations.
It is worth noting that, due to various particle mixings in

the scalar sector, there is more than one possibility to assign
scalar mesons to experimental resonances [73]. Possibly
stemming from this mixing is that the mass of the sigma
meson needs to be very low in our model in order to achieve
a correct finite temperature behavior and to reproduce other
meson masses correctly. This problemmight be resolved by
considering additional bound quark states, such as tetra-
quarks. However, as we showed in Ref. [88], this low sigma
meson mass, within the framework of this model, is also
consistent with astrophysical observations.
Nevertheless, similar to the analysis in Ref. [88], we

leavemσ as a free parameter and let it vary between 290 and
700 MeV. Another important parameter, which is not fixed
by experimental data in the approximation we use, is the
coupling between vector mesons and constituent quarks.
We vary this parameter in the range gV ∈ ½0; 10�.
Since the low- and high-density models operate with

different degrees of freedom, we need to utilize some
effective method to arrive from one phase to another. The
simplest way to do this, which we will also follow in our
paper, is to simply interpolate between the two zero
temperature equations of state in some intermediate-density
region (see, e.g., Refs. [89–92]). Also similar to other
studies, we use a polynomial interpolation; however, in
contrast to using the pressure pðμBÞ as a thermodynamic
potential for the interpolation, we use the energy density
εðnBÞ. We do this, since we find that this way the sound
speed in the intermediate region shows a less sharp peak,
and therefore a larger ensemble of equations of state will
turn out to be causal.
In case the hadronic EOS εHðnBÞ is valid up to nBL,

and the quark EOS εQðnBÞ can be utilized above nBU, the
interpolating polynomial looks like

εðnBÞ ¼
XN
k¼0

CknkB; nBL < nB < nBU; ð1Þ

where the coefficients Ck are determined so that the
energy density and several of its derivatives remain
continuous in the whole region. In our case, we use a
fifth-order polynomial, so we need the energy density and
its first and second derivatives to be continuous at the
boundaries. The first derivative of the energy density with
respect to the baryon number density is the baryon
chemical potential, so this condition will ensure that
the pressure is also continuous at the boundaries. The
condition for the second derivative, in addition, ensures a
continuous speed of sound.
From nBL and nBU we define the central density and

width of the phase transition as n̄ ¼ ðnBU þ nBLÞ=2 and
Γ ¼ ðnBU − nBLÞ=2, respectively.

1See, e.g., Fig. 9 of Ref. [82] at the relevant density
above ∼0.5n0, below which the EOS is strongly influenced
by nuclear clustering, and thus the proper crust EOS has to be
used [57,83–85], which we extracted from the unified EOS by
Douchin and Haensel [86].
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As a further remark, we add that a Maxwell construction
is also a common way to get from one phase to the other;
however, this method limits the possible range of concat-
enations by requiring the pðμBÞ curves of the two phases to
cross each other and also removes the freedom of choosing
the density at which the phase transition occurs. From a
philosophical point of view, one might also argue that since
both models have a limited region of validity, at inter-
mediate densities one can only assume some interpolation
between the two models.

B. Neutron stars and observations

Here we briefly summarize how one can calculate
different equilibrium properties of NSs given a specific
EOS. For details of these calculations, we refer the reader to
Ref. [88], as well as references therein.
Once we have an EOS pðεÞ, we can obtain mass-radius

relations of NSs by solving the Tolman-Oppenheimer-
Volkoff equations [93,94],

dmðrÞ
dr

¼ 4πr2εðrÞ; ð2Þ

dpðrÞ
dr

¼ −½εðrÞ þ pðrÞ�mðrÞ þ 4πr3pðrÞ
r2 − 2mðrÞr ; ð3Þ

where mðrÞ is the gravitational mass enclosed within a
sphere with radius r, and pðrÞ is the pressure related to the
energy density εðrÞ by the EOS. These equations can
usually only be integrated numerically. The total mass (M)
and radius (R) of the NS for a certain central energy
density εc is obtained through the boundary conditions,
εðr ¼ 0Þ ¼ εc, pðRÞ ¼ 0, and mðRÞ ¼ M.
Another property of NSs that is becoming more and

more important due to the recent and future observations of
inspirals of NSs with GW detectors is the λ tidal deform-
ability parameter (e.g., [16,95,96]). This parameter is
related to the k2 quadrupole tidal Love number through

k2 ¼
3

2
λR−5; ð4Þ

where k2 can usually be obtained by numerical integration
(see, e.g., Refs. [95,97–99]). The dimensionless parameter
Λ̃ measurable through GW observations of binary NSs can
then be calculated by

Λ̃ ¼ 16

13
Λ1

M4
1

M4
tot

�
12 − 11

M1

Mtot

�
þ 1 ↔ 2; ð5Þ

where Mtot ¼ M1 þM2, and where Λ̃ is directly deter-
mined by the phase shift in the GW signal of circular NS
binaries due to tidal effects [100]. Here Λi is the dimen-
sionless tidal parameter of component i, which can be
obtained through

Λi ¼
λi
M5

i

: ð6Þ

There are already several stringent observational con-
straints on what the EOS should look like, with more
expected to come in the near future. These constraints stem
from various sources, such as electromagnetic, GW, or
combined, multimessenger observations.
Masses of NSs, in case they form a binary with an other

object, might be measured with remarkable precision,
using, for example, the Shapiro time delay effect. In the
past decade, multiple highly massive NSs have been
observed, providing robust constraints on the stiffness of
the EOS [101–103]. From these, until recently, the most
massive was PSR J0740þ 6620, with a mass of 2.08�
0.07M⊙ and a 95.4% lower bound of 1.95M⊙ [104]. Since
then, however, several other observations have also raised
notable interest [7,105]. Observations of the black-widow
pulsar PSR J0952-0607 have measured its mass to be
2.35� 0.17M⊙ [8].
A recent observation discovered a very light central

compact object within the supernova remnant HESS
J1731-347. It can either be interpreted as the lightest NS
observed so far, or a quark star with a mass of 0.77þ0.20

−0.17M⊙
and radius 10.4þ0.86

−0.78 km.
Unlike masses, the measurement of radii of NSs is

extremely challenging, and so far, the most accurate x-ray
measurements were able to achieve a precision of ∼10%.
Recent measurements of the NICER Collaboration use the
ingenious idea of examining the rotation-resolved x-ray
spectrum of NSs with hot spots. This, for the first time,
enables the simultaneous measurement of the mass and
radius of a single NS. Two NSs have been measured with
this method so far, one is PSR J0030þ 0451 with a mass
and equatorial radius of 1.44þ0.15

−0.14M⊙ and 13.02þ1.24
−1.06 km

[106] or 1.34þ0.15
−0.16M⊙ and 12.71þ1.14

−1.19 km [107], according
to different collaborations using slightly different methods.
The other pulsar measured was the massive pulsar PSR
J0740þ 6620, with mass 2.08� 0.07M⊙ and reported
radii of 13.7þ2.6

−1.5 km [108] or 12.39þ1.30
−0.98 km [109] at the

68% credible interval.
In addition to these measurements, we have also wit-

nessed the first multimessenger observation of a binary NS
merger, with its GW signal being labeled GW170817. The
first analysis of GW170817 performed by the LIGO-Virgo
Collaboration (LVC) inferred a value of Λ < 800 for
1.4M⊙ NSs in the low-spin limit [16]. A thorough inves-
tigation of this constraint performed by Ref. [19] using a
generic family of equations of state found an upper radius
limit of 13.6 km for 1.4M⊙ NSs, while Ref. [20] arrived at a
radius limit of 13.7 km with higher statistics. A subsequent
study was also performed by the LVC, in which a combined
analysis of tidal deformabilities and NS radii was per-
formed, utilizing various assumptions for the equations
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of state. Here the values of Λð1.4M⊙Þ ¼ 190þ390
−120 and

Rð1.4M⊙Þ ¼ 10.8þ2.0
−1.7 km were found [17]. An additional

assumption of this study was to use a single EOS to
describe both objects, whereas in Ref. [16] the two
equations of state were varied independently. A similar
study, also using a single EOS ansatz, was performed by
Ref. [21], where the authors arrived at a slightly higher
upper limit (Λ < 642, Λ < 698, or Λ < 681 depending
on the prior assumption on the component masses). A
companion study of Ref. [17] was also published by the
LVC at around the same time, where an EOS agnostic
approach was applied [18]. In their study, they investigated
the effect of using various waveform templates, and under
minimal assumptions they found for the upper limit of the
tidal deformability Λð1.4M⊙Þ < 720 [18].
In this paper, we chose to utilize the results of this

analysis with the upper limit of Λð1.4M⊙Þ < 720. The
minimal prior assumptions of this study make it suitable
to use it as a conservative upper limit for the tidal
deformability. Other recent studies also utilize this con-
straint (e.g., [110]). Reference [111] examines previous
studies [17,18,21,112,113], investigates the impact of prior
assumptions, and argues that upper and especially lower
limits on Λ can be misleading without a more detailed
discussion. Another reanalysis has also been done by
Dietrich et al., which found similar upper limits for Λ
(see Table S2 of Ref. [114]).
The electromagnetic properties of the source of

GW170817 were also used to put constraints on NSs. A
lower radius constraint was inferred by Ref. [115] from the
absence of prompt collapse during this event, while an upper
mass limit of 2.16þ0.17

−0.15M⊙ was proposed by Ref. [116] using
a quasiuniversal relation between the maximum mass of
static and the maximum mass of uniformly rotating NSs.
This conclusion rests upon the assumption that the merging
NSs first formed a differentially rotating hypermassive
NS and not a uniformly rotating supermassive one. This
hypothesis is supported by simulations of the dynamical
ejecta and kilonova modeling (e.g., [117]), albeit other
scenarios are not completely ruled out either.
The GW signal of another binary NS merger GW190425

was also observed by the LVC, however, no clear tidal
signature or electromagnetic signal was measured. Because
of this, the binary NS classification only rests on the
estimated masses of the binary components. Yet another
notable GWevent was GW190814, where one of the binary
components resided in the so-called mass gap, with a mass
of 2.5 − 2.67M⊙ [118], which could either mean it was the
lightest black hole (BH) or the heaviest NS observed.
Although the NS scenario seems unlikely, it should not be
ruled out until further evidence is found against it.
Several studies exist that combine all these astrophysical

measurements with nuclear physics and heavy-ion data to
give stringent constraints on the nuclear EOS and the
M − R relation of NSs (e.g., [113,119–124]). Bayesian

investigations are also available in this field (e.g.,
[32,70,78,79]), while other studies use deep neural net-
works to constrain the EOS [125,126]. In this paper, we
also apply a Bayesian approach. However, we concentrate
on hybrid stars, where the properties of quark matter are
calculated from an effective model of QCD, with the
correct behavior at zero density and finite temperature.
Among others, we focus on the restriction of quark model
parameters, the parameters of the concatenation, and the
conditions for the existence of a pure quark core.

C. Bayesian inference

Suppose our EOS, and hence the properties of NSs, can
be described by a set of parameters ϑ. The probability of
specific data being measured, given a specific EOS, is
pðdatajϑÞ. Then we can use Bayes’ theorem to determine
the probability of a specific parameter set, given data from a
measurement,

pðϑjdataÞ ¼ pðdatajϑÞpðϑÞ
pðdataÞ ; ð7Þ

where pðϑÞ is our prior assumption about the parameter
sets, and pðdataÞ is just a normalization constant.
Our parameter space consists of the four parameters:

mσ , gV , n̄, and Γ. We vary n̄ between 2n0 and 5n0, Γ
between n0 and 4n0, and gV between 0 and 10. In order to
vary mσ, we need to reparametrize our model, which is
computationally expensive and even conceptually differ-
ent since we end up with a reparametrized model, which is
not needed if we change other parameters of the model.
Therefore, we do not vary the sigma meson mass con-
tinuously, but rather choose five different values for mσ:
290 MeV, from the original parametrization of the
eLSM [88], as well as 400, 500, 600, and 700 MeV.
We sample the other three parameters on a grid. Many
Bayesian studies apply a Markov chain Monte Carlo
approach with the appropriate sampler to obtain the
posterior distributions of the model parameters [112].
However, due to the low dimensionality of our parameter
space, sampling the parameters on a grid in advance is
justified. Many recent Bayesian studies also utilize such
a presampled set of equations of state [114,119,127].
Sampling the model parameters on a grid is also not
unprecedented (see, e.g., [78,127]) and is justified by the
discretized values we take for mσ. We choose the a priori
probability for all parameter sets to be equal; hence, in this
sense, our prior can be considered nearly uniform in our
four-dimensional parameter space.
The equations of state generated using these parameters

still need to comply with some basic requirements.
We ensure that the low-density EOS is described by the
hadronic EOS by discarding parameter sets with n̄−Γ<n0.
Additionally, we require stability and causality for all
equations of state. Ultimately, we end up with a set of
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∼18000 equations of state, for which the posterior prob-
abilities are calculated.
In addition to our choice for prior in the parameter space,

when calculating posterior probabilities for different astro-
physical observations, the prior for the NS mass distribu-
tion is assumed to be uniform. We note here that a choice
for the NS mass prior that does not match the observed
distribution can lead to large biases in the Bayesian
inference after Oð25Þ observational events (see, e.g.,
Refs. [128,129]). For the time being, we can safely assume
a uniform prior without having to worry about these biases.
Eventually, however, a self-consistent hierarchical frame-
work that simultaneously models equations of state and NS
populations will be necessary [130]. For further discussion
about the uniform population prior, we refer the reader to
Refs. [130–132].
The conditional probability pðdatajϑÞ can be obtained

as a product of several independent astrophysical
observations,

pðdatajϑÞ ¼ pðMmaxjϑÞpðNICERjϑÞpðΛ̃jϑÞ; ð8Þ

where we detail the specific observational constraints
below. Also note that, since only the proportions of the
probabilities for different parameter sets are meaningful, we
can neglect constant normalization factors in front of our
conditional probabilities.

1. Compatibility with perturbative QCD

Even without any astrophysical constraints, our EOS
should comply with some basic physical requirements.
First and foremost, our EOS should be causal, meaning

c2s ¼
dp
dε

≤ 1: ð9Þ

In addition, however, we can also use input from
perturbative QCD calculations, similar to Refs. [133,134].
We know that at some density nQCD strongly interacting
matter should have a baryon chemical potential μQCD and a
pressure pQCD. On the other hand, we require our hybrid
EOS to be valid up to the density present in the center of the
most massive NS described by that specific EOS. This point
is described by nNS, μNS, and pNS. However, these equations
of state should be in accord with each other and therefore
there should exist a thermodynamically allowed connection
of the two. Therefore, we assume in the core of NSs that
μNS ≤ μQCD and require stability and causality,

nNS ≤ nQCD; pNS ≤ pQCD; ð10Þ

nNS
μNS

≤
nQCD
μQCD

; ð11Þ

where we used the fact that a causal EOS crossing the
point ðμ; nÞ has a slope dn=dμ ≥ n=μ.
We obtain an additional integral constraint from the

definition of the difference in pressure,

Δp ¼ pQCD − pNS ¼
Z

μQCD

μNS

nðμÞdμ: ð12Þ

The integral here depends on the specific way we connect
the two points; however, it can be easily shown that it falls
between the two limiting cases (see, e.g., Ref. [133]),

Δpmin ≤ Δp ≤ Δpmax; ð13Þ

with

Δpmin ¼
μ2QCD − μ2NS

2

nNS
μNS

; ð14Þ

Δpmax ¼
μ2QCD − μ2NS

2

nQCD
μQCD

: ð15Þ

For the perturbative QCD EOS, we use the values
calculated by Ref. [135] and utilized in Ref. [133] with
a renormalization scale parameter X ¼ 2; hence, μQCD ¼
2.6 GeV, nQCD¼6.47 1=fm3, and pQCD¼3823MeV=fm3.

2. Mass constraints

We use PSR J0348þ 0432 with a mass 2.01� 0.04M⊙
and PSR J1614-2230 with a mass 1.908� 0.016M⊙ to put
a lower limit on the maximum mass of NS mass-radius
relations. In order to avoid double counting, we do not
include here the mass measurement of PSR J0740þ 6620,
since it is included as a NICER measurement. We also
similarly include the upper mass bound from Ref. [116].
We then approximate the likelihood functions by error
functions,

pðMmaxjϑÞ ∝
Y
i¼1;2

1

2

�
1þ erf

�
MmaxðϑÞ −Miffiffiffi

2
p

σi

��

×
1

2

�
1 − erf

�
MmaxðϑÞ −MUffiffiffi

2
p

σU

��
; ð16Þ

where erf is the error function. For the upper mass limit
from the hypermassive NS scenario, we useMU ¼ 2.16M⊙
and set the standard deviation conservatively to σU ¼
0.17M⊙, while M1 ¼ 2.01M⊙, σ1 ¼ 0.04M⊙ and M2 ¼
1.908M⊙, σ2 ¼ 0.016M⊙.

3. NICER measurements

For the two NICER measurements, we use the kernel
density estimated probability density pNðM;RÞ, utilizing
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the data provided by Refs. [106,108]. The likelihood for a
single measurement is then given by

pðNICERjϑÞ ∝
Z

dMdRpNðM;RÞδðR − RðM;ϑÞÞ

¼
Z

dMpNðM;R ¼ RðM;ϑÞÞ: ð17Þ

Note that the uniform mass population prior is already
included in this formula.

4. Tidal deformability measurement

The chirp mass of the source of GW170817 was
measured very precisely by the LVC to be

M ¼ ðM1M2Þ3=5
ðM1 þM2Þ1=5

¼ ð1.186� 0.001ÞM⊙; ð18Þ

where M1 is conventionally considered to be the mass of
the NS with the larger mass. We then use the joint posterior
probability density pGWðΛ̃; qÞ, provided by Ref. [118],
where q ¼ M1=M2 is the mass ratio. The accurate meas-
urement essentially determines the secondary mass M2 for
a specific primary mass M1. Then, utilizing the EOS, Λ1

and Λ2 can be determined and therefore Λ̃ as well. We then
calculate the conditional probability as

pðΛ̃jϑÞ ∝
Z

Mmax

Meq

dM1pGWðΛ̃ðM1;M;ϑÞ; qðM1;MÞÞ;

ð19Þ

where Meq ¼ 1.362M⊙ corresponds to a mass ratio of
q ¼ 1, and Mmax is the mass of the maximally stable NS.

5. BH hypothesis

Based on some properties of the electromagnetic counter-
part of GW170817, some previous works have suggested
that the remnant collapsed to a BH (e.g., [116,117,136]). We
refer to this as the BH hypothesis. In order to incorporate this
assumption in our analysis, we utilize baryon number
conservation during the merger event,

N1 þ N2 ¼ Nremn þ Nej; ð20Þ

where N1 and N2 are the baryon numbers of the two
component NSs, while Nremn and Nej are the baryon
numbers corresponding to the remnant and the ejecta,
respectively. Similar to Refs. [110,134], we use the
assumption Nej ≈ 0. Hence, in order for the remnant to
collapse to a BH we must have N1 þ N2 > Nmax, where
Nmax is the baryon number of the maximally massive
stable NS. To add this assumption to our analysis, we
discard every pair of NSs during the integral in Eq. (19), for

whichN1 þ N2 ≤ Nmax. Since values thatN1 þ N2 can take
are primarily determined by experiment and higher values
become more and more improbable, this gives an upper
bound for N1 þ N2, which, in turn, gives an upper bound on
the maximum mass of NSs, Mmax ≲ 2.53M⊙.
Somewhat more speculatively, one can assume that the

remnant for a brief time remained a hypermassive NS, after
which it quickly collapsed to a BH (e.g., [116]). We
implement this assumption using the upper mass bound
MU mentioned earlier in this section. We refer to this
scenario as the hypermassive NS hypothesis.
In addition, we can include the assumption that the

inspiral did not end in a prompt collapse to a BH. In this
case, we discard pairs of NSs, for which the total mass is
above the threshold mass for prompt collapse to a BH. We
use this assumption in all of our results that include the BH
constraint in any form. Several approaches exist to calculate
this threshold mass [137,138]. Here we utilize the nonlinear
relation given by Ref. [138], calibrated by numerical
relativity simulations,

Mth

Mmax
¼ a −

b
1 − c · Cmax

; ð21Þ

where Cmax ¼ Mmax=Rmax is the compactness of the
maximum mass configuration, and the parameters are
b ¼ 1.01, c ¼ 1.34, and a ¼ 2b=ð2 − cÞ. Hence, we only
perform the integration in Eq. (19) for configurations
where Mtot ¼ M1 þM2 < Mth.

6. Mass-gap compact object

As we discussed in Sec. II B, an object in the mass
gap was observed in the event GW190814 with a mass
M ¼ 2.59þ0.08

−0.09M⊙ in the 90% credible interval [118]. In
our analysis, we also investigate what happens when we
require this object to be described as a NS. We use a similar
error function as for the other mass constraints with a mean
Mgap ¼ 2.59M⊙ and a standard deviation σgap ¼ 0.055M⊙,
assuming normal distribution.

III. RESULTS

In this section, we discuss our results from our analyses.
In Sec. III A, we investigate how well the maximum mass
of hybrid stars can be predicted by the parameters of the
quark component. In Sec. III B, we show our results from
our Bayesian analysis with various constraints included.

A. Dependence of Mmax on constituent quark
model parameters

In Ref. [88] we already showed in selected cases how the
maximummass of hybrid star sequences produced by using
the eLSM for the quark component correlates with the
parameters chosen for our quark model. Here we also
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investigate this correlation on the whole span of the
parameter space.
The results are shown in Fig. 1. The three different

panels show results for three different values of the sigma
meson mass, with mσ ¼ 290 MeV being the one preferred
by the parametrization. For a specific parameter set
fmσ; gVg, we have gathered the maximum masses from
all the different concatenations and plotted the median and
the 90% confidence intervals. The width of these intervals
can be even lower than �0.05M⊙ for Mmax ∼ 2M⊙, while
they moderately increase for higher median masses to
�0.15 − 0.2M⊙. We can also observe that changing the
hadronic EOS (red and yellow points) does not make any
significant change in the maximum masses.
We try to quantify this correlation by making a linear fit

to the points above gV ¼ 1, since below that the depend-
ence is clearly nonlinear. The fitting function is then

Mmax

M⊙
¼ αð1þ γ · m̄σÞ þ β · gVð1þ δ · m̄σÞ; ð22Þ

where

m̄σ ¼
mσ

500 MeV
; ð23Þ

and where the cross term with the coefficient δ is necessary
since the slope of the linear fit changes for different sigma
masses.
The parameters obtained from the fit are

α ¼ 0.962� 0.010;

β ¼ 0.284� 0.003;

γ ¼ 0.780� 0.013;

δ ¼ −0.426� 0.014; ð24Þ

with a goodness-of-fit value R2 ¼ 0.952. The fitted func-
tion is shown in Fig. 1 by the purple lines. Because of δ
being negative, we get the largest slope formσ ¼ 290 MeV.

B. Bayesian analysis results

During our Bayesian analysis, we incorporate con-
straints from astrophysical observations in a specific order.
After establishing our prior, we include the minimal
constraints, namely, the requirement for consistency with
perturbative QCD (pQCD) calculations and lower mass
limits from the 2M⊙ NSs. Then we apply the two NICER
measurements, since these are the least constraining on our
prior. After that, as another well-established constraint, we
apply the tidal deformability measurement of GW170817,
which, generally speaking, constrains the radii of 1.4M⊙
NSs from above. These measurements constitute our
canonical set of constraints.
On top of these, we also investigate the effect of other

measurements as well. First, based on the hypermassive NS
hypothesis, we put an upper limit on the maximum mass of
NSs. As an alternative scenario, we incorporate a weaker
constraint, the BH hypothesis, and explore the consequence
of assuming the mass-gap object in GW190814 was a very
massive NS. Finally, we also briefly review the effect of
adding the recent measurement of the light compact object
in HESS J1731-347 to our canonical set of constraints on
top of the BH hypothesis. During these steps, we try to
monitor how the posterior probabilities evolve in the
parameter space. We also investigate the radius distribution
of 1.4M⊙ and 2M⊙ NSs during each step. The parameter
set with the maximum posterior probability is also deter-
mined for each case.
Additionally, we also explore how sharp cutoffs at the

90% credible intervals of measurable quantities from
each astrophysical constraint would affect the allowed
regions on the mass-radius diagram and compare these
results to the ones obtained from the Bayesian analysis.
For the 2M⊙ constraint, the cut is achieved by requiring
Mmax > 1.95M⊙, which corresponds to the two-sigma
lower bound for the mass of PSR J0740þ 6620 [6].
For the NICER measurements and the HESS object,
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FIG. 1. The maximum mass of stable NSs as a function of the
gV vector meson coupling, for different sigma masses. For
specific constituent quark model parameters, the circles denote
the median, while the error bars denote the 90% confidence
interval of maximum masses obtained by applying the complete
ensemble of different concatenation parameters. The two differ-
ent colors correspond to the SFHo (red) and the DD2 (yellow)
hadronic EOS. The fitted relation is visualized by the purple lines.
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the requirement is that the M − R curves should cross the
two-sigma contour lines of the given measurement. The cut
for the tidal deformability measurement of GW170817 is
established in the following way. For a given EOS, we
calculate all the possible Λ̃ values between Meq < M1 <
1.6M⊙ and keep the EOS if Λ̃ < 720 for any configuration.
Pairs of NSs with Mtot > Mth are discarded, while pairs
with N1 þ N2 ≤ Nmax are also discarded when the BH
hypothesis is included. The upper mass bound from the
hypermassive NS hypothesis is taken to be 2.33M⊙, while
the lower mass bound from the mass-gap object is taken
as 2.5M⊙.
We divide our analysis into two separate parts. First, we

restrict the sigma meson mass to mσ ¼ 290 MeV and the
hadronic EOS to the relatively soft SFHo EOS. This keeps
our discussion more transparent when investigating the
evolution of probabilities in the parameter space. We also
investigate how the predictions change when we use
different combinations of the hadronic EOS and mσ and
include the results in tables. For the second analysis, we
combine all equations of state with different hadronic
equations of state and mσ and try to draw more general
conclusions from the results.

1. Results with the SFHo EOS and mσ = 290 MeV

The marginalized priors and posteriors for the three
unfixed parameters are shown in Fig. 2. The posteriors
correspond to the canonical set of measurements. Even
though we have a uniform grid in the parameter space for
the prior, due to the requirements for stability and causality,
large areas of the parameter space are excluded, and
therefore, the marginals appear to have a structure. The
posterior for the vector coupling gV is consistent with our
expectations from Sec. III A, considering values below
gV ≈ 3 become increasingly improbable due to the 2M⊙
constraint. Lower values for n̄ and Γ also become disfa-
vored. Even though a figure such as Fig. 2 contains a lot of
information about the parameter distributions, due to the
marginalized nature of the probability density functions
(PDFs) in such a figure, some information is necessarily
lost. Therefore, besides the marginalized PDFs shown in
Fig. 2, during the following parts of our analysis, we also
show different slices of the PDFs in order to analyze the
results from a different perspective. We can do this due to
the low dimensionality of our parameter space.
We can also explore the effect of different measurements

on the mass-radius diagram. The results for our canonical
set of measurements are shown in Fig. 3. The left panel
shows the results with the minimal constraints. As men-
tioned before, our prior is taken to be uniform in the
parameter space, as it is clearly visible now in the bottom
panel, where slices of the PDF for different values of Γ are
shown (see the uniform color of the PDFs, apart from the
excluded regions). This does not apply to the leftmost
region, where parameter sets with low gV are not preferred

by the 2M⊙ constraint. Other regions of zero probability
correspond to exclusions. Values of n̄ for which n̄ − Γ < n0
are excluded, since we require our EOS to be described by
the hadronic EOS at least up until n0. The upper right
regions with high n̄ and gV are mostly excluded by the
instability or acausality of the intermediate interpolated
region, and some of them are excluded due to the pQCD
constraint. The sharp edges are the result of our finite grid
on the parameter space.
Regions of the mass-radius diagram retained after the

sharp cutoffs are encompassed by the solid contours.
Examining the top left panel, one can observe that the
highest mass NSs with masses of ∼3.5M⊙ are excluded by
the pQCD constraint (see the region between the black and
gray contours). Our construction for the EOS results in a
stiffening in the intermediate-density region, as we showed
in Ref. [88]. A result of this is that even with the relatively
soft SFHo model as the hadronic EOS we get radii
Rð1.4M⊙Þ≳ 12 km; hence NSs with Mmax ≳ 2M⊙ and
Rð1.4M⊙Þ≲ 12 km are absent from our prior.
Even though we take a uniform grid on the parameter

space, the probability distribution in the M–R plane might
still exhibit irregularities, which is visible in the radius
distributions as well. During the creation of the probability
density plot in the M–R plane, we have to introduce a
metric to be able to properly define densities of curves,
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FIG. 2. Marginalized priors (blue) and posteriors (red) for the
three unfixed parameters characterizing the constituent quark
model and the phase transition. The posterior corresponds to the
canonical set of measurements (i.e., the pulsar mass measure-
ments, the NICER measurements, and the tidal deformability
measurement of GW170817). For the two-dimensional margin-
als, the two contours correspond to the 68% (solid) and 95%
(dashed) confidence intervals.
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since there is no natural connection between “lengths” in
masses and radii. We can sample points along each M − R
curve evenly in baryon number density or explicitly define
a metric connection between line elements inM and R, etc.
Since there is no unique way to introduce this metric, the
distribution obtained will be somewhat arbitrary. Hence,
the prior distribution in itself will not present definitive
information. However, the change between the prior and
posterior distributions is independent of the chosen metric
and hence portrays faithful information about the posterior
probabilities. In our analysis, we choose a metric that
suppresses the PDF at low densities and enhances it at high
densities, in order to obtain an even distribution of points at
all densities.
After taking into account the two NICER measurements

(middle panel in Fig. 3) the probabilities are only slightly
modified, since, as shown in the top panel, even the one-
sigma contours (solid yellow lines) of the two measure-
ments completely overlap with the whole set of M − R

diagrams. The EOS parameters for the maximum posterior
probability case are gV ¼ 6.9, n̄ ¼ 4n0, and Γ ¼ 2.5n0. The
M − R curve for this parameter set is displayed in the
middle panel of Fig. 3.
The change is more drastic when the tidal deformability

measurement is taken into account as well. This measure-
ment significantly constrains radii from above (see the
indication by the yellow arrow) and consequently reduces
the maximally possible NS mass as well to maxðMmaxÞ <
2.8M⊙. In the parameter space, this measurement con-
strains the value of the vector coupling from above, since
large values of gV would correspond to stiff equations of
state, which, in turn, would create NS sequences with large
maximum masses and radii. One can observe that the
probability density plot in the M − R diagram extends
over the black contour to the right. Examining the dis-
tribution of Rð1.4M⊙Þ, one can also verify that, while
the black contour—corresponding to the 90% bound of
Λ̃ < 720—crosses the 1.4M⊙ line at ∼13 km, the 90%
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FIG. 3. Posterior probabilities from our Bayesian analysis in the mass-radius plane (top), as well as in different slices of the parameter
space (bottom). The probabilities displayed correspond to the SFHo hadronic EOS and mσ ¼ 290 MeV, and darker colors indicate
higher probabilities. On the mass-radius diagrams, the outer black contours represent the boundaries of all the possible M − R curves
using the given constraints. Below the mass-radius diagrams, we show the radius distribution of 1.4M⊙ (blue) and 2M⊙ (red) NSs, with
the 90% confidence intervals indicated by the vertical dashed lines. In the bottom, the posterior probabilities with different
measurements in the parameter space are shown in a contour plot, with the two levels indicating the 68% (black) and the 95% (gray)
credible intervals, while different contour styles represent different slices in Γ. The three panels side by side correspond to the posterior
with the 2M⊙ minimal constraint (left), the posterior with the two NICER measurements (middle), and the posterior with the NICER and
tidal deformability measurements from GW170817 (right). All panels contain the pQCDminimal constraint as well. On the left, the gray
contour represents all M − R curves without the pQCD constraint applied (top), while on the middle and right panels the dark green
curves display the maximum posterior probability configurations.
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bound of the radius distribution is ∼13.2 km. This phe-
nomenon was also reported in, e.g., Ref. [32] and reinforces
the necessity of taking the complete data from a given
measurement into account instead of simply bounds from
some credible intervals. The parameter set corresponding
to the maximum probability EOS in this case is gV ¼ 6.5,
n̄ ¼ 4.5n0, and Γ ¼ 2.75n0.
In addition to the canonical measurements, we can

investigate the constraint imposed by the hypermassive
NS hypothesis. Specifically, we can use an upper mass
bound based on Ref. [116]. We did not include this
measurement in our canonical set, since there is still some
ambiguity around the modeling of the kilonova signal
AT2017gfo, and therefore the ejected mass in the merger
event. The results for this scenario are shown in Fig. 4. The
black contour in the top panel that encompasses all the
possible M − R curves that meet all the requirements does
not shrink at lower masses, which is to be expected for a
sufficiently robust ensemble of equations of state. On the
other hand, the 90% credible interval for Rð1.4M⊙Þ shrinks
from a width of 1.10 to 1.04 km and shifts to lower values

from an upper bound of 13.20 to 13.06 km. The main
effect of this step on the parameter space, as expected from
Sec. III A, is an upper bound on the vector coupling, as can
be seen in the lower panel of Fig. 4, which shows the
probability densities for mσ ¼ 290 MeV. The maximum
posterior probability corresponds to the parameter set gV ¼
3.1, n̄ ¼ 3.5n0, and Γ ¼ 2n0, which means nBU ¼ 5.5n0.
Despite this moderate value, this NS does not develop a
quark core.
Alternatively, resolving the hypermassive NS hypoth-

esis, we can keep the BH hypothesis and assume, in
addition, that the mass-gap object in GW190814 was an
extremely massive NS. Even though, by our current
understanding of the nuclear EOS, such a massive NS
seems unlikely, it is still allowed by astrophysical mea-
surements, as we show in Fig. 5. Although together with
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FIG. 4. Same as in Fig. 3, but with the upper mass constraint
from the hypermassive NS hypothesis also applied, in addition to
the NICER and tidal deformability measurements.
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FIG. 5. Same as in Fig. 4, but instead of taking into account the
upper mass bound based on the hypermassive NS hypothesis, we
only include the constraint from the BH hypothesis, while identify-
ing the mass-gap object in GW190814 as a NS. Because of the
statistically low number of equations of state fulfilling these tight
constraints, the shapes of the posterior PDFs become irregular,
and hence we omit them, only showing the 90% radius bounds.
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the BH hypothesis they leave only a narrow region for
the maximum mass of NS sequences (see the yellow band
between 2.5M⊙ and 2.53M⊙). Because of this narrow
permitted region, our statistical ensemble of permitted
equations of state will be greatly reduced, leaving only
∼100 equations of state with sufficiently large posterior
probabilities. Therefore, the posterior radius distributions
will have an irregular shape and will be unreliable, although
the 90% credible intervals might still be used. Note that the
difference here between the black contour in the M − R
diagram and the 90% credible intervals of the radius
distributions is even more pronounced than in the right
panel of Fig. 3. The 90% upper bound on Rð1.4M⊙Þ here is
∼13.3 km, in contrast to the value of ∼12.9 km predicted
by the black contour. The parameters that correspond to the
maximum posterior probability are gV ¼ 4.9, n̄ ¼ 4.25n0,
and Γ ¼ 2.75n0.
Finally, Fig. 6 shows the posteriors when, in addition to

the NICER and tidal deformability measurements, the BH
hypothesis and the constraint from the central compact
object inside HESS J1731-347 is also taken into account.
The two-sigma credible interval of the measurement barely
overlaps with our set of mass-radius curves, however, a
considerable region is still allowed on the M–R plane.
Comparing the posterior probabilities on the parameter
space to those in the bottom right panel in Fig. 3, we see
that with this constraint included parameter sets with a low
value of n̄ are less probable, and the high-probability
regions shift to higher values of n̄. The maximum posterior
probability corresponds to the parameter set gV ¼ 4.7,
n̄ ¼ 4.25n0, and Γ ¼ 2.5n0.
We also performed this analysis for different sigma

meson masses and the DD2 hadronic EOS as well. Our
results for the radius bounds and the highest posterior
probability parameter sets can be found in Tables III–VI of
Appendix. Radius bounds do not change drastically when
using different sigma meson masses, although higher
values of mσ correspond to larger radii. Using the stiffer,
DD2 hadronic EOS, on the other hand, results in a
significant increase in the radius bounds. In case we set
the sigma meson mass to 600 or 700MeV, we are left with a
low number of stable and causal equations of state; there-
fore, we omitted the analysis for these parameters.
So far we have only investigated the effect of various

measurements on the mass-radius diagram and different
gV − n̄ slices of the posterior PDFs. It is also instructive to
look at different n̄ − Γ slices and inspect what can be
inferred about the parameters of the hadron-quark phase
transition. This is shown in Fig. 7, where we calculated the
posteriors on a finer grid compared to the previous figures.
The two rows correspond to two different slices with a fixed
gV . These two slices were chosen to match the parameters
with the maximum posterior probability case in the hyper-
massive NS hypothesis scenario (top) and the mass-gap NS
scenario (bottom). The first three panels in both rows from

left to right show the posterior with the minimal con-
straints, the posterior with the NICER measurements, and
the posterior with NICER and tidal deformability mea-
surements, respectively. The rightmost panel at the top
has the upper mass constraint from the hypermassive
NS hypothesis included as well, while the one at the
bottom contains the lower mass bound from the mass-gap
object and exclusions from the BH hypothesis instead.
Hence, these parameter planes can be viewed as an
evolution of posterior probabilities with the inclusion of
more and more constraints in these two scenarios. The
upper left excluded region corresponds to the requirement
n̄ − Γ ≥ n0, while the lower right part is excluded due to
acausality or instability.
Looking at the top row, at first it might seem like

the hypermassive NS hypothesis broadens the region of
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FIG. 6. Same as in Fig. 3, but with the constraint from the
central compact object inside HESS J1731-347 also applied, in
addition to the NICER and tidal deformability measurements, and
the BH hypothesis.
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high-probability parameters from the third to the fourth
panel. However, this illusion is due to the fact that these
probabilities were normalized by the maximum posterior
probability of the entire parameter space (including all gV
values); hence probabilities in the second and third panels
at the top are suppressed, since the maximum posterior
probabilities in these cases correspond to gV ¼ 6.9
(NICER) and gV ¼ 6.5 (NICERþ Λ̃), respectively, which
are outside the parameter space slices shown in Fig. 7.
Note, however, that it is not the case for the bottom panels,
where the maximum probability case is always closer in gV
to the slice shown. Interestingly, in many cases, higher
posterior probabilities are situated close to the edges of the
allowed regions, adjacent to unstable or acausal equations
of state. This means that the lowest possible value of Γ is
preferred for a given n̄, which also means that astrophysical
observations prefer a very stiff intermediate-density region.
Such stiff intermediate regions are also predicted by the
theory of the so-called quarkyonic matter (see, e.g.,
Refs. [33,34]). The two scenarios depicted in Fig. 7 end
up with different preferred values for n̄ and Γ, and the
preferred value of these parameters also varies from step to
step; hence no robust statement can be made about the

values of the phase transition parameters. However, very
low values of n̄ and Γ are disfavored after taking into
account the tidal deformability measurement, hence the
existence of pure quark matter at densities below ∼4n0 is
also disfavored.

2. Results for the complete EOS ensemble

After performing the analysis for the restricted case,
we repeat it with our complete EOS ensemble in order to
get more representative results for the radius bounds, the
preferred parameters, and also generally for bounds on the
EOS itself. Figure 8 yet again shows the posterior PDFs
on the mass-radius plane and for the radii of 1.4M⊙ and
2M⊙ NSs. We also show the contours as a result of sharp
cutoffs separately for the SFHo (solid contour) and the
DD2 (dashed contour) hadronic equations of state, since at
low densities the two hadronic equations of state produce
very different radii. Additionally, we also show the regions
where, given the specific constraints, hybrid stars with
pure quark cores can exist. For this analysis, we define
matter being in pure quark state when the density is above
nB > nBU ¼ n̄þ Γ, hence the EOS is characterized by our
quark model.
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FIG. 7. Prior and posterior probabilities of different parameter sets in the plane of the phase transition parameters n̄ and Γ, for two
slices with fixed gV . Darker colors indicate higher probabilities (white areas correspond to ∼0 probability), with probabilities having
been normalized by the maximum probability in the complete parameter space (including all gV). Parameter sets with an orange color are
excluded by the requirement n̄ − Γ ≥ n0 or due to acausality and/or instability. The top panels correspond to slices in the parameter
space with gV ¼ 3.1, while the bottom panels have gV ¼ 4.7. These values correspond to the equations of state with the maximum
posterior probability for the hypermassive NS hypothesis and the mass-gap object scenarios, respectively. The first three panels from left
to right both for the top and bottom panels show the posterior with the minimal constraints, the posterior with the NICER measurements,
and the posterior with NICER and tidal deformability measurements, respectively. The rightmost panel at the top has the upper mass
constraint from the hypermassive NS hypothesis included as well, while the one at the bottom contains instead the BH hypothesis
together with the lower mass bound from the mass-gap object in GW190814. Parameter sets with the maximum probability are marked
with a ring.
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An interesting feature of the region of NSs with a pure
quark core is that there is an upper mass bound for these
objects (∼2.35M⊙), which might not seem obvious at first.
However, one can understand this by examining the sound
speed squared in the intermediate-density region (at
∼3–5n0, see, e.g., Fig. 10 in Ref. [88]). First, there is a
stiff peak that is then followed by a valley, which, in some
cases, can get close to c2s ≈ 0. After this valley, the sound
speed increases and only then the quark EOS is reached.
Therefore, equations of state that exhibit a large peak in
the beginning and hence create high-mass NSs have a
huge drop in the speed of sound, which makes these NS
sequences prone to becoming unstable before they can
develop a pure quark core. Interestingly, Ref. [29] finds a
similar upper mass bound for NSs with pure quark cores
(∼2.25M⊙) using a completely different definition for a
pure quark core.

Because of the stiffness of the DD2 hadronic EOS, upper
bounds on radii constrain mass-radius curves with the DD2
EOS even more. The tidal deformability constraint limits
the maximum possible NS mass more significantly than
in the case of the SFHo hadronic EOS, to maxðMmaxÞ <
2.2M⊙. The region of hybrid stars with a pure quark core
also shrinks significantly for the SFHo EOS, and it even
disappears for the DD2 EOS in this case. Adding the
hypermassive NS hypothesis to this measurement does not
constrain M − R curves with the DD2 EOS any further,
neither does it reduce the region of hybrid stars with a quark
core for M − R curves with the SFHo EOS. For the mass-
gap object scenario, interestingly, equations of state created
by using the relatively stiff DD2 EOS for the hadronic part
cannot produce any M − R curves that can satisfy the
conditions Λ̃ < 720 and Mmax > 2.5M⊙ at the same time.
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FIG. 8. Posterior probabilities from our Bayesian analysis in the mass-radius plane, using the complete set of equations of state with
different sigma meson masses, and the SFHo and DD2 hadronic equations of state combined. Darker colors indicate higher probabilities.
The outer black contours represent the boundaries of all the possibleM − R curves using the given constraints for the SFHo (solid) and
the DD2 (dashed) hadronic equations of state. The radius distribution of 1.4M⊙ (blue) and 2M⊙ (red) NSs is also shown, with the
90% confidence intervals indicated by the vertical dashed lines. The measurements taken into account for each panel are indicated above
them. The pQCD minimal constraint is included in every panel. On the left, the gray contour represents all M − R curves without the
pQCD constraint applied (top), while on the middle and right panels the dark green curves display the maximum posterior probability
configurations. The inner blue regions on theM − R diagrams represent NSs with pure quark cores. In the mass-gap object scenario, due
to the statistically low number of equations of state fulfilling the tight constraints, the shapes of the posterior PDFs become irregular, and
hence we do not show them, only the 90% radius bounds.
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This is due to the fact that the first of these two conditions
limits radii of low-mass NSs from above and since a stiff
hadronic EOS generates larger radii, in general, this con-
dition will limit the maximum mass of NSs (as can be seen
in the top right panel of Fig. 8). Therefore, the existence of
very massive NSs is only possible in case the hadronic EOS
is soft enough to produce sufficiently small radii. Another
interesting consequence of the mass-gap object interpreted
as a NS is that none of the NSs would have a core consisting
of pure quark matter in this case. This can be understood
by noting that the maximum mass of such hybrid stars is
∼2.35M⊙, while the minimum required mass for maximally
stable NSs is higher in this case. Considering the measure-
ment from the central object of HESS J1731-347, none of
the NSs with the DD2 EOS is allowed, since they generally
predict large radii for low-mass NSs.
We summarize our results for the calculated posterior

radius distributions of 1.4M⊙ and 2M⊙ NSs for various
astrophysical constraints in Table I and Fig. 9. Note,
however, that these results should be taken with a grain of
salt, since our prior was not preprocessed in order to
acquire a uniform radius prior, which should be done in
order to obtain meaningful results (see, e.g., Ref. [114]).
Note also, that although it is not mentioned in Table I and
Fig. 9 explicitly, our prior includes constraints from our
constituent quark model implicitly, which restrict radii to
values R1.4 ≳ 12 km. The parameter sets corresponding to
the maximum posterior probabilities for different sets of
measurements are summarized in Table II. Interestingly,
all of the maximum posterior probability equations of
state have mσ ¼ 290 MeV and the SFHo EOS for the
hadronic part.
The prior and posterior marginalized one- and two-

dimensional PDFs of the model parameters can be found in

Fig. 13 in the Appendix. Looking at the prior, we can see
that there are very few stable and causal configurations
for mσ ¼ 600 MeV and there are almost none for
mσ ¼ 700 MeV. Even though the maximum posterior
probabilities always correspond to mσ ¼ 290 MeV, equa-
tions of state with higher sigma meson masses are not
suppressed, and they are even enhanced for the hyper-
massive NS hypothesis scenario.
We also study the amount of quark matter contained in

hybrid stars that have a quark core. We identify a NS core
being made out of quark matter in case the baryon density
rises above nBU ¼ n̄þ Γ. In addition to this condition, we
also require the chiral phase transition to have occurred at
that density. We define this by requiring the nonstrange
scalar condensate in our constituent quark model to drop
below 10% of its vacuum value. Even though this seems
like an overly strict definition, this only excludes a few
percent of NSs that would have a quark core by the
first requirement only. In Fig. 10, we show the amount
of quark matter contained in hybrid stars that develop such
a quark core. Here, no additional constraints were added
on top of the minimal ones (2M⊙ and pQCD constraints).
In many cases the quark core is light with masses of
Mquark < 0.05M⊙. However, some hybrid stars can develop
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FIG. 9. Radius intervals for 1.4M⊙ (blue) and 2M⊙ (red) NSs.
The circles represent the median values, while error bars
correspond to the 90% credible intervals. The vertical dashed
lines separate alternative scenarios and additional recent mea-
surements. Data for these intervals can be found in Table I.

TABLE II. Parameter sets corresponding to equations of state
with the maximum posterior probability for various measure-
ments.mσ is given in MeV, while n̄ and Γ are given in units of the
saturation density n0.

ϑmax

Measurement EOS, mσ , gV , n̄, Γ

2M⊙ þ NICER SFHo, 290, 6.9, 4, 2.5
2M⊙ þ NICERþ Λ̃ SFHo, 290, 6.5, 4.5, 2.75
2M⊙ þ NICERþ Λ̃þMU SFHo, 290, 3.1, 3.5, 2
2M⊙ þ NICERþ Λ̃BH þMgap SFHo, 290, 4.9, 4.25, 2.75

2M⊙ þ NICERþ Λ̃BH þ HESS SFHo, 290, 4.7, 4.25, 2.5

TABLE I. Median values of radii for 1.4M⊙ and 2M⊙ NSs for
the different astrophysical constraints investigated in this paper.
The errors represent the 90% credible intervals. The pQCD
minimal constraint is included in each case.

Measurement R1.4 (km) R2.0 (km)

Prior (þpQCD) 12.52þ1.23
−0.71 13.25þ1.21

−1.36
2M⊙ 13.10þ0.81

−0.94 13.28þ1.18
−1.33

2M⊙ þ NICER 13.09þ0.76
−0.82 13.29þ1.08

−1.12

2M⊙ þ NICERþ Λ̃ 12.67þ0.67
−0.50 12.81þ0.83

−0.81

2M⊙ þ NICERþ Λ̃þMU 12.56þ0.66
−0.48 12.45þ0.81

−0.67

2M⊙ þ NICERþ Λ̃BH þMgap 12.82þ0.58
−0.52 13.05þ0.58

−0.56

2M⊙ þ NICERþ Λ̃BH þ HESS 12.44þ0.58
−0.39 12.43þ0.69

−0.63
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a sizable quark core, with radii Rquark ≳ 5 km (see the inset
in Fig. 10). More massive cores correspond to NS sequen-
ces with lower maximum masses with the most massive
core having a massMquark ≈ 0.33M⊙. This corresponds to a
NS with a mass of 1.96M⊙. A similar figure can be found in
Ref. [29] about the radii of quark cores in 2M⊙ NSs.
Combining the complete ensemble of our equations of

state, we can investigate the effect of various constraints on
the EOS itself. The left panel of Fig. 11 shows the 90%
credible intervals of the sound speed squared as a function
of energy density for various astrophysical constraints. The
prior in itself exhibits a peak in the sound speed, which is
located at ε ≈ 400 MeV=fm3 for the lower bound. This can

be attributed to the eLSM and the concatenation between
the hadronic and quark equations of state. This peak
translates to the lack of NSs with small radii in the
M–R plane in Fig. 3. However, this lower bound is slightly
increased when we include the 2M⊙, as well as the NICER
and tidal deformability measurements. This may be the
result of the 2M⊙ constraint, which requires a minimal
stiffness for the equations of state, and also the NICER
measurements, which disfavor small radii. The effect of
the tidal deformability measurement of GW170817 is the
reduction of the upper bound for energy densities
ε≲ 500 MeV=fm3, which reduces the radii of 1.4M⊙ NSs.
In the middle panel of Fig. 11 we compare the two

alternative scenarios with the hypermassive NS hypothesis
and the mass-gap NS included, respectively. With the
upper mass bound from the hypermassive NS hypothesis
included in addition to the previous measurements, the
upper bound of the sound speed squared is reduced from
∼0.8 to ∼0.6. The effect of astrophysical constraints on the
upper bound above ε≳ 1200 MeV=fm3 is minor, while it is
negligible for the lower bound. In both cases, an inter-
mediate-density peak in the sound speed squared is
preferred. The position of this peak is similar in the two
cases, with εp ¼ 565þ71

−102 MeV=fm3 for the hypermassive
NS and εp¼580þ57

−83 MeV=fm3 for the mass-gap NS sce-
nario. The values of the peaks are 0.48þ0.08

−0.06 and 0.64þ0.07
−0.07 ,

respectively. These numbers correspond to medians and
68% credible intervals. We note that Ref. [30] arrives at a
similar result for the position of the peak in an independent
analysis, however, their median value of the peak is higher
than ours. The energy density reached in the center of the
maximally stable NSs in the two cases are εmax ¼ 1089þ93

−121
and εmax ¼ 1008þ63

−71 MeV=fm3, respectively, while for the
baryon densities these values are nB;max ¼ 0.89þ0.07

−0.08 and
nB;max ¼ 0.80þ0.04

−0.05 fm−3. Note that the maximum energy

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800
-0.2

-0.1

0

0.1

0.2

0.3

FIG. 11. The 90% credible intervals of the sound speed squared (left and middle) and the trace anomaly (right) as a function of energy
density under various constraints, using the full ensemble of our equations of state. Different contours show results for the prior with the
pQCD constraint (purple), the posterior with the NICER (red), and the NICER and tidal deformability measurements (yellow). In the
middle, the posteriors for the hypermassive NS hypothesis (blue) and for the alternative scenario where the mass-gap object in
GW190814 is considered a NS (green) are shown. The position of the speed of sound peaks (circles in the middle panel) with the 68%
credible intervals denoted by the error bars and the energy density at the center of maximally stable NSs (vertical lines in the middle and
right panels, similarly with the 68% credible intervals) is also displayed.
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FIG. 10. Masses of quark cores for hybrid stars that develop
such a core. The inset shows the radial dependence of the baryon
density inside one of the hybrid stars that have a sizable quark
core. The vertical dashed line represents the boundary between
the quark core and the outer layers.
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density and baryon density is lower for the mass-gap NS
case, in which the maximally massive NSs have larger
masses. This follows from the fact that a larger peak in the
speed of sound, which creates heavier NSs, will lead to an
earlier destabilization after the speed of sound drops to
reach the pQCD limit at high densities.
One can interpret the peak in the speed of sound as a

dominance of repulsive interactions, as opposed to the
finite temperature case, where it never exceeds the con-
formal limit [74,139,140]. This might be interpreted as an
indication of deconfinement, which might be linked to the
percolation of hadrons. Using a simple model one can
estimate the density at which percolation occurs (see, e.g.,
Ref. [30]). In Ref. [30] the authors use an average mass
radius of protons of rp ¼ ð0.80� 0.05Þ fm (taken from
Ref. [141]) that is directly extracted from experimental
data of ϕ meson photoproduction, yielding a density of
nB;p ¼ 0.57þ0.12

−0.09 fm−3. This density is obtained from per-
colation theory through the expression nB;p ¼ 1.22=V0,
where V0 ¼ 4r3pπ=3 [142,143]. Reference [30] arrives at a
value nB;p ¼ 0.56þ0.09

−0.08 fm−3, which is remarkably close to
the estimated value of the percolation density. For the
hypermassive NS and the mass-gap NS scenarios, we
calculate the density of the peak to be at 0.53þ0.06

−0.08 and
0.53þ0.04

−0.06 fm−3, respectively, which are slightly lower but
still consistent with the estimated density of percolation.
It is worth noting that for the mass radius of proton there
are several competing results on the market starting from
as low as rp ¼ ð0.55� 0.03Þ fm [144] up to rp ¼ ð0.86�
0.08Þ [145]. Moreover, beside the mass radius of protons
there is also the charge radius of protons, which can be
measured accurately by electron scattering experiments.
Currently, there are two competing, nonoverlapping values
of rEp ¼ 0.84 and 0.88 fm [146–148]. Thus, the size of the
proton is still under debate and can be as low as 0.55 fm,
which would give a much higher percolation density. Also
note that the peak in the speed of sound might be a feature
of the quark model itself, in case that the phase transition
occurs at lower densities. Reference [63] finds that a low
onset of the phase transition and a color superconducting
quark model is consistent with the speed of sound peak
from astrophysical data.
In the right panel of Fig. 11, we also show the limits for

the trace anomaly, defined as

Δ ¼ 1

3
−
p
ε
: ð25Þ

This was recently proposed as a measure of conformality
[149]. As we approach the conformal limit, the value of Δ
will tend to zero. Similar to the results of Ref. [30], we find
that the value of Δ approaches zero from above in the
hypermassive NS scenario for large ε values. This is to be
compared to the mass-gap NS scenario, where the

conformal limit can be reached both from above and
below; in fact, quite remarkably, at ε ≈ 800 MeV=fm3 a
negative value for Δ becomes highly favored.
Yet another recent study [70] proposes another quantity

to measure conformality. They combine the trace anomaly
with its logarithmic derivative and define dc as

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Δ02

p
; ð26Þ

where

Δ0 ¼ dΔ
d ln ε

¼ c2s

�
1

γ
− 1

�
; ð27Þ

with γ ¼ d lnp=d ln ε being the polytropic index. Based
on the observation that hadronic equations of state can be
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FIG. 12. 90% credible intervals for the measure of conformality
dc, as a function of baryon density, for the hypermassive NS
scenario (top) and the mass-gap object scenario (bottom) using
the full ensemble of our EOS. Vertical ares denote the 90%
intervals for the central densities of 1.4M⊙, 2M⊙, and maximally
stable NSs, with increasingly dark colors. Solid lines show the
density dependence of dc for hadronic equations of state.
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separated from conformal systems using this quantity and
that for a first-order phase transition dc is bounded from
below by dc ≳ 0.236 at the phase transition, they propose
that conformal matter can be identified by the criterion
dc < 0.2. We should add, however, that some hadronic
equations of state do not comply with this conjecture.
For example, in Fig. 12 we show the density dependence
of dc for the FSU2R EOS [150] downloaded from the
CompOSE database. This is a purely nucleonic EOS
containing an ω4 interaction term, and yet it behaves
similar to hybrid equations of state, with dc < 0.2 for
nB > 4n0. Therefore, this criterion of conformality should
be further studied.
We investigate this measure in Fig. 12 for the two

alternative scenarios with the hypermassive NS hypothesis
and the mass-gap object identified as a NS. In both cases,
dc drops below 0.2 before reaching the density at the center
of maximally stable NSs. However, for the hypermassive
NS scenario, this happens at lower densities, at around
3 − 4n0, while for the mass-gap object scenario, this
interval is at ∼3.5–4.5n0. Interestingly, for the hyper-
massive NS scenario, NSs with ∼2M⊙ might already
possess conformal matter, while for the other case, matter
inside 2M⊙ NSs is far from being conformal.

IV. CONCLUSION

In this paper, we have investigated what can be inferred
from astrophysical observations about the properties of
quark matter inside NSs and the phase transition between
the hadronic and quark phases. For this purpose, we have
utilized the (axial) vector meson extended linear sigma-
model to describe quark matter at high densities, the SFHo
and DD2 models as hadronic equations of state represent-
ing soft and stiff hadronic models, respectively. To tran-
sition from the hadronic to the quark model, we have used a
general polynomial concatenation, the parameters of which
can be varied to create phase transitions at different
densities. The whole parameter space with four parameters
(two from the concatenation and two from the constituent
quark model) was studied by applying the full PDFs from
recent astrophysical observations.
First of all, we have shown that there is a tight correlation

between the parameters of the constituent quark model and
the maximum mass attainable by heavy NSs described by
that model, even though many of the maximum mass NSs
do not have pure quark matter in their cores. Hence, some
properties of quark matter at high densities might be
inferred by only gaining information about the intermedi-
ate-density region, and therefore determining the maximum
mass of NSs might be used to deduce information about the
properties of strongly interacting matter at high densities.
In our Bayesian analysis, we have investigated the effect

of different astrophysical measurements on mass-radius
curves, the radius distribution of NSs with specific masses,
and on the posterior probabilities of different parameter

sets. In addition to the lower mass limit from 2M⊙ stars and
constraints from pQCD, we have also considered the two
NICER measurements and the tidal deformability data
obtained from GW170817. Moreover, we have studied
the effect of additional constraints, such as the upper mass
bound inferred from the hypermassive NS hypothesis,
interpreting the mass-gap object in GW190814 as a very
massive NS, or the mass-radius data obtained from the light
compact object in HESS J1731-34. We divided our analysis
into two parts. First, we investigated the results in a reduced
parameter space with mσ ¼ 290 MeV and the SFHo
hadronic EOS. We also calculated the results for reduced
parameter spaces with other parameters. Then, we com-
bined the full ensemble of ∼18000 equations of state to
deduce more general conclusions about the EOS of
strongly interacting matter.
We have shown that the 90% credible regions on the

mass-radius diagram obtained by using the complete
observational data of GW170817 differ slightly from those
originating from a sharp cutoff using the 90% bound on the
parameters of the binary corresponding to GW170817.
This was also discussed in Ref. [32] and suggests the use of
the full PDFs from astrophysical measurements for more
precise predictions.
We have also found that the maximum mass of hybrid

stars with a pure quark core is below <2.35M⊙. This is
caused by the fact that there is a successive stiffening and
softening in the intermediate-density region of our equa-
tions of state and in order to reach the density of our quark
model, the NS sequence needs to go through the soft region
without becoming unstable. Interestingly, Ref. [29] finds a
similar upper bound for such hybrid stars in a completely
independent analysis. Further constraints narrow down this
region even more, leaving only a small space for hybrid
stars, with a pure quark core for equations of state, with a
soft hadronic part, and none for ones with a stiff hadronic
part. This is also in line with the findings of some other
studies [123,151–153], which also suggest the possible
existence of pure quark matter inside massive NSs,
although in a restricted parameter region, highly dependent
on the hadronic EOS.
Additionally, we have also shown how the parameters of

the hadron-quark concatenation are affected by the various
astrophysical constraints. For the two main scenarios
considered in this paper, we have found that the parameter
encoding the central density of the phase is above n̄ > 3n0,
and that the appearance of pure quark matter at densities
below ∼4n0 is disfavored in both scenarios, using our
parametrization.
Even though the presence of pure quark matter is

restricted to a limited region in the mass-radius diagram,
we find that a peak in the speed of sound is preferred
by astrophysical observations, which might be interpreted
as a consequence of reaching percolation densities.
We have found that this peak is at εp ¼ 565þ71

−102 and
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580þ57
−83 MeV=fm3 for the hypermassive NS and the mass-

gap NS cases, respectively, or at nB;p ¼ 0.53þ0.06
−0.08 and

0.53þ0.04
−0.06 fm−3, regarding baryon densities. This is con-

sistent with the findings of Ref. [30] and the prediction of
simple percolation models. Reference [69] also reports a
value of ∼3.3n0 for the location of the peak. We have also
shown the dependence of the Δ trace anomaly on the
energy density and found that in the mass-gap NS scenario
a negative Δ is preferred at some energy density region.
Additionally, we have investigated the baryon density
dependence of dc, proposed as another measure of con-
formality by Ref. [70] and have found that the conformal
region is reached in the centers of massive NSs for both
scenarios. We have also found that in the hypermassive NS
scenario, the conformal region can be already reached by
2M⊙ NSs.
Equations of state used in this paper can be found

in Ref. [81].
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APPENDIX: TABLES AND FIGURE

This section contains tables for the radius bounds of
1.4M⊙ and 2M⊙ NSs, as well as for the parameter sets
corresponding to the maximum posterior probability cases,
using different sets of equations of state with specific values
for the sigma meson mass and the hadronic EOS. We also
included a figure about marginalized prior and posterior
PDFs in the parameter space of our model, for different
astrophysical measurements.

TABLE III. Median and 90% bounds for the radii of 1.4M⊙ and 2M⊙ NSs using the SFHo hadronic EOS and various values for the
sigma meson masses. Results are shown for different combinations of astrophysical measurements. Results for mσ ¼ 600 and mσ ¼
700 MeV were omitted due to the low statistics of stable and causal equations of state with these parameters.

mσ ¼ 290 MeV mσ ¼ 400 MeV mσ ¼ 500 MeV

Measurement R1.4 (km) R2.0 (km) R1.4 (km) R2.0 (km) R1.4 (km) R2.0 (km)

Prior (þpQCD) 12.13þ1.49
−0.40 13.00þ1.46

−1.25 12.35þ1.29
−0.52 13.06þ1.30

−1.22 12.69þ0.94
−0.70 13.16þ1.09

−1.22

2M⊙ 12.82þ1.05
−0.76 13.02þ1.44

−1.21 12.91þ0.90
−0.76 13.09þ1.28

−1.19 13.01þ0.71
−0.68 13.20þ1.07

−1.27

2M⊙ þ NICER 12.88þ0.93
−0.72 13.09þ1.26

−1.05 12.94þ0.82
−0.69 13.14þ1.15

−1.03 13.03þ0.67
−0.60 13.23þ0.98

−1.01

2M⊙ þ NICERþ Λ̃ 12.59þ0.61
−0.49 12.73þ0.84

−0.79 12.63þ0.59
−0.45 12.75þ0.82

−0.76 12.76þ0.52
−0.43 12.85þ0.74

−0.79

2M⊙ þ NICERþ Λ̃þMU 12.47þ0.59
−0.45 12.38þ0.81

−0.67 12.51þ0.57
−0.42 12.42þ0.79

−0.64 12.61þ0.53
−0.37 12.44þ0.74

−0.58

2M⊙ þ NICERþ Λ̃BH þMgap 12.70þ0.57
−0.43 12.95þ0.59

−0.51 12.78þ0.54
−0.47 12.98þ0.58

−0.50 12.86þ0.48
−0.38 13.10þ0.52

−0.43

2M⊙ þ NICERþ Λ̃BH þ HESS 12.38þ0.56
−0.36 12.40þ0.67

−0.64 12.44þ0.52
−0.37 12.44þ0.68

−0.62 12.57þ0.52
−0.33 12.51þ0.66

−0.62
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TABLE VI. Parameters of equations of state with the maximum posterior probability for different combinations of
astrophysical measurements, using the DD2 hadronic EOS. Results formσ ¼ 600 andmσ ¼ 700 MeV and for some
combinations of astrophysical measurements were omitted due to the low statistics of stable and causal equations of
state with these parameters.

ϑmax: (gV , n̄ [n0], Γ [n0])

Measurement mσ ¼ 290 MeV mσ ¼ 400 MeV mσ ¼ 500 MeV

2M⊙ þ NICER 6.7, 4.75, 2.75 6.1, 4.75, 2.75 5.5, 5, 3
2M⊙ þ NICERþ Λ̃ 4.4, 5, 3.75 4.1, 5, 3.75 5.5, 5, 3
2M⊙ þ NICERþ Λ̃þMU 3.8, 5, 4 3.5, 5, 4 3.1, 5, 4

TABLE IV. Median and 90% bounds for the radii of 1.4M⊙ and 2M⊙ NSs using the DD2 hadronic EOS and various values for the
sigma meson masses. Results are shown for different combinations of astrophysical measurements. Results for mσ ¼ 600 MeV and
mσ ¼ 700 and for some combinations of astrophysical measurements were omitted due to the low statistics of stable and causal
equations of state with these parameters.

mσ ¼ 290 MeV mσ ¼ 400 MeV mσ ¼ 500 MeV

Measurement R1.4 (km) R2.0 (km) R1.4 (km) R2.0 (km) R1.4 (km) R2.0 (km)

Prior (þpQCD) 13.14þ0.89
−1.05 13.70þ1.05

−1.17 13.16þ0.82
−0.61 13.67þ0.96

−1.14 13.23þ0.69
−0.45 13.58þ0.93

−1.11

2M⊙ 13.48þ0.69
−0.39 13.72þ1.04

−1.10 13.47þ0.62
−0.38 13.69þ0.95

−1.08 13.43þ0.57
−0.37 13.60þ0.92

−1.05
2M⊙ þ NICER 13.44þ0.65

−0.33 13.67þ0.96
−0.93 13.44þ0.59

−0.33 13.65þ0.90
−0.92 13.43þ0.53

−0.33 13.60þ0.84
−0.92

2M⊙ þ NICERþ Λ̃ 13.26þ0.29
−0.22 13.30þ0.56

−0.80 13.27þ0.29
−0.22 13.29þ0.55

−0.78 13.26þ0.29
−0.22 13.23þ0.58

−0.74

2M⊙ þ NICERþ Λ̃þMU 13.17þ0.27
−0.20 12.95þ0.58

−0.71 13.17þ0.27
−0.19 12.98þ0.55

−0.69 13.17þ0.26
−0.17 12.91þ0.50

−0.59

TABLE V. Parameters of equations of state with the maximum posterior probability for different combinations of
astrophysical measurements, using the SFHo hadronic EOS. Results for mσ ¼ 600 MeV and mσ ¼ 700 MeV were
omitted due to the low statistics of stable and causal equations of state with these parameters.

ϑmax: (gV , n̄ [n0], Γ [n0])

Measurement mσ ¼ 290 MeV mσ ¼ 400 MeV mσ ¼ 500 MeV

2M⊙ þ NICER 6.9, 4, 2.5 6.3, 5, 3.75 6, 5, 3.75
2M⊙ þ NICERþ Λ̃ 6.5, 4.5, 2.75 5.4, 5, 3.5 5, 5, 3.5
2M⊙ þ NICERþ Λ̃þMU 3.1, 3.5, 2 2.6, 3.5, 2 2.6, 4.5, 3.25
2M⊙ þ NICERþ Λ̃BH þMgap 4.9, 4.25, 2.75 4.8, 4.5, 3 4.5, 4.5, 3.25

2M⊙ þ NICERþ Λ̃BH þ HESS 4.7, 4.25, 2.5 4.8, 4.75, 3 4.3, 5, 3.5
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FIG. 13. Marginalized one- and two-dimensional priors and posteriors for selected combinations of astrophysical measurements. The
PDFs were made using our complete EOS ensemble.
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