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The current and upcoming generations of gravitationalwave experiments represent an exciting step forward
in terms of detector sensitivity and performance. For example, key upgrades at the LIGO, Virgo and KAGRA
facilitieswill see the next observing run (O4) probe a spatial volume around four times larger than the previous
run (O3), and design implementations for, e.g., the Einstein Telescope, Cosmic Explorer, and LISA
experiments are taking shape to explore a wider frequency range and probe cosmic distances. In this context,
however, a number of very real data analysis problems face the gravitational wave community. For example,
it will be critical to develop tools and strategies to analyze (among other scenarios) signals that arrive
coincidentally in detectors, longer signals that are in the presence of nonstationary noise or other shorter
transients, as well as noisy, potentially correlated, coherent stochastic backgrounds. With these challenges in
mind, we develop PEREGRINE, a new sequential simulation-based inference approach designed to study broad
classes of gravitational wave signal. In this work, we describe the method and implementation, before
demonstrating its accuracy and robustness through direct comparison with established likelihood-based
methods. Specifically, we show that we are able to fully reconstruct the posterior distributions for every
parameter of a spinning, precessing compact binary coalescence using one of themost physically detailed and
computationally expensivewaveform approximants (SEOBNRv4PHM). Crucially, we are able to do this using
only 2% of the waveform evaluations that are required in, e.g., nested sampling approaches. Finally, we
provide some outlook as to how this level of simulation efficiency and flexibility in the statistical analysis
could allow PEREGRINE to tackle these current and future gravitational wave data analysis problems.
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I. INTRODUCTION

Observational status. The gravitational wave (GW) sky
is now much louder than it was after the first detection of a
gravitational wave signal from the merger of two black
holes in 2015 [1]. Indeed, source catalogs are now complete
and varied enough to be used for studying questions in
gravitational theory [2], cosmology [3–5], and even the
formation and internal properties of black holes and
neutron stars [6,7]. To give some current context, the
LIGO-Virgo collaboration (LVKC) has now reported on
90 compact binary coalescence events1 that are believed to
be of astrophysical origin [12,13].

Along with more efficient search pipelines [14–16], one
of the major reasons for the increase in size of the
gravitational wave catalog is the large increase in search
volume probed by the detectors. For example, in the
previous LVKC observing run (O3), the projected comov-
ing search volume for binary black hole (BBH) mergers
was VBBH ¼ 3.4 × 108 Mpc3 [17]. In comparison, how-
ever, the next observing run (O4) that is planned for May
2023 has a projected search volume of around VBBH ¼
1.5 Gpc3 [17,18], representing over a 400% increase in
volume and the corresponding expected event rate.2 This
observing run is predicted to have the advanced LIGO
(aLIGO) detectors running close to their design sensitivities
(O5), and therefore, represents a key benchmark for the
current generation of gravitational wave observatories.*u.bhardwaj@uva.nl

†j.b.g.alvey@uva.nl
1Additional catalogs such as the deep extended catalog [8], the

3-OGC catalog [9] and others [10,11] report several other sources
with different analysis pipelines or higher false alarm rate
thresholds.

2The equivalent volumes for binary neutron star (BNS)
coalescence events are VBNS ¼ 3.3 × 106 Mpc3 and VBNS ¼
3.4 × 108 Mpc3 for O3 and O4 respectively [17,18].

PHYSICAL REVIEW D 108, 042004 (2023)

2470-0010=2023=108(4)=042004(21) 042004-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1233-4174
https://orcid.org/0000-0003-2020-0803
https://orcid.org/0000-0003-0387-8727
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.042004&domain=pdf&date_stamp=2023-08-25
https://doi.org/10.1103/PhysRevD.108.042004
https://doi.org/10.1103/PhysRevD.108.042004
https://doi.org/10.1103/PhysRevD.108.042004
https://doi.org/10.1103/PhysRevD.108.042004


Such an improvement in detector sensitivity and correspond-
ing event rate induces a new era of computational challenges
when it comes to gravitational wave data analysis.
Gravitational wave data analysis In general, the data

analysis pipeline for gravitational waves splits into two
parts: detection and parameter inference. While studying
the optimality of search pipelines [14,15], especially for
new classes of signal, is an interesting and important
problem, in this work we will focus on the follow up step
of high precision parameter inference. The traditional
(and current) approach to gravitational wave parameter
inference follows a Bayesian framework where the goal is
to infer either the full (N-dimensional) joint posterior over
all parameters or marginal posterior distributions over a
(sub)set of relevant intrinsic (e.g., source properties) and
extrinsic parameters (e.g., the source-detector geometry)
[19,20]. In addition, one must make some informed choice
(ideally using some astrophysically motivated range, or
making a maximally uninformative choice in the absence of
this) of the prior distributions for the parameters of interest.
For current state-of-the-art waveform approximants/
generators, which are now capable of describing complex
scenarios such as fully precessing and spinning compact
binary inspirals [21–24], the number of relevant parameters
is around Nparams ∼ 12–17. At a purely practical level, this
means that approaches such as profiling the gravitational
wave data likelihood are computationally infeasible, and it
is common therefore to use some form of stochastic
sampling method to investigate the parameter space.
Traditional stochastic algorithms such as Markov Chain

Monte Carlo (MCMC) [25,26] and nested sampling
[27–30] are both implemented within the standard open
source analysis software such as LALInference [31],
PyCBC [32], and bilby [33–36]. Both MCMC and nested
sampling algorithms function by generating samples from
the full joint posterior (although they achieve this in
different ways), and then typically marginalize to obtain
posteriors over individual, or pairs of parameters. The
computational cost in these cases comes about since these
algorithms carry out numerous likelihood evaluations for
each individual sample point. Indeed, a general rule of
thumb for current gravitational wave parameter inference is
that generating around 104 independent posterior samples
requires at least 106 likelihood evaluations3 (and corre-
sponding forward evaluations of the waveform generation
model) [35,36]. Depending on the signal duration and
complexity of the waveform approximant, this can result in
inference times of hours to weeks for a single events, see
e.g. [35,36]. This is the context in which concrete data
analysis challenges will arise as, among other things, (i) the
detection rate increases significantly [17], (ii) more realistic
waveform approximants that incorporate, e.g., higher order

modes become more expensive to evaluate [23,37],
and (iii) future gravitational wave detections involving
multiple overlapping waveforms [38–42], nonstationary
noise distributions, or some stochastic background, see,
e.g., [43–45], will render explicit likelihood evaluations
increasingly complicated and costly.
Simulation-based inference Recently, there have been

significant advances in the field of simulation-based infer-
ence (SBI) [46–48] (sometimes also known as implicit
likelihood inference), partly as a result of rapid develop-
ments in machine learning, but also as a response to
emerging data analysis challenges such as those described
above. The field of simulation-based inference is now wide
and varied, with numerous approaches available as fully
implemented open-source software [49–52]. It has been
shown to be successful in a number of different physics
settings, such as CMB analyses [53], strong lensing image
analysis [54], point source searches [55], and field-level
cosmology [56], along with other examples [57–61].
Broadly, the key advantages of this set of methods are
(i) they can be highly simulation-efficient compared to
traditional methods, and (ii) they are “simulation-based” in
the sense that they do not require an explicit likelihood to
be written down, only a realistic forward simulator to be
provided. Combined, this opens up the exciting possibility
of using higher fidelity forward models to take full
advantage of even the most complex data. In the context
of gravitational waves, a particular version of simulation-
based inference known as neural posterior estimation
(NPE) has already been successfully applied to perform
fully amortized inference4 on compact binary mergers
[62,63]. This leads to impressive inference performance
across, e.g., the LVKC catalog, where after the complex
training process (requiring millions of waveform evalua-
tions) has been carried out, almost real-time inference can
be done [64]. It is worth noting in this regard that the focus
of our analysis pipeline is different. We look to perform
analysis on individual gravitational wave signals, where
this sort of global amortization becomes infeasible. The
prototypical example of this would be the overlapping
waveform scenario [38–42], where the number of wave-
form calls required to perform reliable amortized inference
would likely be at least an order of magnitude larger, if not
more. In this current work, we however focus on single
BBH mergers to develop our method because this is where
clear, robust quantitative comparisons can be performed to
validate our approach.
Key contributions. In this work, we develop a new data

analysis method that is applicable to wide classes of
gravitational wave signals. In particular, we implement a
particular, sequential simulation-based inference algorithm

3This is especially true for spinning and precessing compact
binary inspirals.

4Amortized inference refers to training a neural network to
approximate the posterior distribution over model parameters
which allows for fast inference on any input data.
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known as truncated marginal neural ratio estimation
(TMNRE) [50] based on the SWYFT software [49]. We
demonstrate the applicability, accuracy and robustness of
this approach by studying two case studies—a highly
spinning, precessing binary black hole system at distances
of 200 Mpc (extremely high signal-to-noise ratio (SNR) of
∼100 to act as a stringent test of the precision we can
achieve) and 900 Mpc (low SNR of ∼20 to test our ability
to reliably distinguish between signal and noise). Using
a state-of-the-art waveform approximant SEOBNRv4PHM
[21] (although in practice, any waveform approximant
for, e.g., IMRPhenomXPHM [65], IMRPhenomPV2, or
IMRPhenomD [22,66], can easily be used), we demon-
strate that we can fully reproduce the posterior distri-
butions generated by current likelihood-based methods.
Importantly, we show that we can achieve this agreement
with only 2% of the waveform evaluations that are needed
in standard likelihood-based approaches. As far as the
computational efficiency of the method is concerned, we
provide a discussion of the design choices relevant for our
TMNRE-based algorithm in Sec. II, in particular focusing
on the details of the network training and optimization.
We highlight the role that truncation plays in achieving
efficient inference in Fig. 3, where we use an active learning
approach to lower the training data variance with respect to
the observation of interest. We also discuss the robustness
tests that can be carried out to validate our results
independent of any other method. In addition, we will
release our implementation, which we call PEREGRINE, as
open-source, extendable analysis software available to the
community.
Structure of the work. The remainder of the work is

structured as follows:we begin in Sec. II by briefly reviewing
simulation-based inference approaches before giving a
detailed explanation of TMNRE and its application to gra-
vitational wave analysis. We apply this method in Sec. III to
the two case studies detailed above. Finally, in Sec. IV, we
provide some discussion and outline our conclusions regard-
ing the application of our pipeline to current and future
gravitational wave data analysis challenges.

II. SIMULATION-BASED INFERENCE
FOR GRAVITATIONAL WAVES

In this section, we will give a very brief overview of the
general class of simulation-based inference methods,
before focusing our attention on the particular implemen-
tation we use in this work. Finally, we will discuss some
specific design choices that are relevant to the analysis of
gravitational waves.

A. Overview of simulation-based inference

Over the last three to four years, there has been a
significant increase in the usage and development of
so-called simulated-based inference approaches to data

analysis [46,47].5 While there are now multiple options
in terms of particular implementations and algorithms,
every approach has a common setup. In particular, the
main question driving all SBI algorithms is: can we still
do robust Bayesian inference if we are only given some
generative model? [46]. In other words, given some
forward model pðx; θÞ that takes some underlying set of
parameters θ and produces some simulated data x, can we
construct meaningful posteriors pðθjxÞ for all, or some
subset, of the parameters θ. In practice, how this is done is
by studying Bayes’ theorem applied to the posterior,

pðθjxÞ ¼ pðxjθÞpðθÞ
pðxÞ ; ð1Þ

where pðθjxÞ is the posterior of θ given some observed
or simulated data x, pðxjθÞ is the likelihood of a given set
of data x given some input parameters θ, pðθÞ is the
(Bayesian) prior over the parameters θ, and pðxÞ is the
Bayesian evidence. The key functionality of simulation-
based inference is to realize that having a forward gen-
erative model pðx; θÞ ¼ pðxjθÞpðθÞ is equivalent to being
able to sample from the (simulated) likelihood. This is the
origin of the terms “likelihood-free” or “implicit like-
lihood” inference [46].
At this point, the various SBI methods diverge some-

what in terms of how they use this capability of sampling
from the likelihood to construct posterior densities or
posterior samples. Broadly, they can be categorized in
terms of how they split up Bayes’ theorem in Eq. (1).
There are three main ways to do this given a prior pðθÞ
(which is explicitly known/chosen) and a generative
model pðx; θÞ ¼ pðxjθÞpðθÞ.

(i) Neural posterior estimation (NPE). The first class of
methods attempts to directly estimate the posterior
density pðθjxÞ, typically through the use of some
flexible density estimator such as a normalizing flow
[51,62,69,70]. This has been used in a number of
contexts, including for the amortized analysis of
gravitational waves [63,64,71].

(ii) Neural likelihood estimation (NLE). In the second
case, given some training data generated from
the forward model, one attempts to create a well-
controlled proxy for the simulated data likelihood
pðxjθÞ [52,61,69]. This can then be used directly in
traditional algorithms such as MCMC to generate
posterior samples.

5As discussed in the introduction, this is arguably for two main
reasons, the first is that the huge computational improvements in
machine learning (ML) methods allow for density estimators,
classifiers and neural networks to be efficiently trained on very
high dimensional data. The second reason is then that utilizing
these developments opens up the possibility to tackle new data
analysis challenges [38,67,68].
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(iii) Neural ratio estimation (NRE). The final class
of methods takes a different approach and esti-
mates the likelihood-to-evidence ratio pðxjθÞ=pðxÞ
[49,53–55,57,58,60,72–76]. In this work, we will be
using a particular version of this known as truncated
marginal neural ratio estimation (TMNRE) [50].
Ratio estimation ultimately works by translating
the Bayesian inference problem into a binary clas-
sification task on joint and marginal samples. We
provide more details of this mapping below in the
specific context of gravitational waves.

B. The TMNRE algorithm

In this work, we use a particular simulation-based
inference algorithm known as TMNRE [50], implemented
within the SWYFT software package [49]. There are two key
features of the method that we look to take advantage of for
the highly simulation efficient analysis of gravitational
wave signals. For reference, the overall structure of the
algorithm is described in Fig. 1.

(i) The “T”. TMNRE is a sequential method in the
sense that the analysis is performed in rounds
(typically around 5 to 10). At the end of each round,
estimates of the posterior are generated for a specific,
targeted observation x0. The priors are then trun-
cated before generating training data for the next
round, leading to a significant (empirically, of the
order of 50% to 90%) reduction in simulation budget
[53]. This, of course, has the consequence that we
are generally not developing an amortized method,
but rather one that can be applied to individual
observations.

(ii) The “M”. The marginal aspect of TMNRE relates to
the fact that the algorithm estimates marginal
posteriors. In other words, instead of estimating
the full (N-dimensional) joint posterior pðθjxÞ for
all parameters θ≡ ðθ1;…; θNÞ, and then marginal-
izing, we directly estimate the marginal posterior
pðθi; θj; � � � jxÞ for some parameter (or set of para-
meters) of interest fθi; θj;…g. This again has the
advantage that it typically reduces the simulation
budget by a large fraction and results in much simpler
training procedures because the data-parameter
manifolds for the low dimensional marginals are
much less complex.

More technically, TMNRE sets up the estimation of the
ratio rðx; ϑ ¼ ðθi; θj;…ÞÞ ¼ pðxjϑÞ=pðxÞ, where ϑ repre-
sents a single parameter or some subset of parameters, as a
binary classification problem through the following obser-
vation about Bayes’ theorem,

rðx; ϑÞ ¼ pðxjϑÞ
pðxÞ ¼ pðϑjxÞ

pðϑÞ ¼ pðx;ϑÞ
pðxÞpðϑÞ : ð2Þ

In other words, we can view this likelihood-to-evidence
ratio in multiple ways, (i) as the posterior-to-prior ratio,
which will ultimately allow us to generate posterior
samples by generating samples from the prior pðϑÞ and
weighting them by the ratio rðx; ϑÞ, and (ii) as the ratio
between the joint probability density pðx; ϑÞ and marginal
density pðxÞpðϑÞ.
It is the last form that allows us to carry out a

binary classification task. In particular, suppose we
have N samples from our simulator [or joint distribution

FIG. 1. A schematic illustration of the data analysis method developed in this paper. We use truncated marginal neural ratio esti-
mation (TMNRE) to perform full parameter estimation on gravitational wave signals. The algorithm is implemented in our new
code PEREGRINE.
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pðx;ϑÞ ¼ pðxjϑÞpðϑÞ] fðϑ ¼ ðθi; θj;…Þ; xÞigk¼1…N , then
we can also construct samples from the marginal distri-
bution pðxÞpðϑÞ by randomly shuffling the pair compo-
nents. The method then attempts to optimize a classifier
dϕðx;ϑÞ with some trainable parameters ϕ to output a
class dϕðx; ϑÞ ¼ 0 (say) when ðx;ϑÞ is drawn marginally,
and dϕðx; ϑÞ ¼ 1 when ðx;ϑÞ is drawn jointly.
In terms of TMNRE, this is technically achieved by mini-

mizing the (binary cross-entropy) loss function [49,73,74],

L½fϕ� ¼ −
Z

dxdϑ½pðx;ϑÞ ln ðσðfϕðx;ϑÞÞÞ

þ pðxÞpðϑÞ ln ð1 − σðfϕðx;ϑÞÞÞ�; ð3Þ

where σðxÞ ¼ ½1þ expð−xÞ�−1 is the sigmoid function and
dϕðx;ϑÞ ¼ σðfϕðx;ϑÞÞ in the notation above. Crucially, one
of the key motivations for TMNRE is that one can actually
minimize this loss analytically to obtain the optimal classifier
f⋆ϕðx; ϑÞ≡ ln rðx; ϑÞ [49]. This means that by successfully
optimizing this loss function, we can directly obtain full
information about the likelihood-to-evidence ratio or pos-
terior-to-prior ratio.
In practice, this is where the “neural” aspect of TMNRE

comes into play. Since the data x (and parameters ϑ) can in
principle be extremely high-dimensional, we require both
very flexible classifiers dϕðx;ϑÞ that can process complex
data structures such as images or long time series, and also
an efficient way to optimize the classifier parameters ϕ
(here neural network weights). Recent advances in machine
learning architectures, training, and hardware capabilities
have now made this process extremely scalable, and we
make use of them here, as implemented in the SWYFT

package [49,50].
It is important to understand how we can achieve

marginal posterior estimates with this algorithm, since it
will be important for solving future sampling challenges
such as those associated to the analysis of multiple wave-
forms [38–42]. In TMNRE, we implicitly fully marginalize
over every parameter θ ¼ ðθ1; θ2;…Þ by varying them all
in each simulation. When we train the classifier(s), how-
ever, we only show the network the small subset of
parameters we are interested in, i.e., ðx;ϑ ¼ ðθi; θj;…ÞÞ.
When one analytically minimizes the loss, one will find that
you automatically obtain the properly marginalized pos-
terior pðϑjxÞ. In practice, in this work, we will only be
interested in obtaining 1- and 2-dimensional marginal
posteriors, i.e., ϑ≡ θk for some k or ϑ≡ ðθi; θjÞ for some
pair ði; jÞ.
We can finally turn to the inference and truncation part of

TMNRE. With a fully trained ratio estimator r̂ðx; ϑÞ ≃
pðϑjxÞ=pðϑÞ, we can now target a specific observation x0
(coming from, e.g., an LVKC data stream, or some mock
test observation). By generating samples from the prior
pðϑÞ, we can obtain marginal posterior inference results by

weighting these samples with the ratio estimator eva-
luated on the target observation r̂ðx0; ϑÞ ≃ pðϑjx0Þ=pðϑÞ.
Inevitably, this will lead to regions of parameter space
where the posterior density is high (covering the true values
if the algorithm is run successfully) and regions where the
density is vanishingly low. We use these regions of low
density, specifically where the posterior estimate drops
below some threshold p̂ðϑjx0Þ=maxϑ p̂ðϑjx0Þ < ϵ to trun-
cate our prior6 before generating samples for the next round
of training and inference7 [50]. After a number of rounds,
once the sensitivity is at the level of statistical uncertainty,
this truncation procedure will converge, and the algorithm
terminates. This process is highlighted below for the
specific case study presented in this work in Fig. 3.
To summarize, the TMNRE algorithm splits into

four steps:
(1) Step 1:We generate a batch of simulations ðϑ; xÞi¼1…N

according to our current proposal prior pðϑÞ using our
forward simulator.8

(2) Step 2: We train classifier(s)9 fϕðx; ϑÞ to tell
the difference between joint and marginal samples
for the parameter(s) of interest ϑ. When opti-
mized, this gives a direct estimate of the ratio
rðx; ϑÞ ¼ pðϑjxÞ=pðϑÞ for the parameters of interest
ϑ ¼ ðθi; θj;…Þ.

(3) Step 3: We use the trained ratio estimator to perform
inference on a specific target observation x0 and
obtain marginal ratio estimates r̂ðx0;ϑÞ.

(4) Step 4: By evaluating the ratios on a set of prior
samples, we can truncate the initial proposal dis-
tribution to exclude regions of vanishingly low
posterior density such that the variance in the
training data for the next round is significantly lower.

(5) We then go back to Step 1 and repeat until the
truncation regions and posterior estimates stabilize,
after which we can perform the final inference on the
observation x0.

This whole process is illustrated diagrammatically in Fig. 1.

6This introduces a certain error into the marginal posterior
estimation proportional to the integrated quantity

R
−Γ dϑ̄pðθjx0Þ,

where −Γ is the area outside the new proposal and ϑ̄ is the set
of parameters θ not including the parameter(s) being inferred.
But, it is specifically in this region that the posterior density
is vanishingly low, so the error induced is small and controlled
by ϵ.

7We typically take ϵ ∼ 10−5 which approximately corresponds
to a ∼4.8σ exclusion if the posterior was a pure Gaussian. We
checked that the inference results are not sensitive to this choice
provided ϵ is small enough, only affecting the rate at which the
truncation occurs.

8Note that this step can be fully parallelized (and indeed is in
our implementation), and therefore made arbitrarily fast given
hardware access.

9In this work, we simultaneously train one classifier for each
gravitational wave parameter θi, or pair ðθi; θjÞ, so we end up
with a set of classifiers.
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C. Design choices for gravitational waves

There are a number of concrete design choices and
implementation steps that we must make in order to
apply the TMNRE algorithm to the analysis of gravita-
tional waves. Specifically we must (i) choose/build the
forward simulator that generates the data x given param-
eters θ and some noise model, (ii) implement a neural
network that can parse and process the output of the
simulator for training the classifier, (iii) choose the
relevant prior distributions for our parameters, and
(iv) make choices for the relevant parameters in the
TMNRE algorithm.
Forward simulator. In terms of the generative model,

in this work we choose to study gravitational wave
signals from compact binary black hole mergers observed
in LIGO and Virgo detectors. We analyze the signal as
it appears in all three detectors simultaneously, 10 across
both the time and frequency domains. To model the
waveforms from the merger, we use the functionality in
the open-source code BILBY [33–35]. This allows us to
inject a gravitational wave signal hðθGWÞ—typically
split into the þ and ×-polarization strains and then
projected—into a noisy detector with colored noise strain
nIFO generated from a power spectral density (PSD)
SnðfÞ. Here, θGW ≡ ðq;M;…Þ is some set of parameters
sampled from the prior pðθGWÞ that describe the intrinsic
properties of the source under consideration such as the
mass ratio q, (redshifted) chirp mass of the system M, as
well as extrinsic properties including the angular position
on the sky ðα; δÞ and the luminosity distance dL. All of
these parameters are provided as input into the waveform

approximant of choice.11 We provide a full list of
physical parameters in Table I, including their prior
choices. The full forward model for a single detector
is then defined by:

pðx; θGWÞ ¼ pðx ¼ hþ nIFOjhþ;×; θGWÞ
× pðhþ;×jθGWÞpðθGWÞ; ð4Þ

where h here is the projection of the hþ;× strains onto the
detector frame according to the extrinsic parameters in
θGW. The full implementation of the forward model can
be found in the Simulator class of the PEREGRINE

package. Two example observations x0 ¼ hðθGWÞ þ nIFO
which are the direct output of the simulator and will form
the basis of our case studies below are shown in Fig. 2.
Inference Network. To carry out the ratio estimation step

in the TMNRE algorithm (Step 2 above), we need to
construct a flexible enough parametrization of the classifier
fϕðx;ϑÞ. In principle (at least in some infinite training data
limit), any sufficiently general parametrization should be
able to minimize the loss in Eq. (3). In practice, making
sensible design choices about network architectures that are
well matched to the data format (particularly the signal
structure) leads to huge increases in performance, robust-
ness and general applicability of the method.
In the context of gravitational waves, the signal is a

complex time series or frequency domain strain—e.g., at a
sampling frequency of 2048 Hz a 4 s signal will consist of
over 8000 data points. Most of the information about the

TABLE I. Definitions and prior choices for all relevant gravitational wave parameters θGW in this work. † Note
that these are the default priors used in BILBY analyses for BBH systems (subject to calibration ranges of the
waveform approximants). ⋆ Specifically, the luminosity distance prior is taken to be uniform in comoving volume
in the source frame.

Parameter Prior choice Injection

Mass ratio, q U(0.125,1) 0.8858
Chirp mass M½M⊙� U(25, 100) 32.14
Inclination angle θjn [rad] sineð0; πÞ† 0.4432
Polarization angle ψ [rad] Uð0; πÞ 1.100
Phase ϕc [rad] Uð0; 2πÞ 5.089
Tilt angles θ1; θ2 [rad] sineð0; πÞ† 1.497, 1.102
Dimensionless spins a1, a2 Uð0.05; 1Þ 0.9702, 0.8118
Spin angles ϕ12;ϕjl [rad] Uð0; 2πÞ 6.220, 1.885
Right ascension α [rad] Uð0; 2πÞ 5.556
Declination δ [rad] cosineð−π=2; π=2Þ† 0.071
Merger time tc [GPS s] Uð−0.1; 0.1Þ 0.000
Luminosity Distance dL [Mpc] Uvolð100; 2000Þ⋆ 900.0 (C1), 200.0 (C2)

10Specifically, the Livingston (L1), Hanford (H1) and Virgo
(V1) detectors, although any combination or subset can be
analyzed also.

11Here we use the SEOBNRv4PHM waveform approximant
[21] so as to provide case studies on the most complex spinning
and precessing BBH merger systems. Importantly, the analysis
pipeline remains identical regardless of this choice, although the
specific parameters in θGW may change.
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parameters θGW is encoded in various nonlinear ways. As
such, there is no good analytic method for fully processing
noisy data streams, or deriving an optimal architecture. On
the other hand, in the context of TMNRE, it is empirically
the case that the precise network architecture is not so
important provided it is (a) sensibly adjusted to the data
format—e.g., it would be nonoptimal to first flatten an
image, totally removing all spatial structure—and (b) deep
enough (i.e., with enough network parameters or structure)
to be able to flexibly fit the parameter and data manifold.
This relative simplicity comes about as a result of the
specific targeting both of single observations and marginal
posteriors, significantly reducing the complexity of the fit
we are implicitly trying to perform. An interesting com-
parison is with the NPE implementation of gravitational
wave inference where a highly optimized and bespoke
network architecture is required to perform fully amortized
inference on the high dimensional joint posterior [64].
Practically, we choose a network architecture that

acknowledges a number of things about the physics behind
gravitational wave signals:

(i) Signal segments. Broadly, compact binary coales-
cence gravitational wave signals can be split into 3
components (both in the time and frequency do-
mains) corresponding to different phases of their
evolution: the inspiral, merger and ringdown phases.
The various parameters in θGW affect these compo-
nents differently, for example, the coalescence time
tc defines the time of merger, typically associated to
the peak of the amplitude in the time domain signal
hðtÞ. Wewant to choose a network that does not treat
each part of the waveform identically—such as a

convolutional structure that simply applies the same
kernel to each part. Instead we construct a 1d-analog
of the well-known unet architecture [77], which is
excellent for image (or signal here) segmentation
and subsequent analysis on the various segments.

(ii) Domain choice. Information about gravitational
wave parameters is encoded differently in the time
and frequency domains, although they are related
directly by a Fourier transform. At the end of the
day, we are interested in extracting some optimal
set of features from the signal that are correlated
with various physical parameters. Naturally, the
effect of some parameters is much more direct in
one domain vs. the other. For example, it is very
simple to see the effect of varying the time of
coalescence on the time domain strain hðtÞ—it is
simply a horizontal shift and is easy to pick up with
any simple network. On the other hand, in the
frequency domain, the waveform gets modified as
h̃ðf; tcÞ ¼ h̃ðf; 0Þ expð2πiftcÞ, which affects the
full structure of the frequency domain strain and
is much more complicated to extract. In practice we
take advantage of the full flexibility of simulation-
based methods and present both the time and
frequency domain strains to the network, analyzing
both of them independently to extract features before
combining these summary statistics to perform ratio
estimation.

(iii) Multiple detectors. The current generation of detec-
tors is set up to provide complementary information
about the same gravitational wave event at each
of the relevant facilities (e.g., LIGO Hanford and

FIG. 2. Two example observations that will be used in the case studies below. The parameter values for the observations can be found
in the inference results below (see Figs. 4 and 5) Left: a (typical) low signal-to-noise ratio (SNR) signal as seen in the LIGO Hanford
detector. The signal is shown in pink, while the full detector response including noise is shown in gray. Right: a similar signal (shown in
orange), but with a very high SNR, again in the Hanford detector. Upper and lower panels: the upper panels illustrate the time-domain
strain hðtÞ, while the lower panels show the corresponding frequency domain response h̃ðfÞ, both of which are used in our analysis.
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Virgo). We model the detector response in all (or a
subset) of these locations and stack the time (and
corresponding frequency) domain strains such that
the same geocentric times (or corresponding fre-
quency bins) are aligned. Again, this is taking
advantage of the freedom to use any data represen-
tation that fully encodes our knowledge about the
relevant timing delays in the detectors.

The above describes the rationale for our choice of
inference network used to process our data. Its general
structure consists of two parallel unet networks which act
on the time and frequency domain strains independently,
before compressing down to a smaller set of summary
features in each case. These features, which importantly are
automatically optimized by the classifier during training
are then concatenated and passed to a simple multilayer
perceptron that is the default implemented in SWYFT which
performs the ratio estimation. More generally, one can
understand the network as first performing some optimized
data compression into a set of summary statistics12 on
which the ratio estimation is then performed with (a subset
of) the physical parameters ϑ ⊂ θGW. The full details of
the network architecture can be found both in Appendix A
as well as in the PEREGRINE implementation. In terms
of generalization, we expect this network to perform well
on any compact merger signal, including, e.g., overlapping
waveforms, although in principle it can also be modi-
fied arbitrarily to search for other classes of gravitational
waves without any other change in the data analysis
pipeline.
Prior choices. The aim of this work is to establish and

develop the TMNRE algorithm in the context of gravita-
tional wave analysis. As such, we choose priors pðθGWÞ on
the physical parameters θGW ¼ ðq;M; � � �Þ that represent
the standard choices in the literature for analyzing this
type of BBH merger signal [20,31–33]. This allows for a
direct comparison to inference results from traditional
algorithms that are the focus of the next section. For
reference, these can be found in, e.g., the BILBY documen-
tation [28,30,33–35]. All the parameter definitions and
prior distributions relevant to this work can be found
in Tab. I.
TMNRE setup. Finally, there are a number of choices that

need to be made when running the TMNRE algorithm.
These choices are fully detailed in Table II, or in the
configuration files supplied with PEREGRINE. The settings
broadly split into two categories: those that control the
training of the inference network, and choices for the
TMNRE algorithm itself. In the former case, we can define
how many epochs to train the network for (min./max.
training epochs), how many epochs to wait for the

validation loss to decrease13 (early stopping), the initial
learning rate (initial learning rate), the batch sizes shown to
the network (training/validation batch size), and finally the
split in the data between training and validation (train:
validation ratio). In addition, we have the TMNRE settings
such as the (minimum) number of rounds (number of
rounds), the number of simulations to use in each round14

(simulation schedule), and the bounds threshold for perform-
ing the truncation (ϵ). The last setting to discuss is the noise
shuffling switch. This is closely related to the question of
overfitting to training data, where for small simulation
batches it can be the case that the network essentially
“remembers” the training data including the noise realiza-
tions. This leads to a very low value of the loss on the training
dataset, but poor performance on validation data. We found
that one extremely effective way of overcoming this is to
shuffle the noise realizations in each batch. This effectively
shows the network brand new examples every epoch, but
with the same signal component relevant for inference. This
strategy should be applicable for any additive noise model
(related to gravitational waves, or not) and can reduce the
simulation budget by potentially an order of magnitude.
To summarize this section, we have discussed broadly the

field and applicability of simulation-based inference tech-
niques, before describing in detail the development of our
new gravitational wave data analysis pipeline PEREGRINE. In
doing so, we explained the technicalities of our particular

TABLE II. Choices for the hyperparameters and settings for the
TMNRE algorithm in this work. ⋆ This is the minimum number
of rounds, if the algorithm has not converged, we continue rounds
of inference until the truncation procedure terminates.

TMNRE setting Value

Number of rounds 7⋆

Simulation schedule 30k, 60k, 90k, 120k, 120k,
150k, 150k

Bounds threshold ϵ 10−5

Noise shuffling True
Min./Max. training epochs 30=200
Early stopping 7
Initial learning rate 5 × 10−4

Training/Validation batch size 256=256
Train: Validation ratio 0.9: 0.1

12There are some clear analogues with approximate Bayesian
computation here [78], although the summary statistics are
trained to be optimal rather than hand crafted.

13Specifically, the training keeps track of the loss on the
training and validation sets, then tests whether the validation loss
has increased relative to the previous round. This can be a sign of
overfitting, which should of course be avoided, but we are also
training via stochastic gradient descent so we instead look for a
number of epochs (early stopping) where no decrease in the
validation loss has been seen before stopping. We then reinitialize
the network to the state with the lowest validation loss.

14In later rounds, it is typically the case that a larger simulation
budget is required to obtain the necessary precision in the
parameter inference.
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implementation of simulation-based inference, TMNRE,
that is applicable to targeted parameter inference on a specific
observation of interest. In the next section, we will demon-
strate the application of our analysis method to two case
studies of highly spinning, precessing BBH mergers, which
represent a current state-of-the-art analysis and modeling
challenge.

III. RESULTS: TWO CASE STUDIES

We now turn our attention to the application of the
method to two concrete case studies that represent the state-
of-the-art for parameter estimation in current generation
gravitational wave detectors. Specifically, in this section we
consider two noisy mock observations with waveforms
generated by the SEOBNRv4PHM approximant [21]. This
time-domain waveform approximant is tuned to describe
BBH merger systems that are both spinning and preces-
sing. It employs more accurate aligned-spin as well as
precessing-spin two-body dynamics than its predecessors.15

It takes as input 15 relevant physical parameters, which are
detailed in Table I. We do note, however, that our pipeline
makes no assumption about the choice of waveform approx-
imant, so any other model could be easily integrated.
We generate the noise according to the LIGO-O4 power

spectral density for each detector (H1, L1, V1) [35]. We
assume the detector noise to be Gaussian-distributed,
stationary and colored by the estimated PSD of the
upcoming LIGO-Virgo observing run.16 In practice, par-
ticularly because we are looking to analyze individual
observations, the noise model could be modified to include,
e.g., any online estimate of the PSD at the time of an event
[1,80]. While of course, the precise posteriors obtained
would be different as a result of the different noise
realization, the data analysis pipeline would remain iden-
tical and we expect our approach to generalize to any
noise model.
In the rest of the section we will describe the case studies

in more detail before presenting our results when analyzing
the signals using the TMNRE algorithm implemented in
PEREGRINE. Importantly, we show that we can achieve
excellent agreement compared to traditional established
methods across all parameters in the 1-dimensional and
2-dimensional marginals. To obtain this comparison, we
run the nested sampling code DYNESTY [30] that comes as

default with the BILBY package17 [33–35]. We also discuss
additional consistency checks that we can perform on
simulation-based inference methods that are independent
of—and typically also infeasible to—classical methods.

A. Case study description

We test our data analysis methodology on two separate
case studies, both within the context of the SEOBNRv4PHM
waveform approximant [21], which is currently one of the
most detailed and computationally intensive models avail-
able (although, again, we could use any model, see, e.g.,
[22,23]). In particular we choose an injected signal with the
true values given in Table I, which are chosen because they
are one set of best fit parameters for the interesting source
recently discussed in Refs. [82–84]. In particular, the
source comprises two objects that appear to be both
precessing and highly spinning (with dimensionless spins
ai > 0.8).18 We place the systems at two different lumi-
nosity distances to set up our two case studies:

(i) C1. dL ¼ 900 Mpc—we study a quieter source
(with an SNR of ∼20) to ensure that our method
can deal reliably with inference on a data stream
where there is significant amounts of noise. In other
words, we test the ability of our method to distin-
guish between signal and noise in a gravitational
wave event.

(ii) C2. dL ¼ 200 Mpc—conversely, we analyze a very
loud source (with an SNR of ∼100) to determine our

15In particular, it includes the ð2;�2Þ; ð2;�1Þ; ð3;�3Þ; ð4;�4Þ
and ð5;�5Þmodes in the co-precessing frame of the binary instead
of the commonly used ð2;�2Þ and ð2;�1Þ modes, and displays
improved accuracy in calibration fits with numerical relativity simu-
lations across a larger parameter space. When generating aligned-
spin waveforms, SEOBNRv4PHM reduces to SEOBNRv4HM.

16In full technicality, the detector noise originates from a number
of different continuous and transient sources which lead it to be
nonstationary and colored. However, it has been shown that away
from these transient noise artefacts a Gaussian distribution colored
by anonline estimate of thePSD is an excellent approximation [79].

17The results for the posteriors obtained from DYNESTY [28,30]
can be highly sensitive to the sampling settings. In this work, we
follow other analyses in the literature [34] taking nlive ¼ 2000
points as well as n_act ¼ 10, and perform analytic phase
marginalization which is crucial for stable results. We do not
analytically marginalize over luminosity distance or merger time,
although this should not affect the results. An additional technical
point that is relevant here is that for waveform models with higher
modes, it is known that this phase premarginalization step may
break down if thel > 2 overtones give a significant contribution to
the signal [81]. We have checked explicitly that running DYNESTY
again without phase premarginalization (but with a larger n_act
¼ 50) leads to identical posteriors on thewell-measured parameters
such as the chirp mass or luminosity distance, although with some
instabilities in less well-constrained parameters such as the phase
and the two tilts. Importantly, we note that PEREGRINE itself
performs no such phase premarginalization and therefore the
observed agreement is further indication that for the sources in
question phase premarginalization is performing well here. Re-
gardless, this highlights the fact that for comparisons, this check
should be done on a case-by-case basis whenworking with higher-
order mode waveform approximants.

18In general, this interesting source highlights the need for
development in waveform modeling, as well as an investigation
surrounding the implications of noise artifacts on inference
[85,86]. This is additional motivation to develop flexible, targeted
inference methods so that the impact of individual components of
the setup (waveform approximant, noise model etc.) on the final
inference can be reliably tested. This is very challenging to
achieve with fully amortized methods.

SEQUENTIAL SIMULATION-BASED INFERENCE FOR … PHYS. REV. D 108, 042004 (2023)

042004-9



ability to achieve high precision inference. While
this source is arguably slightly unphysical according
to current merger rates (in terms of how loud it is),
the aim of this test is to confirm that we can achieve
extremely high precision inference through the
application of the TMNRE algorithm.

The detector response for both of these target observations
are shown in Fig. 2 above for the LIGO Hanford facility.

B. Parameter estimation with TMNRE

We perform parameter inference on both of the case
studies using the implementation of the TMNRE algo-
rithm in PEREGRINE. In particular, we fix the algorithm
settings to the ones given in Table II. The key results of
this section are shown in Figs. 4 and 5, while the
truncation procedure is illustrated for a number of
parameters in Fig. 3. A full set of 2d-posterior distribu-
tions can be found in the Appendix in Figs. 6 and 9.
Discussion. There are a number of levels to discuss

these results. First, we consider the TMNRE algorithm
and its applicability to gravitational wave data analysis.
We can see clearly from the results in Figs. 4 and 5 that
across all parameters we have excellent reconstruction of
the injected parameters, including, e.g., the high primary
spin which can be typically challenging to analyze
[85,86]. More importantly, we see that we achieve very
close agreement with the traditional nested sampling
method DYNESTY [30], both in terms of accuracy of

parameter reconstruction, as well as the precision of the
posteriors. To be quantitative, we compute the Jensen-
Shannon divergence (JSD) between the two sets of
posterior distributions. In Appendix B, we provide a full
set of these values, averaged over all physical parameters
across a number of different samplers including DYNESTY

[30], but also CPNEST [87] and PTEMCEE [26,88], as well
as a complete description of our methodology for
computing the JSD.19 Given these results, there are
two key points to highlight here. First, we see that the
variation between samplers as quantified by the JSD is an
observation specific quantity and that in this case the
variance is significantly larger for the high SNR case
study (on average around ð10 − 30Þ × 10−3 nat) com-
pared to the low SNR one (on average around
ð3 − 9Þ × 10−3 nat). This trend follows at the level of
variation between posterior distributions obtained from
the same sampler (e.g., DYNESTY) run twice with different
random seeds. Secondly, and more relevantly in terms of
the PEREGRINE posteriors, we see that for both case
studies, our results are fully consistent with the variations
between individual samplers (although of course we will
happen to show better agreement with one compared to
another). In addition, it is worth noting that we also
obtain significantly better coverage statistics than, e.g.,

FIG. 3. Illustration of the truncation procedure as applied to the high SNR case study (C2). Each row corresponds to one round of
inference for five separate parameters (chirp massM, right ascension α, inclination angle θjn, polarization angle ψ , and primary spin a1,
from left to right). The insets are zoomed in versions of the constrained region to illustrate the coverage of the true injected values (shown
by black dashed lines). The solid blue lines show the prior truncation bounds derived during the inference step.

19We use nlive¼ 2000, n_act¼ 10 for dynesty, nlive
¼ 2000 for cpnest and nsamples ¼ 2000 for ptemcee.
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BILBY-MCMC and DYNESTY (see Refs. [33,35] and the
discussion below). As a final point, we can see that the
main discrepancies are on parameters that are nonetheless
poorly constrained, and certainly not measured to any
precision—for example the secondary dimensionless spin
a2, or the phase ϕc which is premarginalized in the
sampling approach anyway.
A crucial element to achieving this level of agreement

was to ensure that the same underlying noise realization,
and corresponding observation was analyzed in both the
TMNRE and nested sampling analysis. Performing the
parameter inference on the same signal with a different
noise realization will (correctly) lead to shifts in the
posterior estimates of the parameter that only on average
will be centred on the true value. This is something we
actually take advantage of in the next section to perform
additional quality checks of our inference. These are known
broadly as coverage tests and are becoming common
practice in the simulation-based inference literature to
validate inference results [89,90].
Two of the important features of the TMNRE algo-

rithm that we highlighted in Sec. II were the trunca-
tion and marginal elements. In Fig. 3, we highlight the
former of these and illustrate the impact of truncation on
various classes of parameters. For example, the first three

columns of panels illustrate the convergence of the
posterior estimates over the rounds of truncation and
re-simulation for parameters that are (extremely) well
measured, such as the chirp mass or inclination angle. In
the final two panels, we see another class of parameters
(here ψ and a1 as examples) which are not well con-
strained but are nonetheless reconstructed. We see for this
second class of parameter that in the initial rounds, the
marginal posterior estimate of, e.g., pðψ jx0Þ is rather
poor—and indeed, one should not interpret this as the
true posterior, because the TMNRE algorithm has not
converged. Once the other well measured parameters are
tightly constrained, however, the quality of the inference
of ψ and a1 increases significantly, eventually converging
to agree with the sampling result. This is a general trend
when running TMNRE algorithms that convergence in
other parameters over the course of the rounds ultimately
leads to later improvements in posteriors for different
parameters, see, e.g., [60]. It is also worth briefly
commenting on multi-modality here: while the case
studies we have chosen have well-constrained parameters
such as the chirp mass that are single modes, multi-modal
inference in gravitational waves is a common occurrence.
In the context of PEREGRINE, the same level of efficiency
could be realized in these scenarios by modifying how

FIG. 4. Full set of 1d marginal posteriors for all parameters in the low SNR case study (C1). The inference results from the TMNRE
algorithm are shown in pink, with the 1σ, 2σ, and 3σ contours shown underlaid behind. The purple histograms are the DYNESTY results
for the analysis performed on the same observation (see Fig. 2). The black dashed lines indicate the true injected values.
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we perform the truncation of the prior proposal.
Specifically, instead of bounding in some rectangular
region, we could instead impose a threshold on the ratio
and only sample in (potentially disconnected) regions of
the prior that exceed this. This is currently under active
development through, e.g., nested sampling applied to the
prior distributions, and we emphasize it is just technical
hurdle, rather than any limitation of the method. The
second feature we highlighted was the benefit of directly
estimating marginal posteriors pðϑjx0Þ as opposed to first
generating the full (N-dimensional) joint distribution.
This plays a crucial role in simulation efficiency at no
cost to statistical accuracy—indeed the comparison with
nested sampling highlights that we obtain the correct
marginal distributions even though we do not marginalize
from a joint distribution.20

We can explicitly highlight this simulation efficiency
by comparing the number of waveform generation steps
that were required in the nested sampling case versus in
the TMNRE algorithm. In the low SNR case study, we

required around 720k waveform evaluations, while the
corresponding DYNESTY run required over 44 million.
This represents an over 98% reduction in simulation
budget for identical marginal posterior reconstruction.
The difference is actually larger at the level of simulation
time, since in each round of TMNRE, the waveform calls
can be fully parallelized, while evaluations in nested sam-
pling or MCMC broadly need to be performed sequentially.
This parallelization is implemented as default in our
PEREGRINE code. This is not an entirely fair comparison,
sincewe are also required to train the classifiers at each stage.
This should be compared to, e.g., the total likelihood
evaluation time for a meaningful runtime comparison.
Again, taking the low SNR case study as an example, the
DYNESTY run took around 43 hours versus around 12 hours
for the TMNRE algorithm on the same architecture (includ-
ing network training).21 For scenarios where the cost
per simulation is much higher, however, this trade-off and
benefit from simulation efficiency will become even more
pronounced.

FIG. 5. Full set of 1d marginal posteriors for all parameters in the high SNR case study (C2). The inference results from the TMNRE
algorithm are shown in orange, with the 1σ, 2σ, and 3σ contours shown underlaid behind. The purple histograms are the DYNESTY results
for the analysis performed on the same observation (see Fig. 2). The black dashed lines indicate the true injected values.

20Of course, as discussed in Sec. II, we may not explicitly
marginalize, but we do so implicitly by varying every parameter
across all simulations.

21In future code versions, there is room for this time to be
substantially improved through, e.g., accelerated waveform
evaluations, reduction in network size, or a more efficient scheme
for sampling from the truncated prior proposal distributions.
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As a final note, while at the level of parameter
estimation the 1d marginal posteriors are an informative
set of results, it is often interesting to explore the
parameter degeneracies. To do so, we take advantage
of the flexibility of TMNRE to estimate only the
marginal posteriors we are interested in testing and
construct the full set of 2d posteriors. We make a
comparison to the nested sampling contours in both case
studies and find similarly good agreement. To achieve
this, we required an additional 500k simulations in both
the low and high SNR cases on which to train the set of
marginal posterior classifiers. These are shown in the
Appendix in Figs. 6 and 9.

C. Additional consistency checks

The results and comparisons to traditional methods
discussed above are a helpful and meaningful way to test
the data analysis pipeline that we have developed. On the
other hand, the key motivation for developing PEREGRINE is
to apply it to scenarios where the application of traditional
methods is either impossible or extremely costly. This is
slightly different motivation to current research efforts to
perform, e.g., online parameter inference for LVKC data
streams [64,91]. Given this, it is important to have addi-
tional ways to cross check and validate our inference results
that do not rely on comparisons to sampling. This is an
active area of ongoing research in simulation-based infer-
ence [48,89,92], however, a number of established tech-
niques now exist.
The most common are known as coverage tests, which

implement the idea discussed above that in the context of
Bayesian parameter estimation, repeated inference over
different noise/statistical realizations of the same signal
should result in posteriors that shift relative to the true
value. The rationale behind this sort of expected coverage
test is that—simply as a result of statistical fluctuations—
the x% credible interval for the posterior should contain the
simulation-truth value x% of the time. For a more general
discussion of this in the context of simulation-based
inference, see, e.g., [89]. In practice, we can take a large
sample22 of observations generated from the truncated prior
(where we have converged posterior estimates), and per-
form inference on each observation. In each case we can
note how often the injected value was contained inside the
x% confidence interval and construct a cumulative distri-
bution. A well-calibrated posterior distribution will be a
totally diagonal line when the expected coverage is plotted
against the empirical findings. Due to the fact that full
inference must be done for each observation, this type of
test is typically infeasible to do for sequential sampling
methods such as MCMC. It should be noted, however, that
this test is diagnostic in the sense that a failure implies a

poorly calibrated posterior, but success is not a definitive
guarantee.
The coverage test results for all 15 parameters in both the

high and low SNR case studies are provided in the
Appendix (see Figs. 7, 8, 10 and 11). We see that across
every parameter, we achieve extremely good posterior
coverage, something that adds additional validation to
our agreement with DYNESTY.

IV. CONCLUSIONS AND OUTLOOK

In this final section, we present the key conclusions of
this work, before giving some outlook as to the possible
use cases for our data analysis strategy. Ultimately the
motivation for our method development comes from the
analysis challenges facing the field of gravitational waves
as we move toward the next generation of detectors
[93–95]. Specifically, we will need methods that are
highly scalable, simulation efficient, and flexible to take
full advantage of future data. In this context, the key
research contributions from this work are

(i) Simulation-based inference pipeline. The key de-
velopment put forward in this work is a sequential
simulation-based inference pipeline for analyzing
gravitational waves (see Sec. II for a discussion).
Specifically, we implemented an algorithm known
as truncated marginal neural ratio estimation
(TMNRE) [50]. The motivation and advantages
associated to this choice for gravitational waves
are broadly centred around simulation efficiency
and its applicability to individual observations. We
showed for example that in a standard analysis for
a binary black hole merger, we reduced the
simulation budget (number of waveform evalua-
tions) by over 98% compared to likelihood-based
methods. This scaling is achieved primarily
through the ability of the TMNRE algorithm to
directly estimate marginal posteriors, and is the
key argument for the use of our method in
currently intractable sampling problems such as
the analysis of overlapping sources [38–42].

(ii) Case studies. We studied two cases where we
analyzed highly spinning precessing binary black
hole mergers, one with a high SNR of around
100, and another with a relatively low SNR of
approximately 20. In each case, we performed
full parameter inference using our method on
observations generated using the state-of-the-art
SEOBNRv4PHM waveform approximant [21] (see
Fig. 2), although the method can be applied to any
waveform model. We compared our results for
the 1d- and 2d-marginal posteriors to posterior
samples obtained from nested sampling and dem-
onstrated the excellent agreement across all parame-
ters (see Figs. 4 and 5). In addition, we carried out
expected coverage tests to validate the behavior

22In the tests shown below, we generated 2000 extra simu-
lations from the final round truncated prior region.
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of our posterior estimates (see, e.g., Figs. 10 and11 for
the high SNR case).

(iii) Robust and flexible method. Our implementation
of TMNRE is not the first method to apply modern
machine learning techniques to the analysis of
gravitational waves [59,64,71,96–99]. On the other
hand, these other impressive parameter estimation
pipelines typically have a different goal in mind—
rapid or instantaneous parameter inference. This
has great relevance when attempting to, e.g.,
optimize signal triggering or follow up quickly
on electromagnetic counterparts. However, this
comes at the cost of complicated architectures,
or bespoke likelihood designs [91,100,101] which
render these approaches less flexible for studying
arbitrary classes of signals. In contrast, our moti-
vation is to develop a method that is robust and
flexible enough to be used to analyze a wide range
of signal classes in specific observations. In order
to study a new class of signal—only a new
forward simulation model is required, while the
rest of the pipeline will remain identical. Impor-
tantly, in cases where traditional methods are not
available, the coverage tests described in Sec. III
will still be applicable, so we can still validate our
results.

(iv) Code release. Alongside this work, we have devel-
oped an implementation of our analysis method,
known as PEREGRINE (built on top of SWYFT

[49,50]). This is a highly modular and scalable
library that allows the user to implement their
own Simulator class. Given the simulation effi-
ciency and relatively small network size, it is usable
on an individual basis with reasonable access to
consumer hardware. Both the algorithm as well as
the coverage tests are fully developed and tested,
with examples available. Access to PEREGRINE can
be requested at this Ref. [102].

A. Outlook

As discussed in the introduction to this work, we are
currently in an exciting era of gravitational wave exper-
imental development. With future detectors such as the
Einstein Telescope [93] or LISA [95] taking shape, the
future gravitational wave sky could be extremely loud,
varied, and informative. On the other hand, there are clear
data analysis challenges associated to fully utilizing this
data [67,68]. Two important examples of these challenges
include (i) the analysis of two (or more) overlapping
gravitational wave signals, which will arise as a result of
large increases in detector sensitivity [38–42,103], and
(ii) the identification and analysis of stochastic signals

that will be relevant to space-based observatories such
as LISA [95]. In the former case, the challenge is a
sampling one, with current methods potentially taking
months to analyze a single event. In the latter case, there
is also potentially a large sampling challenge in an
attempt to fit multiple signal templates or noise models,
but there are also statistical challenges that could arise
from correlated signal or detector noise, as well as
significant simulation costs.
It is this class of data analysis challenges that we

had in mind when developing PEREGRINE.23 There are a
number of reasons to believe that the framework put
forward here can approach these problems and extract
the maximum science/physics results. Firstly, the
method is designed to be highly simulation efficient,
something we have demonstrated explicitly in the case
of binary black hole mergers where we saw a ∼98%
reduction in simulation budget. This is one of the keys
to solving sampling based problems, where we can
directly perform inference at the level of marginal
distributions rather than solve the full joint problem.
Assuming the same simulation efficiency holds, this
could lead to a reduction in analysis time for a problem
such as parameter inference for multiple overlapping
waveforms from O(months) [41] to less than a day.
Similarly, TMNRE and other simulation-based inference
approaches are by construction implicit-likelihood meth-
ods. This is equivalent to the statement that one only
needs a forward simulator to perform inference, rather
than an explicit likelihood. In the case of, e.g., possible
correlated noise in the stochastic gravitational wave
background [43,44], this feature could unlock a number
of physics questions that are currently intractable. It is
also worth noting that nonstationary noise, which is
typically challenging to deal with in a likelihood-based
framework is simple in the context of simulation-based
inference and PEREGRINE. In particular, the analysis
would remain identical if, e.g., the PSD was time-
dependent, provided this was included in the detector
aspect of the simulator. We will leave these to future
works to analyze these situations in detail.
To summarize, it is clear that in the era of high-

sensitivity gravitational wave experiments, flexible and
scalable data analysis strategies will be crucial to uncov-
ering exciting fundamental physics discoveries. In this

23Although in addition, motivated by the observed simulation
efficiency, it would be interesting to explore the extent to which
the inference can be fully amortized by significantly expanding
the initial simulation budget, after which approximately real time
inference could be performed. We will leave this aspect to future
work, however, along with investigations as to how to include the
effect of nonstationary noise in such an approach.
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work, we have presented PEREGRINE as a community-
based tool that can hopefully take some steps toward
that goal.

Code and data availability. See GitHub in Ref. [104] for
the PEREGRINE analysis and inference library.

ACKNOWLEDGMENTS

This work is part of the project CORTEX (NWA
.1160.18.316) of the research programme NWA-ORC
which is (partly) financed by the Dutch Research
Council (NWO). Additionally, C.W. acknowledges fund-
ing from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innova-
tion programme (Grant agreement No. 864035). U. B. is
supported through the CORTEX project of the NWA-ORC
with project number NWA.1160.18.316 which is partly
financed by the Dutch Research Council (NWO). J. A. is
supported through the research program “The Hidden
Universe of Weakly Interacting Particles” with project
number 680.92.18.03 (NWO Vrije Programma), which is
partly financed by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (Dutch Research Council).
S. N. acknowledges support from the NWO Projectruimte
grant (Samaya Nissanke). B. K. M. is funded by the
University of Amsterdam Faculty of Science (FNWI),
Informatics Institute (IvI), and the Institute of Physics
(IoP). B. K. M. is also affiliated with the European
Laboratory for Learning and Intelligent Systems (ELLIS
Society). The main analysis for this work was carried out
on the Lisa and Snellius Computing Clusters at
SURFsara. We are very grateful to Thomas Edwards
and Sam Witte for their careful reading of the draft and
useful comments. We also thank Andrew Williamson and
Pablo Bosch for helpful conversations about this project.

APPENDIX A: NETWORK ARCHITECTURE

The network architecture used for the analysis in
PEREGRINE is shown in the figure below. As described in
the text in Sec. II, we use the flexibility of the TMNRE
implementation to automatically extract a small set of
summary statistics from both the time and frequency
domain strains after processing and compressing the input
data. This summary can then be passed to the ratio
estimator along with the physical parameters θGW to
perform the inference. The full PyTorch [105] imple-
mentation of the network components shown below
(specifically the unet and linear compression networks)
can be found in the InferenceNetwork class of
PEREGRINE.

APPENDIX B: COMPARISON WITH
LIKELIHOOD BASED SAMPLERS

In order to validate our results in Sec. III, we quantitatively
compare the PEREGRINE posteriors against those obtained
using traditional sampling methods such as nested sampling

TABLE III. Average Jensen-Shannon divergences over all
physical parameters θGW ¼ ðq;M;…Þ for different sampler
combinations. Values below the diagonal (in pink boxes) refer
to the low SNR case study (C1), while those above the diagonal
(in orange boxes) are for the high SNR case (C2).

JSD
[10−3 nat] PEREGRINE DYNESTY

DYNESTY

(re-run) PTEMCEE CPNEST

PEREGRINE 18.0 13.1 21.0 20.6
DYNESTY 9.75 4.02 10.0 35.2
DYNESTY

(re-run)
10.9 0.55 10.6 29.9

PTEMCEE 16.5 7.01 7.56 35.9
CPNEST 6.82 3.52 4.46 8.60

SEQUENTIAL SIMULATION-BASED INFERENCE FOR … PHYS. REV. D 108, 042004 (2023)

042004-15



and MCMC. Specifically, we compute the Jensen-Shannon
divergence among the 1d posteriors obtained using
PEREGRINE, DYNESTY, PTEMCEE, and CPNEST. Our imple-
mentation including all the data relevant to this article are

available publicly on our Zenodo page [106], along with
files, alongwith files that can regenerate the JSDvalues (both
on average and on a parameter-by-parameter basis) given
below in Table III.

FIG. 6. Full set of 2d marginal posteriors in the low SNR case study (C1). The results from the TMNRE analysis are shown in pink,
while the corresponding DYNESTY analysis is shown in blue. The darker and subsequently lighter contours in the 2d marginals indicate
the 1σ, 2σ and 3σ confidence intervals respectively. The sky map shows the (α,δ) contours centered at the injection value.
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FIG. 7. Coverage results for the low SNR case study (C1) for all parameters. This compares the expected coverage of the true value as
a percentage on the x-axis against the actual coverage of our ratio estimator on the y-axis. The pink line indicates the average coverage,
while the blue contour indicates the 68% confidence interval on the coverage.

FIG. 8. Coverage results for the low SNR case study (C1) for all parameters. This is the same information as Fig. 10, but with zp
defined by p ¼ R zp

−zp dz 1=
ffiffiffiffiffi
2π

p
expð−z2=2Þ. This places more emphasis on the behavior of the posteriors in the tail regions. The pink line

indicates the average coverage, while the blue contour indicates the 68% confidence interval on the coverage.
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FIG. 9. Full set of 2d marginal posteriors in the high SNR case study (C2). The results from the TMNRE analysis are shown in orange,
while the corresponding DYNESTY analysis is shown in blue. The darker and subsequently lighter contours in the 2d marginals indicate
the 1σ, 2σ, and 3σ confidence intervals respectively. The sky map shows the (α,δ) contours centered at the injection value.
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FIG. 10. Coverage results for the high SNR case study (C2) for all parameters. This compares the expected coverage of the true value
as a percentage on the x-axis against the actual coverage of our ratio estimator on the y-axis. The pink line indicates the average
coverage, while the blue contour indicates the 68% confidence interval on the coverage.

FIG. 11. Coverage results for the high SNR case study (C2) for all parameters. This is the same information as Fig. 10, but with zp
defined by p ¼ R zp

−zp dz 1=
ffiffiffiffiffi
2π

p
expð−z2=2Þ. This places more emphasis on the behavior of the posteriors in the tail regions. The pink line

indicates the average coverage, while the blue contour indicates the 68% confidence interval on the coverage.
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