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The spaceborne gravitational wave detection mission has a demanding requirement for the precision of
displacement sensing, which is conducted by the interaction between the laser field and test mass. However,
due to the roughness of the reflecting surface of the test mass, the displacement measurement along the
sensitive axis suffers a coupling error caused by the residue motion of other degrees of freedom. In this
article, we modeled the coupling of the test mass residue random motion to the displacement sensing along
the sensitive axis and derived an analytical formula of the required precision of the surface error for the
spaceborne gravitational wave detectors. Our result shows that for the test masses in the LISA pathfinder,
this coupling error will not contaminate the picometer displacement sensing.
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I. INTRODUCTION

Spaceborne laser interferometer gravitational wave
detectors such as LISA [1], Tianqin [2], and Taiji [3] are
targetted on detecting the gravitational wave sources at the
milli-Hertz range in the 2030s. The configuration of these
gravitational wave detectors consists of three satellites that
are connected by laser links. Each satellite consists of two
independent subsystems in a 60-degree configuration, each
of which contains an interferometry system (optical bench,
laser source, telescope, etc.) and a gravitational reference
sensor with test mass inside, as shown in Fig. 1. Two key
components inside these satellites are the test masses which
serve as inertia references, and also the interferometer
bench which measures the tiny displacement of the test
mass. The detailed interaction process between the test
mass and the laser field will affect gravitational wave
detection.
As an inertial reference, the cubic Au-Pt alloy test mass

is surrounded by a conducting electrostatic shield with
electrodes that are used for simultaneous capacitive posi-
tion sensing and electrostatic force actuation [4]. The drag-
free and attitude control system [5] ensures the very high
dynamic stability of spacecraft and test masses, in particu-
lar along the sensitive axis along which the laser field gets
reflected. For the other nonsensitive axis, the motion is
controlled while introducing non-negligible disturbance

noise, which causes beam walking and jitter effects by
reflecting from the test mass surface as we shall discuss in
this work.
The surface roughness is an intrinsic property of the

test mass originated from the manufacturing process (see
Fig. 2) [6–10]. On one hand, this surface roughness will
introduce stray light and result in nonlinear errors in inter-
ferometry [11,12], which have been well studied [13–17].
On the other hand, the surface roughness will distort the
wavefront of the reflected laser field. Furthermore, with the
residue random motion perpendicular to the sensitive axis,
such a wavefront distortion due to the surface roughness
will not be time independent, which could contribute noise
to the phase measurement by the local interferometer in the
satellite. Analyzing such a noise effect is interesting since it
couples several figures of merit of the satellite components
such as the precision of the test mass manufacturing,
interferometric phase measurement, and the residue motion
of the inertia sensor.
This work is devoted to an in-depth analysis of how

surface roughness contributes to displacement measure-
ment in the spaceborne gravitational wave detector. The
interaction details of the residue test mass motion, surface
roughness, and the light field are analyzed, and an
analytical expression for the requirement of the surface
roughness error given the picometer displacement sensing
requirement is derived. Our results show that for the level of
residue motion of the test masses in the LISA pathfinder,
the surface roughness will not contribute significantly to
the sensitivity of the picometer displacement sensing as

*myqphy@hust.edu.cn
†zhouzb@mail.hust.edu.cn

PHYSICAL REVIEW D 108, 042001 (2023)

2470-0010=2023=108(4)=042001(9) 042001-1 © 2023 American Physical Society

https://orcid.org/0000-0001-6496-9628
https://orcid.org/0000-0001-7192-4874
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.042001&domain=pdf&date_stamp=2023-08-22
https://doi.org/10.1103/PhysRevD.108.042001
https://doi.org/10.1103/PhysRevD.108.042001
https://doi.org/10.1103/PhysRevD.108.042001
https://doi.org/10.1103/PhysRevD.108.042001


long as the test mass manufacturing process limits the
surface roughness error within about 100 nm. This is not a
strict requirement with the current state-of-art technology.
This paper is organized as follows. In Sec. II, theoretical

modeling of the test mass surface roughness is presented.
Section III discusses how it couples to the light field and
distorts the wavefront. Then we discuss its impact on the
interferometric phase measurement of the noise in Sec. IV.
The summary and further discussions are presented in the
last section.

II. MODELING THE SURFACE ROUGHNESS
OF A TEST MASS

The measured surface roughness is modeled by a two-
dimensional height function hðx; yÞ, which describes the

random distribution of the surface height along the sensitive
axis. In this work, we assume there is no cross-correlation
between the x and y directions: hðx; yÞ ¼ hxðxÞhyðyÞ. The
spatial correlation function of the surface roughness is
given by

Chhðx⊥ − x0⊥Þ ¼ hðx⊥Þhðx0⊥Þ; ð1Þ

where x⊥ ¼ ðx; yÞ and the overline represents the ensemble
average. Therefore the correlation spectrum is

Chhðk⊥Þ ¼
Z

d2x⊥Chhðx⊥Þeik⊥·x⊥ ; ð2Þ

where k⊥ ¼ ðkx; kyÞ. Since hðx; yÞ ¼ hxðxÞhyðyÞ, the cor-
relation spectrum is also separable:

Chhðkx; kyÞ ¼
Z

dxeikxxCx
hhðxÞ

Z
dyeikyyCy

hhðyÞ; ð3Þ

where Cx
hhðxÞ ¼ hxðxÞhxð0Þ [the same for Cy

hhðyÞ]. In our
modeling, we assume that the surface roughness power
spectral densities (PSD) of a test mass are

Cx
hhðkxÞ ¼

C
1þ ðkx=kΛÞ2

; ð4Þ

where the C ¼ 0.3 μm2 is the spectrum amplitude and the
kΛ ¼ 1 mm−1 is the spectrum turning frequency. The surface
roughness PSD form in Eq. (4) has the same spatial-
frequency dependence feature as the models used in
LIGO and LISA [18–20], and depends on the actual mirror
polishing process. Generally, the surface roughness PSD
decreases as the spatial frequency increases. The effective
surface roughness is [18]

σλ ≈
�Z

1=λ

1=d

Z
1=λ

1=d
Chhðkx; kyÞdkxdky

�
1=2

¼ ξπCkΛ; ð5Þ

where ξ is a dimensionless coefficient that depends on the
upper and lower limits of integration (in this paper, we take
ξ ≈ 1). λ is the measurement laser wavelength, and d is the
dimension of the area under measurement.
We construct our model of the surface roughness by

multiplying the amplitude spectral density (ASD) [square
root of the PSD in Eq. (4)] by a random phase before
transforming back to coordinate space to obtain the root-
mean-square value, similar to [19,20]. Figure 3 illustrates
the surface roughness power spectral densities (PSD) and a
typical surface curve. Considering the dimensions of the
test mass (a few centimeters) and the diameter of the
measurement laser beam (about one millimeter), we take
the spatial wavelength in the range 25 μm–50 mm (see the
horizontal coordinates of the power spectral density).

FIG. 1. Schematic diagram of a satellite payload assembly in a
spaceborne gravitational wave detector, where the laser field
(ideally) couples to the test mass geodesic motion, which is
preserved by the inertial sensor and drag-free controller.

FIG. 2. Schematic diagram of the interferometric sensing of the
test-mass displacement.
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Figure 4 illustrates a typical two-dimension surface map
with a roughness rms of about 1 nm generated by the
simulation.
In a real manufacturing process, the surface roughness of

the test mass manufactured by advanced machining tech-
nologies can be suppressed down to a few nanometers
according to the current state of the art.

III. LIGHT FIELD SCATTERED BY THE
SURFACE ROUGHNESS

A. Hermite-Gaussian modes

The spatial electric field distribution of a freely propa-
gating light field is described by the Hermite-Gaussian
mode:

Enmðx;y;zÞ
E0

¼Hn

� ffiffiffi
2

p
x

wðzÞ
�
Hm

� ffiffiffi
2

p
y

wðzÞ
�
exp

�
−
x2þy2

w2ðzÞ
�

×
w0

wðzÞexp
�
−i
�
kz−ðnþmþ1Þarctan z

zR
þkðx2þy2Þ

2RðzÞ
��

;

ð6Þ

where HmðxÞ is the Hermitian function, wðzÞ is the
diameter of the cross section of the light field as a function
of propagation distance, zR is the Reighley length and
RðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðzÞ þ z2R

p
. Two examples of the Hermitian-

Gaussian (HG) mode are plotted in Fig. 5. All of the HG
modes form a Hilbert space and a general freely propa-
gating light field (normalized) can be expanded as

ψðx; y; zÞ ¼ hx; y; zjψi ¼
X
j

ajhx; y; zjHGij; ð7Þ

FIG. 3. Upper panel: power spectral densities of uncoated
mirror surface roughness. The red line is the PSD model [see
Eq. (4)], and the black line is a simulated PSD created to generate
the random maps used in our work. Lower panel: 1D surface
curve of a typical map.

FIG. 4. Two-dimensional distribution of the surface roughness
of the test masses.
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where jHGij is the eigenvector representing the HG mode
with j ¼ ðm; nÞ and aj is the expansion coefficient. The
state vector of the general light field is jψi ¼ P

j ajjHGij.
The hxjHGij is the jth HG mode in the coordinate
representation, which is a compact form of Eq. (6). The
HG mode is a separable function and, for notational
simplicity later on, we will break the x-dependent part
and y-dependent part of the HG mode by writing
jHGji ¼ jHGx

jijHGy
ji.

Usually the incoming signal field is assumed to be a pure
HG mode with n ¼ m ¼ 0. Reflecting by the imperfect test
mass surface, the outgoing field will be a combination of all
different HG modes where the expansion coefficient aj is
determined by the mode shape. When the surface rough-
ness effect is small, it only perturbs the outgoing field so
that jajj ≪ ja0j for j ≠ ð0; 0Þ. The phase measurement by a
heterodyne detector superposes the reflected light field with
a local oscillator with H00ðxÞ mode:

jψmi ¼ aLOjHGi00 þ jψiref
¼ aLOjHGi00 þ a0jHGi00 þ

X
j≠ð0;0Þ

ajjHGij; ð8Þ

with the intensity which is proportional to the photoelectric
current:

Im ¼ ηE2
0ðψmjψmÞ ≈ ηE2

0jaLO þ a0j2; ð9Þ

where the inner product here is defined as

ðAjBÞ≡
Z

d2x⊥hAjxihxjBi; ð10Þ

and the η is the optical-electronical power conversion rate.
The integral is performed over the transversal ðx; yÞ plane.
The physical meaning can be read out from dimensional
analysis: the energy density flux is ∼cε0jEj2 ∝ ðψmjψmÞ,
integrating this energy density flux over the transversal
plane leads to a quantity with dimension of power, which is
the power of light absorbed by the photodetector.

B. Dynamical coupling with the surface roughness

The incoming field reflected from the surface dynami-
cally couples to the test mass motion. The surface rough-
ness hðx; yÞ couples to the light field as

ψ refðx; y; zÞ ¼ rψ inðx; y; z0 þ hðx; y; tÞÞ; ð11Þ

where r is the amplitude reflectivity and hðx; y; tÞ is the
surface roughness sensed by the laser field. This hðx; y; tÞ is
a random number since the transversal motion is random.
This coupling can be illustrated by the Gaussian mode
under the paraxial approximation

ψ refðx; y; zÞ ¼ r½1 − 2ikhðx; y; tÞ�H00ðx; y; z0Þ; ð12Þ

where we have assumed the zeroth order flat surface
located at z ¼ z0, and the small roughness allows the
approximation exp½−2ikhðx;yÞ�≈1–2ikhðx;yÞ. Moreover,
the hðx; y; z; tÞH00ðx; y; z0Þ can be expanded in terms of all
HG normal modes.
During the heterodyne detection, as we have discussed in

Sec. III A, there will be superposition of the local oscillator
and the signal field and the final photoelectric current at the
photodetector is given by

Im ¼ ηE2
0ðψmjψmÞ ¼ ηE2

0

Z
d2x⊥hψmjx⊥ihx⊥jψmi; ð13Þ

where the trivial propagation in the z direction is neglected
for simplicity. The perturbation of the surface roughness to
the measured photoelectric current Im is given as

δhIm ¼ η2krE0ELO

�
w0

wD

�
2
Z

d2x⊥ exp

�
−2

x2 þ y2

w2
D

�

× hðx; y; tÞ; ð14Þ

where wD is the diameter of the Gaussian optical beam at
the detector position.
The above result can be rewritten using the effective

optical path variation defined as

heffðtÞ ¼
4

πw2
D

Z
d2x⊥ exp

�
−2

x2 þ y2

w2
D

�
hðx; y; tÞ; ð15Þ

so that δhIm ¼ ηkrE0ELOheffðtÞπw2
D=2. For small trans-

versal displacements, we have

hðx; y; tÞ ¼ hðxþ δxcðtÞÞhðyþ δycðtÞÞ
≈ hxðxÞhyðyÞ þ hxðxÞ∂yhyðyÞδycðtÞ

þ hyðyÞ∂xhxðxÞδxcðtÞ; ð16Þ

where the first term hxðxÞhyðyÞ is a negligible time-
independent DC source. Therefore we have the coupling

FIG. 5. The Hermite Gaussian transversal spatial function of
HG00 and HG01 modes.
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of the test mass transversal center of mass motion to the
phase error as

δheffðtÞ ¼
4

πw2
D

Z
d2x⊥ exp

�
−2

x2 þ y2

w2
D

�

×

�
hxðxÞ

∂hyðyÞ
∂y

δycðtÞ þ hyðyÞ
∂hxðxÞ
∂x

δxcðtÞ
�
;

ð17Þ

which has a simpler form after integration by parts:

δheffðtÞ ¼ hHGy
01jhyihHGx

00jhxiδycðtÞ
þ hHGx

01jhxihHGy
00jhyiδxcðtÞ; ð18Þ

where hxjhi≡ hxðxÞ. Clearly, in this case the noise can be
written as

Sheff ðΩÞ ¼ jhHGy
01jhyihHGx

00jhxij2SδycðΩÞ
þ jhHGx

01jhxihHGy
00jhyij2SδxcðΩÞ: ð19Þ

Therefore the roughness-light conversion coefficient
hHGy

01jhyihHGx
00jhxi is the key to obtain the displacement

noise level along the sensitive axis. The coupling error
depends mainly on the gradient of the mirror surface near
the laser spot position. In Fig. 6, we present the absolute
value of the conversion coefficient when the light spot is
located at different positions of a surface with roughness
distribution in Fig. 4. As we shall see later, this figure is
very useful for estimating the test mass manufacture
requirements. For a given test mass with the light spot
precisely on the geometrical center of the test mass surface,
what matters is the value at ðx ¼ 0; y ¼ 0Þ, which is equal
to 3 × 10−7 in the exemplary Fig. 6. For LISA path-
finder [5,21], the error of the transversal residue motion
is δxc ∼ 10−8 m=

ffiffiffiffiffiffi
Hz

p
, which corresponds to the displace-

ment sensing noise around δheff ∼ 3 × 10−15 m=
ffiffiffiffiffiffi
Hz

p
.

Certainly it will not contribute a serious noise to the
detector sensitivity.

C. The surface roughness couples with imperfections
of incoming light

Surface roughness has another effect on the phase error,
which comes from the imperfections of the incoming light
field. Let us suppose the incoming light contains other HG
modes due to the distortion of the optical element in the
optical path [22,23]:

jψiin ¼ jHG00i þ
X

j≠ð0;0Þ
ajjHGji: ð20Þ

Reflected from the rough surface, jHG01i can be converted
back into the jHG00i mode in a stochastic way so that there

will be a contamination of the phase measurement. Figure 7
shows schematically how the higher-order HG mode
component in the incoming field is being converted to
jHG00i through reflecting by a rough surface.
The modulation of the surface roughness to the jHG01i in

the incoming field can be written as

FIG. 6. Upper panel: filter function extended over the light spot.
Lower panel: two-dimensional distribution of the roughness-light
conversion coefficient jhHGy

01jhyihHGx
00jhxij, where in the main

text we only give the result for δheff of the geometric center of the
test mass. The result is based on the original surface roughness
distribution in Fig. 4.

FIG. 7. Higher-order component in the incoming light field is
converted back to the fundamental Gaussian mode via interaction
with the surface roughness.
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X
j≠ð0;0Þ

ajhx⊥jHGji →
X

j≠ð0;0Þ
ajð1þ 2ikĥÞjHGji; ð21Þ

where the randomly perturbed z-directional roughness
(denoted as operator ĥ) can have a nonzero overlap with
the jHG00i. This is important since the local oscillator of
the heterodyne detector is a jHG00i mode, therefore its
superposition with the perturbed field can be written as

aLOjHGi00 þ ik
X

j≠ð0;0Þ
ajĥjHGij; ð22Þ

and the corresponding perturbation to the photoelectric
current is

δ0hIm ¼ Re

�
2ik

X
j≠ð0;0Þ

a�LOajðHG00jĥjHGjÞ
�

¼ Re

�
2ik

X
j≠ð0;0Þ

a�LOaj

Z
d2x⊥
πw2

D
hHG00jx⊥i

× hðx; yÞhx⊥jHGji
�
: ð23Þ

We can similarly construct an effective optical path
variation in this case, defined as

δ0heff ¼ Re

�
2ik

X
j≠ð0;0Þ

a�LOaj

Z
d2x⊥
πw2

D
hHG00jx⊥i

× hðx; yÞhx⊥jHGji
�
: ð24Þ

The time dependence of δ0heff may have two origins.
(1) The imperfections of the optical element in the
interferometer may be time dependent so that aj ¼ ajðtÞ,
which directly couples with a time-independent hðx; yÞ
roughness, contributing to the phase error:

δa1heffðΩÞ ¼ Re

�
2ik

X
j≠ð0;0Þ

a�LOajðΩÞ
Z

d2x⊥
πw2

D
hHG00jx⊥i

× hðx; yÞhx⊥jHGji
�
: ð25Þ

Supposing the HG01 mode dominates the random optical
imperfections, the noise spectrum can be written as

Sa1heff ðΩÞ¼
����
Z

d2x⊥
πw2

D
hHG00jx⊥ihðx;yÞhx⊥jHG01i

����
2

Sa1a1ðΩÞ:

ð26Þ

With this formula, the picometer displacement sensing
accuracy will set a requirement to the imperfections of the
incoming light field, as we will discuss in the next section.

(2) Similar to the Sec. III B, the hðx; yÞ is fluctuation due
to the transversal residue center of mass motion of the test
mass:

δ0heffðΩÞ¼Re

�
2ik

X
j≠ð0;0Þ

a�LOaj

Z
d2x⊥
πw2

D
hHG00jx⊥ihx⊥jHGji

×
∂hðx;yÞ

∂y
δycðΩÞþ

∂hðx;yÞ
∂x

δxcðΩÞ
�
; ð27Þ

with the corresponding noise spectrum as

Sh0eff ðΩÞ

¼ 2a21
w2
D

����
Z

d2x⊥
πw2

D
hHG00jx⊥ihx⊥jHG01i

∂hðx; yÞ
∂y

����
2

SδxcðΩÞ

þ 2a21
w2
D

����
Z

d2x⊥
πw2

D
hHG00jx⊥ihx⊥jHG01i

∂hðx; yÞ
∂x

����
2

SδycðΩÞ;

ð28Þ

where the conversion coefficient is plotted in Fig. 8. Since
the interferometer in the GW satellite has a precise control
of the beam, the aj is typically small, thereby the δ0heff
should be a secondary effect compared with the first one.

IV. NOISE LEVEL AND TEST MASS
MANUFACTURE REQUIREMENTS

After analyzing the details of the coupling between the
light field and the surface roughness, this section devotes to
discussing the noise level and the corresponding require-
ments of the test mass manufacture. This discussion is
divided into two parts: (1) for a given test mass with a fixed
and known surface roughness distribution, we want to
estimate the displacement sensing noise level; (2) for a

FIG. 8. Conversion coefficient between the surface roughness

and the imperfections of incoming light
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sh0eff=a

2
1Sδxc

q
.
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general manufacturing process, which corresponds to an
ensemble of surface roughness realizations, we want to
discuss how the noise level estimation put a requirement on
the test mass manufacturing process.
First, for a given test mass with known surface roughness

distribution hðx; yÞ, it is straightforward to calculate the
phase error through the spectrum of δheff , δh

a1
eff , and δh0eff ,

which is shown in Fig. 9.
Second, for setting a requirement on the test mass

manufacturing process, we should assume an ensemble
of test mass realization to mimic the uncertainty of the
manufacturing process. Each test mass in this ensemble
interacts with the laser field where the light spot is on the
geometrical center of one surface of the test mass cubic.
Since these ensemble test masses have a different realiza-
tion of the surface roughness, the reflected light field will
be modulated in a different and stochastic way. To give an
indicator of surface manufacture, we need to compute an
ensemble average of the phase error over all surface
roughness realizations. According to the ergodic theorem,
this ensemble average is equivalent to the average over
different spot center points on a sufficiently large surface
plane, which allows us to make use of the result given in the
previous section.
The error calculated using the ergodic theorem math-

ematically can be represented as

δh2effðΩÞ ¼
1

N

X
j

δh2eff ½Ω; hjðxspotÞ�

¼ 1

A

Z
d2x⊥cδh2eff ½Ω; hjðx⊥cÞ�; ð29Þ

where x⊥c is the coordinate of the light spot center at the
surface plane, and δheff ½Ω; hjðx⊥cÞ� is already obtained in

Fig. 6. The gravitational wave detection mission requires
that

ΔδheffðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δh2effðΩÞ

q
≤ 1 pm=

ffiffiffiffiffiffi
Hz

p
; ð30Þ

from which a requirement on the surface roughness can be
derived as follows.
Let us take the noise in Eq. (17) as an example.

Substituting Eq. (17) into Eq. (29) and after some straight-
forward algebra, the result can be written in terms of the
relationship among the displacement sensing error, surface
roughness spectral amplitude and the test mass residue
motion error:

δh2effðΩÞ ¼ C2Hδxcδx
2
cðΩÞ þ C2Hδycδy

2
cðΩÞ; ð31Þ

where the coefficients Hδxc and Hδyc are given by

Hδxc ¼
Z

d2x⊥c

A
d2k⊥

2

πw2
D

1

1þ ðkx=kΛÞ2
1

1þ ðky=kΛÞ2
× jF kx ½hxjHGx

01ðxcÞi�F ky ½hyjHGy
00ðycÞi�j2

Hδyc ¼
Z

d2x⊥c

A
d2k⊥

2

πw2
D

1

1þ ðkx=kΛÞ2
1

1þ ðky=kΛÞ2
× jF ky ½hyjHGy

01ðycÞi�F kx ½hxjHGx
00ðxcÞi�j2; ð32Þ

in which F k½� � �� is the Fourier transformation defined as

F k½fðxÞ�≡
Z

dxeikxfðxÞ; ð33Þ

and jHGx
00=01ðxcÞi means the HG modes jHGx

00=01i
centered at xc:

Hδxc ¼ Hδyc

¼
ffiffiffiffiffiffi
2π

p
k3Λ

wD
e−

k2Λw2
D

2 Erfc

�
kΛwDffiffiffi

2
p

�

×

�
1 −

ffiffiffi
π

2

r
kΛwDe−

k2Λw2
D

2 Erfc

�
kΛwDffiffiffi

2
p

��
; ð34Þ

where Erfcð� � �Þ is the complementary error function.
Finally we have

σλ ¼ ξπCkΛ ≤
�

k2Λδh
2
effðΩÞ

Hδxc ½δx2cðΩÞ þ δy2cðΩÞ�

�1=2
; ð35Þ

or equivalently

δx2cðΩÞ þ δy2cðΩÞ ≤
k2Λδh

2
eff

π2σ2λHδxc

: ð36ÞFIG. 9. Amplitude spectral densities (ASD) of nonsensitive axis
displacement of LISA Pathfinder [21].
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These formulas set a constraint on the surface roughness
once the displacement sensing error and the transversal
residue motion error are given, or a constraint on the
precision for the residue motion control on the insensitive
axis with a given surface roughness. For the spaceborne
gravitational wave detection mission, the LISA pathfinder
residue motion δxc ∼ δyc ∼ 10−8 m=

ffiffiffiffiffiffi
Hz

p
[21], the surface

roughness error must be lower than 100 nm with
Hδxc ∼ 1012 m−4. Moreover, for the fluctuation due to
the imperfections of the incoming light field, Eq. (26)
leads to a requirement for the jitter of the incoming light,
where we have

ffiffiffiffiffiffiffiffiffiffi
Sa1a1

p
< 10−2=

ffiffiffiffiffiffi
Hz

p
for a picometer

displacement sensing accuracy.

V. DISCUSSION AND CONCLUSIONS

In this work, we have investigated the effects of test mass
surface roughness in the spaceborne gravitational wave
detectors, which was not shownmuch in the previous works.
It is worth mentioning that, for ground-based gravitational
wave detectors such as LIGO/VIRGO, the surface roughness
of the suspendedmirrors also impacts the detector sensitivity,
which has been studied in many works [24–28]. A com-
parison between the surface roughness effect on spaceborne
and ground-based detectors is worth a discussion.
In the ground-based gravitational wave detector, two test

mass mirrors form a Fabri-Perot arm cavity, which enhan-
ces the detector’s sensitivity. The detector sensitivity is
dominated by quantum noise at the interested frequency
band, and it is quantum optically enhanced by injecting the
squeezed light [29,30]. Therefore achieving a full-coherent
cavity is the key to the quantum metrology in the ground-
based detector. Surface roughness can scatter the cavity
field from the fundamental Gaussian mode into other
higher-order modes, thereby contributing to an optical loss
that can degrade the coherence of the quantum light field.
These effect has been discussed by [20]. Moreover, the
mirror surface roughness can also affect the interferometer
designs based on injecting high-order mode laser, which
targets mitigating the thermal noise effect. In these designs,
it is found that the optical scattering by the mirror surface
roughness will seriously affect the interferometer operating
with higher-order Laguerre-Gaussian laser modes, while

higher-order Hermit-Gaussian fields could be useful with
future designs [27,31]. In summary, ground-based detectors
are more concerned about the effect of mirror surface
roughness on static optical loss.
Similarly, note that the wavefront distortion generated by

the surface scattering also contributes to a scattering loss as
in the ground-based detector case. However, since the
interferometric sensing of the test mass motion in a LISA-
type spaceborne detector does not involve the optical cavity
structure and quantum metrology, such a scattering loss
will not alter the shot noise floor. Differently, our work
emphasized the dynamic side of this effect. The residue
random motion of the test mass along the nonsensitive axis
couples to the surface roughness, and finally affects the
laser field along the sensitive direction or the fluctuating
component of the incoming field that couples to the
Gaussian mode via surface roughness.
In this paper, we have discussed the noise mechanism

due to the dynamic coupling of the test mass surface
roughness with the light field. Our conclusion is that with
the residue motion of the test mass along the nonsensitive
axis in the LISA pathfinder, the nanometer scale surface
roughness only contributes a ∼0.01 pm=

ffiffiffiffiffiffi
Hz

p
noise level to

the displacement sensing along the sensitive axis at around
10 mHz. As long as the test mass manufacturing state of
the art can reduce the surface roughness below the 100 nm
level, a 10 nm=

ffiffiffiffiffiffi
Hz

p
residue motion would not signifi-

cantly affect the gravitational wave detection.
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