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We study the impact of the ambient fluid on the evolution of collapsing false vacuum bubbles by
simulating the dynamics of a coupled bubble-particle system. A significant increase in the mass of the
particles across the bubble wall leads to a buildup of those particles inside the false vacuum bubble. We
show that the backreaction of the particles on the bubble slows or even reverses the collapse. Consequently,
if the particles in the true vacuum become heavier than in the false vacuum, the particle-wall interactions
always decrease the compactness that the false vacuum bubbles can reach, making their collapse to black
holes less likely.
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I. INTRODUCTION

Primordial black holes (PBHs) could prove to be a
solution to some of the many outstanding issues in
astrophysics and cosmology. Very light PBHs, despite
decaying before big bang nucleosynthesis, could play an
important role in baryogenesis [1–11] or affect the pre-
dictions of models of dark matter (DM) [12–19]. PBHs
with masses similar to the masses of asteroids could instead
play the role of DM themselves [20], and even heavier
PBHs could provide seeds for cosmic structures [21–25] or
contribute to the gravitational-wave signals currently
probed by LIGO-Virgo [26–32].
There are multiple mechanisms that can be responsible

for the production of PBHs. The most widely used one
involves overdensities created by inflationary fluctua-
tions which collapse upon reentering the horizon [33].
Alternative mechanisms that we focus on involve a collapse
of regions of an unstable false vacuum. These regions can

either have their origin during inflation [34–38] or be the
last regions remaining in the initial minimum during a first-
order phase transition in the early Universe [39–51]. In this
paper, we study in detail the collapse of such false vacuum
bubbles. Our main focus is on the impact that weakly
interacting particles might have on the evolution of the
disappearing false vacuum remnants. Only particles with
enough kinetic energy to cover the difference in mass
between the phases can cross the phase boundary. This
leads to a buildup of particles with too small momenta
inside of the shrinking regions. It was claimed that this
effect can facilitate PBH production [52,53] as the density
of particles inside such regions increases their mass. We
investigate the effect of including the backreaction of the
population of particles on the evolution of the phase
boundary. We use the recently proposed N-body simula-
tions [54], treating each particle as an individual object
and tracking their evolution together with the phase
boundary.
We find that the backreaction is crucial and can even

momentarily reverse the bubble evolution due to the
buildup of particles. We show that the net result of the
pressure due to particles that are lighter in the false vacuum
than in the true vacuum is always a reduction of the
compactness the false vacuum regions can reach and
less optimistic prospects for the formation of PBHs.
However, we also find that particles whose masses
decrease as they cross from the false vacuum to the true
vacuum can accelerate the wall, causing the bubbles to
become more massive and compact, potentially assisting
BH formation.
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The paper is structured as follows. In Sec. II we
review the dynamics of the coupled particle-wall system.
Section III describes the numerical methodology. The
results are summarized in Sec. IV and their implications
are discussed in Sec. V. We conclude in Sec. VI. Some of
the technical details are gathered in the appendices. The
units ℏ ¼ c ¼ G ¼ 1 are used throughout this paper.

II. BUBBLE-PARTICLE DYNAMICS

We study a collapsing false vacuum bubble coupled to a
fluid consisting of feebly interacting particles. Neglecting
gravity and assuming a thin wall, the dynamics of such a
system depends on the particle-wall interactions [54]. Such
interactions exchange energy between the wall and the
particles contributing to the radial evolution of the bubble.
Consider particles reaching the wall separating the true

and the false vacuum regions, which we denote as “þ” and
“−,” respectively. The evolution of particle momenta is
determined by momentum conservation in the rest frame of
the wall. Importantly, the asymptotic behavior of momenta
does not depend on the wall profile. The momentum of a
particle reaching the wall from the i region changes as [54]

pμ ⟶
i→j

pμ þ nμn · pF ið−n · pÞ; ð1Þ

where nμ is the normal to the wall and

F iðuÞ ¼
8<
:

2; u2 < m2
j −m2

i ;

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
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j −m2
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The energy transfer between the particles and the wall
causes a pressure difference ΔP across the bubble wall [54],

ΔP ¼
Z

d3p
ð2πÞ3

X
i∈�

fiðpÞ
ðn · pÞ2

Ei
F ið−n · pÞ; ð3Þ

wherefiðpÞ is themomentumdistribution at side i of thewall.
Consequently, the dynamics of the bubble radius R is given
by [54]

R̈þ 2
1 − Ṙ2

R
¼ ð1 − Ṙ2Þ3=2

σ
ð−ΔV þ ΔPÞ; ð4Þ

where ΔV ≡ Vr<R − Vr>R < 0 denotes the potential energy
difference between the true and false vacua and σ is the wall
tension. The final stages of the false vacuum bubble collapse
are expected to occur within a time scale shorter than the
Hubble time. Therefore, we assume that the bubble is much
smaller than theHubble horizon anddo not consider the effect
of the expansion of theUniverse.We remark thatΔV does not
contain thermal corrections. These are included through ΔP
which accounts for both the equilibrium and nonequilibrium

effects [54].Assuming thermal initial conditions, the inside of
the bubble is in the false vacuum if ΔV > ΔP.
The pressure difference ΔP depends on the mass

difference

Δm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

i −m2
j j

q
: ð5Þ

For example, assuming that (i) the outside pressure is
negligible, (ii) m− ≪ hpi ≪ mþ, and (iii) the momenta of
particles colliding with the wall are distributed isotropi-
cally, we find that ΔP is independent of the shape of the
momentum distribution and depends only on the energy
density ρ− of the colliding particles in front of the wall (see
Appendix A),1

ΔP ¼Δm≫hpi ρ−
3

ð1 − ṘÞ2
1þ Ṙ

: ð6Þ

This limit corresponds to the idealized case where all
particles are trapped inside the bubble. However, such
situations can be realized under realistic conditions; for
instance, given thermal particles with temperatures T−, the
flux of particles through the bubble wall is suppressed
exponentially in Δm=T− (see Appendix A), so only a mild
Δm=T− ratio is needed. Importantly, Eq. (6) implies that
ΔP can grow to arbitrarily large values as Ṙ → −1 or
ρ− → ∞, so R → 0 can be realized only if all particles
eventually escape the bubble and the final stages of the
collapse proceed as they would in vacuum.
We estimate whether the collapse can result in the

formation of BHs using the hoop conjecture which states
that configurations for which the compactness

C≡M=R ð7Þ

exceeds 1=2 will become BHs [55]. The mass contained
within the bubble,

M ¼ Ebubble þ Eparticlesðr < RÞ; ð8Þ

consists of the mass of the particles inside the false vacuum
region, Eparticlesðr < RÞ, and the energy of the bubble,

Ebubble ¼
4π

3
R3ΔV þ 4πR2σffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ṙ2
p : ð9Þ

As mentioned above, we can neglect the gravitational
corrections to BH formation when the collapsing bubbles
are smaller than the cosmic horizon. In particular, we omit
the contribution of the total energy density of the ambient
plasma which, on average, will be much smaller than the

1We will use ρ to denote the energy density of the particles that
collide with the wall, which is expected to make up only a fraction
of the total energy density of the primordial plasma.
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energy density of subhorizon false vacuum bubbles when
they approach a compactness C ¼ 1=2. Our approach is
conservative as gravitational attraction makes it easier to
form BHs.
Our aim is to study the effect of particle-wall interactions

on bubble collapse, especially in comparison with bubble
collapse in vacuum. Lattice simulations of a collapsing
scalar field bubble in vacuum show that the thin-wall
approximation works well until the bubble’s size becomes
comparable to the thickness of the wall [38]. Thus, if the
pressure buildup is not sufficient to halt the collapse, the
maximal compactness will be governed by nonlinear
scalar-field dynamics which describes the eventual disso-
lution of the bubble wall.
This treatment neglects potential quantum effects such as

Pauli blocking of trapped fermions or Bose condensation of
trapped bosons. These effects could affect the pressure
exerted on the bubble wall when the particles are highly
compressed.
We also assume that the bubbles are spherical. However,

the bubbles are assumed to form from pockets of false
vacuum surrounded by true vacuum bubbles and can have a
relatively complicated shape. Although the wall tension
tends to deplete deviations from sphericity, it needs to have
sufficient time to do so [41,56,57]. We expect the
assumption of sphericity to be satisfied if the pressure
from the particles is sufficient to halt the collapse of the
bubble, while shape-dependent corrections may be relevant
for bubbles experiencing a runaway collapse.

III. METHODOLOGY

A. Simulation setup

We simulate a system consisting of a thin-wall bubble
interacting with free point particles following the method of
Ref. [54]. The equations of motions of the bubble radius are
solved in terms of the dimensionless quantities x≡ R=R0

and τ≡ t=R0,

x00 þ 2
1 − x02

x
¼ 2

ð1 − x02Þ3=2
xc

�
−1þ ΔP

ΔV

�
; ð10Þ

where the apostrophe denotes differentiation with respect to
τ, R0 is the initial bubble radius, and xc ≡ R0=Rc is its
relation to the critical radius2 Rc ≡ 2σ=ΔV. As the number
of simulated particles is much smaller than the number of
particles in physical vacuum bubbles, the momenta and
masses of the particles must be rescaled to keep the
dynamics invariant. To preserve ΔP, Eqs. (2) and (3)
imply that the momenta and masses must be rescaled as
p → cp and mi → cmi when the particle number is
rescaled as N → c−4N.

We start the simulations at τ ¼ 0 with N− ¼ N particles
uniformly distributed in the false vacuum and an empty
true vacuum region, Nþ ¼ 0. The number of particles is
conserved throughout the simulation. The initial momenta
of particles are drawn from a Boltzmann distribution
f−ðpÞ ∝ expð−E−=T−Þ.
The simulation proceeds with time steps of length Δτ.

At each time step, we resolve the particle-wall collisions
following Eq. (2), compute the pressure exerted on the
bubble wall as ΔP ¼ −ΔE=ð4πR2

0x
2x0ΔτÞ, where ΔE

denotes the total energy transferred from the particles to
the wall, and solve the equation of motion of the wall,
Eq. (10), using the Euler method. The simulation stops if
the simulation time reaches some predefined maximum
value or if x < Δτ. In the latter case, the bubble either
collapses or the chosen time step cannot be used to simulate
the minimal bubble radius.
Due to the scaling relation with the number of particles

and the choice of units, the physical output of the
simulation can be determined from four dimensionless
parameters, which we choose as:
(1) the initial wall velocity, vw or ΔV=ρinit,
(2) the mass difference across the wall, Δm=T−,
(3) the particle mass inside the bubble, m−=T−, and
(4) the initial bubble radius, xc ≡ R0=Rc.
The potential energy difference ΔV is set either by fixing

the initial wall velocity vw to calculate and fix ΔP ¼ ΔV
using Eq. (3) or by fixing the ratio ΔV=ρinit. To fully set up
the simulation, we must further fix the number of particles
N and the time step Δτ. These are chosen such that the
numerical fluctuations in the simulation results (e.g.,
maximum compactness) are kept below 1%.
At each time step, the state of the simulation is saved,

including the bubble radius and the particle density and
momentum distributions. From these results, we can
calculate the total energy inside the bubble which gives
us the compactness of the bubble.

B. Numerical implementation

The simulation is characterized by several parameters
related to the numerical implementation: the random seed,
the number of particles N, and the simulation time step Δτ.
To check the effects of these parameters on the results, we
perform test simulations in which the above-mentioned
parameters are varied but the physical parameters are kept
fixed as ΔV=ρ ¼ 5.4;Δm=T− ¼ 1000; m−=T− ¼ 0, and
R0=Rc ¼ 100. We simulate until τ ¼ 2.
Increasing the particle number N reduces the numerical

noise in ΔP, but increases the runtime of the simulation.
Simulations with varying N up to 7 500 000 show that all
simulations produce similar results up to the first peak in
compactness, with the maximal compactness differing by
less than 1% between simulations, when N ≈ 50 000. We
find that the runtime scales roughly as N0.84. Violation of
energy conservation, EtotðτÞ=Etotðτ ¼ 0Þ − 1, is suppressed

2In the thin-wall limit, Rc corresponds to the radius of a
nucleating true vacuum bubble in a phase transition.
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as 1=N. All results shown in the next section, except Fig. 1,
are obtained using N ¼ 750 000.
The simulation time step Δτ affects energy conservation.

In current implementations, both a fixed and an adaptive
time step is used. A fixed time step is adopted for making
R0=Rc scans in Figs. 2 and 3. Tests with a variable fixed

time step show that lowering the time step improves the
accuracy of the simulation in terms of energy conservation
but also takes longer to run: the runtime scales as 1=Δτ0.91
and energy conservation violation scales as 1.81Δτ. The
results in the next section from simulations with a fixed
time step are performed with Δτ ¼ 10−4. The fixed time

FIG. 2. Compactness and mass at the first peak in compactness in the case where the particles are relativistic in the false vacuum
(m− ¼ 0). In the two left panels the initial terminal wall velocity is vw ¼ −0.6, while in the two right panels the initial velocity is set to 0
and the initial radius to R0=Rc ¼ 50. In the regions with gray coloring or hatching, no peak in compactness is observed. In this case (gray
hatching), the mass is estimated close to the end of the simulation. In the region with the white hatching region, the compactness
increases after the first peak. In the black region, the bubble begins to expand initially as ΔP > ΔV. Below the black dot-dashed curve
we estimate that initially ΔP > ΔV by Eq. (3), while above the black dashed line there is no initial terminal velocity by Eq. (3).

FIG. 1. Simulation of a benchmark case withm−=T− ¼ 0;Δm=T− ¼ 2.5, R0=Rc ¼ 5, and ΔV=ρ ¼ 0.47 (or vw ¼ −0.7). The top row
shows the time evolution of the bubble radius (left), the bubble compactness (middle), and the energy of the bubble and the particles
(right). The dashed black lines in the first two panels show the scenario in which the bubble wall does not interact with the particles,
which corresponds to the collapse of the bubble in vacuum. The bottom panels show profiles of the energy density (left panel), mean
radial velocity of the particles (middle), and mean particle energy (right) at three distinct moments corresponding to the colored dots in
the upper panels. The energy density and mean energy profiles are normalized to the initial value inside the bubble. The black lines with
colored arrows show the location and direction of the bubble wall. N ¼ 7.5 × 106 particles are used in this simulation.

MAREK LEWICKI et al. PHYS. REV. D 108, 036023 (2023)

036023-4



step fails at small bubble sizes x ≈ jx0j · Δτ, especially
when the bubble is collapsing and contains particles. An
adaptive time step eliminates this problem.
The numerical pressure ΔP estimates are tested by

comparing them with the analytical estimate (3) [and
Eq. (A2)] by assuming equilibrium distributions. We find
that the simulations produce the theoretically predicted
terminal velocities well.
The code is available at GitHub where one version3 uses

a constant time step and is used to make the R0=Rc scan in
Figs. 2 and 3, while the other plots were made using the
second version4 which uses an adaptive time step.
Parameter scans were carried out at the KBFI GPU cluster,5

in total for approximately 640 GPU-hours. The simulated
data sets are available at doi.org/10.5281/zenodo.7892204.

IV. RESULTS

The above methodology allows us to study the effect of
particle-wall collisions on the dynamics of collapsing false
vacuum bubbles. Figure 1 shows a benchmark case with
Δm=T− ¼ 2.5, R0=Rc ¼ 5, m− ¼ 0, and ΔV=ρ ¼ 0.47
corresponding to an initial terminal velocity vw ¼ −0.7.
The upper left panel shows the time evolution of the bubble
radius. Since Δm=T− > 1, the particles can become
trapped and the resulting pressure increases as the bubble
shrinks. This will eventually stop the collapse. At this point
(shown in purple), the bubble will reach its maximal
compactness. The bubble then begins to expand and the
pressure caused by the particles decreases, causing the wall
to slow down and turn around. In this way, the bubble
continues to oscillate, typically with a decreasing amplitude
as the particles gradually escape and carry away energy.
The escaping particles can be clearly seen in the bottom
panels depicting the energy density, radial velocity, and

energy profiles of the particles at three distinct moments. In
the green curves, showing the profiles right after the bubble
had begun to collapse for the second time, we see a shell of
particles in front of the bubble and a wave propagating
away from the bubble. The latter consists of particles that
were pushed in front of the wall or escaped through the wall
as it turned around. The upper right panel instead shows
how the total energy contained inside the false vacuum
region is distributed between the bubble and the particles
inside the bubble. At the minimal radius, when the maximal
compactness is reached, the particles carry almost all of the
energy, and the total energy Ebubble þ Eparticles is smaller
than Ebubble at the beginning of the simulation.
In general, the behavior of the vacuum bubbles observed

in the simulations can be classified into three broad and
qualitatively distinct categories:
(1) Oscillations: The pressure can halt the collapse of

the bubble, causing its size and compactness to
oscillate. This situation is depicted in Fig. 1.

(2) Collapse: The pressure buildup is never sufficient to
stop a runaway collapse and thus the bubble’s radius
decreases monotonously in time.

(3) Mixed: Intermediate scenarios in which the bubble
will initially begin to oscillate, but eventually
collapses.

The collapse in the mixed scenario can be attributed to the
gradual escaping of particles and the resulting pressure
loss. It is thus expected that oscillating bubbles will
eventually collapse completely if such a process is ener-
getically allowed. For noninteracting particles, this means
that the combined mass M of the bubble containing N
particles in the false vacuum should at least exceed the mass
of these particles in the true vacuum, i.e., M > Nmþ. The
temporal evolution of a selection of example scenarios
displaying all of the above-mentioned behaviors is shown
in Appendix B.
In the following, we discuss three qualitatively different

cases depending on the sign of the mass difference Δm and
whether the particles inside the bubble are relativistic or

FIG. 3. Same as Fig. 2 but assuming nonrelativistic particles with m− ¼ 10T− in the false vacuum.

3https://github.com/HEP-KBFI/bubbleSim/tree/FVBCollapse1.
4https://github.com/HEP-KBFI/bubbleSim/tree/FVBCollapse2.
5Nine Nvidia RTX2070S GPUs.
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not. We perform scans of the parameter space to study
the dependence of the maximal compactness on the
parameters.

A. Relativistic particles (m− ≪ T − )
To study the case in which the particles are relativistic

inside the bubble we set m− ¼ 0. The behavior of the
bubble during collapse can be quantified by the compact-
ness Cpk and the total mass Mpk at the first compactness
peak (see, e.g., the purple point in Fig. 1). In almost all
cases studied, Cpk will give the maximal compactness
of the system unless the bubble collapses completely.
Therefore, Cpk is a good indicator of whether the collapse
can lead to the formation of a BH and Mpk can be used to
estimate the mass of the BH. In particular, BH formation is
not possible if Cpk does not exceed the initial compact-
ness C0.
In Fig. 2 we show Cpk and Mpk normalized to the initial

compactness C0 and mass M0 over a wide range of the
model parameters. In the region denoted by gray coloring
or gray hatching a compactness peak is not reached as the
bubble monotonously collapses. In this region, we show the
mass close to the end of the simulation.6 An immediate
collapse of the bubble happens in the following cases:

(i) A small Δm=T− allows the particles to easily escape
and the buildup of energy density in front of the
collapsing bubble wall is not sufficient to stop
the wall.

(ii) For small R0=Rc, the curvature of the bubble [the
second term in Eq. (4)] can drive the collapse.

(iii) For largeΔV=ρinit there is no initial terminal velocity
for the wall and the bubble collapses within a
time t ≈ R0.

The special case of bubbles that oscillate before entering
runaway collapse is observed when Δm=T− is small and
R0=Rc is large. Such scenarios are indicated using white
hatching in Fig. 2. As mentioned above, the particles easily
escape for a small Δm=T− and, consequently, the particle
number and pressure can significantly drop as the bubble
oscillates (for examples, see Appendix B). The loss of
pressure is accompanied by a significant loss of total
energy, making BH formation significantly more difficult
even when the bubble eventually enters a runaway collapse.
We observe that the runaway collapse is preceded by
multiple oscillations in simulations performed for the
white-hatched region in the first two panels of Fig. 2 for
which a moderate terminal velocity vw ¼ −0.6 is assumed.
On the other hand, in the last two panels, the white hatching
appears close to the region where vw ≈ −1, and only a
single turnaround is observed for most cases. We stress,

however, that the white-hatched regions in Fig. 2 show only
the results of the simulation for which the bubbles are
simulated for a finite physical time interval. It is expected
that the parameter space for which an eventual runaway
collapse can take place would be enlarged if we simulated
the bubbles for a longer physical time period.
Let us take a closer look at the case with Δm=T− ≫ 1

where the particles can be efficiently trapped. For
vw ¼ −0.6, we find that Δm=T− ≳ 10 is sufficient to
avoid runaway collapse during the simulation. Crucially,
there is almost no energy loss (Mpk ≈M0) and Cpk plateaus
for slightly larger mass differences, Δm=T− ≥ 20. For
vw ¼ −0.6, only a mild increase in compactness Cpk ≲
3C0 is observed when R0 ≫ Rc and Δm ≫ T−.
As can be seen in the first two panels of Fig. 2, for

R0=Rc ≫ 1 the behavior of the bubble is only weakly
affected by the initial size. The last two panels in Fig. 2
show simulations with R0=Rc ¼ 50 for which it is expected
that the dependence on R0 is weak. An initial terminal
velocity exists when ΔP ≤ ΔV. This inequality is saturated
for relativistic walls vw ≈ −1, for whichΔP ≈ Δm2n−=4T−
[see Eq. (A2) or Ref. [58]]. Using ρinit ¼ 3T−n−, we find
that the bubble has an initial terminal velocity if

ΔV
ρinit

≳ 1

12

Δm2

T2
−

: ð11Þ

The boundary of this region is shown by the black dashed
curve in the last two panels of Fig. 2.7 If the system is far
from saturating the condition (11), the collapse proceeds as
it would in a vacuum until the growing pressure of the
compressed particles can revert the collapse. Although not
exact, the existence of an initial terminal velocity turns out
to be a good predictor of runaway collapse. Moreover, we
see that the peak compactness is determined almost entirely
by ΔV=ρinit as long as Eq. (11) is satisfied and that the
total energy of the system is conserved (Mpk ≈M0). The
latter holds partially because when ΔV ≫ ρinit, the total
mass is contained in the bubble instead of the particles,
M ≈ Ebubble, and thus M is not too strongly affected by
escaping particles.
Most importantly, we find that with ΔV ≫ ρinit, the

bubbles can become significantly more compact than they
initially were. Thus, such scenarios could be considered the
most optimal for BH formation. However, given that our
goal is to address the potential for the trapped particles to
assist BH production, this result is rather discouraging.
First, trapped particles always hamper the wall, and second,
the role of particles is diminished in the ΔV ≫ ρinit limit.

6In the gray-hatched regions, Mpk is given at the point when
the bubble contains 103 particles or at the end of the simulation if
the number of particles inside the bubble is always larger.

7Since ΔP peaks at subluminal velocities jvwj < 1 (see
Appendix A), using the vw → −1 limit introduces a Oð10%Þ
error into the condition (11) when compared to the exact result
shown by the black dashed curve in Fig. 2.
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Finally, we remark, that for ΔV ≲ ρinit, the pressure due
to the particles can cause the bubble to expand initially as
ΔV < ΔP, i.e., the inside of the bubble is not in the false
vacuum due to thermal corrections to ΔV. This case is
indicated by the black region in the rightmost panels
of Fig. 2 and is in good agreement with the analytic
estimate using Eq. (A2).8

B. Nonrelativistic particles (m− ≫ T − )
To study the case where the bubble is populated by

nonrelativistic particles,m− ≫ T−, we show the simulation
results in Fig. 3 for m− ¼ 10T−. If the particles are
nonrelativistic, a mild relative difference in masses can
trap the particles. On the other hand, collisions with a
nearly relativistic wall can easily accelerate the particles to
relativistic speeds and provide sufficient energy for them to
escape. Consequently, a peak in compactness appears at
higher Δm=T− values when compared to the relativistic
case. As can be seen from Fig. 3, the total mass within the
bubble is quite well conserved in almost all simulations in
which the particles are able to stop the collapse.
In many aspects, the nonrelativistic scenario is similar to

the relativistic case: for a fixed vw ¼ −0.6, we find that the
compactness plateaus for large values of R0=Rc and
Δm=T−, although both Cpk=C0 and Mpk=M0 vary much
less in the nonrelativistic case than in the relativistic one.
Additionally, for large R0=Rc > 0, the peak compactness
Cpk is nearly independent of Δm=T− away from the (gray)
parameter region in which an immediate runaway collapse
can be avoided.

C. Inverted mass (m− > m + )

When the mass of the particles in the true vacuum is
smaller than in the false vacuum, i.e., ðm− > mþÞ, they can

transfer energy to the wall when crossing it. This results in
negative pressure ΔP and will accelerate the collapse. A
benchmark simulation of such a scenario is shown in Fig. 4.
As can be seen from the left panel, the bubble collapses
faster than in the corresponding noninteracting system. The
middle panel shows that the compactness of the system is at
all times larger than without the interactions, and the right
panel shows that interactions increase the energy of the
bubble, while in the noninteracting case the energy stays
constant, as expected. The energy of the particles inside the
bubble decreases as ∝ R3 with decreasing radius, which is
expected when the particles are allowed to freely exit the
bubble. One can also observe that the total energy within
the bubble plateaus at the end of both simulations when
most particles have exited the bubble. This is expected
because the energy of the particles is too small to
significantly affect the dynamics of the bubble even if
they interact with the wall. After this point, the collapse
proceeds as it would in the absence of particle-wall
interactions.
Compared to the noninteracting case, the enhanced total

mass and compactness will make BH formation easier and
the formed BHs heavier. However, to study the maximal
compactness of the freely collapsing bubbles observed at
the end of the simulation, it would be required to go beyond
the thin-wall approximation and adapt a computational
method in which thick walls and their eventual dissolution
could be resolved. Also, as the wall becomes increasingly
relativistic, the particle self-interactions in the form of
particle splitting during wall crossing can become relevant
and carry energy away from the wall [59–61]. This could
potentially suppress BH formation.

V. DISCUSSION

A. Implications for PBH phenomenology

Our key result is that the compactness reached by the
collapsing false vacuum bubble in the presence of particles
that in the true vacuum are heavier than in the false vacuum
is always lower than in cases where the particles can be

FIG. 4. Simulation of a benchmark case with m− > mþ showing the evolution of the wall velocity (left), compactness (middle), and
components of energy within the bubble (right). Simulation parameters are taken as m−=T− ¼ 10;Δm=T− ¼ 10;ΔV=ρinit ¼ 0.69 and
R0=Rc ¼ 50. The solid line represents a scenario in which particles interact with the bubble wall and the dashed line stands for no
interaction, which corresponds to the bubble collapsing in vacuum.

8The gray band between the black and colored regions is a
numerical artifact that appears due to the bubble having an almost
vanishing terminal velocity, vw ≈ 0. As a result, the radius does
not turn around during the time period that the bubble is
simulated.
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neglected. This implies that the presence of particles in this
case makes the production of PBHs more difficult. Thus,
the mechanisms where PBH production relies on the
particle density building up [52,53] necessarily should
include the backreaction of particles on the wall to avoid
unrealistically optimistic conclusions. An exception is the
case in which particles have lower mass after the transition,
but achieving this requires specific model building.
As expected, the stronger the transition, the greater the

compactness that can be reached before the pressure caused
by the particles overcomes the vacuum pressure. On the
other hand, the small relative initial radius of the remnant,
R0=Rc, increases the maximum compactness, while for a
much larger size the value quickly asymptotes to a constant.
The reason for this is that the pressure starts to increase only
after the particle shells in front of the wall reach the center
of the bubble. The mass of the region at the peak of
compactness is controlled mostly by the mass difference
Δm, with large masses keeping the initial mass of the
region while lower values lead to significant leakage of
particles and predict significantly lower total mass in the
case of weak transitions, ΔV ∼ ρinit.

B. Implications for baryogenesis

Recent progress in electroweak baryogenesis [62–70]
has shown that the baryon asymmetry can also be generated
for not very slow walls provided only that the fluid is
heated in front of the bubble wall. However, this still does
not typically allow for the production of detectable gravi-
tational waves [64,67,70]. Our results indicate that baryo-
genesis could be saved even in very strong transitions due
to the presence of particles gaining a large mass upon wall
crossing. This is because the false vacuum remnants will
slow down the bubble walls significantly, even reversing
the collapse of remnants briefly before the particles have
time to leak out and decrease the pressure inside. As a
result, even if the walls were initially very fast, baryon
asymmetry can still be generated as the false vacuum
remnants slowly disappear. A similar effect was observed
in hydrodynamical simulations in the case where a large
number of new degrees of freedom in the plasma leads to
the formation of remnants in the form of plasma
droplets [56,57].

C. Model-building considerations

The particles in our simulations are noninteracting. On
top of being a computational simplification, this is a good
approximation of physics if the mean free time of the
particles is longer than the time scale of the bubble collapse.
For example, let us consider a fermion ψ with a Yukawa
interaction yϕψ̄ψ and a bare mass term mψ ψ̄ψ . The scalar
ϕ is responsible for the bubble and acquires a vacuum
expectation value v in the true vacuum. The mass of ψ in
the false and true vacuum regions is m− ¼ mψ and

mþ ¼ mψ þ yv. For y > 0, ψ particles exert significant
friction on the wall of a shrinking false vacuum bubble
when

Tψ ≲ Δmψ ¼
� yv; mψ ≪ jyvj;
ð2yvmψ Þ12; mψ ≫ jyvj; ð12Þ

where Tψ is the temperature of ψ particles which may not
be in thermal equilibrium with the rest of the Universe.
More generally, Tψ can be taken to be a characteristic
momentum scale, in the case where the momentum dis-
tribution of ψ deviates from the thermal one. Alternatively,
the inverted mass scenario with m− > mþ can be realized
for−mψ=v < y < 0 or if y > 0 and the vacuum expectation
value of ϕ in the false vacuum is larger than in the true
vacuum.
The Yukawa coupling implies several processes that

cause momentum exchange between ψ particles and
between ψ and ϕ particles. The potentially relevant
interactions of ψ in this setup are ψψ → ψψ , ψ̄ψ → ψ̄ψ
and ϕψ → ϕψ , ψ̄ψ → ϕϕ. Assuming a heavy ϕ, that is,
mϕ ≫ Tψ ; mψ , the abundance of ϕ particles will be
Boltzmann suppressed or diminished by the decay
ϕ → ψψ̄ . Importantly, the thermally averaged cross sec-
tions for ψ self-scattering,9

hσψψvi ≈
y4

2πm4
ϕ

�
5T2

ψ=4; mψ ≪ Tψ ;

ðm3
ψTψ=πÞ12; mψ ≫ Tψ ;

ð13Þ

will be suppressed by m4
ϕ.

The mean free time τψ ¼ ðnψhσψψviÞ−1 should then be
compared with the time scale of the bubble collapse, which
we estimate as τFVB ¼ R=vw, or τFVB ≈ β−1 in the case
where the bubbles were formed during a first-order phase
transition. That is, the fluid is noninteracting when

nψ hσψψviτFVB ≪ 1: ð14Þ

This condition can be naturally satisfied for false vacuum
bubbles formed during inflation as the mass of the scalar
can be comparable to the scale of inflation, while the
bubble collapse can take place at much lower temperatures,
at which the interactions have effectively been turned off. In
such setups, the thermalization of ψ is possible in the early
Universe, while ψ can decouple as temperatures drop much
below mϕ. We will not require ψ to be stable: bubble
collapse will not be affected if its lifetime exceeds τFVB.
The application to scenarios in which the bubbles are
created during a first-order phase transition requires more

9As we are interested in the order-of-magnitude estimates, we
compute the thermal average assuming Boltzmann-distributed
particles neglecting Pauli blocking factors.

MAREK LEWICKI et al. PHYS. REV. D 108, 036023 (2023)

036023-8



intricate model building and has been partially addressed
in Ref. [71].
As an example, let us consider a case in which ψ was in

thermal equilibrium at high temperatures so that
nψ ¼ nψ ;eq ∝ T3, where T denotes the temperature of the
thermal bath. The thermal distribution of ψ is then
approximately preserved until the bubble begins to collapse
and we can estimate Tψ ≈ T for a relativistic ψ and Tψ ≈
T2=mψ for a nonrelativistic ψ that has decoupled from the
thermal bath. We can conservatively assume that the
collapse time scale is comparable to the Hubble time,
τFVB ≈H−1, so the condition (14) reads

y ≪
3mϕ

T

� ðT=MPlÞ14; mψ ≪ Tψ ;

ðT2=MPlmψ Þ14; mψ ≫ Tψ ;
ð15Þ

where MPl denotes the Planck mass. For example, T ¼
100 GeV and mϕ ¼ 100 TeV give a relatively mild bound
y ≪ 0.2 for relativistic ψ and y ≪ 0.3ðT=mψ Þ1=4 for non-
relativistic ψ . Such couplings are consistent with the
assumed thermalization at high temperatures.

VI. CONCLUSIONS

We have studied the collapse of false vacuum regions in
the presence of feebly interacting particles whose mass
between the vacua changes. This mass difference causes the
particles to interact with the wall of the false vacuum
domain and consequently affects its evolution. Through
simulations involving a thin-wall bubble coupled to an
N-particle system, we explored the parameter space in
terms of the strength of the transition and the mass change
of the particles.
We found that the presence of particles limits the

compactness achievable by the collapsing regions. When
the particles can effectively be trapped within the false
vacuum region, their pressure can eventually surpass the
vacuum pressure, leading to the expansion of the false
vacuum domain. This leads to oscillations in the size of the
false vacuum region, with the most compact state reached
during the first oscillation. Subsequent cycles fail to surpass
this threshold due to energy carried away by escaping
particles. Consequently, the presence of even feebly inter-
acting particles can only suppress the potential for PBH
production.
On the other hand, we find that PBH production may be

enhanced when the particles’ mass is smaller in the true
vacuum, so that the particles cannot be trapped inside the
false vacuum domains. Furthermore, slowing down the
walls during the final moments of the transition can
augment the production of a baryon asymmetry through
electroweak baryogenesis.
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APPENDIX A: WALL DYNAMICS
IN THE THERMAL LIMIT

To obtain a better understanding of the effect of particles
on the dynamics of the bubble, it is instructive to consider
the case in which the particles follow an almost thermal
distribution. Assuming a thermal momentum distribution
when estimating the effect of particle collisions can be a
decent approximation even when particles are taken to be
effectively noninteracting, i.e., when there is no force that
enforces the equilibrium. This is because the particles that
have collided with the wall of the shrinking bubble move
rapidly away from the wall and are unlikely to collide with
it again. Therefore, most of the collisions take place with
particles that have not yet interacted with the wall and are
expected to have inherited a thermal distribution before the
phase transition. However, this argument fails when multi-
ple scatterings with the bubble wall are likely, e.g., for small
bubbles or bubbles oscillating in size.
We can estimateΔP from Eq. (3) by assuming that T− ≫

m− ≈ 0 and that the dominant contribution to the pressure
arises from the “-” region. In the rest frame of the fluid, we
obtain that

ΔP ¼ 1

3

ð1 − ṘÞ2
1þ Ṙ

�
ρ −

1

2

�
p

�
1 −

�
Δm
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ
1 − Ṙ

s �3

−
�
1 −

�
Δm
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ
1 − Ṙ

s �2�3
2�	�

: ðA1Þ

With fiðpÞ ∝ e−E=Ti , this gives

ΔP ¼ ρ

3

ð1 − ṘÞ2
1þ Ṙ

�
1 − GΔP

�
Δm
T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ
1 − Ṙ

s ��
; ðA2Þ

where Ṙ < 0 is the velocity of the collapsing wall and

GΔPðxÞ≡ 1

4
ðe−xð2þ 2xþ x2Þ þ x2K2ðxÞÞ; ðA3Þ

and K2 denotes the modified Bessel function of the second
kind. The monotonously decreasing function GΔPðxÞ
characterizes the effect of particles crossing the wall. In
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particular, GΔP → 0 in the Δm=T → ∞ limit. In this limit,
all particles are stuck inside the false vacuum bubble
since they do not have enough energy to cross the bubble
wall and

ΔP
ρ

¼Δm=T→∞ 1

3

ð1 − ṘÞ2
1þ Ṙ

ðA4Þ

does not depend on the temperature and is, in fact, indepen-
dent of themomentumdistribution as long as it is isotropic. In
the limit of relativistic walls, Ṙ → 1, Eq. (3) recovers the
result of Ref. [58] and, assuming a Boltzmann distribution,
Eq. (A2) gives ΔP=ρ ¼ ðΔm=TÞ2=12. In particular,
ΔP=ρ → ∞ for relativistic walls when Δm=T → ∞.
Therefore, if particles can not escape the false vacuum
bubble (FVB), there must be a maximal velocity jṘj < 1,
and the unbounded growth of pressure can always invert the
collapse. Such bubbles would either start to oscillate in size
or form a BH if they can become sufficiently compact before
the accumulating pressure stops their collapse.
Analogously, the flux of the particle number and energy

across the bubble wall

jn ≡ d3N
dtd2S

¼ n−
4
ð1 − ṘÞ2Gn

�
Δm
T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ
1 − Ṙ

s �
;

jρ ≡ d3E
dtd2S

¼ ρ−
4
ð1 − ṘÞ2Gρ

�
Δm
T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ
1 − Ṙ

s �
; ðA5Þ

where GnðxÞ≡ e−xð1þ xÞ, GρðxÞ≡ e−xð1þ xþ x2=3Þ.
The fluxes through the wall are exponentially suppressed
in the limit Δm ≫ T− allowing for very efficient trapping
of particles.
We remark that Eq. (A5) assumes that the contribution

from outside of the bubble is negligible and fails when this
assumption is not satisfied. In the absence of a barrier, i.e.,
Δm ¼ 0, the flux reads jn ¼ n−ð1 − ṘÞ2=4. As a sanity
check, consider a noninteracting wall for which we should

have n� ¼ n. Accounting for the flux of particles from
outside of the bubble gives jn¼nð1−ṘÞ2=4þnð1þṘÞ2=4¼
nṘ, as expected.
Let us also note that these results depend on the type of

particles involved only through statistics entering the
thermal distribution and we do not account for Pauli
blocking/Bose enhancement. Equations (A2) and (A5)
assume a Boltzmann distribution which is expected to be
a good approximation for nonrelativistic particles.
Figure 5 shows ΔP as a function of the Lorentz factor of

the wall γ ¼ ð1 − ṘÞ−1=2 for relativistic particles (m− ¼ 0)
using Eq. (A2) in the left panel and for nonrelativistic
particles (m− ¼ 10T−) computed numerically from Eq. (3)
in the right panel. Importantly, with Δm=T fixed, ΔP
attains a maximum for a finite value of γ. In the non-
relativistic case, the maximal ΔP corresponds to mildly
relativistic [jṘj ¼ Oð0.5Þ] walls. This is shown by the
black line in Fig. 5. Walls with Lorentz factors above the
black line are unstable since a small upward fluctuation in
velocity would decrease the pressureΔP and allow the wall
to accelerate even further towards jṘj ¼ 1 (or γ → ∞).

APPENDIX B: ADDITIONAL FIGURES

Here we present additional figures that show the evolu-
tion of the bubble radius (Fig. 6) and compactness (Fig. 7)
for various model parameters.

FIG. 5. ΔP=ρ as a function of Δm=T− and the Lorentz factor of
the bubble wall for relativistic m− ¼ 0 (left) and nonrelativistic
m−=T− ¼ 10 particles (right). The black line shows the maximal
ΔP=ρ for a fixed Δm=T−.
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FIG. 6. Time evolution of the bubble radius for various choices of the initial bubble wall terminal velocity vw and the initial bubble
radius R0=Rc. The color coding shows the mass difference Δm=T−. For comparison, the dashed line shows collapsing bubbles in a
vacuum (which is equivalent to the Δm=T → 0 limit). The first two rows correspond to the relativistic casem− ¼ 0, the third and fourth
rows correspond to the nonrelativistic case m− > T−, and the last row corresponds to the inverted-mass case m− > mþ.
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FIG. 7. Same as Fig. 6 but showing the time evolution of the compactness. The density of particles is zero in the Δm=T− ¼ 0 case.
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