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In an axiverse with numerous axions, the cosmological moduli problem poses a significant challenge
because the abundance of axions can easily exceed that of dark matter. The well-established stochastic
axion scenario offers a simple solution, relying on relatively low-scale inflation. However, axions are
typically subject to mixing due to mass and kinetic terms, which can influence the solution using stochastic
dynamics. Focusing on the fact that the QCD axion has a temperature-dependent mass, unlike other axions,
we investigate the dynamics of the QCD axion and another axion with mixing. We find that the QCD axion
abundance is significantly enhanced and becomes larger than that of the other axion for a certain range of
parameters. This enhancement widens the parameter regions accounting for dark matter. In addition, we
also find a parameter region in which both axions have enhanced abundances of the same order, which
result in multicomponent dark matter.
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I. INTRODUCTION

In string theory or M-theory, many axions appear at low
energies [1–13]. Since axion masses are produced by
nonperturbative effects, they are expected to span a very
wide range. A universe with such a large number of axions
is called an axiverse [4]. One or more of these axions are
likely to interact with Standard Model (SM) gauge bosons,
and some linear combination of them could be a QCD
axion [14–17]. Interestingly, the presence of many light
axions can solve the quality problem of the Peccei-Quinn
symmetry of the QCD axion [5]. Furthermore, if many
ultralight axions are coupled to photons, this could explain
the isotropic cosmic birefringence [4,12,18–34], which is
suggested by recent analyses [35–38]. In the axiverse, the
decay constants of axions are usually thought to be of order
the string scale ∼1015–17 GeV. However, it could be much
smaller in a setting such as a large volume scenario [39,40].
In the axiverse scenarios, it is known that the abundance

of axions produced by the misalignment mechanism
[41–43] will be too large unless the initial angles are
fine-tuned. This is nothing but the cosmological moduli
problem [44,45]. In particular, the larger the mass of the
axion, the greater the abundance. For example, the QCD
axion is known to have excessive abundance when the
decay constant is larger than 1012 GeV, which sets the
upper end of the so-called axion window.

The cosmological moduli problem can be mitigated if
the Hubble parameter during inflation is sufficiently small
and the inflation lasts long enough. For example, eternal
inflation with a low energy scale fits this scenario [46]. This
is because the initial misalignment angle θi becomes much
smaller than Oð1Þ if the inflation lasts long enough,
allowing the axion field to follow the so-called Bunch-
Davies distribution, which balances quantum fluctuations
and classical motion. It has been found that the QCD axion
with a decay constant fa ≳ 1012 GeV, which exceeds the
upper limit of the axion window, is allowed without
overclosing the universe, as long as the Hubble parameter
is below the QCD scale during inflation [47,48]. In
Ref. [49], this stochastic approach was applied for the
first time to the cosmological moduli problem posed by
numerous axions appearing in the axiverse, not just the
QCD axion. In this case, the axion abundance is greater for
the lighter axion, because although the energy density at the
onset of oscillations is the same, the lighter axion starts
oscillating later. Their results show that there is an upper
bound on the Hubble parameter during inflation,
Hinf < keV–MeV, depending on the typical decay con-
stant of axions, and that the cosmological moduli problem
in the axiverse is solved when this bound is satisfied. This
was also subsequently confirmed in Ref. [50].
Note that the stochastic dynamics can be altered, for

example, when a Hubble-induced mass is present [51],
when the potential deviates from the quadratic potential
[52,53], or when the QCD gauge coupling is strong during
inflation [54]. In such cases, the axion abundances are
known to change. In particular, an important implicit
assumption in stochastic axion scenarios is that the axion
minima do not change during and after inflation [48].
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This assumption is violated, e.g., if the inflaton is an
axion that mixes with other light axions. In such cases,
the probability distribution of axions could shift from the
potential minimum to near the maximum, leading to a
significant increase in the abundance of axions.
Consequently, it becomes possible to explain all dark
matter with axions with the decay constants as small as
the astrophysical lower bound [53,55,56].
In addition, most analyses of axions in the axiverse so

far have not considered mixing between axions, and
cosmological and astrophysical effects have been studied
for individual axions because the axion masses are hier-
archical. On the other hand, it has been pointed out in
Refs. [57–64] that the mixing of many axions through
mass and kinetic terms can have significant cosmological
consequences, and a typical example is the so-called
clockwork/alignment mechanism. Another interesting
phenomenon that is characteristic when the QCD axion
is composed of multiple axions is resonance phenomena
similar to the MSW effect in neutrino oscillations [65–67].
Through the resonance, the QCD axion can be converted
to lighter axion-like particles and vice versa. In some
cases, the axion starts to run along a lighter flat direction,
going over potential hills and troughs [68]. When multiple
axions are present and mixed with each other in this
way, the dynamics can lead to complex and interesting
phenomena.
In this paper, we study for the first time the mixing effect

between string axions and QCD axion under stochastic
dynamics. Normally, in stochastic axion scenarios, the
initial field values are determined by the equilibrium
distributions during inflation. However, in the presence
of mixing effects and temperature dependence of the mass,
we find that the initial values set during inflation can be
significantly modified by the postinflationary axion
dynamics. Specifically, when the axion potential is gen-
erated by QCD instanton effects and another nonperturba-
tive effect, the axions mix through the mass term, causing
the mass eigenstates to vary in time due to the temperature
dependence of the QCD potential. We find that if each of
the two potentials has a mass of the same order at the onset
of field oscillations, the total energy density of the axions
can be significantly enhanced compared to the case without
mixing. In particular, while the lighter axion tends to have a
larger abundance in the stochastic scenario, the QCD axion,
which is heavier than the mixing partner in the vacuum,
can dominate the abundance due to this enhancement.
This enhancement breaks the one-to-one correspondence
between the axion mass and the abundance, thus broad-
ening the parameter range that explains the dark matter.
This effect is analogous to the aforementioned shift of the
potential minimum due to mixing with the inflaton, but in
our scenario, it involves only simple dynamics of axions.
Also, unlike resonance phenomena, there need be no
adiabatic invariants and therefore no large mass hierarchy.

This is therefore an example of how mixing between axions
and temperature dependence can be very important in
axiverse scenarios, especially with stochastic axions.
The rest of this paper is organized as follows. In Sec. II,

we show the model and explain the dynamics of the axions
during and after inflation. In Sec. III, we show the results of
the numerical simulations of the axion dynamics and
demonstrate the enhancement of the axion energy density.
Finally, we summarize and discuss the results in Sec. IV.

II. STOCHASTIC AXIONS WITH MIXINGS

A. Setup

In the string axiverse, there exist numerous axions at low
energies, which acquire potentials from nonperturbative
effects such as strong dynamics in hidden gauge sectors.
Additionally, compactification of extra dimensions typi-
cally induces small instanton effects that generate potentials
for axions. As a result of these potential terms, axions
generically get mixed with each other. To solve the strong
CP problem using these axions, we need axions coupled to
gluons, and at least one of them must be extremely light
when we switch off the nonperturbative QCD effects. The
requirement for such light axions coupled to gluons is
nothing more than the quality problem of the Peccei-Quinn
symmetry. This problem can be solved naturally in the
axiverse [5], where there are many axions whose mass is
very light and spans a very wide range.
Although many axions may exist over a wide range of

scales, for our interest in the mixing between the QCD
axion and other axions, it is sufficient to consider two
axions whose masses are not too far apart. We introduce
two axions, a and ϕ, and identify their linear combination
as the QCD axion, as described below. We consider a low-
energy effective Lagrangian for a and ϕ given by

L ¼ 1

2
∂μa∂μaþ 1

2
∂μϕ∂

μϕ − Vða;ϕÞ; ð1Þ

with the potential of1

Vða;ϕÞ ¼ VQCDðaÞ þ Vaϕða;ϕÞ

¼ χðTÞ
�
1 − cos

�
a
fa

��

þm2
ϕf

2
ϕ

�
1 − cos

�
N

a
fa

þ ϕ

fϕ

��
: ð2Þ

1We assume that the potential Vaϕ is time-independent. For
instance, this is the case if it comes from some nonperturbative
effects in a hidden sector, whose typical energy scale is always
lower than the dynamical scale. This may require that the inflaton
primarily reheat the SM sector and not the hidden sector. See
Refs. [69,70] for the case that the dark sector is reheated and the
issue in cooling the dark sector [70].
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Here χðTÞ denotes the topological susceptibility of QCD,

χðTÞ ¼
(
χ0 ðT < TQCDÞ
χ0
�

T
TQCD

�
n ðT ≥ TQCDÞ

; ð3Þ

where we adopt n ¼ −8.16 [71], χ0 ¼ ð75.6 MeVÞ4, and
TQCD ¼ 153 MeV. We have neglected the higher-order
QCD contributions from the a-meson mixings in the
potential since the axion field evolution will turn out to
be around the vicinity of the CP-conserving minimum,
where the higher-order terms are irrelevant. Note that we
have used a field redefinition without loss of generality
such that a is the combination that couples to gluons. Then,
by taking mϕ → 0, a becomes the QCD axion, while it is a
component of the QCD axion withmϕ ≠ 0. However, since
we are mainly interested in the case where mϕ is smaller
than the QCD axion mass in the vacuum, then a is the main
component of the QCD axion. Therefore, we often refer to
a as the QCD axion below. Also, the constant phase in
each potential is absorbed into a and ϕ. Thus, the minimum
of VQCD, a ¼ 0, is the strong CP conserving point.
Throughout the paper, we concentrate on the possibility

fa ∼ fϕ; ð4Þ

since we consider that they are both the string axions.
We define the temperature-dependent axion mass maðTÞ

from χðTÞ ¼ m2
aðTÞf2a, which gives the zero-temperature

mass

ma0 ≡maðT < TQCDÞ

≈ 5.7 × 10−9 eV

�
fa

1015 GeV

�
−1
: ð5Þ

Here and hereafter, we denote quantities at the present time
by subscript 0. For later use, we define Φ and A as

�Φ
A

�
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2a þ N2f2ϕ
q �

Nfϕ fa
−fa Nfϕ

��
a

ϕ

�
: ð6Þ

Then, Vaϕða;ϕÞ is a function of Φ only, and it is flat in the
direction of A.
Around the origin, a ¼ ϕ ¼ 0, the potential Vða;ϕÞ can

be approximated by the quadratic terms as

Vða;ϕÞ ≃ 1

2
ð a ϕ Þ

0
B@

χðTÞþN2m2
ϕf

2
ϕ

f2a

Nm2
ϕfϕ
fa

Nm2
ϕfϕ
fa

m2
ϕ

1
CA�

a

ϕ

�

≡ 1

2
ð a ϕ ÞMðTÞ

�
a

ϕ

�
: ð7Þ

The mass matrix, MðTÞ, is diagonalized by an orthogonal
matrix U as

UMUT ¼
�
m2

H 0

0 m2
L

�
; U¼

�
cosα −sinα

sinα cosα

�
; ð8Þ

where α is the mixing angle, and we assumemH0 >mL0> 0
without loss of generality. Note that both α and U
continuously depend on T. The heavy and light mass
eigenstates, sH and sL, are related to a and ϕ as

�
sH
sL

�
¼ U

�
a

ϕ

�
: ð9Þ

Note that U, mH;L, and sH;L are all temperature-dependent
quantities. We show the dependences of mH and mL on
ma=mϕ for fa ¼ fϕ and jNj ¼ 1 in Fig. 1. For ma ≫ mϕ,
the mass eigenstates are largely determined by VQCD as
sH ≃ a and sL ≃ ϕ. Then, the mass eigenvalues become
mH ≃ma and mL ≃mϕ. On the other hand, for ma ≪ mϕ,
VQCD is negligible, and Φ and A correspond to sH and sL,
respectively. We also see that mH > mL holds for all
ma=mϕ. Thus, we refer to sH and sL as the heavier and
lighter modes regardless of temperature, respectively.
Around ma ¼ mϕ, the heavier mode transitions from Φ
to a as ma=mϕ increases. If the adiabatic condition is
satisfied during the transition, the resonant conversion
between the two axions can take place. In the following,
however, we do not need the adiabatic condition, and we
will see that the axion dynamics is more complicated.
If a has couplings to the SM particles other than gluons,

such as photons, then sH and sL will also be coupled to
them through the mixing. From the relation

a ¼ U11sH þ U21sL; ð10Þ

we define the effective decay constant related to a as

FIG. 1. Dependence of mH and mL on ma=mϕ. We set jNj ¼ 1
and fa ¼ fϕ. The dashed lines represent mH;L ¼ mϕ and ma.
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feff;H ≡ fa
jU11j

; feff;L ≡ fa
jU21j

: ð11Þ

Using these quantities, we can interpret that sH and sL are
coupled to the SM particles with the effective decay
constant feff;H and feff;L, respectively. We show the
dependence of feff;H on mϕ for jNj ¼ 1, ma ¼ ma0, and
fa ¼ fϕ in Fig. 2.

B. Stochastic initial conditions set during inflation

Here, we discuss the mass eigenstates and their typi-
cal field values during inflation. During inflation, we
assume that the Gibbons-Hawking temperature [72],
TGH ≡Hinf=2π, is much lower than TQCD. This assumption
implies an upper bound on Hinf as

Hinf ≪ 2πTQCD ≃ 0.96 GeV: ð12Þ

In this case, the QCD axion acquires a potential during
inflation, and the topological susceptibility is given by
χ ¼ χ0. Then, the axion fields are around the potential
minimum at a ¼ ϕ ¼ 0. Thus, the mass eigenstates are sH0

and sL0. If the axion masses, mH0 and mL0, are much
smaller than Hinf , the axion fields diffuse around the origin
due to quantum fluctuations. If the duration of inflation is
sufficiently long, the axion field values follow the Bunch-
Davies distribution. In the Bunch-Davies distribution, the
variances of the mass eigenstates are given by [47,48]

ffiffiffiffiffiffiffiffiffiffiffi
hs2H0i

q
¼

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mH0

;
ffiffiffiffiffiffiffiffiffiffi
hs2L0i

q
¼

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mL0
: ð13Þ

The field values at the end of inflation play a role of the
initial condition for the field dynamics after inflation. In the
following, we parametrize sH0 and sL0 at the end of
inflation by

sH0;init ¼ cH

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mH0

; sL0;init ¼ cL

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mL0
; ð14Þ

where cH and cL are typically of Oð1Þ. Then, the initial
values of a and ϕ are given by

�
ainit
ϕinit

�
¼ UT

0

�
sH0;init

sL0;init

�
: ð15Þ

Let us consider two limiting cases: ma0 ≫ mϕ and
ma0 ≪ mϕ with no hierarchy between fa and Nfϕ.
First, in the limit of ma0 ≫ mϕ, the potential is dominated
by VQCD, and the mass eigenvalues become

m2
H0 ≃m2

a0; m2
L0 ≃m2

ϕ; ð16Þ

during inflation. The matrix U0 is given by

U ¼
�
cosα − sinα

sinα cosα

�
with tanα≃−N

m2
ϕfϕ

m2
a0fa

; ð17Þ

where one can see that the mixing angle, α, is very small
with fa ∼ fϕ. In this case, the initial condition is approxi-
mated by

ainit ≃ cH

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

ma0
; ð18Þ

ϕinit ≃ cL

ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mϕ
: ð19Þ

Note that we have jainitj ≪ jϕinitj for cH; cL ¼ Oð1Þ in
this case.
Next, we consider the limit of ma0 ≪ mϕ. In this limit,

the potential is dominated by Vaϕ, and the mass eigenvalues
become

m2
H0 ≃m2

Φ ≡ f2a þ N2f2ϕ
f2a

m2
ϕ;

m2
L0 ≃m2

A ≡ f2a
f2a þ N2f2ϕ

m2
a0: ð20Þ

The matrix U is given by

U0 ¼
�
cos α − sin α

sin α cos α

�
with tan α ≃ −

fa
Nfϕ

: ð21Þ

Thus, the mass eigenstates are given by

sH ≃Φ; sL ≃ A; ð22Þ

and the initial conditions become

FIG. 2. Dependence of feff;H on mϕ. We set jNj ¼ 1, ma ¼
ma0, and fa ¼ fϕ. The gray horizontal lines correspond to

feff;H=fa ¼ 1 and
ffiffiffi
2

p
.
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ainit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

8π2ðf2a þ N2f2ϕÞ

s
H2

inf

�
cHNfϕ
mH0

−
cLfa
mL0

�
; ð23Þ

ϕinit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

8π2ðf2a þ N2f2ϕÞ

s
H2

inf

�
cHfa
mH0

þ cLNfϕ
mL0

�
: ð24Þ

In this case, Φ approximately remains the mass eigenstate
during and after inflation, and the dynamics of the two mass
eigenstates always decouple. So in the following we will
focus on the case of ma0 ≳mϕ to see how the two fields
evolve via the mixing. Moreover, if mϕ ≪ HðTQCDÞ, with
HðTÞ being the Hubble parameter at the cosmic temper-
ature T in the radiation dominated Universe, the QCD
axion begins to oscillate first, and the other axion begins to
oscillate after maðTÞ becomes constant. In this case, the
field dynamics are again independent for each of the two
axions. Thus, we focus on mϕ in the mass range of

3HðTQCDÞ≲mϕ ≲ma0; ð25Þ

in the following.
Here, we make two comments on the assumptions of our

analysis. First, to obtain the Bunch-Davies distributions for
the axions, the duration of inflation should be sufficiently
long as

Ninf > max
i
Ni

rela; ð26Þ

with Ninf being the e-folding number of the inflationary
period and Ni

rela ¼ H2
inf=m

2
i being the e-folding number

required for relaxation of the ith axion with the mass
eigenvalue mi. With multiple axions, the lightest one
requires the longest relaxation time, and thus we evaluate
the e-folding number for the lightest mass eigenvalue in our
setup. For example, this condition becomes Ninf > 1032 for
Hinf ¼ 5 MeV and mL0 ¼ 5 × 10−10 eV. Such long infla-
tion does not necessarily require eternal inflation2 since the
upper bound to have noneternal inflation is Ninf <
2π2M2

Pl=3H
2
inf ∼ 2 × 1042 [47,75].

Second, the fluctuations of the axion fields can spatially
modulate the Hubble parameter during inflation. This can
be checked by using the aforementioned relaxation time-
scale, Ni

rela. Without any mixing effect and assuming the
quadratic potential, we can consider the constraint for
each axion potential, which contributes to the expansion

via ΔiHinf ¼ m2
i f

2
i

6M2
PlHinf

, where m2
i f

2
i represents a typical

scale of the axion potential height. The backreaction can

be neglected if ΔiHinf × Ni
rela=Hinf ≪ 1, leading to

fi ≪ MPl=
ffiffiffi
6

p
. This is consistent with the one from

Ref. [47].
In the presence of mixings or generic potential shapes,

we need to solve the Fokker-Planck equation [76,77] with
the volume effect [78–81]. Here, we analytically derive a
conservative bound. With multiple axions, the inflationary
Hubble parameter is altered at most by

ΔHinf ≈
Λ4
tot

6M2
PlHinf

; ð27Þ

where Λ4
tot is the total potential height for the multiple

axions. If ΔHinf=Hinf ×maxiNi
rela≪1 is satisfied, we

need not worry about the backreaction. For our system,
we obtain Λ4

tot ¼ 2ðχ0 þm2
ϕf

2
ϕÞ ≃ 2χ0, and ΔHinf ≈

7 × 10−38Hinf . Thus, ΔHinf=Hinf × maxi Ni
rela ∼ 10−5 and

we certainly have a parameter region that we can safely
neglect the backreaction. In particular, we can neglect the
backreaction effect in the whole range of parameters shown
in Fig. 9.

C. Postinflationary dynamics before
QCD phase transition

Next, we consider the field dynamics after inflation.
After the end of the inflation, the inflaton decays into the
SM particles, which form a hot thermal plasma. As the
temperature of the universe increases and becomes higher
than the QCD scale, the axion potential from nonperturba-
tive QCD effects, VQCD, disappears, and we have only the
potential as

Vða;ϕÞ ≃m2
ϕf

2
ϕ

�
1 − cos

�
N

a
fa

þ ϕ

fϕ

��
; ð28Þ

which is only a function of Φ. Depending on the relative
size of mΦ (or mϕ) and ma, the evolution of the system is
different. When mΦ ≃ 3HðTÞ > 3HðTQCDÞ, Φ starts to
evolve while A remains constant. After that, the field
dynamics depends on when VQCD becomes relevant.
For example, let us consider the limit ofmΦ ≫ HðTQCDÞ

and ma0 ≫ mϕ. In this limit, Φ damps due to oscillations
well before T ¼ TQCD. Thus, the axions settle down at the
potential minimum of Vaϕ, ðam;ϕmÞ, determined by

N
am
fa

þ ϕm

fϕ
¼ 0; ð29Þ

−
am
fϕ

þ N
ϕm

fa
¼ −

ainit
fϕ

þ N
ϕinit

fa
: ð30Þ

As a result, we obtain

2Note that the typical number of e-folds of eternal inflation is
finite [73,74], and the eternity of eternal inflation relies on
the volume measure. In fact, one can make the typical number
of e-folds extremely large in a certain model of stochastic
inflation [46].
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am ¼ f2aainit − Nfafϕϕinit

f2a þ N2f2ϕ
¼

mϕfa −
cL
cH
Nma0fϕ

f2a þ N2f2ϕ

fa
mϕ

ainit;

ð31Þ

ϕm ¼ −Nfafϕainit þ N2f2ϕϕinit

f2a þ N2f2ϕ

¼ −
cH
cL
mϕfa − Nma0fϕ
f2a þ N2f2ϕ

Nfϕ
ma0

ϕinit; ð32Þ

where we have used Eqs. (18) and (19) in the second
equalities. Note that, since we are assumingma0 ≫ mϕ, we
have ainit ≪ ϕinit. Thus, for fa ∼ jNjfϕ,3 the field values of
the axions are modified by the postinflationary dynamics as

am ¼ Oð1Þϕinit ¼ O
�
cLma0

cHmϕ

�
ainit ≫ ainit; ð33Þ

ϕm ¼ Oð1Þϕinit: ð34Þ

We note that am is enhanced compared to ainit, which is
crucial for the evaluation of the axion abundances, as we
will see in the next section. Since am=ainit is proportional to
m−1

ϕ , the enhancement will be more significant for smaller
mϕ as long as Φ starts to oscillate before VQCD becomes
relevant. Thus, we expect that the enhancement is most
significant for mϕ such that VQCD and Vaϕ becomes
relevant at about the same time. In other words, we expect
the enhancement for mϕ ∼menh ≡ 3HðTa;oscÞ with Ta;osc

satisfying maðTa;oscÞ ¼ 3HðTa;oscÞ. Considering HðTÞ ∝
T2 and maðTÞ ∝ T−4.08, we obtain am=ainit ∝ f−2.04=3.04a for
mϕ ∼menh, which leads to the maximal enhancement of the
QCD axion abundance with a factor proportional to
f−4.08=3.04a ≃ f−1.34a . Note that here we neglected the temper-
ature dependence of the effective degrees of freedom of
radiation, g�, in the Hubble parameter.

III. ENHANCEMENT OF THE QCD
AXION ABUNDANCE

In the previous section, we have seen that the amplitude
of the QCD axion becomes larger than the initial value due
to postinflationary dynamics caused by mixing. Numerical
calculations are needed to determine when and to what
extent the QCD axion abundance indeed increases.

A. Setup for numerical calculations

Here, we perform the numerical calculation of the axion
dynamics and show how the enhancement of the axion
abundance depends on the model parameters.
The equations of motion for a and ϕ are given by

äþ 3Hȧþ ∂Vða;ϕÞ
∂a

¼ 0;

ϕ̈þ 3Hϕ̇þ ∂Vða;ϕÞ
∂ϕ

¼ 0; ð35Þ

where the dots represent derivatives with respect to the
physical time t, and the Hubble parameter, H, is given by
the cosmic temperature T through the Friedmann equation
in the radiation-dominated era:

3M2
PlH

2ðTÞ ¼ π2

30
g�ðTÞT4: ð36Þ

The time evolution of the temperature is determined by the
conservation of the entropy in the physical volume ∝ R3

with the scale factor R:

g�sðTÞT3R3 ¼ const; ð37Þ

which leads to

Ṫ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

10
g�sðTÞ

r
T2

MPl

�
1

g�sðTÞ
dg�sðTÞ
dT

þ 3

T

�
−1
: ð38Þ

We use the temperature dependence of the effective degrees
of freedom of radiation for energy density and entropy
density, g�ðTÞ and g�sðTÞ, given in Ref. [71].
We set the initial conditions

aðt ¼ 0Þ ¼ ainit; ȧðt ¼ 0Þ ¼ 0; ϕðt ¼ 0Þ ¼ ϕinit;

ϕ̇ðt ¼ 0Þ ¼ 0; Tðt ¼ 0Þ ¼ T init; ð39Þ

with the initial temperature T init satisfying

3M2
Plð100mϕÞ2 ¼

61.75π2

30
T4
init; ð40Þ

which corresponds to a time well before the onset of
oscillations of ϕ. The final time of the simulations is set to
be well after the energy densities of sH and sL come to
follow ∝R−3.
The energy density can be expressed in terms of the

current density parameter as

Ωmix ¼
ρmix;0

ρc
; ð41Þ

where ρmix is the sum of the energy density of a and ϕ, and
ρc is the critical density. Since the energy density of

3We also note for ma0 ≫ mϕ with cH ∼ cL that fa ∼ jNjfϕ
maximizes jam=ainij, and thus we cannot get a much further
enhancement by relaxing the condition (4).
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oscillating scalars scales proportionally to the entropy
density, we evaluate ρmix=s at the end of the numerical
calculations and obtain

Ωmix ¼
ρmix

s

�
ρc
s0

�
−1
; ð42Þ

where ρc=s0 ≃ 3.6 × 10−9h2 GeV with the reduced Hubble
constant h ≃ 0.67.
The input parameters of the numerical calculations are

fma0ðor faÞ; mϕ; fϕ; N; cH; cL;Hinfg: ð43Þ

For simplicity, we fix

N ¼ −1; fa ¼ fϕ ¼ f; cH ¼ cL ¼ 1: ð44Þ

Since we are interested in the low-scale inflation and the
Bunch-Davies distribution whose width is much smaller
than the decay constant, the potential can be approximated
by the quadratic terms. In this case, jNj is degenerate with
fϕ, and the sign of N can also be absorbed into the
definition of ϕ. The dependence of the axion abundances
on the initial conditions, cH and cL, will be discussed later.
Now, the remaining parameters are f,mϕ, andHinf . As long
as the quadratic approximation is valid, the field values
always scale as ∝ H2

inf , and thus the choice ofHinf does not
affect the axion dynamics qualitatively.
To see the nontrivial dynamics of axions due to mixing

effects, we focus mainly on 3HðTQCDÞ ≲mϕ ≲ma0 as
mentioned above. From the Friedmann equation,

3M2
PlHðTQCDÞ2 ¼

π2

30
g�ðTQCDÞT4

QCD; ð45Þ

we obtain

HðTQCDÞ ≃ 1.7 × 10−11 eV: ð46Þ

Thus, we will investigate the mass range of 10−11 eV≲
mϕ ≲ma0.

B. Numerical results

1. Axion dynamics

In the following, we show the numerical results for

f ¼ 1015 GeV; Hinf ¼ 5 MeV; ð47Þ

which corresponds to

ma0 ¼ 5.7 × 10−9 eV: ð48Þ

We consider the following three values of mϕ,

mϕ ¼ 10−10.5 eV; 10−9.5 eV; and 10−8 eV; ð49Þ

as examples for the dynamics with enhancement (mϕ ¼
10−9.5 eV) and without enhancement (mϕ ¼ 10−10.5 eV
and 10−8 eV).
First, we show the result for mϕ ¼ 10−10.5 eV in Fig. 3.

The top panel shows the trajectory of a=fa and ϕ=fϕ.
Initially, a=fa is smaller than ϕ=fϕ because of ma0 ≫ mϕ.
At the very beginning, the axion fields slowly roll down the
potential in the Φ-direction. In the figure, it first moves to
the right. Then, VQCD grows and the axion field starts to
oscillate rapidly in the a-direction. After that, the fields also
start to oscillate in the ϕ-direction. The bottom panel shows
the time evolution of the energy density. ρH and ρL are the

FIG. 3. Top panel: trajectory of a=fa and ϕ=fϕ. The gray
dashed line represents a=fa ¼ ϕ=fϕ (which almost overlaps with
ϕ=fϕ ¼ 0), and the gray dot represents the initial field values.
Bottom panel: energy densities of the two fields, heavier mode,
and lighter mode with mixing and a and ϕ without mixing. ρmix
almost overlaps ρϕ;no-mixing. The vertical line represents mϕt ¼ 1,
which almost corresponds to T ¼ TQCD. As is usually the case
with stochastic axions, the lighter axion has a larger abundance.
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energy density of the heavier and lighter modes and ρmix is
their sum. As a comparison, we also consider the case
with N ¼ 0, where a and ϕ decouple from each other.
By solving the dynamics of each field with the initial
Bunch-Davies distribution, we obtain the energy densities
of a and ϕ, ρa;no-mixing and ρϕ;no-mixing. After VQCD arises,
the heavier mode is approximately a. Since a grows due to
the slow roll in the Φ-direction before oscillations, ρH is
enhanced compared with ρa;no-mixing. On the other hand, ρL
is almost the same as ρϕ;no-mixing since the slow roll of Φ or
the oscillation of a has little effect on the time evolution of
ϕ. As a result, the total energy density is hardly enhanced.
Next, we show the result for mϕ ¼ 10−9.5 eV in Fig. 4.

As before, a=fa is initially smaller than ϕ=fϕ because of
ma0 > mϕ. For T ≫ TQCD, the potential is dominated by
Vaϕ, andΦ starts to roll down the potential while A remains
constant. As the temperature decreases, VQCD becomes
relevant and then dominant. Thus, the field motion changes

its direction, and a starts to oscillate rapidly. In this process,
a acquires a larger field value than the initial condition, and
the energy density of the two fields is enhanced compared
with the case where the two fields evolve independently. In
particular, ρH is significantly enhanced compared with
ρa;no-mixing while ρL is not so different from ρϕ;no-mixing. As a
result, the total energy density is also enhanced due to the
interplay of the two fields.
Finally, we show the result formϕ ¼ 10−8 eV in Fig. 5. In

this case, the heavier mode ð≃ΦÞ starts to oscillate and
damps well before the emergence of VQCD. Then, ρL
becomes dominant later. As a result, the total energy density
is different from the case with N ¼ 0 only by a factor of
≃1.6. This is because the lighter mode is approximately
equal to A, which has an effective decay constant feff;A ¼ffiffiffi
2

p
fa [see Eq. (11)]. Considering the result of the standard

misalignment mechanism for the QCD axion, Ωa ∝ f1.17a

[82–84], we expect ρL=ρa;no-mixing ≃ 21.17=2 ≃ 1.5.

FIG. 4. Same as Fig. 3 but for mϕ ¼ 10−9.5 eV. The vertical
lines in the bottom panel represent mϕt ¼ 1 and T ¼ TQCD from
left to right. In contrast to the usual case with stochastic axions,
the heavier axion (mostly the QCD axion) has a larger abundance
due to the mixing effect.

FIG. 5. Same as Fig. 3 but formϕ ¼ 10−8 eV. The lighter axion
(mostly the QCD axion) has a larger abundance. The slight
enhancement over the unmixed case is due to the mixing effect on
the decay constant, not the dynamics (see Fig. 2).
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2. Enhancement in QCD axion abundance

Next, we look at the mϕ dependence of the enhancement
factor. We show the ratio of the abundances of the heavier
mode with mixing, ΩH, and the QCD axion without
mixing, Ωa;no-mixing, for f ¼ 1014, 1015, and 1016 GeV in
Fig. 6. Note that the heavier mode sH almost corresponds to
the QCD axion a at low temperatures for ma0 ≫ mϕ. We
see thatΩH is enhanced aroundmϕ ¼ menh as expected. On
the other hand, the ratio becomes less than unity for larger
mϕ. This is because sH starts to oscillate due to Vaϕ earlier
than a without mixing for mϕ > menh. The enhancement is
most significant for f ¼ 1014 GeV, with which the ratio is
ΩH=Ωa;no-mixing ¼ Oð103Þ for mϕ ≃menh. The maximum
ratio for f ¼ 1014 GeV is larger than that for f ¼
1016 GeV by a factor of 333 ≃ 1001.26, which validates
the relation obtained in Sec. II C, ΩH=Ωa;no-mixing ∝ f−1.34

as a rough estimate.
We also show the ratio of the total abundances of the two

fields between the cases with N ¼ −1 and N ¼ 0 against
mϕ for f ¼ 1014, 1015, and 1016 GeV in Fig. 7. The
enhancement is most significant for f ¼ 1014 GeV, with
which the ratio is Ωmix=Ωno-mixing ¼ Oð100Þ at the peak.
The wiggle in the right side of the peak corresponds to the
oscillation phase of Φ when the QCD potential becomes
relevant. For smaller mϕ, we obtain Ωmix ≃ Ωno-mixing. On
the other hand, for larger mϕ, we obtain Ωmix=Ωno-mixing ≃
21.17=2 ≃ 1.5 as explained above.
We have seen that ρH becomes dominant when the

enhancement is significant in Fig. 4 in contrast to the case
without enhancement in Figs. 3 and 5. To visualize this
trend, we show the contributions of the heavier and lighter
modes to the enhancement in Fig. 8. Here, we choose
f ¼ 1014 GeV, with which the enhancement is most
significant in Figs. 6 and 7. We see that the heavier mode
dominates the energy density for the mass region where the

enhancement is significant. In this mass region, the heavier
mode corresponds to the QCD axion a with ma0 ≃ 5.7 ×
10−8 eV for f ¼ 1014 GeV. For mϕ ≃ 4.0 × 10−9 eV, both
the heavier and lighter modes have the same order of
energy densities larger thanΩno-mixing. Formϕ≲3HðTQCDÞ,
the lighter mode ≃ϕ is dominant, and, for mϕ ≳ma0, the
lighter mode ≃A is dominant.

3. Viable parameter space for dark matter

If the axion potential can be approximated by mass
terms, then the squares of the oscillation amplitudes are
proportional to H4

inf at the end of the inflation, and so are
the energy densities at any epoch after inflation with the

FIG. 6. Ratio of ΩH to Ωa;no-mixing. The vertical gray lines
represent mϕ ¼ menh for f ¼ 1014, 1015, and 1016 GeV from
right to left. Note that, in the region shown here, the heavier axion
is identified with the QCD axion, which consists mainly of a.

FIG. 7. Enhancement of the energy density in the two-field
dynamics compared with the sum of the one-field dynamics of a
and ϕ. The vertical gray lines represent mϕ ¼ menh for f ¼ 1014,
1015, and 1016 GeV from right to left. The horizontal gray line
corresponds to Ωmix=Ωno-mixing ¼ 21.17=2 ≃ 1.5.

FIG. 8. Enhancement of the energy density in the two-field
dynamics compared with the sum of the single-field dynamics of
a and ϕ for f ¼ 1014 GeV. The blue line is the same as in Fig. 7.
The orange and green lines represent the contributions of the
heavier and lighter modes, respectively. The vertical gray lines
represent mϕ ¼ 3HðTQCDÞ, menh, and ma0, from left to right.
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other parameters fixed. Using this approximation, the
energy density derived for Hinf ¼ 5 MeV can be converted
to Hinf such that the axion field explains all dark matter. To
see the validity of the mass approximation, we define the
typical amplitude of the Bunch-Davies distribution in the
ϕ-direction:

θ̄ϕ≡
ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

mϕfϕ

≃0.19

�
Hinf

10MeV

�
2
�

mϕ

10−9 eV

�
−1
�

fϕ
1014GeV

�
−1
: ð50Þ

Note that the typical misalignment angle in the a-direction
is much smaller for the parameters of interest:

θ̄a ≡
ffiffiffiffiffiffiffi
3

8π2

r
H2

inf

ma0fa
≃ 3.4 × 10−3

�
Hinf

10 MeV

�
2

: ð51Þ

These typical angles, θ̄ϕ and θ̄a, correspond to the initial
values of ϕ=fϕ and a=fa with cH ¼ cL ¼ 1 in the limit
of ma0 ≫ mϕ.
We show Hinf explaining all dark matter for f ¼

1014 GeV and cH ¼ cL ¼ 1 in Fig. 9. The solid lines
represent Hinf with which the two fields with mixing (thick
gray), a without mixing (red), and ϕ without mixing (blue)
explain all dark matter, respectively. For θ̄ϕ > π (the gray
shaded region), the assumption that a and ϕ oscillate
around the origin a ¼ ϕ ¼ 0 is invalid and our analysis
cannot be applied directly. In this region, however, the
typical initial amplitude of ϕ is of order fϕ, and the axion
abundance is larger than the observed dark matter abun-
dance. For π=2 < θ̄ϕ < π (between the two gray dashed
lines), the mass approximation of the potential becomes
inaccurate, and the result requires some correction. We can

see that the QCD axion can explain all dark matter with
Hinf much smaller than the case without mixing effects.

4. Initial condition dependence

So far, we have taken cH ¼ cL ¼ 1. Here, we discuss the
importance of the initial conditions focusing on two
parameter sets. First, we consider the peak of enhancement:

f ¼ 1014 GeV; mϕ ¼ 7.9 × 10−10 eV; ð52Þ

and investigate how the enhancement depends on the initial
condition. As long as the mass approximation of the
potential is valid, the field dynamics is linear and the
energy density is proportional to the square of the field
amplitudes. Thus, the enhancement factor Ωmix=Ωno-mixing

depends on the initial condition through cH=cL. We para-
metrize the initial condition by 0 ≤ β < π as

cH ¼ cos β; cL ¼ sin β; ð53Þ

and perform the numerical simulations for both N ¼ −1
and N ¼ 0. Note that Vða;ϕÞ is invariant with ða;ϕÞ →
ð−a;−ϕÞ and that π ≤ β < 2π leads to the same energy
densities as 0 ≤ β < π. We show the dependence of the
enhancement factor on β in Fig. 10. The enhancement is
suppressed around β ¼ 0 and π, where cL is small
compared with jcHj. This behavior can be understood by
the observation that the enhancement is due to the con-
version of ϕ to a in the early stage of field oscillations (see
Fig. 4). For typical initial conditions, ϕinit=fϕ is larger than
ainit=fa, and the motion in the Φ-direction enhances a=fa.
On the other hand, for cL ≪ jcHj, ϕinit=fϕ ≲ ainit=fa and
the enhancement does not occur.
Next, we consider mϕ with which ΩH ≃ΩL in Fig. 8:

f ¼ 1014 GeV; mϕ ¼ 4.0 × 10−9 eV: ð54Þ

FIG. 10. Dependence of the enhancement factor on the initial
condition for f ¼ 1014 GeV and mϕ ¼ 7.9 × 10−10 eV.

FIG. 9. Hubble parameter during inflation with which the two
fields with mixing (thick gray), a without mixing (red), and ϕ
without mixing (blue) explain all dark matter for f ¼ 1014 GeV
and cH ¼ cL ¼ 1. Thegray dashed lines represent θ̄ϕ ¼ π=2 andπ.
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We show the energy ratio of the heavier mode,ΩH=Ωmix, in
Fig. 11. We see that both the heavier and lighter modes
have non-negligible energy density except for two regions
near β ¼ 0 and π. These two regions lead to Φinit ≃ 0 and
Ainit ≃ 0, respectively. Then, one of ρH and ρL is highly
suppressed as the initial condition because ðΦ; AÞ corre-
spond to ðsH; sLÞ at high temperatures T ≫ TQCD. Since
the fields start oscillations before the emergence of VQCD

for the parameters in Eq. (54), the energy densities of the
heavier and lighter modes are not transferred to each other
due to the resonant conversion [65–67]. As a result, one of
the heavier and lighter modes becomes dominant for the
two regions near β ¼ 0 and π.

IV. CONCLUSIONS AND DISCUSSIONS

The stochastic axion scenario fits well with the string
axiverse, where there are many axions with masses spread
over a wide parameter range. As long as the inflationary
scale is kept relatively small, all axions will stay near the
potential minimum, thus avoiding the notorious cosmo-
logical moduli problem in the string axiverse. In this paper,
we have shown that among the axions in the axiverse,
the QCD axion is special in the context of the stochastic
axion scenario because it necessarily has a temperature-
dependent potential. Even if the axions have suppressed
initial misalignment angles in the stochastic scenario, the
mixing between the QCD axion and another axion and
the time dependence of the QCD axion potential make the
field trajectory after inflation quite nontrivial. Especially
when the mixing is nonresonant, the two axion exhibits
a highly complicated behavior. Through this dynamics,
the QCD axion abundance can be enhanced by many
orders of magnitude compared to the case where mixing is
neglected.

Let us see if theQCD axion can be a dominant component
of dark matter in the axiverse with stochastic axions. In this
scenario, the lighter axion tends to have a greater abundance
for the samedecay constant. This is becausewhile the energy
density at the onset of oscillations is of the order ofH4

inf , the
lighter axion starts oscillating later. On the other hand, the
initial amplitude cannot exceed the decay constant, and
therefore there is a lower bound on both Hinf and the axion
massmϕ to account for all darkmatter by the (lightest) axion
in this scenario, as shown in Ref. [49]. For example, for
fϕ¼1016ð1014ÞGeV, the lower bound is Hinf ≳ 10 keV
(10 MeV) and mϕ ≳ 10−18ð10−10Þ eV. Now, from Fig. 9,
one can see that the QCD axion can explain all the dark
matter for Hinf ≃ 7 MeV and mϕ ≃ 10−9 eV with mixing.
Thus, if the decay constant for other axions is universal and
equal to 1014 GeV, the contributions of the other axions
are subdominant, i.e., the QCD axion is the dominant
component of dark matter in the string axiverse scenario.
This decay constant is somewhat lower than those conven-
tionally adopted in the string axiverse, but could potentially
be realized through a large volume compactification sce-
nario [39].We also note that the decay constant can be larger
than 1014 GeV, if there is no axion near the lower bound on
the mass.
Inflation with Hinf of order MeV is a low-scale inflation,

but it is high enough for successful cosmology. This is
because the corresponding energy scale of the inflaton
potential is about 107−8 GeV, and the reheating temper-
ature can be significantly higher than the weak scale.
Consequently, we could use the active sphaleron reaction
along with several potential baryogenesis mechanisms,
such as leptogenesis and electroweak baryogenesis.
Interestingly, the QCD axion dark matter with the decay

constant of Oð1014Þ GeV can be searched for through e.g.,
lumped element experiments [85–88]. If the nontrivial
dynamics was caused by the mixing between the QCD
axion and another axion, there should be another axion in
the mass range of 10−11 eV to the mass of the QCD axion.
The existence of such an axion with a mass close to that of
the QCD axion has been discussed in various contexts
[11,64–67], and if we can find both of them, such an
axiverse scenario with the stochastic axions would be one
of the plausible possibilities.
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FIG. 11. Dependence of the fraction of the energy density of the
heavier mode on the initial condition for f ¼ 1014 GeV and
mϕ ¼ 4.0 × 10−9 eV.
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