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We derive and investigate several hydrodynamic formalisms that emerge from a system of classical,
ultrarelativistic scalar particles self-interacting via a quartic potential. The specific form of the total cross-
section enables the analytical computation of all transport coefficients that appear in Navier-Stokes (NS),
Bemfica-Disconzi-Noronha-Kovtun (BDNK), and second-order transient hydrodynamic theories. We
solve all these formalisms in a Bjorken flow scenario and show that NS and BDNK theories display
unphysical features when gradients become sufficiently large. This implies that these hydrodynamic
approaches may not be suitable to describe the early stages of heavy ion collisions.
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I. INTRODUCTION

Relativistic hydrodynamics is an effective theory con-
structed to describe the long-distance, long-time dynamics
of macroscopic systems. It is widely applied in high energy
nuclear physics, being employed to describe the hot nuclear
matter produced in ultra-relativistic heavy ion collisions
[1–3] and the dense nuclear matter existing in the core of
compact stars [4–6]. Naturally, the main goal of these
endeavors is to study how the properties of nuclear matter
change when extreme temperatures and pressures are
achieved [7,8]. Nevertheless, such investigations, in par-
ticular in the context of heavy ion collisions, have also
stimulated considerable research on how relativistic fluid
dynamics emerges from a microscopic theory and what is
its domain of applicability [3,9].
The first to propose a relativistic formulation of dis-

sipative fluid dynamics were Eckart [10], in 1940, followed
by Landau and Lifshitz [11], which provided an indepen-
dent derivation in 1959. Both theories, often called first-
order theories, are based on a covariant extension of the
Navier-Stokes equations. However, it was demonstrated
later that such formulations are ill-defined, since they
contain intrinsic linear instabilities when perturbed around
an arbitrary global equilibrium state [12–16]. Such linear
instabilities were then shown to be related to the acausal
nature of these theories [13,15,16].
Hydrodynamic theories that can be linearly causal and

stable when perturbed around global equilibrium were only

derived in the 1970s, by Israel and Stewart [17,18]. The
resulting equations are often referred to as Israel-Stewart
theory or transient second-order theory and differ qualita-
tively from the Navier-Stokes equations by promoting the
dissipative currents to independent dynamical variables.
Such transient dynamics of the dissipative currents can only
be incorporated into the description with the inclusion of
terms that are of second order in gradients (Navier-Stokes
theory only includes first-order terms)—hence the name
second-order theory. Israel-Stewart theory has been shown
to be linearly causal and stable around global equilibrium,
as long as their transport coefficients satisfy a set of
fundamental constraints [13–16,19,20]. More general con-
straints for the causality of Israel-Stewart theory, valid also
in the nonlinear regime, were derived in Refs. [21,22].
Recently, a novel theory of hydrodynamics was proposed

by Bemfica, Disconzi, Noronha, and Kovtun (BDNK)
[9,23–26]. This formulation is qualitatively different from
Israel-Stewart’s approach, but still provides hydrodynamic
equations of motion that can be causal and linearly stable
around global equilibrium. In this approach, causality is
restored by considering constitutive relations for the dis-
sipative currents that also include timelike derivatives of the
hydrodynamic fields. In this case, conditions that ensure
causality of the theory in the regime of vanishing net-charge
were derived in Refs. [9,24,26–28] and feasible conditions
for linear stability around global equilibriumwere proven to
exist [9,23–26]. The drawback of this formalism is the
requirement of imposing unorthodox definitions of the local
equilibrium state, usually implemented by the so-called
matching conditions [29].
The goal of this paper is to derive all of the aforementioned

hydrodynamic theories from the relativistic Boltzmann
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equation considering a system of classical weakly-interact-
ing scalar fields in the ultrarelativistic regime. The self-
interacting λφ4 scalar field theory is the most simple, yet not
trivial, interacting system in high-energy physics [30–32]. In
the context of relativistic kinetic theory, the eigenvalues and
eigenvectors of the linearized collision term for this inter-
action have been recently obtained in exact form in Ref. [33],
in the ultrarelativistic regime. We use these results to derive
all hydrodynamic theories discussed so far, providing exact
and analytical expressions for all their transport coefficients.
Furthermore, we study the solutions of these theories in a
Bjorken flow scenario, providing a unique insight into their
domain of validity at the early stages of a heavy ion collision.
The present paper is organized as follows: in Sec. II, we

summarize the basic aspect of relativistic hydrodynamics
for arbitrary definitions of the local equilibrium state, i.e.,
for arbitrary matching conditions. In Sec. III, we discuss
basic features of the Boltzmann equation for classical
weakly self-interacting scalar fields and provide micro-
scopic expressions for the fundamental hydrodynamic
variables. In Secs. IV and V, we derive the relativistic
Navier-Stokes and BDNK equations, respectively, for
arbitrary matching conditions and obtain, for the first time,
exact expressions for all their transport coefficients. In
Sec. VI, we perform the same task for transient second-
order hydrodynamics, with the exception that we perform
our derivation of the equations of motion and its respective
transport coefficients assuming Landau matching condi-
tions. In Sec. VII, we investigate the solutions of all these
theories considering a highly symmetric flow configura-
tion, the Bjorken flow [34]. We then demonstrate that
Navier-Stokes and BDNK solutions display unphysical
solutions when gradients are large, indicating that such
theories may not be well suited to describe the early stages
of heavy ion collisions. Solutions of transient second-order
hydrodynamics do not display these unphysical features at
large gradients, but are shown to breakdown instead when
the longitudinal pressure is initially negative. In Sec. VIII,
we summarize our work and provide some conclusions and
future perspectives. In Appendix A, we provide some
details of our calculations while in Appendix B we develop
a derivation of the relativistic Hilbert theory. Finally, in
Appendix C, we derive some necessary conditions for the
BDNK theory to be linearly stable around global equilib-
rium. We use ðþ − −−Þ as our metric signature and natural
units, ℏ ¼ c ¼ kB ¼ 1.

II. HYDRODYNAMICS

The fundamental equations in hydrodynamics are the
continuity equations which describe the local conservation
of particle number (net-charge, in general), energy and
momentum,

∂μNμ ¼ 0; ∂μTμν ¼ 0; ð1Þ

where Nμ is the particle 4-current and Tμν is the energy-
momentum tensor. Without any loss of generality, these
tensors can be decomposed in terms of a timelike normal-
ized 4-vector uμ, uμuμ ¼ 1, in the following way

Nμ ¼ nuμ þ νμ;

Tμν ¼ εuμuν − PΔμν þ hμuν þ hνuμ þ πμν; ð2Þ

where n is the total particle density, ε is the total energy
density, P is the total isotropic pressure, νμ is the particle
diffusion 4-current, hμ is the energy diffusion 4-current, and
πμν is the shear-stress tensor. We further introduced the
projection operator onto the 3-space orthogonal to uμ,
Δμν ≡ gμν − uμuν. Each term introduced in this tensor
decomposition can be expressed in terms of projections
and contractions of the conserved currents,

n≡ uμNμ; ε≡ uμuνTμν; P≡ −
1

3
ΔμνTμν;

νμ ≡ Δμ
νNν; hμ ≡ Δμ

νuλTνλ; πμν ≡ Δμν
αβT

αβ: ð3Þ

We note that we have introduced above the double-
symmetric and traceless projection operator,

Δμναβ ≡ 1

2
ðΔμαΔνβ þ ΔναΔμβÞ − 1

3
ΔμνΔαβ: ð4Þ

We now define a reference local equilibrium state [35]
and separate the particle density, energy density, and
isotropic pressure into equilibrium and nonequilibrium
components. That is,

n≡ n0ðα; βÞ þ δn; ε≡ ε0ðα; βÞ þ δε;

P≡ P0ðα; βÞ þ Π; ð5Þ

where α≡ μ=T is the thermal potential and β≡ 1=T is the
inverse temperature, with μ being the chemical potential, of
this fictitious local equilibrium state. The quantities n0, ε0
and P0 are then determined by an equation of state, as if the
system were in thermodynamic equilibrium, while δn, δε,
and Π are the corresponding nonequilibrium corrections.
The local equilibrium variables α, β, and uμ introduced

so far in the decomposition of the conserved currents must
be properly defined. This task is usually performed by
introducing matching conditions, with the most traditional
matching conditions being constructed by Eckart [10] and
Landau [11]. Landau matching conditions define the fluid
4-velocity as a timelike and normalized eigenvector of Tμν,
i.e., Tμ

νuν ≡ εuμ, leading to the condition hμ ¼ 0. The
Eckart matching conditions define the fluid 4-velocity as
being parallel to the particle 4-current (net-charge, when
the number of particles is not conserved), i.e., Nμ ≡ nuμ,
leading to the condition νμ ¼ 0. Finally, in both Landau and
Eckart matching conditions, the inverse temperature and
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thermal potential are defined assuming that the particle
number and energy densities in the local rest frame are
given by their respective thermodynamic values, i.e., δn≡
0 and δε≡ 0. Naturally, more general matching conditions
can also be considered, even though they can be very
difficult to define outside the scope of kinetic theory.
Substituting the tensor decomposition given in Eq. (2)

into the conservation laws (1), and projecting them into
their components parallel and orthogonal to uμ, we obtain
the following equations of motion,

Dn0 þDδnþ ðn0 þ δnÞθ þ ∂μν
μ ¼ 0; ð6aÞ

Dε0 þDδεþ ðε0 þ δεþ P0 þ ΠÞθ − πμνσμν þ ∂μhμ

þ uμDhμ ¼ 0; ð6bÞ

ðε0þδεþP0þΠÞDuμ−∇μðP0þΠÞþhμθþhαΔμν
∂αuν

þΔμνDhνþΔμν
∂απ

α
ν ¼ 0; ð6cÞ

where D ¼ uμ∂μ is the comoving time derivative, ∇μ ¼
Δμν

∂ν is the 4-gradient operator, θ ¼ ∂μuμ is the expansion
rate, and σμν ¼ Δμναβ

∂αuβ is the shear tensor.
Naturally, these equations are not closed and, in order to

solve them, one must provide additional relations satisfied
by the dissipative terms, δn, δε, Π, νμ, hμ, and πμν. The
challenge then resides in consistently deriving such equa-
tions, that must be expressed solely in terms of the fields
that appear in Nμ and Tμν. In the following sections, we
shall perform this task assuming a weakly interacting gas of
massless particles corresponding to scalar fields self-
interacting via a λφ4 term. In this case, the relativistic
Boltzmann equation can be used as the starting point for
our derivation, which will be implemented for 3 different
fluid-dynamical frameworks: relativistic Navier-Stokes
theory, BDNK theory and transient second-order fluid
dynamics. For the sake of completeness, we also derive
relativistic Hilbert theory in Appendix B.

III. KINETIC THEORY FOR λφ4

SELF-INTERACTING PARTICLES

The relativistic Boltzmann equation is a nonlinear,
integro-differential equation describing the time evolution
of the single-particle distribution function, fðxμ;pÞ≡ fp.
In the classical limit and considering only binary elastic
collisions, it reads

pμ
∂μfp ¼ 1

2

Z
dQdQ0dP0Wpp0↔qq0 ðfqfq0 − fpfp0 Þ

≡ C½fp�: ð7Þ

Above, we defined the Lorentz invariant integration mea-
sure for on-shell massless particles dP≡ d3p=½ð2πÞ3p0� ¼
d3p=½ð2πÞ3jpj� and the Lorentz invariant transition rate

Wpp0↔qq0 ¼ ð2πÞ6sσðs;ΘÞδð4Þðpþ p0 − q − q0Þ; ð8Þ

where σðs;ΘÞ is the differential cross section and we used
the Mandelstam variables, s≡ ðqμ þ q0μÞðqμ þ q0μÞ ¼
ðpμ þ p0μÞðpμ þ p0

μÞ and defined Θ such that

cosΘ ¼ ðp − p0Þ · ðq − q0Þ
ðp − p0Þ2 ¼ p · q

jpjjqj
����
CM

: ð9Þ

Here, CM denotes that the expression is given in the center-
of-momentum frame, i.e., the frame in which the total
momentum of the collision vanishes, pμ þ p0μ ¼
qμ þ q0μ ¼ ð ffiffiffi

s
p

; 0Þ. The specific functional form of the
cross-section σðs;ΘÞ varies according to the microscopic
interactions involved [31]. In this work, we shall consider a
system composed of massless scalar particles whose
dynamics is given by the Lagrangian density,

L ¼ 1

2
∂μφ∂

μφ −
λφ4

4!
; ð10Þ

providing, at leading order in λ, a differential cross-section
that does not possess any angular dependence. The corre-
sponding total cross section is, at leading order in the
coupling constant [31],

σTðsÞ ¼
1

2

Z
dΦdΘ sinΘσðs;ΘÞ ¼ λ2

32πs
≡ g

s
; ð11Þ

where Φ is the azimuthal angle in the CM frame and
g≡ λ2=ð32πÞ, as implied above.
In the context of kinetic theory, the particle 4-current and

the energy-momentum tensor are identified as the first and
second moments of the single-particle distribution function,
respectively,

Nμ ¼
Z

dPpμfp; Tμν ¼
Z

dPpμpνfp: ð12Þ

At this point, we note that the conservation of the number
of particles in microscopic collisions is only valid for the
processes considered at leading order in λ. Applying the
same tensor decomposition used in the previous section,
Eq. (2), we obtain kinetic expressions for the hydrody-
namic variables. For this purpose, we must also introduce a
reference local equilibrium state and decompose the single-
particle distribution function into an equilibrium part and a
nonequilibrium one,

fp ¼ f0p þ δfp ≡ f0pð1þ ϕpÞ; ð13Þ

where we defined the deviation functions δfp ≡ fp − f0p
and ϕp ≡ ðfp − f0pÞ=f0p and introduced the local equi-
librium single-particle distribution function,
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f0p ≡ expðα − βEpÞ; ð14Þ

with Ep ≡ uμpμ being the energy in the local rest frame.
The inverse temperature β, thermal potential α and
4-velocity uμ must be defined using matching conditions,
as discussed in the previous section. In a kinetic theory
framework, an ensemble of matching conditions can be
formulated in the following way [29,36,37],Z

dPEq
pδfp ≡ 0;

Z
dPEs

pδfp ≡ 0;Z
dPEz

pphμiδfp ≡ 0; ð15Þ

where phμi ≡ Δμνpν, while q, s, and z are free parameters.
The above conditions reduce to the Landau matching
conditions when q ¼ 1, s ¼ 2, and z ¼ 1 and to the
Eckart conditions when q ¼ 1, s ¼ 2, and z ¼ 0. Other
values of q, s, and z lead to novel matching conditions that
often do not have any intuitive physical interpretation.
Then, the hydrodynamic fields can be identified as the
following contraction and/or projections of the conserved
currents,

n0 ≡
Z

dPEpf0p; δn≡
Z

dPEpδfp; ð16aÞ

ε0 ≡
Z

dPE2
pf0p; δε≡

Z
dPE2

pδfp; ð16bÞ

P0≡−
1

3

Z
dPΔμνpμpνf0p; Π≡−

1

3

Z
dPΔμνpμpνδfp;

ð16cÞ

νμ ≡
Z

dPphμifp; hμ ≡
Z

dPEpphμifp; ð16dÞ

πμν ≡
Z

dPphμpνifp; ð16eÞ

where phμpνi ≡ Δμναβpαpβ denotes the irreducible projec-
tion of pμpν.

IV. NAVIER-STOKES THEORY

We first consider the traditional relativistic Navier-Stokes
theory.We derive it from the relativistic Boltzmann equation
employing the well-known Chapman-Enskog expansion
[29,38–41]—a perturbative solution of the Boltzmann
equation based on an expansion of the single-particle
distribution function in spacelike gradients of hydrodynamic
variables. In practice, one converts the original Boltzmann
equation into the following perturbative problem, introduc-
ing the book-keeping parameter ϵ,

ϵEpDfp þ ϵpμ∇μfp ¼ C½fp�: ð17Þ

We then consider a series solution for fp,

fp ¼
X∞
i¼0

ϵifðiÞp ; ð18Þ

and also consider an expansion of the comoving derivative,

Dfp ¼
X∞
i¼0

ϵiDðiÞfp; ð19Þ

where DðnÞfp denotes the nth order contribution in ϵ of the
comoving derivative of fp. The latter expansion promotes a
resummation of the gradient expansion so that only terms
containing the spacelike 4-gradient ∇μ appear in the con-
stitutive relations. The Boltzmann equation is then solved
order by order in ϵ, with the solution of the original equation
being recovered by setting ϵ ¼ 1.
The zeroth-order solution of this series satisfies

C½fð0Þp � ¼ 0 and is given by a local equilibrium distribution

function, fð0Þp ¼ f0p, that is fully determined by fixing the
matching conditions, as explained in the last section. The

first-order solution for the deviation function ϕp ¼ fð1Þp =f0p
is then obtained by solving the following equation,

1

4
Lð3Þ
1pphμi∇μα − βphμpνiσμν ¼ L̂ϕp; ð20Þ

where, in deriving this equation, we used that [37],

Dð0Þfp ¼
�
−
β

3
Epθ þ phμi

�
∇μβ −

β

4
∇μα

��
f0p: ð21Þ

For the sake of convenience,we have expressed the left-hand
side of Eq. (20) in terms of associate Laguerre polynomials
[42].We also note that the terms proportional to θ and∇μβ in
Eq. (21) do not appear in Eq. (20) since they cancel exactly
with terms stemming from∇μf0p. On the right-hand sidewe
have the linearized collision term, L̂, a linearization of the
collision term with respect to a local equilibrium state. For
the interaction considered in this work, it is given by,

L̂ϕp ≡ g
2

Z
dQdQ0dP0ð2πÞ5δð4Þðpþ p0 − q − q0Þ

× f0p0 ðϕq þ ϕq0 − ϕp − ϕp0 Þ: ð22Þ

Formassless particles in the classical limit, the spectrumof L̂
has been recently determined analytically in Ref. [33], i.e.,
the eigensystem of the linearized collision operator can be
computed exactly. In fact, it was demonstrated that,
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L̂½Lð2lþ1Þ
np phμ1 � � �pμli� ¼ χnlL

ð2lþ1Þ
np phμ1 � � �pμli;

χnl ¼ −
g
2
I0;0

�
nþ l − 1

nþ lþ 1
þ δn0δl0

�
;

ð23Þ

whereLðαÞ
np ≡ LðαÞ

n ðβEpÞ denotes thenth associated Laguerre
polynomial [42] and phμ1 � � �pμli ≡ Δμ1���μl

ν1���νlp
ν1 � � �pνl are

irreducible tensors constructed from 4-momentum, with
Δμ1���μl

ν1���νl being the 2l–rank projection operator orthogonal
to the fluid 4-velocity in every index. These tensors are
constructed from combinations of Δμν ¼ gμν − uμuν so that
they are symmetric under the exchange of the indices
(μ1 � � � μl) and (ν1 � � � νl), separately, and also traceless in
each subset of indices, for l > 1 [29,40]. We also made use
of the thermodynamic integrals In;q,

In;q ¼
1

ð2qþ 1Þ!!
Z

dPð−ΔλσpλpσÞqEn−2q
p f0p: ð24Þ

The general first order solution for ϕp is formally
given by

ϕp ¼ ϕhom
p þ L̂−1

�
1

4
Lð3Þ
1pphμi∇μα − βphμpνiσμν

�
; ð25Þ

where we denoted the homogeneous solution ϕhom
p ¼

aþ bμpμ, with the free parameters a and bμ being later
determined by matching conditions [29]. Since the eigen-
values and eigenfunctions of the linear operator L̂ are
known, the solution above can be trivially evaluated [33],

ϕp ¼ aþ bμpμ þ 1

4χ11
Lð3Þ
1pphμi∇μα −

β

χ02
phμpνiσμν: ð26Þ

For the set of matching conditions introduced in Eq. (15),
one fixes a ¼ 0 and bμ ¼ z∇μα=ð4χ11Þ, with z being one of
the free parameters that is used to specify the matching
condition.
Using this exact first order solution for ϕp, we can

determine all irreducible moments of the nonequilibrium
distribution function,

ρμ1���μlr ≡
Z

dPEr
pphμ1 � � �pμliδfp: ð27Þ

The irreducible tensors phμ1 � � �pμli satisfy the following
orthogonality relations [29,40],Z

dPphμ1 � � �pμliphν1 � � �pνmiHðEpÞ

¼ l!δlm
ð2lþ 1Þ!!Δ

μ1���μl
ν1���νl

Z
dPðΔμνpμpνÞlHðEpÞ; ð28Þ

whereHðEpÞ is an arbitrary function of Ep. These relations
imply that any scalar irreducible moment, as well as those
of rank higher than 2, will necessarily vanish at first order
(in particular, the scalar moments vanish due to the
assumption of massless particles). Meanwhile, the irreduc-
ible moments of rank 1 and 2 are given by,

ρμr ¼
Z

dPEr
pphμif0pϕp

¼ 1

4χ11
∇να

Z
dPEr

pphμiphνiðzþ Lð3Þ
1p Þf0p ≡ κr∇μα;

ρμνr ¼
Z

dPEr
pphμpνif0pϕp

¼ −
β

χ02
σαβ

Z
dPEr

pphμpνiphαpβif0p ≡ 2ηrσ
μν; ð29Þ

where we used the orthogonality relation Eq. (28) and
defined the transport coefficients

κr ¼ −
z − r
12χ11

Irþ2;0;

ηr ¼ −
β

15χ02
Irþ4;0: ð30Þ

Thus, we obtain the following constitutive relations,

δn ¼ 0; νμ ¼ z
3

gβ2
∇μα;

δε ¼ 0; hμ ¼ ðz − 1Þ 12
gβ3

∇μα;

πμν ¼ 96

gβ3
σμν; ð31Þ

As expected, νμ vanishes when z ¼ 0 (Eckart matching
condition) while hμ vanishes when z ¼ 1 (Landau match-
ing condition). We note that the expressions for the trans-
port coefficients are exact—something extremely rare in
these type of calculations.
Nevertheless, we remark that these constitutive relations

for the dissipative currents render the fluid-dynamical
equations acausal, which further leads to intrinsic unphys-
ical instabilities [43], regardless of the matching conditions
imposed, i.e., regardless of the value of z. These issues
render Navier-Stokes theory an unsuitable formalism to
describe any relativistic fluid existing in nature.

V. BDNK THEORY

In this section, we consider another formalism of
relativistic hydrodynamic, the BDNK theory [26,44–46].
This framework can in principle be constructed to be causal
and stable, depending on the choice of matching condi-
tions. We derive the BDNK equations from the Boltzmann
equation following the procedure constructed in Ref. [37].
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In this case, one considers a modification of the Chapman-
Enskog expansion in which the perturbative procedure is
implemented on moments of the Boltzmann equation and
not on the Boltzmann equation itself. For this purpose, the
equation is first multiplied by a complete basis and
integrated in momentum and only then the perturbative
parameter is inserted. In particular, it is convenient to
choose the eigenfunctions of the linearized collision oper-
ator as basis elements, thus leading to

ϵ

Z
dPLð2lþ1Þ

n;p phμ1 � � �pμlip
μ
∂μfp

¼
Z

dPLð2lþ1Þ
n;p phμ1 � � �pμliC½fp�: ð32Þ

Once more, one considers the series solution

fp ¼
X∞
i¼0

ϵifðiÞp ; ð33Þ

with the solution of the original equation being recovered
by setting ϵ ¼ 1. Note that if the basis elements correspond
to 1; pμ, the integral over the collision term vanishes and we
obtain the usual conservation laws, with the perturbative
parameter ϵ completly vanishing. These conservation laws
are treated nonperturbatively [37], and, thus, from now on,
we only consider the remaining moments in our analysis.
As before, the zeroth-order solution is given by the local

equilibrium distribution, f0p [37]. The first-order solution,

here denoted as ϕp ≡ fð1Þp =f0p, is then obtained by solving
the following equation,Z

dPLð2lþ1Þ
n;p phμ1 � � �pμlip

μ
∂μf0p

¼
Z

dPLð2lþ1Þ
n;p phμ1 � � �pμlif0pL̂ϕp; ð34Þ

where the values ðl; nÞ ¼ ð0; 0Þ; ð0; 1Þ, and (1,0) are
explicitly excluded from this equation, since they amount
to linear combinations of conserved quantities. Also, L̂ is
the linearized collision term, already introduced in Eq. (22).
Moreover, the derivative of the equilibrium distribution on
left-hand side can be irreducibly expressed as

pμ
∂μf0p¼

�
EpDα−βE2

p

�
Dβ

β
−
θ

3

�
þphμi∇μα

−EpphμiðβDuμþ∇μβÞ−βphμpνiσμν

�
f0p: ð35Þ

Since the perturbative procedure was constructed using the
moments of the Boltzmann equation, and not the
Boltzmann equation itself, we are not required to exchange
the timelike derivatives above in terms of spacelike ones—
as occurs in the traditional Chapman-Enskog expansion.

This may seem as a minor difference, but will end up being
the decisive factor in deriving the BDNK equations.
In order to solve (34), we expand ϕp using a complete

basis of irreducible tensors and associated Laguerre
polynomials,

ϕp ¼
X∞
l;n¼0

Φμ1���μl
n Lð2lþ1Þ

n phμ1 � � �pμli; ð36Þ

where the Laguerre polynomials can be shown to obey the
following orthogonality relation (in the massless limit),

Z
dPðΔμνpμpνÞlLð2lþ1Þ

np Lð2lþ1Þ
mp f0p

¼ ð−1Þl eα

2π2β2lþ2

ðnþ 2lþ 1Þ!
n!

δnm ≡ AðlÞ
n δnm; ð37Þ

with AðlÞ
n defined as implied. Thus, combining Eq. (37)

with the orthogonality relations satisfied by the irreducible
tensors, Eq. (28), the expansion coefficients Φμ1���μl

n are
expressed in terms of ϕp as

l!
ð2lþ 1Þ!!A

ðlÞ
n Φμ1���μl

n ¼
Z

dPLð2lþ1Þ
n phμ1 � � �pμlif0pϕp

≡ Φ̂μ1���μl
n ; ð38Þ

where the tensors Φ̂μ1���μl
n are defined as implied and we

note that Φ̂μν
0 ¼ πμν and Φ̂μ

0 ¼ νμ. Replacing Eqs. (35) and
(36) into Eq. (34), and using the orthogonality relations,
Eqs. (28) and (37), we obtain

Φ̂αβ
n ¼ −

2βAð2Þ
0

15χ02
σαβδn;0; n ¼ 0; 1;…;

Φ̂λ
n ¼

Að1Þ
1

3χ11

�∇λβ

β
þDuλ

�
δn;1; n ¼ 1; 2;…;

Φ̂n ¼ −
2Að0Þ

2

βχ20

�
Dβ

β
−
θ

3

�
δn;2; n ¼ 2; 3;…; ð39Þ

where we also used the self-adjoint property of L̂, i.e.,
gpL̂ϕp ¼ ϕpL̂gp, and our knowledge of its spectrum
[cf. Eq. (23)] [33]. The coefficients Φ̂0, Φ̂1, Φ̂λ

0, are related
to the zero modes or homogeneous solutions of L̂, and
cannot be obtained from this inversion procedure. These
quantities are calculated from the matching conditions,
Eq. (15), leading to
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Φ̂0 ¼
qs
6
Φ̂2;

Φ̂1 ¼
1

3
ðqþ s − 1ÞΦ̂2;

Φ̂λ
0 ¼

z
4
Φ̂λ

1: ð40Þ

Now that the first-order solution for the moments of the
distribution function is determined, we can derive the
equations of motion for the dissipative terms by replacing
this solution into their expressions (16). Then, we obtain,

Π¼ χ

3

�
Dβ

β
−
θ

3

�
; δn¼ ξ

�
Dβ

β
−
θ

3

�
; δε¼ χ

�
Dβ

β
−
θ

3

�
;

νμ¼ϰ

�∇μβ

β
þDuμ

�
; hμ¼ λ

�∇μβ

β
þDuμ

�
;

πμν¼2ησμν: ð41Þ

The transport coefficients are given in analytical form by

ξ ¼ 12

gβ2
ðq − 1Þðs − 1Þ; χ ¼ 36

gβ3
ðq − 2Þðs − 2Þ;

ϰ ¼ 12

gβ2
z; λ ¼ 48

gβ3
ðz − 1Þ; η ¼ 48

gβ3
: ð42Þ

We note that, since ξ and χ are in general nonzero, δn and
δε are also nonvanishing, in contrast to Navier-Stokes and
Hilbert theories. A brief discussion on the linear stability
of the BDNK theory derived above is developed in
Appendix C, considering a simplified scenario of homo-
geneous perturbations around global equilibrium. Then,
we obtain the following necessary conditions for linear
stability,

λ

ε0
> 0;

ξ

n0
>

χ

ε0
; ð43Þ

which, using Eq. (42), lead to the following constraints on
the matching conditions,

z > 1; qþ s > 3: ð44Þ

These constraints imply that the so-called exotic Eckart
matching condition (which imposes z ¼ 0 and q ¼ 1),
adopted in previous works [36,37,45], renders the theory
linearly unstable and, thus, is unphysical.

VI. TRANSIENT SECOND-ORDER
HYDRODYNAMICS

Causal and stable fluid-dynamical equations are tradi-
tionally derived from the Boltzmann equation using the
method of moments [29,47], without a perturbative pro-
cedure, leading to second-order transient fluid-dynamical
theories. In this formalism, one derives the equations of

motion for the irreducible moments of the nonequilibrium
component of the single-particle distribution function,
ρμ1���μlr , defined in Eq. (27). These moment equations are
then systematically truncated in order to derive a closed set
of fluid-dynamical equations. This procedure will be out-
lined and implemented in this section, considering only
the Landau matching conditions. We note that the deriva-
tion of second-order transient hydrodynamics from kinetic
theory for general matching conditions was performed
in Ref. [36], by considering a generalization of the
14-moment approximation. However, extending this deri-
vation to the interaction considered in this work is still very
complicated and will be delegated to another publication.
The relativistic moment equations were first derived

in [47] and their form in the massless limit will be listed
below, for irreducible moments of rank 1 and 2. The rank-1
irreducible moments obey the following equation of
motion,

Dρhαir − rραμr−1Duμþ
rþ 3

3
ρrþ1Duαþωμ

αρμr þΔα
α0∇μρ

α0μ
r−1

− ðr− 1Þραμνr−2σμν −
1

3
∇αρrþ1þ

rþ 3

3
ραrθþ

2rþ 3

5
σμ

αρμr

−
βIrþ2;1

ðε0þP0Þ
Δαβ

∂μπ
μ
β −αð1Þr ∇αα

¼
Z

Er−1
p phαiC½fp�≡Cαr−1: ð45Þ

The equations of motion for the rank-2 irreducible
moments are

Dρhαβir − rραβμr−1Duμ þ
2

5
ðrþ 5ÞDuhαρβirþ1 þ Δαβ

α0β0∇μρ
α0β0μ
r−1

− ðr − 1Þσμνρμαβνr−2 −
2

5
∇hαρβirþ1 þ

rþ 4

3
ραβr θ

þ 2ωμ
hαρβiμr þ 2

7
ð2rþ 5Þσμhαρβiμr −

2

15
ðrþ 4Þρrþ2σ

αβ

− αð2Þr σαβ ¼
Z

dPEr−1
p phαpβiC½fp�≡ Cαβr−1: ð46Þ

Irreducible moments of rank l ≥ 3, and their correspond-
ing equations of motion, are not considered in the deriva-
tion of second-order fluid-dynamical theories [47–49] since
they only contain contributions for the dissipative currents
that are at least of third-order. Furthermore, since we are
considering a system of massless particles, the scalar
irreducible moments also only contain contributions that
are of third order or higher and therefore shall be neglected
in this derivation. In Eqs. (45) and (46), we make use of the
following definitions

αð1Þr ≡ Irþ1;1 −
n0

ε0 þ P0

Irþ2;1; αð2Þr ≡ 2βIrþ3;2; ð47Þ
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which are expressed in terms of the thermodynamic
integrals defined in Eq. (24). We further defined the fluid
vorticity ωμν ≡ ð∇μuν −∇νuμÞ=2.
The quantities, Cαr−1 and Cαβr−1, are moments of the

collision term, defined as implied. These terms give rise
to the relaxation timescales within which the system
evolves toward local equilibrium and are essential to
explain how the system approaches the fluid-dynamical
limit. In particular, such transport coefficients are essential
to ensure the causality and stability of a fluid-dynamical
formulation.

A. Irreducible moments of the collision term

The most complicated aspect of consistently deriving
fluid dynamics is to calculate the moments of the collision
term that appear in Eqs. (45) and (46). In general, these
terms can depend on all irreducible moments of the
distribution function and render the equations of motion
for such moments highly coupled. In the following, we
shall demonstrate that (inspired in the results of Ref. [33])
these terms become considerably simpler when considering
a system composed of massless scalar particles with a λφ4

self-interaction. In this case, all that we must consider are
Eq. (45) with r ¼ 2 and Eq. (46) with r ¼ 1. This happens
because the moments of the collision term appearing in
such equations only depend on the dissipative currents
contained in Nμ and Tμν. This will allow us to systemati-
cally derive fluid-dynamical equations without resorting to
phenomenological approximations of the collision integral
[50–55] or any truncation procedure [36,37,47]. This
calculation will be outlined in the following subsections,
with further details of the derivation being described in
Appendix A.

1. Collision integral of rank 2

We start with the rank-2 moment of the collision term,
Cμν0 . In this case, it is convenient to separate it into its loss
and gain parts,

Cμν0 ¼ 1

2

Z
dPdQdQ0dP0phμpνiWpp0↔qq0 ðfqfq0 − fpfp0 Þ

¼ −
g
2

Z
dPdP0fpfp0phμpνi

Z
dQdQ0ð2πÞ5δð4Þ

× ðpα þ p0α − qα − q0αÞ

þ g
2

Z
dPdP0fpfp0

Z
dQdQ0qhμqνið2πÞ5δð4Þ

× ðpα þ p0α − qα − q0αÞ; ð48Þ

where, in the second equality, we replaced the expression for
the transition rate given in Eq. (11). Furthermore, in-going
and out-going momentum labels were exchanged p ↔ q,
p0 ↔ q0 in the first term, where we used the time-reversal
property of the transition rate Wpp0↔qq0 ¼ Wqq0↔pp0 .

The first integral can be immediately calculated using
that [47,56–58]

Z
dQdQ0ð2πÞ5δð4Þðpα þ p0α − qα − q0αÞ ¼ 1: ð49Þ

Then, we obtain

−
g
2

Z
dPdP0dQdQ0fpfp0phμpνið2πÞ5

× δð4Þðpα þ p0α − qα − q0αÞ ¼ −
g
2
ðρ0 þ I0;0Þπμν: ð50Þ

The second term can be calculated using that [47]

Z
dQdQ0qhμqνið2πÞ5δð4Þðpαþp0α −qα−q0αÞ ¼ 1

3
Qhμ

T Q
νi
T ;

ð51Þ

where we have introduced the total 4-momentum of the
collision, Qμ

T ≡ pμ þ p0μ. This leads to the following exact
result,

g
2

Z
dPdP0fpfp0

Z
dQdQ0qhμqνið2πÞ5

× δð4Þðpα þ p0α − qα − q0αÞ
¼ g

3
ðρ0 þ I0;0Þπμν þ

g
3
νhμννi: ð52Þ

Combining the results from Eqs. (50) and (52), we establish
that this irreducible moment of the collision term can be
expressed as,

Cμν0 ¼ −
g
6
ðρ0 þ I0;0Þπμν þ

g
3
νhμννi: ð53Þ

Therefore, we conclude that this collisional moment can be
exactly expressed solely in terms of hydrodynamic varia-
bles and the moment ρ0. We note that this result is exact and
no approximations related to the existence of a hydro-
dynamic limit were imposed. Relations (49) and (51) are
derived in Appendix A, following the procedure outlined
in Ref. [47].

2. Collision integral of rank 1

Now we proceed with the rank-1 moment of the
collision term, Cμ1. As before, we separate it in the
following way,
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Cμ1 ¼
1

2

Z
dPdQdQ0dP0EpphαpβiWpp0↔qq0 ðfqfq0 − fpfp0 Þ

¼ −
g
2

Z
dPdP0fpfp0Epphμi

Z
dQdQ0ð2πÞ5

× δð4Þðpα þ p0α − qαq0αÞ

þ g
2

Z
dPdP0fpfp0

Z
dQdQ0Eqqhμið2πÞ5

× δð4Þðpα þ p0α − qα − q0αÞ; ð54Þ

where, in the second equality, we replaced the expression
for the transition rate given in Eq. (11). Also, similarly to
the calculation of the rank-2 moment of the collision term,
ingoing and outgoing momentum labels were exchanged in
the second term, p ↔ q, p0 ↔ q0, using the time-reversal
property of the transition rate.
Once again, we shall calculate the two terms on the right-

hand side separately. The first term can be calculated
directly using (49) and simply reads

−
g
2

Z
dPdP0dQdQ0fpfp0Epphμið2πÞ5

× δð4Þðpα þ p0α − qα − q0αÞ

¼ −
g
2

Z
dPdP0fpfp0Epphμi

¼ ðρ0 þ I0;0Þρμ1: ð55Þ

This term vanishes due to the Landau matching conditions,
in which the fluid 4-velocity is defined so that the energy
diffusion current, ρμ1, is zero—see Eq. (15).
The second term can be calculated using the

relation [47],Z
dQdQ0Eqqhμið2πÞ5δð4Þðpα þ p0α − qα − q0αÞ

¼ 1

3
uαQα

TQ
hμi
T ; ð56Þ

where Qμ
T is the total 4-momentum of the collision. This

leads to,

g
2

Z
dPdP0dQdQ0fpfp0Eqqhμið2πÞ5δð4Þðpαþp0α−qα−q0αÞ

¼g
3
½ðρ0þI0;0Þρμ1þn0νμ�: ð57Þ

Therefore, using the results derived in Eqs. (55) and (57),
it is possible to rewrite Cμ1 as

Cμ1 ¼ −
g
6
ðρ0 þ I0;0Þρμ1 þ

g
3
n0νμ: ð58Þ

As already mentioned, since we employ Landau matching
conditions in this section, the first term of the equation

above simply vanishes. Nevertheless, we kept it in the
equation for the sake of completeness. Thus, as was the
case with Cμν2 , Cμ1 can be expressed solely in terms of the
dissipative currents appearing in the conserved currents.

B. Order of magnitude truncation scheme

In the derivation of hydrodynamics from the Boltzmann
equation, it is essential to reduce the degrees of freedom
appearing in the general moment equations to the hydro-
dynamic fields (n; ε; uμ; νμ; πμν, in the present case). In the
present work, inspired in methods developed in the non-
relativistic regime [59], we will use the order of magnitude
truncation scheme [60]. This method is based on a power-
counting scheme that estimates the order of magnitude of a
given moment using its asymptotic expression in a gradient
expansion. In the end, this will lead to a power-counting
scheme solely based on spacelike gradients of the fluid-
dynamical variables or, equivalently, in the Knudsen
number [29]. For instance, at first order in a gradient
expansion, the irreducible moments (27) of rank 1 and 2 are
well described by their respective Navier-Stokes values,

ρμr ¼ κr∇μαþOð2Þ;
ρμνr ¼ 2ηrσ

μν þOð2Þ; ð59Þ

where microscopic expressions for κr and ηr are given in
(30) and Oð2Þ denotes terms that are of second order in
gradients. These relations can be rearranged to express, at
first order in a gradient expansion, all irreducible moments
of rank-1 and 2 solely in terms of νμ and πμν, respectively.
This procedure leads to,

ρμr ¼ κr
κn

νμ þOð2Þ≡ Brν
μ þOð2Þ; ð60aÞ

ρμνr ¼ ηr
η
πμν þOð2Þ≡ Crπ

μν þOð2Þ; ð60bÞ

where we make use of the notation κ0 ¼ κn. These relations
will be employed to reduce the equations of motion for the
irreducible moments, Eqs. (45) and (46), for r ¼ 2 and
r ¼ 1, respectively, to closed equations of motion for the
dissipative currents. The resulting equations will include all
terms that are asymptotically of second-order in a gradient
expansion and, thus, it is usually regarded as a second-order
theory. We note that, in the massless and classical limits, the
thermodynamic integrals can be evaluated analytically and
the coefficients Br and Cr have the following simple form,

Br¼−
1

6βr
ðr−1ÞΓðrþ4Þ; Cr¼

1

120βr
Γðrþ6Þ; ð61Þ

where ΓðxÞ is the gamma function [42]. Now we collect
these results and use them to simplify the second order
terms in Eqs. (45) and (46).
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1. Particle diffusion 4-current

We start with the derivation of the equation of motion for
the particle diffusion 4-current. As outlined above, we
consider Eq. (45), with r ¼ 2, and employ the exact
expression for the moment of the collision term, Eq. (58).
We then use Eq. (60) to approximate all second-order terms
in this equation, that will be then given solely in terms of νμ

and πμν and derivatives thereof. Since we apply this approxi-
mation to terms that are at least of order 2, the accuracy of the
approximation, in this asymptotic power-counting scheme,
will be of order 3. Thus, we derive

τνDνhλi þνλ ¼ κn∇λα−δννν
λθ− ðλνπ∇μαþ τνπ∇μP0Þπλμ

þlνπΔλ
α∇μπ

αμ−
7

5
τνσμ

λνμ− τνωμ
λνμ; ð62Þ

where we have employed the following relations,

Dβ ¼ β

3
θ þOð2Þ; Duμ ¼ 1

4P0

∇μP0 þOð2Þ: ð63Þ

In Eq. (62), the different transport coefficients can be
expressed as the following functions of α, β and the coupling
coefficient g,

τν ¼ −
3B2

gn0
¼ 60

gn0β2
;

κn ¼
τν
B2

�
I3;1 −

β

4
I4;1

�
¼ 3

gβ2
;

λνπ ¼ τν
β

4B2

∂C1

∂β
¼ 3τνβ

40
;

τνπ ¼ −
τν
B2

�
β
∂C1

∂β
þ 2C1 −

βJ4;1
4P0

�
1

4P0

¼ τνβ

80P0

;

lνπ ¼ −
τν
B2

�
C1 −

βJ4;1
4P0

�
¼ τνβ

40
;

δνν ¼
τν
3

�
5þ β

B2

∂B2

∂β

�
¼ τν: ð64Þ

We note that the particle diffusion coefficient behaves as
κ ∼ T2 and agrees with the result derived in Sec. IV and in
Ref. [33] forNavier-Stokes theory.We further remark that the
relaxation time τν, which sets the timescale for the decay of
the particle diffusion 4-current, behaves as τν ∼ ðT exp αÞ−1,
displaying a dependence on the fugacity as well as on the
inverse temperature. It is also readily seen that due to the fact
that the transport coefficients are proportional to 1=g, in the
perturbative limit, all coefficients are large.

2. Shear-stress tensor

The next step is to obtain an equation of motion for the
shear-stress tensor. We start from the equation of motion for
the irreducible moment of rank 2, Eq. (46), with r ¼ 1, and

make use of Eq. (53). Once again, all second order terms in
the equation are approximated in terms of the hydro-
dynamic variables and derivatives thereof using Eq. (60).
This will lead to an equation of motion that is accurate up to
second order in a gradient expansion. The equation of
motion for πμν then reads

τπDπhλμi þπλμ ¼ 2ησλμþφ8ν
hλνμi−δπππ

λμθ− τπν∇hλP0ν
μi

þlπν∇hλνμi þλπν∇hλανμi

−2τπω
hλ
ν πμiν− τππσ

hλ
ν πμiν; ð65Þ

where we have employed once again relations (63) and
general thermodynamic relations. The transport coeffi-
cients appearing in Eq. (65) are calculated exactly and read,

τπ ≡ 6C1

gI0;0
¼ 72

gn0β2
;

η ¼ βI4;2
C1

τπ ¼
48

gβ3
;

φ8 ¼
gτπ
3C1

¼ 4

n0β
;

δππ ¼ τπ

�
5

3
þ β

3C1

∂C1

∂β

�
¼ 4

3
τπ;

τππ ¼ 2τπ;

τπν ¼
τπ
C1

1

10P0

�
6B2 þ β

∂B2

∂β

�
¼ −

4

3

τπ
n0

;

lπν ¼
2B2

5C1

τπ ¼ −
4

3

τπ
β
;

λπν ¼
2τπ
5C1

n0
ε0 þ P0

∂B2

∂β
¼ 2

3

τπ
β
: ð66Þ

We note that the shear viscosity behaves as η ∼ T3 and
agrees with the result derived in Sec. IVand in Ref. [33] for
Navier-Stokes theory. The shear relaxation time behaves as
τπ ∼ ðT exp αÞ−1, displaying also a dependence on the
fugacity of the gas. Moreover, we note that the shear
relaxation time is larger than the particle diffusion relax-
ation time, τπ ¼ ð6=5Þτν > τν. This implies that the particle
diffusion 4-current relaxes to its Navier-Stokes limit prior
to the shear-stress tensor.
The exact expressions obtained above display a few

quantitative differences to traditional calculations that
employ either the relaxation time or the 14-moment
approximations [47,61,62]. First, the relaxation time, is
related to the shear viscosity as

τπ ¼
6η

ε0 þ P0

; ð67Þ

with the traditional calculations cited above obtaining a
factor 5 instead of 6. This modification does not affect the
linear causality and stability of the theory around global
equilibrium, since it increases the relaxation time. Also, we
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note that the transport coefficient τππ is given by 2τπ instead
of ð10=7Þτπ . The coefficient δππ remains as ð4=3Þτπ , as
expected of a conformal system. Finally, we note that the
product of the transport coefficients that couple the dis-
sipative currents, namely lνπ and lπν, is negative, which is
in agreement with the second law of thermodynamics
[35,63]. We remark that all the expressions for the transport
coefficients derived in this section are exact—something
that was not accomplished before, without relying on toy
models for the collision term.

VII. BJORKEN FLOW

In this section, we analyze the several fluid-dynamical
formulationswe have derived throughout the past sections in
a Bjorken flow scenario [34]. Inspired in the phenomenol-
ogy of heavy ion collisions, Bjorken flow assumes that the
system is longitudinally boost-invariant, homogeneous and
isotropic in the transverse plane and invariant by reflection
around the longitudinal axis. In this case, it is convenient to
make use of hyperbolic coordinates, with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and

η ¼ tanh−1ðz=tÞ being the proper time and space-time
rapidity, respectively. In this case, the line element of
Minkowski space reads, ds2 ¼ dτ2 − dx2 − dy2 − τ2dη2.
Moreover, the only nonzero components of the Christoffel
symbols are Γτ

ηη ¼ τ, Γη
τη ¼ Γη

ητ ¼ 1=τ. In this coordinate
system, a trivial fluid 4-velocity, uμ ¼ ð1; 0; 0; 0Þ, satisfies
Eq. (6b) without leading to a stationary solution—Eq. (6c),
on the other hand, is trivially satisfied. In addition, the
expansion rate and shear tensor do not vanish and manifest
the strong longitudinal expansion displayed by the system
(contained in the metric tensor),

θ ¼ 1

τ
; σμν ¼ diag

�
0;−

1

3τ
;−

1

3τ
;
2

3τ

�
: ð68Þ

Furthermore, the shear-stress tensor has only one indepen-
dent component, which we take as πηη ≡ π, and can be
expressed as

πμν ¼ diag

�
0;−

π

2
;−

π

2
; π

�
: ð69Þ

Wenote that the reflection symmetries assumed further imply
that 4-vectors orthogonal to uμ, such as νμ, ∇μP0, and ∇μα,
all vanish identically.

A. Navier-Stokes theory

In Bjorken flow, the Navier-Stokes equations derived in
Sec. IV become,

ṅ0 þ
n0
τ
¼ 0; ð70aÞ

ε̇0 þ
4ε0
3τ

−
64

gβ3τ2
¼ 0: ð70bÞ

Using the solution of the equation of motion (70a), n0ðτÞ ¼
n0ðτ0Þðτ0=τÞ (where τ0 is the initial time) and the equation
of state ε0ðτÞ ¼ 3n0ðτÞ=βðτÞ, Eq. (70b) can be expressed as

dε0
dτ̂

þ 4ε0
3τ̂

−
ε30
K2

NS
τ̂ ¼ 0;

K2
NS ≡ g

64
ε0ðτ0Þ3βðτ0Þ3τ0; ð71Þ

where KNS is a constant with dimension of energy density
and we also introduced the dimensionless time variable
τ̂ ¼ τ=τ0. The above equation is analytically solved by

ε0ðτÞ ¼ ε0;idðτÞ
�
1 − 3

�
ε0ðτ0Þ
KNS

�
2
�
1 −

1

τ̂2=3

�	
−1=2

; ð72Þ

where ε0;idðτÞ ¼ ε0ðτ0Þðτ0=τÞ4=3 is the solution for the
energy density of a perfect fluid in Bjorken flow. It is
straightforward to see that this solution becomes imaginary,
and thus unphysical, at sufficiently long times if�

ε0ðτ0Þ
KNS

�
2

>
1

3
⇒

g
192

ε0ðτ0Þβðτ0Þ3τ0 < 1; ð73Þ

whichmay occur for sufficiently small values of the coupling
constant, chemical potential and/or initial time and for
sufficiently large values of temperature. This behavior is
not observed for Hilbert theory, see Appendix B.
Moreover, we remark that the ratio ½ε0ðτ0Þ=KNS�2 is

proportional to the initial value of the Knudsen number
[47], which is usually defined as the ratio between the
typical microscopic and macroscopic time/distance scales
of the system. In Bjorken flow, all gradients of velocity
behave as 1=τ and thus the time coordinate τ can be used to
estimate the characteristic macroscopic scale of the system.
The characteristic microscopic scale, on the other hand,
depends on the interaction and, in this case, can be
estimated by shear viscosity coefficient as

τmicro ∼ τη ≡ η

εþ P
: ð74Þ

Thus, we may estimate the Knudsen number using the
following ratio KnðτÞ ∼ τηðτÞ=τ. We can then demonstrate
that the initial value of the Knudsen number, Knðτ0Þ, is
proportional to ½εðτ0Þ=KNS�2. Quantitatively, one obtains
the relation,

Knðτ0Þ ∼
τηðτ0Þ
τ0

¼ 9

16

�
ε0ðτ0Þ
KNS

�
2

: ð75Þ

Thus, solutions of Navier-Stokes theory cease to exist
whenever sufficiently large gradients are initially applied to
the system. This feature can be seen in Fig. 1, where the
energy density is shown to diverge at a finite time if
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ε0ðτ0Þ=KNS > 1=
ffiffiffi
3

p
≃ 0.577. In principle, solutions of

Navier-Stokes theory would not be reliable under such
circumstances anyway, but the fact the solutions themselves
do not even exist is certainly not a good feature of the
theory.
It is also interesting to analyze the late time expansion of

the solution given by Eq. (72),

ε0ðτÞ
ε0ðτ0Þ

¼ 1

τ̂4=3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 3
h
ε0ðτ0Þ
KNS

i
2

r �
1−

3

2

1h
KNS
ε0ðτ0Þ

i
2
− 3

1

τ̂2=3
þ � � �

�
;

ð76Þ

which is quite different from the structure seen for
solutions obtained assuming the relaxation time approxi-
mation [53,54] with a constant relaxation time [see e.g.
Eq. (111) of Ref. [37]]. For instance, the leading term of the
expansion does not decay as ∼τ−1, but rather as ∼τ−2=3.
Furthermore, all terms of the expansion depend on the
initial condition, whereas in the constant relaxation time
case they did not. We remark that the relaxation time
of a φ4 self-interacting system is proportional to the energy,
Ep [30,33]. Thus, the above-mentioned features serve as
evidence that an energy-dependent relaxation time can
radically change the dynamics of a system.

B. BDNK theory

Now we discuss solutions of the BDNK theory
derived in Sec. V in Bjorken flow. To this end, we employ
matching conditions so that δn≡ 0 (q ¼ 1) and δε ≠ 0
(s ≠ 2)—these choices satisfy the necessary linear stability
conditions shown in Eq. (44) as long as s > 2. Then,
collecting the results of Sec. V and the symmetry assump-
tions of Bjorken flow, we derive the following equations of
motion

ṅ0 þ
n0
τ
¼ 0; ð77aÞ

ε̇0 þ δ̇εþ 4

3τ
ðε0 þ δεÞ − 64

gβ3τ2
¼ 0; ð77bÞ

δε ¼ −
36

gβ3
ðs − 2Þ

�
β̇

β
−

1

3τ

�
: ð77cÞ

Once again, using the solution of the equation of motion
(77a), and the equation of state ε0ðτÞ ¼ 3n0ðτÞ=βðτÞ,
Eqs. (77b) and (77c) can be expressed as

dδ̃ε
dτ̂

þ 16

9ðs − 2Þτ̂3
eδε
ε̂20

ð1þ δ̃εÞ − ε̂20τ̂; ¼ 0

dε̂0
dτ̂

þ 4

3τ̂
ε̂0 −

16

9ðs − 2Þτ̂3
δ̃ε

ε̂0
¼ 0; ð78Þ

where we defined δ̃ε≡ δεðτ̂Þ=ε0ðτ̂Þ and ε̂0 ¼ ε0=KNS.
Solving these coupled equations of motion, we have
evidence that BDNK theory is also not amenable to large
Knudsen number configurations. This is portrayed in Fig. 2,
which shows numerical solutions for equilibrium initial
conditions, i.e., δ̃εðτ̂0Þ ¼ 0, considering several initial
values of Knudsen number. For initial conditions with
smaller values of Knudsen number, δ̃ε decays to equilibrium
with a late-time behavior of ∼1=τ̂. Meanwhile, for a
sufficiently large initial value of the Knudsen number, δ̃ε
diverges at late-times and the system does not evolve toward
equilibrium. For a given critical initial Knudsen number,
which depends on the choice of matching condition, δ̃ε
evolves to a constant value at late times. The divergence of δ̃ε
at late times happens for ε0ðτ0Þ=KNS ≳ 0.63 for s ¼ 3,
ε0ðτ0Þ=KNS ≳ 0.68 for s ¼ 4, and ε0ðτ0Þ=KNS ≳ 0.74 for
s ¼ 5, which are of the same order of magnitude as the value
for which Navier-Stokes theory produces imaginary solu-
tions, εNSðτ0Þ=KNS ≳ 0.577 [cf. (73)].
Alternatively, the BDNK equations of motion can be

expressed as

1

3

�
1

3
−

6

s − 2
τ̃ δ̃ε

�
dδ̃ε
dτ̃

þ ðδ̃εþ 1Þ δ̃ε

s − 2
¼ 4

81τ̃2
; ð79Þ

in terms of the normalized variables δε≡ δεðτ̃Þ=ε0ðτ̃Þ and
τ̃ ¼ τ=τπ ¼ τ=ð6τηÞ, see Eq. (67). This particular time re-
scaling is convenient for comparisons with solutions of
second order theories, which will be discussed in the next
section. Solutions of Eq. (79) are shown in Fig. 3. From
Fig. 3(a), it is possible to conclude that attractor solutions
do exist for δ̃ε. In contrast to Sec. VI.C.1 of Ref. [37], it is
possible to see that the attractor solution is strongly
dependent on the parameter s, which defines the matching
condition. This is expected, since the normalized equations
of motion explicitly depend on such parameter. From

FIG. 1. Evolution under Bjorken flow of the equilibrium energy
density according to Navier-Stokes theory [see Eq. (72)] for some
values of the dimensionless ratio ε0ðτ0Þ=KNS.
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Fig. 3(b) it is also shown that, for sufficiently large δ̃εðτ̃0Þ,
the equations of motion (79) lead to runaway solutions.
This can be understood analyzing the term multiplying the
derivative on the left-hand side of Eq. (79)—for runaway
solutions, τ̃0δ̃εðτ̃0Þ > ðs − 2Þ=18 and then the correspond-
ing term becomes negative, leading to solutions that grow
with time.
In Fig. 3(c), we show that the solutions breakdown when

sufficiently small values of the initial time are considered.
This can be understood by noting that the rescaled time
variable is inversely proportional to the Knudsen number,
τ̃ ∼ τ=τη ∼ Kn−1. This implies that the constraint on the
initial values of the Knudsen number found in our previous
analyses is manifested here as a bound on the initial value
of τ̃. As a matter of fact, if the initial value of τ̃ is too small,
the time derivative term in the left-hand side of the
equations of motion change sign during the evolution of
the system and the equation breaks down. This shows, in
another manner, that BDNK theory is not amenable to large
gradients.

1. Perturbative solutions

The existence of attractor solutions, that display a
nontrivial dependence on τ̃, shows that BDNK theory is
not a first order theory in the usual sense, i.e., it also

contains terms that are of higher order in gradients. We now
attempt to characterize such an attractor solution by
performing a formal gradient expansion for δ̃εðτ̃Þ. In the
Bjorken flow scenario, this is equivalent to the late-τ̃
expansion [29,64],

δ̃εðτ̃Þ ¼
X∞
n¼0

ΔεðnÞ

τ̃n
: ð80Þ

Substituting this in the equations of motion (79), we are
able to derive the following recurrence relations for the
coefficients ΔεðnÞ,

Δεð0Þð1þ Δεð0ÞÞ ¼ 0; Δεð1Þ ¼ 0;�
2nþ 2

s − 2
Δεð0Þ þ 1

s − 2

�
ΔεðnÞ

¼ 1

9
ðn − 1ÞΔεðn−1Þ − 1

s − 2

Xn−1
m¼0

ð2mþ 1ÞΔεðmÞΔεðn−mÞ

þ 4

81
δn;2; n ≥ 2: ð81Þ

We see that the zeroth order expansion coefficient, Δεð0Þ,
possesses two possible solutions: the usual Δεð0Þ ¼ 0, and
Δεð0Þ ¼ −1. The latter is excluded from further analysis

FIG. 2. Evolution under Bjorken flow of the normalized dissipative component of the energy density according to BDNK theory
[solutions of Eq. (78)] for several initial conditions with (a) s ¼ 3, (b) s ¼ 4, (c) s ¼ 5. In each plot, solutions that evolve toward
equilibrium at late times (black solid curves), and runaway solutions (red dashed curves) are displayed.
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since it implies in configurations that have a constant and
negative late-time δ̃ε, which are not physically relevant
since the corresponding system would not evolve toward
equilibrium. We thus start the recurrence relations using
Δεð0Þ ¼ 0 and calculate the remaining coefficients for
several values of s, which are plotted in Fig. 4(a).
We see that the expansion coefficients display factorial

growth for large values of n for all matching conditions
considered, thus evidencing that Eq. (80) is an asymptotic
series. In Figs. 4(b)–4(d), successive truncations of the
gradient expansion are compared with numerical solutions
of Eq. (79) considering different values of s and several
initial conditions. Here we note a common feature of a
divergent series: the presence of an optimal truncation, after
which successive truncations worsens the agreement with
the attractor solution. In all of the cases considered, n ¼ 2
was found to be the optimal truncation order.
In Refs. [64–67], another perturbative solution was

considered to describe the attractor solution: the slow-roll
expansion. This series can be constructed by inserting a
book-keeping parameter ϵ in the time derivative term of the
equation of motion, Eq. (79), that is,

1

3
ϵ

�
1

3
−

6

s − 2
τ̃ δ̃ε

�
dδ̃ε
dτ̃

þ ðδ̃εþ 1Þ δ̃ε

s − 2
¼ 4

81τ̃2
; ð82Þ

and considering a power-series solution for the rescaled
energy density equilibrium deviation,

δ̃εðτ̃Þ ¼
X∞
n¼0

ϵncΔεnðτ̃Þ: ð83Þ

Next, the terms at each order in ϵ are equated leading to
the recursion relations

ðcΔε0 þ 1Þ
cΔε0
s − 2

¼ 4

81τ̃2
;

1

9

dcΔεn−1
dτ̃

−
2

s − 2
τ̃
Xn−1
m¼0

cΔεn−m−1
dcΔεm
dτ̃

þ 1

s − 2
cΔεn

þ 1

s − 2

Xn
m¼0

cΔεn−mcΔεm ¼ 0; n ≥ 1; ð84Þ

which should recover the attractor solution to the equation
of motion (79) by taking ϵ ¼ 1. From Eq. (84), it is readily

FIG. 3. Evolution under Bjorken flow of the normalized dissipative component of the energy density according to BDNK
theory [solutions of Eq. (79)] for several initial conditions at τ̃0 ¼ 1, for panels (a) and (b), and τ̃0 ¼ 0.1 for panel (c). (a) Attractor
solutions with initial conditions such that δ̃εðτ̃0Þ ¼ 0;…; 0.05 for s ¼ 3, δ̃εðτ̃0Þ ¼ 0;…; 0.10 for s ¼ 4, and δ̃εðτ̃0Þ ¼ 0;…; 0.15 for
s ¼ 5. (b) Runaway solutions with initial conditions such that δ̃εðτ̃0Þ ¼ 0.065;…; 0.125 for s ¼ 3, δ̃εðτ̃0Þ ¼ 0.121;…; 0.181 for s ¼ 4,
and δ̃εðτ̃0Þ ¼ 0.177;…; 0.237 for s ¼ 5. (c) Divergent solutions with initial conditions such that δ̃εðτ̃0Þ ¼ 0;…; 0.05 for s ¼ 3,
δ̃εðτ̃0Þ ¼ 0;…; 0.10 for s ¼ 4, and δ̃εðτ̃0Þ ¼ 0;…; 0.15 for s ¼ 5.
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seen that, similar to what occurred when solving the
gradient expansion, there are also two zeroth order
solutions,

cΔε�0 ¼ 1

2

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ðs − 2Þ

81τ̃2

r �
: ð85Þ

One of such solutions yields a decaying late-time behavior,
whereas the other yields a constant late-time behavior, just
as in the gradient expansion case. Iterating to higher orders

considering cΔεþ0 , we have the results portrayed in Fig. 5.
We can see in Figs. 5(a), 5(c), and 5(e) that the slow-roll
series truncations perform better than the gradient expan-
sion, since it can describe extremely accurately the early-
time behavior of the attractor. Nevertheless, we found that
the slow-roll expansion also diverges in BDNK theory,
which can be seen in Figs. 5(b), 5(d), and 5(f). However,
the strong oscillations that signal the divergence of the
series only appear at very high orders, when compared to
the gradient expansion. The optimal truncation order is also
found to be strongly dependent on the matching parameter
s: for s ¼ 3, 4 and 5, we find that the optimal truncation is
58, 25 and 14, respectively.
We note that the attractor can be identified as the solution

for which δ̃εðτ̃0Þ → ðs − 2Þ=ð18τ̃0Þ from below. One is

reminded that this is the initial condition for which the
derivative term in Eq. (79) vanishes, thus separating regular
from runaway solutions.

C. Transient hydrodynamic theory

Now, we proceed to investigate the solutions of second-
order transient fluid dynamics in Bjorken flow. As pre-
viously stated, we only consider second-order theories with
Landau matching conditions. In this case, the system of
equations of motion stemming from the local conservation
laws become,

ṅ0 þ
n0
τ
¼ 0; ð86aÞ

ε̇0 þ
4

3

ε0
τ
−
π

τ
¼ 0: ð86bÞ

As stated above, any vector orthogonal to the 4-velocity
vanishes because of the symmetries assumed for the system
and any contribution due to diffusion can be neglected.
Since we also limited our discussion to a gas of massless
particles, the only dissipative contribution will be from the
shear-stress tensor. Using Eq. (65) we obtain that the only
independent component of the shear-stress tensor obeys

FIG. 4. (a) Gradient/Late-τ̃ series coefficients, ΔεðnÞ, nth root as a function of n. Evolution under Bjorken flow of the normalized
dissipative component of the energy density according to BDNK theory [solutions of Eq. (79)] for several initial conditions (black solid
lines) in comparison to successive truncations of the gradient series with (b) s ¼ 3, (c) s ¼ 4, (d) s ¼ 5.
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π̇ þ π

τπ
¼ −2

π

τ
þ 8

27τ
ε0; ð87Þ

where τ−1π ¼ðg=72Þβ2n0 defines the temperature-dependent
relaxation time. Equation (87) can be more conveniently
expressed in terms of the dimensionless variable π̃ ≡
π=ðε0þP0Þ¼3π=ð4ε0Þ and, after iterated use of Eq. (86),
we can derive

˙̃π þ 4

3τ
π̃2 þ 2

3τ
π̃ þ π̃

τπ
¼ 2

9τ
: ð88Þ

In the small coupling limit, g → 0, and/or at early times,1

τ → 0, the relaxation time diverges and the last term on

FIG. 5. Evolution under Bjorken flow of the normalized dissipative component of the energy density according to BDNK theory
[solutions of Eq. (79)] for several initial conditions (black solid lines) in comparison to successive truncations of the slow-roll series for
(a) s ¼ 3, n ≤ 58, (b) s ¼ 3, n ≥ 58, (c) s ¼ 4, n ≤ 25, (d) s ¼ 4, n > 25, (e) s ¼ 5, n ≤ 14, (f) s ¼ 5, n > 14.

1The shear relaxation time diverges at τ → 0 as long as the
temperature decays with time faster than the power law τ−1=2.
This will be the case for all the solutions we discuss.
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the left-hand side becomes asymptotically small (this is
analogous to the cold plasma limit discussed in Ref. [68], in
the context of Gubser flow). As a result, Eq. (88) decouples
from Eq. (86) and admits an analytical solution

π̃ðτÞ¼AτσþBb1
τσþb1

; A¼ 1

12
ð

ffiffiffiffiffi
33

p
−3Þ≃0.2287;

B¼−
1

12
ð

ffiffiffiffiffi
33

p
þ3Þ≃−0.7287; σ¼ 2

3

ffiffiffiffiffi
11

3

r
≃1.27657;

ð89Þ

with b1 being an integration constant. When τ → 0, there
are two universal solutions, π̃ ¼ B for any b1 ≠ 0 and π̃ ¼
A for b1 ¼ 0. This implies that all solutions, except the one
determined by b1 ¼ 0, will approach π̃ ¼ B as τ goes to
zero—this type of solution is referred to as a pullback
attractor [69]. Thus, the boundary condition π̃ðτ → 0Þ ¼ A
determines a unique solution of the theory, given by b1 ¼ 0,
which is also the universal solution at late times, τ → ∞—
that is, this is an attractor solution of the equations.
Naturally, such attractor solution will deviate from A at
late times, when the relaxation time ceases to be large and
the approximation performed above fails. In this regime,
one expects the attractor solution to start approaching the
Navier-Stokes limit of the theory. Finally, substituting
Eq. (89) in Eq. (86b), we may also determine an analytical
solution for the energy density, valid at sufficiently early
times,

ε0ðτÞ ¼ Cτ−
4
3
ð1−BÞðb1 þ τσÞ 4

3σðA−BÞ; ð90Þ

where C is another integration constant. We note that the
above solution decays as τð4=3ÞðA−1Þ ≃ τ−1.02838 for large τ.
This is to be contrasted with the solution in the ideal case,
where ε0ðτÞ ∝ τ−4=3.
For finite values of the relaxation time, Eq. (88) is

coupled to the conservation equations (86). In order to
decouple the equation for π̃, we rewrite Eq. (88) in terms of
the normalized time variable τ̃ ¼ τ=τπ . As τπ depends on
temperature and chemical potential, we again resort to
Eq. (86) to derive a closed equation of motion for π̃

2

3
ð1 − 4π̃Þ∂τ̃ π̃ þ 4

3τ̃
π̃2 þ 2

3τ̃
π̃ þ π̃ ¼ 2

9τ̃
: ð91Þ

In the study of nonlinear ordinary differential equations, the
equation above is identified as anAbel equationof the second
kind [70]. Analytical solutions for this type of equation are
limited to some specific functional forms of the nonconstant
coefficients. Further nonlinear transformations can be per-
formed in order to express Eq. (91) in the Abel standard
form [70,71]. Indeed, changing the dependent variable to
wðτ̃Þ ¼ ðπ̃ − 1=4Þτ̃−1=2, and the independent variable to

φ ¼ R
dτ̃½ð1=2Þτ̃−3=2 þ ð3=8Þτ̃−1=2� ¼ −τ̃−1=2 þ ð3=4Þτ̃1=2,

we obtain the simpler form

w∂φw ¼ wþ FðφÞ;

FðφÞ ¼ 3

64

8φðφþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ 3

p
Þ þ 13

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ 3

p
þ φÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ 3

p : ð92Þ

A solution to this equation can only be found implicitly [71].
As the discussion of this solution is lengthy and elusive to the
physics involved, it will be omitted in this work.
In the following, we analyze numerical solutions of

Eq. (91), which are shown in Fig. 6. In Figs. 6(a) and 6(b),
we see that the system possesses an attractor solution, as
expected. Here, we note that the attractor can be identified
as the solution of Eq. (91) for π̃ðτ̃0 → 0Þ ¼ A ≃ 0.2287,
which is displayed as the red dotted lines in all panels of
this figure. We note that this late-time solution only
emerges if the initial conditions are such that π̃ < 1=4.
Otherwise, as seen in Fig. 6(c), the late-time solution
diverges asymptotically. This can be understood directly
from Eq. (91), since for π̃ > 1=4 the term proportional to
∂τ̃ π̃ becomes negative, thus making the equation yield
an exponentially growing solution. This shows that
the equations of motion yield nonphysical results when
π > P0, i.e., when the longitudinal pressure becomes
negative. In Fig. 6(d), it is shown that large negative initial
values of π̃ do not lead to runaway solutions as large
positive values do. Indeed, as seen in Fig. 6(d), even for
π̃ðτ̃0Þ ¼ −1.1 the evolution leads to the same hydrody-
namic attractor at very late times. However, for intermedi-
ate times, π̃ can reach very large, negative values.

1. Perturbative solutions

Similarly to the last section, we attempt to characterize
the attractor solution by performing a formal gradient
expansion for the rescaled shear-stress tensor. In the
Bjorken flow scenario, this is equivalent to the late-τ̃
expansion [29,64],

π̃ðτ̃Þ ¼
X∞
n¼0

π̃ðnÞ

τ̃n
; ð93Þ

which, when substituted in Eq. (91), leads to the following
recurrence relations

π̃ð0Þ ¼ 0; π̃ð1Þ ¼ 2

9
;

π̃ðnÞ ¼ 2

3
ðn − 2Þπ̃ðn−1Þ − 4

3

Xn−1
m¼0

ð2mþ 1Þπ̃ðn−m−1Þπ̃ðmÞ;

n ≥ 2: ð94Þ
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A distinctive feature of the above equations is that the
second order coefficient, π̃ð2Þ, exactly vanishes.
We solve Eq. (94) numerically up to order 150 and

display the results in Fig. 7. In Fig. 7(a), we see that
the expansion coefficients π̃ðnÞ display factorial growth,
π̃ðnÞ ∼ n!, which implies that the series diverges. We note
that this is a common feature of the gradient expansion of
second-order fluid dynamics and was first discovered in
Ref. [66]. In Fig. 7(b) we show consecutive truncations of

the series (93) compared with the attractor solution
obtained in the last section, which is expected to be the
resummed version of the gradient expansion. In the present
case, it is seen that the optimal truncation order is n ¼ 3.
Now we turn our attention to the slow-roll expansion of

Eq. (91), defined by

2

3
ϵð1 − 4π̃Þ∂τ̃ π̃ þ 4

3τ̃
π̃2 þ 2

3τ̃
π̃ þ π̃ ¼ 2

9τ̃
; ð95Þ

FIG. 7. (a) Gradient/late-τ̃ series coefficients, π̃ðnÞ, nth root as a function of n. (b) Attractor solution of transient hydrodynamic theory,
Eq. (79) (black solid lines), in comparison to successive truncations of the gradient series.

FIG. 6. Evolution under Bjorken flow of the independent component of the shear-stress tensor according to the transient
hydrodynamic theory [solutions of Eq. (91)] for several initial conditions (black lines) in comparison with the attractor
[solution of Eq. (91) with π̃ðτ̃0 ¼ 10−6Þ ¼ A ≃ 0.2287, dashed curves]. (a) Solutions for initial conditions π̃ðτ̃0 ¼ 0.1Þ ¼
0;…; 0.24, (b) solutions for earlier τ̃0 with initial conditions π̃ðτ̃0 ¼ 0.1Þ ¼ 0;…; 0.24, (c) runaway solutions for the initial conditions
π̃ðτ̃0 ¼ 10−3Þ ¼ 0.26;…; 1.46, (d) solutions for negative initial conditions, π̃ðτ̃0 ¼ 10−3Þ ¼ −1;…;−0.7.
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where a solution of π̃ as a series in ϵ is assumed,

π̃ðτ̃Þ ¼
X∞
n¼0

ϵnτ̂ðnÞðτ̃Þ; ð96Þ

and Eq. (95) is solved order by order in ϵ. A solution of the
original equation is then recovered by setting ϵ ¼ 1. This
procedure leads to the following recurrence relation

4

3τ̃
ðπ̂ð0ÞÞ2 þ π̃ð0Þ

�
1þ 2

3τ̃

�
¼ 2

9τ̃
;

2

3
∂τ̃ π̂

ðn−1Þ −
Xn−1
m¼0

8

3
π̂ðn−m−1Þ

∂τ̃ π̃
ðmÞ þ

Xn
m¼0

4

3τ̃
π̂ðn−mÞπ̂ðmÞ

þ π̂ðnÞ
�
1þ 2

3τ̃

�
¼ 0; n ≥ 1: ð97Þ

It is readily seen that there are two solutions for the zeroth
order coefficient. Namely,

π̂ð0Þ� ¼ 1

8

�
−ð2þ 3τÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 3τÞ2 þ 32

3

r �
: ð98Þ

The solution π̃ð0Þ− diverges as τ → ∞ whereas π̃ð0Þþ
becomes identical to the Navier-Stokes solution in the
same limit. Also, when τ → 0, π̃ð0Þþ ¼ A, and π̃ð0Þ− ¼ B,
with A and B being defined in Eq. (89). These features
imply that the solutions π̃ð0Þþ and π̃ð0Þ− should be identified
with the hydrodynamic attractor and the pullback attractor,
respectively. In the following, we solve the recurrence
relations (97) up to order 25 using π̃ð0Þþ as the starting point
of the series. The results for successive truncations can be
seen in Fig. 8. Solutions up to order 15 display features of
convergence and become essentially identical to the attrac-
tor solution, as can be seen in Fig. 8(a). However,
considering a sufficiently high truncation order, n > 15,

it is possible to verify that the series actually diverges, as
can be seen in Fig. 8(b). The optimal truncation for this
series is n ¼ 15. The divergence of the slow-roll expansion
was already discussed in Ref. [64], but considering another
type of microscopic interaction. Nevertheless, the optimal
truncation of the slow-roll expansion provides a consid-
erably better description of the attractor solution than the
optimal truncation of the gradient expansion—a feature
also observed when solving BDNK theory.

VIII. CONCLUSIONS

In this work, we analyzed various hydrodynamic theo-
ries emerging from the classical scalar self-interacting λφ4

theory in the ultrarelativistic regime. The particular form of
the cross-section for this system allows the computation
of the corresponding transport coefficients in exact form,
with the only approximation stemming from the power-
counting procedure used to derive the corresponding fluid-
dynamical theory. For Navier-Stokes theory, we reproduced
the results obtained in Ref. [33] and extended them to a
more general class of matching conditions. Afterward,
using the generalized Chapman-Enskog expansion [37],
BDNK theory was derived. And, finally, second-order
transient fluid dynamics was derived following the method
of moments [29]. In all cases discussed, exact expressions
for the transport coefficients were obtained.
For Navier-Stokes and BDNK theories, the analytical

expressions for the transport coefficients were derived
considering a wide set of matching conditions. With the
exception of the shear viscosity coefficient, all transport
coefficients derived exhibited an explicit and significant
dependence on the choice of matching condition.
Furthermore, we have also derived necessary, yet not
sufficient, conditions for the linear stability of BDNK theory
around global equilibrium. These conditions exclude a wide
set of matching conditions, including the so-called exotic-
Eckart matching condition [26,36,37,45]. Finally, for

FIG. 8. Comparison between the attractor solution and truncations of the slow-roll series for the transient hydrodynamic theory with
(a) n ≤ 15 and (b) n > 15.
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BDNK theory it was also demonstrated that transport
coefficients related to derivatives of the thermal potential
all vanish exactly.
The derivation of second-order transient hydrodynamics

was also developed, considering only Landau matching
conditions, and employing the traditional method of
moments [29,47]. In this case, we calculated the moments
of the collision term appearing in the moment equations
and then truncated these equations using the order of
magnitude scheme [59,60,72]. The shear viscosity and
particle diffusion coefficients were shown to be identical to
those derived for Navier-Stokes theory. All second-order
transport coefficients were also obtained exactly and were
found to be qualitatively similar to those obtained in
previous calculations using the relaxation time [62] or
the 14-moment [47] approximations. Nevertheless, there
were significant quantitative differences.
Solutions for all these hydrodynamic formulations were

then obtained and analyzed in a simplified Bjorken flow
scenario. We observed that both Navier-Stokes and BDNK
theories exhibit unphysical solutions whenever the gra-
dients of velocity are initially large. The issue is that, when
sufficiently large initial gradients are imposed, these
theories do not evolve toward equilibrium at late times.
In contrast, second-order transient hydrodynamics does not
display this pathological behavior with respect to the initial
values of the gradients, but, instead, breaks down when the
longitudinal pressure is initially negative.
We further demonstrated that both BDNK (restricted

to small initial gradients) and second-order (restricted to
positive initial longitudinal pressure) theories give rise to
attractor solutions, that we studied perturbatively via
gradient [40,41] and slow-roll [65,66] expansions. It was
seen that the slow-roll expansion provides a better asymp-
totic representation of the attractor than the gradient series.
For BDNK theory, the attractor solution was shown to
depend significantly on the matching conditions employed.
As already noted, in this work second-order transient

fluid dynamics was only derived for Landau matching
conditions. Performing this task for more general matching
conditions and still obtain exact expressions for all its
transport coefficients is a nontrivial and cumbersome
calculation that will be left to future work. Furthermore,
we also plan to analyze the linear stability and causality of
all the theories derived in this work, generalizing the
calculations of Appendix C to arbitrary perturbations
and also to second-order theories. Finally, we plan to
obtain exact solutions of the Boltzmann equation for the
dissipative quantities and quantitatively assess the domain
of validity of the derived theories. Solutions on more
generic flow configurations will also be assessed.

ACKNOWLEDGMENTS

The authors also thank J. Noronha and M. Shokri
for fruitful discussions. G. S. R. is partly funded by

Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) Finance code 001, Award
No. 88881.650299/2021-01 and by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), Grant
No. 142548/2019-7. C. V. P. B. is also funded by CNPq,
Grant No. 140453/2021-0. G. S. D. also acknowledges
CNPq as well as Fundação Carlos Chagas Filho de
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APPENDIX A: DETAILS OF COLLISIONAL
MOMENTS CALCULATION

In this appendix, we derive Eqs. (49), (51), and (56)
which appear in the computations of the collisional
moments Cμν0 and Cμ1 in Sec. VI A. Starting with
Eq. (49), we see that it can be expressed as

Z
dQdQ0ð2πÞ5δð4Þðpα þ p0α − qα − q0αÞ

¼
Z

d3q
ð2πÞ3q0

d3q0

ð2πÞ3q00 ð2πÞ
5δð4Þðpα þ p0α − qα − q0αÞ

¼
Z

d3q
ð2πÞ3jqj

d3q0

ð2πÞ3jq0j ð2πÞ
5δð4Þðpα þ p0α − qα − q0αÞ:

ðA1Þ

The second equality is only valid since we are considering
massless particles, and thus ðp0Þ2 ¼ p2 ≡ p2. Moreover,
this is a scalar integral, and therefore it can be calculated in
any reference frame. For the sake of convenience, we take
the center of mass frame, in which the total 3-momentum of
the system is zero. It is then convenient to define the total
4-momentum as

pμ þ p0μ ¼ Qμ
T ¼ ð ffiffiffi

s
p

; 0; 0; 0Þ; ðA2Þ

and it follows that Qμ
TQT;μ ¼ s. Therefore,

Z
dQdQ0ð2πÞ5δð4Þðpα þ p0α − qα − q0αÞ

¼
Z

d3q
ð2πÞ3jqj

1

ð2πÞ3jqj ð2πÞ
5δð ffiffiffi

s
p

− 2jqjÞ

¼
Z

dð2qÞδð ffiffiffi
s

p
− 2qÞ ¼ 1: ðA3Þ

The derivation of Eqs. (51) and (56) can be done
simultaneously, with the realization that they are the
projections of the tensor

Z
dQdQ0qαqβð2πÞ5δð4Þðpα þ p0α − qα − q0αÞ ðA4Þ
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with uαΔμβ and Δμν
αβ, respectively. The presence of the delta-function and the integration over four-momenta q and q0 imply

that the integral above can only depend on the total momentum, and, in this context, it is convenient to define the
normalized total momentum as

Q̂μ
T ¼ Qμ

Tffiffiffi
s

p ¼ ð1; 0; 0; 0Þ ⇒ Q̂μ
TQ̂T;μ ¼ 1; ðA5Þ

thus the tensor in Eq. (A4) can be decomposed in terms of a parallel and orthogonal components with respect to the
normalized total momentum,

Z
dQdQ0qαqβð2πÞ5δð4Þðpμ þ p0μ − qμ − q0μÞ ¼

Z
dQdQ0qαqβð2πÞ5δð ffiffiffi

s
p

− q − q0Þδð3Þðqþ q0Þ

¼ ½FQ̂α
TQ̂

β
T þ GΔαβ

Q �; ðA6Þ

where Δαβ
Q ¼ gαβ − Q̂α

TQ̂
β
T is the projector in the 3-space orthogonal to Q̂α

T . This is the most general rank-2 tensor structure

built only with Q̂α
T and gαβ. The parameters A and B can be obtained by projecting the above equation with Q̂α

TQ̂
β
T and Δαβ

Q .
Indeed,

F ¼ Q̂T;αQ̂T;β

Z
dQdQ0qαqβð2πÞ5δð ffiffiffi

s
p

− q − q0Þδð3Þðqþ q0Þ

¼
Z

dQdQ0ðqαQ̂α
TÞ2ð2πÞ5δð

ffiffiffi
s

p
− q − q0Þδð3Þðqþ q0Þ

¼
Z

d3q
ð2πÞ3jqj

d3q0

ð2πÞ3jq0j jqj
2ð2πÞ5δð ffiffiffi

s
p

− jqj − jq0jÞδð3Þðqþ q0Þ

¼ 1

4

Z
ð2jqjÞ2dð2jqjÞδð ffiffiffi

s
p

− 2jqjÞ

¼ s
4
: ðA7Þ

Moreover, G is obtained as

G ¼ 1

3
Δαβ

Q

Z
dQdQ0qαqβð2πÞ5δð

ffiffiffi
s

p
− q − q0Þδð3Þðqþ q0Þ

¼ −
1

3

Z
dQdQ0ðqαQ̂α

TÞ2ð2πÞ5δð
ffiffiffi
s

p
− q − q0Þδð3Þðqþ q0Þ ¼ −

A
3
¼ −

s
12

; ðA8Þ

where we have used the on-shell condition to obtain the second equality, gαβpαpβ ¼ 0. Furthermore, it is necessary to

include the factor 1=3 since Δαβ
Q ΔQαβ ¼ 3. Then,

Z
dQdQ0qαqβð2πÞ5δð4Þðpα þ p0α − qα − q0αÞ ¼ s

4
Q̂α

TQ̂
β
T −

s
12

Δαβ
Q ; ðA9Þ

which, when projected with uαΔμβ and Δμν
αβ lead, respectively, to

Z
dQdQ0ð2πÞ5Epphμiδð4Þðpα þ p0α − qα − q0αÞ ¼ 1

3
uαQα

TQ
hμi
T ;Z

dQdQ0qhμqνið2πÞ5δð4Þðpα þ p0α − qα − q0αÞ ¼ 1

3
Qhμ

T Q
νi
T : ðA10Þ
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APPENDIX B: HILBERT THEORY

In this appendix, we shall discuss the computation of
transport coefficients for the Hilbert theory [37,73–75].
Similarly to what was discussed for the Chapman-Enskog
expansion, one converts the original Boltzmann equation
into a perturbative problem by inserting a book-keeping
parameter ϵ,

ϵpμ
∂μfp ¼ C½fp�; ðB1Þ

and consider solution for fp of the following form,

fp ¼
X∞
i¼0

ϵifðiÞp : ðB2Þ

Afterwards, the Boltzmann equation is then solved order by
order in ϵ. An important difference with respect to the
Chapman-Enskog expansion is that the timelike derivative
is not assumed to obey an independent expansion in ϵ
[37,40]. This feature implies that the Chapman-Enskog
theory is a resummation of the Hilbert series. One distinc-
tive feature of Hilbert’s theory is that conservation equa-
tions are obeyed order-by-order in ϵ [37,76],

∂μN
μ
ðkÞ ¼ 0; ∂μT

μν
ðkÞ ¼ 0; k ≥ 0: ðB3Þ

Thus, in zeroth order, the Euler equations are recovered,

Dn0 þ n0θ ¼ 0; ðB4aÞ

Dε0 þ ðε0 þ P0Þθ ¼ 0; ðB4bÞ

ðε0 þ P0ÞDuμ −∇μP0 ¼ 0; ðB4cÞ

and considering the decomposition

Nμ
ðkÞ ≡

Z
dPpμfðkÞp ¼ nðkÞuμ þ νμðkÞ ðB5aÞ

Tμν
ðkÞ ≡

Z
dPpμpνfðkÞp

¼ εðkÞuμuν − ΠðkÞΔμν þ hμðkÞu
ν þ hνðkÞu

μ þ πμνðkÞ;

k ≥ 0; ðB5bÞ

we have, for k ¼ 1

Dnð1Þ þ nð1Þθ þ ∂μν
μ
ð1Þ ¼ 0; ðB6aÞ

Dεð1Þ þ ðεð1Þ þ Πð1ÞÞθ − πμνð1Þσμν þ ∂μh
μ
ð1Þ þ uμDhμð1Þ ¼ 0;

ðB6bÞ

ðεð1Þ þ Πð1ÞÞDuμ −∇μΠð1Þ þ hμð1Þθ þ hαð1ÞΔ
μν
∂αuν

þ ΔμνDhð1Þν þ Δμν
∂απ

α
ð1Þν ¼ 0; ðB6cÞ

Equations (B4) and (B6) form the set of equations of
motion to be obeyed at first order in Hibert expansion. The
system of partial differential equations will be closed once

the first order solution of the perturbative problem, ϕð1Þ
p ,

is known.
The first order solution for deviation function from local

equilibrium, ϕð1Þ
p , is also obtained from Eq. (20). The

difference being that, in Hilbert theory, the replacement of
time- by spacelike derivatives is exact and not perturbative,
since the Euler equations are obeyed in exactly. Thus the
solution is also given by

ϕp ¼ aþbμpμþ 1

4χ11
Lð3Þ
1pphμi∇μα−

β

χ20
phμpνiσμν: ðB7Þ

Thus, from the decompositions (B5), we find

nð1Þ ¼ aI1;0 þ ðbμuμÞI2;0; εð1Þ ¼ aI2;0 þ ðbμuμÞI3;0;
Πð1Þ ¼ aI2;1 þ ðbμuμÞI3;1; ðB8aÞ

νμð1Þ ¼ −I2;1bhμi þ κH∇μα; hμð1Þ ¼ −I3;1bhμi − λH∇μα;

ðB8bÞ

πμνð1Þ ¼ 2ησμν; ðB8cÞ

where the Hilbert transport coefficients are given by

κH ¼ 0; λH ¼ 12

gβ3
; ðB9aÞ

η ¼ 48

gβ3
: ðB9bÞ

The fields a and bμ are found by employing matching
conditions. However, since Eqs. (B4) and (B6) form a
system of 10 equations of motion, we need to provide only
9 further relations between the dissipative fields and
derivatives of the equilibrium fields. Five of these con-
strains are given by the constitutive relation of the shear-
stress tensor (B8c). The four remaining relations stem from
the constrains

Πð1Þ ¼
1

3
εð1Þ; ðB10aÞ

νμð1Þ −
β

4
hμð1Þ ¼

�
κH þ β

4
λH

�
∇μα ¼ 3

gβ2
∇μα; ðB10bÞ
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which can be readily derived from Eqs. (B8a) and (B8b),
respectively. Thus, the system of hydrodynamic equations
of motion is given by Eqs. (B4), (B6), (B8c), and (B10).
In Bjorken flow, the equations of motion for the Hilbert

theory read

ṅ0 þ
n0
τ
¼ 0; ðB11aÞ

δ̇nþ δn
τ
¼ 0; ðB11bÞ

ε̇0 þ
4ε0
3τ

¼ 0; ðB11cÞ

δ̇εþ 4δε

3τ
−

64

gβ3τ2
¼ 0; ðB11dÞ

where constrain (B8a) and constitutive relation (B8c) have
been employed. It is reminded that, in Bjorken flow,
4-vectors orthogonal to uμ are identically zero, due to
the symmetry assumptions. Hence constrain (B8b) and the
vector equation of motion are identically zero. The solution
to Eq. (B11) read

n0ðτÞ ¼ n0ðτ0Þ
τ0
τ
; δnðτÞ ¼ δnðτ0Þ

τ0
τ
;

ε0ðτÞ ¼ ε0ðτ0Þ
�
τ0
τ

�
4=3

;

δεðτÞ ¼ C

�
τ0
τ

�
4=3

−
3KHilb

2

�
τ0
τ

�
2

: ðB12Þ

which is obtained making use of the equation of state
ε0 ¼ 3n0=β, and where

KHilb ¼
64

gβðτ0Þ3τ0
; C ¼ δεðτ0Þ þ

3KHilb

2
; ðB13Þ

Similarly to the constant relaxation time case [see e.g.
Eq. (112) of Ref. [37]], the late-time expansion for the
Hilbert solution has the following simple form,

ε0ðτÞ þ δεðτÞ
ε0ðτ0Þ þ δεðτ0Þ

¼
�
τ0
τ

�
4=3

��
1þ 3

2
KHilb

�
−
3

2
KHilb

�
τ0
τ

�
2=3

�
; ðB14Þ

whereas the Navier-Stokes one [see Eq. (76)] has infinitely
many terms. Additionally, is noted that the Hilbert theory
solution does not present the finite time divergence
observed in Navier-Stokes theory [cf. Eq. (73)].

APPENDIX C: LINEAR STABILITY
OF THE BDNK THEORY

In this appendix, we provide an initial discussion on the
linear stability of BDNK theory around a global equilib-
rium state. In particular, we perform this analysis following
the procedure outlined in Refs. [19,29], but restricting
ourselves to the homogeneous limit, in which the fluid-
dynamical fields do not change in space. This will provide
us with necessary, yet not sufficient, conditions for the
transport coefficients of BDNK theory. Furthermore, for the
sake of simplicity, we only consider a fluid that is initially
at rest, i.e., uμ0 ¼ ð1; 0; 0; 0Þ.
Thus, we consider small perturbations (denoted by the

symbol Δ) on all fluid-dynamical variables

ε → ε0 þ Δε0 þ Δδε; n → n0 þ Δn0 þ Δδn;

P → P0 þ ΔΠ; uμ → uμ0 þ Δuμ;

νμ → Δνμ; hμ → Δhμ; πμν → Δπμν; ðC1Þ

The linearized fluid-dynamical equations, in the homo-
geneous limit, then read

D0Δn0 þD0Δδn ¼ Oð2Þ ≈ 0; ðC2aÞ

D0Δε0 þD0Δδε ¼ Oð2Þ ≈ 0; ðC2bÞ

ðε0 þ P0ÞD0Δuμ þD0Δhμ ¼ Oð2Þ ≈ 0; ðC2cÞ

where Oð2Þ refers to all the second-order terms in pertur-
bations that were not considered and D0 ≡ uμ0∂μ is the
comoving derivative with respect to the background fluid
4-velocity. Furthermore, in the homogeneous limit, the
constitutive relations satisfied by the dissipative currents
that appear in the equations above are simplified to,
cf. Eq. (41),

Δδn ¼ ξD0

�
Δn0
n0

−
Δε0
ε0

�
;

Δδε ¼ χD0

�
Δn0
n0

−
Δε0
ε0

�
;

Δhμ ¼ λD0Δuμ; ðC3Þ

where we have used the following thermodynamic relation,
valid for ultrarelativistic classical gases,

Δβ
β0

¼ Δn0
n0

−
Δε0
ε0

: ðC4Þ

At this point, it is useful to express the linearized fluid-
dynamical fields in Fourier space. Without loss of general-
ity, we take the following convention for the Fourier
transform
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X̃ðkμÞ ¼
Z

d4x exp ð−ixμkμÞXðxμÞ; ðC5Þ

XðxμÞ ¼
Z

d4k
ð2πÞ4 exp ðixμk

μÞX̃ðkμÞ; ðC6Þ

where kμ ¼ ðω;kÞ, is the wave 4-vector, with ω being the
frequency and k the wave vector. Since we are considering
the homogeneous limit, terms with k will not appear in our
analysis. Then, the linearized fluid-dynamical equations,
Eq. (C2), in Fourier space read

ωðΔñ0 þ Δδ̃nÞ ¼ 0; ðC7aÞ

ωðΔε̃0 þ Δδ̃εÞ ¼ 0; ðC7bÞ

ω½ðε0 þ P0ÞΔũμ þ Δh̃μ� ¼ 0: ðC7cÞ

Moreover, it follows that the Fourier transform of the
constitutive relations (C3) are given by

Δδ̃n ¼ iξω

�
Δñ0
n0

−
Δε̃0
ε0

�
; Δδ̃ε ¼ iχω

�
Δñ0
n0

−
Δε̃0
ε0

�
;

Δh̃μ ¼ iλωΔũμ: ðC8Þ

The next step is to solve the fluid-dynamical equations in
Fourier space, obtaining solutions for ω. In particular, given
the convention adopted for the Fourier transform, linear
stability is guaranteed as long as the imaginary part of ω is
positive. As a matter of fact, it can be straightforwardly
seen that this leads to perturbations that decrease exponen-
tially with time, that will thus return to their equilibrium

values. From Eqs. (C7) and (C8), we obtain the following
dispersion relation

ω3

�
1þ iω

3λ

4ε0

��
1þ iω

�
ξ

n0
−

χ

ε0

��
¼ 0: ðC9Þ

In order for both nonzero modes to have a positive
imaginary part, we obtain the following constraints

λ

ε0
> 0;

ξ

n0
>

χ

ε0
; ðC10Þ

which, when substituted in the microscopic expressions
(41), lead to the following constraints on the matching
parameters

z > 1; qþ s > 3: ðC11Þ

In this context, the BDNK theory can be linearly stable for
homogeneous perturbations around an equilibrium state
provided that these inequalities are simultaneously satis-
fied. We remark that these are the most fundamental
conditions the transport coefficients must satisfy in order
for the BDNK theory to be linearly stable—in particular,
they are necessary stability conditions. Furthermore, they
prohibit the so-called exotic Eckart matching conditions
[26,36,45], where z ¼ 0 and q ¼ 1, with the remaining
parameter s being free. We note that, in Ref. [77], which
derives BDNK theory using holography techniques, trans-
port coefficients have been reported to violate causality
constrains. A thorough study of the sufficient conditions,
also including a causality analysis, will be addressed in a
followup paper.
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