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Relativistic hydrodynamics is surprisingly predictive, even for systems that violate the fundamental
assumptions of small gradients and small deviations from local thermal equilibrium. The method of
moments can be used to extract second-order viscous hydrodynamics from a kinetic background, without
the explicit request of small gradients and local equilibrium. The relativistic Boltzmann equation itself,
however, is not general enough to justify hydrodynamics in all cases of interest. A possible explanation,
often invoked but not yet formalized, focuses on the similarities between the relativistic Boltzmann
equation and its quantum precursor, the evolution of the Wigner distribution. Indeed, it is possible to
recover a systematically improvable hydrodynamic expansion. It is necessary, however, to work with a set
of regularized, parametric moments. Their integrals reduce, in the classical limit, to the momentum
integrals appearing in the moments expansion; most of the integrals appearing in the classical method of
moments being undefined off shell. The regularized moments are, on the other hand, always well defined.
Just like its classical counterpart, the evolution of the Wigner distribution can be solved exactly for a
(1þ 1)-dimensional expansion with the relaxation time approximation. The convergence of the regularized
expansion is checked numerically against the exact solutions. Second-order viscous hydrodynamics can be
predictive even far from the kinetic limit, and far from local equilibrium.
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I. INTRODUCTION

Relativistic hydrodynamics has been used in a wide
range of physical systems, from astrophysical plasmas
to heavy-ion collisions [1–3]. It is often thought to be
inescapably an expansion in gradients, or an approximation
of the relativistic Boltzmann equation. Both instances are
not general enough to explain the hydrodynamic behavior,
namely, of the quark-gluon plasma in the crossover region.
The Chapman-Enskog expansion [4] involves a systematic
power counting of the gradients of the hydrodynamic
variables. It can be performed in the context of relativistic
kinetic theory [5] (weak coupling) as well as strongly
coupled relativistic systems [6,7]. The leading order cor-
responds to ideal hydrodynamics, and the first order to
the relativistic Navier-Stokes equations [8]. The latter
equations, in general, violate causality [9] and are
unstable [10–13], but it has been proven [14] that it is
possible to obtain causal and stable theory at first order in
gradients if different definitions for the hydrodynamic
fields are used. The most common way to preserve
causality and stability, however, is to add second-order
corrections [6,7]. Third-order terms can be included
[15,16], though precise statements regarding causality
and stability are not available at higher orders. Recent
works pointed out that the gradient series has zero radius of

convergence [17–20]. The lowest orders of an asymptotic
series can be numerically accurate, as it seems the case for
second-order relativistic hydrodynamics. However, in the
absence of a fast convergence, one cannot look at the next
orders to guess the accuracy of the approximation. Second-
order relativistic hydrodynamics can be obtained independ-
ently as an approximation of relativistic kinetic theory [21].
The method of moments can be used to systematically
improve the hydrodynamic expansion to higher orders. In
this approach the Boltzmann equation is expressed as a set
of coupled equations for the tensor moments of the
distribution function, the lower ranking moments being
the hydrodynamic variables. One can truncate this set of
equations at some order, approximating the leftover
moments still present in the equations, and systematically
improve the approximation including more moments as
dynamical variables [21]. Under flow conditions of extreme
symmetry, in which the relativistic Boltzmann equation can
be solved exactly [22–26], this procedure has been shown
to converge rapidly to the exact results of relativistic kinetic
theory [19,27,28]. The relativistic Boltzmann equation
itself, however, is expected to be a valid approximation
in the small ℏ limit, and only for weakly interacting
asymptotic particle states [29]. It is questionable at best,
in heavy-ion collisions to assume both. Close to the
crossover region it is not clear what are (if any) the
(quasi)particle asymptotic degrees of freedom. In general,
given the temperature of the order of hundreds of MeV, but*dr.leonardo.tinti@gmail.com
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rapid changes over a fraction of 1 fm of distance, the use of
natural units is not surprising. The Plank constant ℏc ≃
200 MeV · fm is close to the typical action scales of the
system.
An often invoked, and yet not properly formalized,

justification of hydrodynamics relies on the similarities
between the relativistic Boltzmann equation and the proper-
ties of the quantum precursor of the distribution function:
the Wigner distribution.
The Wigner distribution is an off-shell generalization of

the distribution function and it is linked to the (expectation
values of) the stress energy tensor, much like the distribu-
tion function is in relativistic kinetic theory. The fields in
quantum field theory fulfill a version of the Klein-Gordon
equation with sources. This allows to prove that the Wigner
distribution follows an off-shell version of the relativistic
Boltzmann equation, among the other equations it fulfills in
the general case.
The method of moments relies heavily on the kinetic part

of the Boltzmann equation. From a similar structure of the
equations it can be expected that similar results can be
obtained. Since the Wigner distribution fulfills at least one
equation which is the generalization of the Boltzmann
equation, it can be expected that the method of moments
can be generalized, thus providing an off-shell version of
the hydrodynamic expansion. In turn this can be used to
justify hydrodynamics also in the off-shell case, like it has
been done for the classical case, and it provides higher
order approximations.
Recently there has been a raising interest regarding the

evolution of the Wigner distribution, mostly due to spin
dynamics [30–33]. The method of moments has been
applied successfully in the case of spin-1=2 fields, but
only at first order in an ℏ expansion [34–38]. The use the
semiclassical expansion of the Wigner distribution and
the equation it fulfills is more important than it looks, in the
framework of the method of moments: its first order still on
shell. This “on-shellness” requirement can be easily under-
stood, if one notices that the higher ranking tensors
appearing in the moments expansion are not well defined
off shell. They diverge even if the Wigner distribution has
very small, but finite, values off shell. In this approach,
restricting to the first order of a semiclassical expansion,
or in any case an on-shell approximation, is not just a
simplification of the kinetic equations.
The purpose of this work is to show that, in fact, one can

generalize the method of moments to the off-shell case, and
recover a systematically improvable hydrodynamic expan-
sion. It is necessary, though, to use a set of regularized
moments. In the kinetic (on-shell) limit, they reproduce the
classical tensor moments, and one recovers the classical
expansion.
In Sec. II there is a brief introduction of the classical

method of moments. Section III discusses the problem of a
naive extension to the off-shell case, and the regularized

expansion is introduced. In Sec. IV regularized expansion
is tested against the exact solutions, for initial conditions
which are very far from the kinetic limit. The conclusions
are in Sec. V. The technical details and the generalizations
are discussed in the Appendices. In Appendix A there is a
mathematical discussion over free fields, proving that they
can have a very large contribution from the off-shell parts,
and that they already need regularized moments for the
expansion. In Appendix B there is a discussion about the
limits in which one can expect a single scalar Wigner
distribution to describe an interacting system, and it
discusses the more general case. In Appendix C there
are details about the proper way to treat the higher order of
the regularized expansion. In Appendix D there are some
general details about the relaxation time approximation
used for the numerical comparisons.
In this work the natural units are used ℏ ¼ c ¼ kB ¼ 1,

as well as the Einstein convention of automatically sum-
ming over repeated upper and lower indices. The contrac-
tion between four-vectors is represented with a dot:
v · w ¼ vμwνgμν. The “mostly minus” convention for the
Minkowski metric is used, i.e. gμν ¼ diagð1;−1;−1;−1Þ.
The conventions Δμν ¼ ðgμν − uμuνÞ for the projection
orthogonal to the four-velocity uμ and round parentheses
for a symmetrization of indices are also used, e.g.
AðμBνÞ ¼ 1

2!
ðAμBν þ AνBμÞ.

II. THE CLASSICAL MOMENT EXPANSION

It is possible to extract the exact comoving derivative
of the distribution function u · ∂f ¼ ḟ, directly from the
relativistic Boltzmann equation,

p · ∂fðx; pÞ ¼ −C½f� ⇒ ðp · uÞu · ∂f ¼ −p · ∇∂f − C

ḟ ¼ −
1

ðp · uÞ
�
p ·∇f þ C

�
; ð1Þ

independently of the particular definition of the four-
velocity uμ and the collisional kernel C. The gradient
orthogonal to uμ is

∇μ ¼ Δν
μ∂ν ¼ ðgμν − uμuνÞ∂μ: ð2Þ

It is useful to introduce the generic tensor moments

F μ1���μs
r ¼

Z
p
ðp · uÞrpμ1 � � �pμsf; ð3Þ

with
R
p the covariant (on-shell) momentum integral

Z
p
¼ Ndof

ð2πÞ3
Z

d3p
Ep

¼ Ndof

ð2πÞ3
Z

d4p2θðEÞδðp2 −m2Þ; ð4Þ

and Ndof the eventual degeneracy factor.
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Making use of (1), after some straightforward
algebra, one can find the exact comoving derivatives of
the moments (3),

Ḟ μ1���μs
r þ Cμ1���μs

r−1 ¼ ru̇αF
αμ1���μs
r−1 −∇αF

αμ1���μs
r−1

þðr − 1Þ∇αuβF
αβμ1���μs
r−2 ; ð5Þ

in which Cμ1���μs
r−1 is a shorthand notation for

Cμ1���μs
r−1 ¼

Z
p
ðp · uÞr−1pμ1 � � �pμsC½f�: ð6Þ

In particular, the stress-energy tensor reads

F μν
0 ¼ Tμν ¼ Euμuν þ qμuν þ uμqν − ðP þ ΠÞΔμν þ πμν;

ð7Þ

in which the general decomposition of the hydrodynamic
degrees of freedom has been used. That is, starting from the
geometric decomposition along and orthogonal to uμ, the
proper energy density is E; that is, the energy in the local
comoving frame. The energy flux is the spatial vector qμ.
The fully spatial and traceless part is the shear pressure
correction πμν. Then the isotropic pressure, that is, the only
contribution to ΔμνTμν, which is further decomposed in the
hydrostatic pressure P, is given by the equation of state
(or simply the local equilibrium part of the distribution
function in relativistic kinematics). The remaining part Π is
the bulk pressure correction.
The exact evolution of the stress-energy tensor Tμν ¼

F μν
0 reads, thanks to (5),

Ṫμν þ Cμν
−1 ¼ −∇αF

αμν
−1 −∇αuβF

αβμν
−2 : ð8Þ

The contraction of the last equation with the four-velocity
uμ is the local conservation of four-momentum ∂μTμν ¼ 0,
which is included at all orders of the hydrodynamic
expansion. The remaining equations provide the exact
evolution of the pressure tensor,

Ṗhμihνi þ Chμihνi
1 ¼ −Pμα∇αuν − Pνα∇αuμ − qμu̇ν − u̇μqν

− θPμν −∇αf
αhμihνi
−1 −∇αuβf

αβμν
−2 : ð9Þ

Both instances can be obtained without approximations
from Eq. (8) making use of the exact relations

uν1 � � � uνnF ν1���νnμ1���μs
r ¼ F μ1���μs

rþn ; ð10Þ

and the similar ones for the collisional integrals. The brackets
in Eq. (9) represent the projection Ohμi��� ¼ Δμ

νOν���, and the
shorthand notation,

fμ1���μsr ¼ F hμ1i���hμsi
r ; ð11Þ

is in use. The energy flux is then qμ ¼ fμ1 (vanishing in the
Landau frame), and fμν0 is the pressure tensor: the fully spatial
part of Tμν. In other words, according to the general
decomposition (7)

fμν0 ¼ Pμν ¼ −ðP þ ΠÞΔμν þ πμν: ð12Þ

On the right-hand side of Eq. (9) all terms except the last two
are components of Tμν. One can either approximate these
tensors (second-order relativistic hydrodynamics or modi-
fied versions of it [39–41]) or treat them as independent
degrees of freedom and use Eq. (5) for their evolution
[39–41]. The same arguments hold for the collisional integral
in the left-hand side ofEq. (9), and these steps can be repeated
further to get the higher orders of the expansion; in other
words, making use of the general Eq. (5) and the appropriate
projections orthogonal to the four-velocity to obtain the exact
evolution of all the fμ1���μsr tensor moments (11) appearing,
order by order, among the sources.

III. THE QUANTUM GENERALIZATION

In its most simple instance, the Wigner distribution is the
Fourier transform of the two point expectation value [29]

Wðx; kÞ ¼ 2

Z
d4v
ð2πÞ4 e

−ik·v
�
ϕ†

�
xþ 1

2
v

�
ϕ

�
x −

1

2
v

��
;

ð13Þ

with the expectation value for a generic state (pure or
mixed) of the system. The stress-energy tensor reads

Tμν ¼
Z

d4kkμkνWðx; kÞ: ð14Þ

TheWigner distribution satisfies an equation very similar to
Eq. (1), which can be derived from the field equations

k ·∂W¼−CW ½W;…�⇒ ðk ·uÞẆ¼−k ·∇W−CW: ð15Þ

The quantum version of the collisional kernel CW depends
on the interaction, and it vanishes for free fields. In
Ref. [29] it is shown that for the canonical equilibrium,
the right-hand side of Eq. (13) is space-time independent,
on shell, and it reduces to the Bose-Einstein distribution
as expected; additionally, close to equilibrium and at the
first order of an ℏ expansion,Wðx; kÞ ∝ δðk2 −m2Þfðx; kÞ.
Because of the similarities with relativistic kinematics, one
would expect to recover the hydrodynamics expansion with
the minimal substitution,Z

p
→

Z
d4k;

Ndof

ð2πÞ3 fðx; pÞ → Wðx; kÞ: ð16Þ

Before discussing that, it should be pointed out that
Eqs. (13)–(15) are not the most general. They are surely
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correct for a free scalar field. For instance, the discussion in
Appendix A to highlight the importance of the off-shell
contributions and the need of a coherent off-shell treatment,
is done in this case. There are however also matrix valued
Wigner distributions (for spinors or vector bosons, one
matrix index per field in the bilinear). In gauge theories
Eq. (13) is modified to preserve gauge covariance, etc.
In the method of moments, on the other hand, the kinetic

part, the left-hand side of Eq. (1), plays the most important
role, allowing for the exact manipulations that lead to
Eq. (9), which in turn highlights the many self-couplings of
the hydrodynamic degrees of freedom in their evolution.
The rest of this section will show the problem of ill defined
moments in a naive off-shell generalization of the method
of moments, and the way to treat it. Both “the problem and
the cure” stem from the left-hand side of Eq. (15), which is
the same in the general case (for each component of the
matrix distributions, see Appendix B). For mathematical
simplicity, the rest of this work considers only the simplest,
scalar case of Eqs. (13)–(15); understanding that one has
similar results, and must follow the same passages, in the
more general case. More information about the interacting
scalar case and the generalizations is in Appendix B.
Going back to the method of moments, following the

steps outlined in the last section and making use of the
minimal substitution (16), one would recover Eq. (9),
however the last two integrals are ill defined in the quantum
case, for instance

fαβμν−2 jWigner ¼
Z

d4k
khαikhβikhμikhνi

ðk · uÞ2 Wðx; kÞ: ð17Þ

The Wigner distribution is not on shell in general, and
Eq. (17) has a 1=x2 nonintegrable pole in the energy. Even
in the case of free fields, the simplest imaginable case,
the spacelike part of the Wigner distribution cannot be
excluded [42,43],Wðx; kÞjk2<0 ≠ 0. In fact, it is not difficult
to write a quantum state in which the spacelike part of W
provides very large contributions to Tμν for free scalar
fields, as discussed in Appendix A. There is no particular
reason, either, to expect only on-shell contribution in the
interacting case. One is also left with a paradoxical out-
come: it does not matter if the numerical value ofW is very
small for all spacelike values k2 < 0 and, thus, it gives an
irrelevant contribution to the total Tμν. The integrals like
(17) remain divergent for any nonvanishingW in k · u ¼ 0,
completely breaking the naive generalization. For instance,
consider a Wigner distribution of the form

Wðx; kÞ ¼ Ndof

ð2πÞ3 2θðk
0Þδεðk2 −m2Þfðx;kÞ; ð18Þ

with δεðk2 −m2Þ a delta family rather than the exact Dirac
delta, e.g. a Gaussian expf−ðk2 −m2Þ2=2ε2g= ffiffiffiffiffiffi

2π
p

ε. In
other words, an arbitrarily close situation to the actual

kinetic case. The tensor moment (17) still diverges, not
even the principal value is well defined. The off-shell
distribution, however, is arbitrarily close to the on-shell
limit, the same for the stress energy tensor. For all practical
purposes, one can substitute δεðk2 −m2Þ in (18) with the
actual Dirac delta, obtaining the classical counterpart
(in which the method of moments works), but the usual
moments expansion is ill defined for any ε ≠ 0.
The classical method of moments has to be reformulated.

In the situations like (18), the corrections are, by definition,
arbitrarily small and one could use the regular expansion.
One could also stick to the classical results even if some
off-shell contributions are present. However, in this way it
is simply not possible to guess if the results of the classical
expansion are any good, a problem that can be important
for significant off-shell contributions (like in the case
presented in Appendix A). The similarities between the
evolution of the off-shell Wigner distribution and the
classical distribution function cannot be used to justify
hydrodynamics in the off-shell case; not with the naive,
ill-defined, generalization of the method of moments.
It is straightforward, at this point, to ask if there is a class

of generalized moments, which are well defined off shell,
but can be used to recover the classical tensor moments (11)
in the kinetic limit, in which they are well defined, in order
to build a consistent off-shell generalization of the hydro-
dynamic expansion.
It is possible to revisit a regularization introduced to deal

with similar infrared divergencies appearing at higher
orders in the hydrodynamic expansion of the Boltzmann-
Vlasov equation [44,45]. The the main objects are the
regularized tensors,

Φμ1���μs
n ðx; ζÞ ¼

Z
d4kðk · uÞne−ζðk·uÞ2kμ1 � � � kμsW; ð19Þ

with ζ ≥ 0 a parameter with the dimensions of a length
squared in natural units. Integrating from ζ ¼ 0 to infinity
one recovers the quantum version of the moments in (3),
if they are well defined. In particular, Tμν ¼ F μν

0 is the ζ
integral of the Φμν

2 moment. The dynamical equations
obtained from (15) then read

Φ̇μ1���μs
n þ Cμ1���μs

n−1 ¼ u̇α½nΦαμ1���μs
n−1 − 2ζΦαμ1���μs

nþ1 �
þ∇αuβ½ðn − 1ÞΦαβμ1���μs

n−2 − 2ζΦαβμ1���μs
n �

−∇αΦ
αμ1���μs
n−1 : ð20Þ

For n ≥ 1 no diverging integral ever appears. It is imme-
diate to check that in the kinetic limit W ∝ δðk2 −m2Þ, the
ζ integrals can be performed exactly for each separate term
of Eq. (20). Doing so, one recovers the classical counter-
parts (5). The exact relations (10) can be rewritten for the
Φμ1���μs

n moments. Just like in the classical case, it is
convenient to the switch to the moments orthogonal to uμ,
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ϕμ1���μs
n ¼ Δμ1

ν1 � � �Δμs
νsΦ

ν1���νs
n

¼
Z

d4kðk · uÞne−ζðk·uÞ2khμ1i � � � khμsiW; ð21Þ

that is, the quantum (and parametric in ζ) counterparts of
the (11) moments. Making use again of the notation
Ohμi��� ¼ Δμ

νOν���, from the exact evolution (20), one has

ϕ̇hμ1i���hμsi
n þ C̃hμ1i���hμsi

n−1

¼ −su̇ðμ1ϕμ2���μsÞ
nþ1 − θϕμ1���μs

n − s∇αuðμ1ϕ
μ2���μsÞα
n

−∇αϕ
αhμ1i���hμsi
n−1 þ u̇α½nϕαμ1���μs

n−1 − 2ζϕαμ1���μs
nþ1 �

þ∇αuβ½ðn − 1Þϕαβμ1���μs
n−2 − 2ζϕαβμ1���μs

n �; ð22Þ

where θ ¼ ∇μuμ is the scalar expansion, and C̃hμ1i���hμsi
n−1 has

the same prescription of the regularized integrals in (21)
weighted with CW instead of W. The exact evolution of the
pressure tensor Pμν ¼ fμν0 ¼ R

dζϕμν
2 then reads

Ṗhμihνi ¼ −qμu̇ν − u̇μqν − θPμν − Pμα∇αuν − Pνα∇αuμ

þ
Z

∞

0

dζf−C̃hμihνi
1 −∇αϕ

αhμihνi
1

þu̇α½2ϕαμν
1 − 2ζϕαμν

3 � þ∇αuβ½ϕαβμν
0 − 2ζϕαβμν

2 �g:
ð23Þ

The direct couplings with the elements of Tμν are exactly
the same as in the classical case (9). Different from the
naive extension to the off-shell case mentioned at the
beginning of this section, Eq. (22) is well defined.
However, in the general case, one must be careful and
avoid splitting the ζ integral in the right-hand side. It has to
be convergent for any differentiable Tμν, but it does not
have to converge uniformly. It can still be approximated to
obtain second-order viscous hydrodynamics (e.g. substitut-
ing the higher ranking tensors with their equilibrium
expectation values). Otherwise one can treat the new
degrees of freedom as dynamical variables, using
Eq. (22) for their evolution, and so on for the higher
orders. From the very definition (21) the following relations
hold, for any n ≥ 0:

Z
∞

ζ
dζ0ϕμ1���μs

nþ2 ðx; ζ0Þ ¼ ϕμ1���μs
n ðx; ζÞ;

∂ζϕ
μ1���μs
n ðx; ζÞ ¼ −ϕμ1���μs

nþ2 ðx; ζÞ; ð24Þ

in which one is the inverse of the other. As a consequence,
one can use a limited number of generations with fixed n, as
has been done in the classical case [44,45]; additional
details in Appendix C. More interestingly, if the situation is
tame enough, it is possible to perform exactly the integra-
tion in the right-hand side and obtain a set of well-defined,

ζ-independent sources for the evolution of the pressure
tensor, and for the higher order equations. In fact, this
happens in the system used in this work for the numerical
comparisons.

IV. AN EXACTLY SOLVABLE CASE

In order to check the prescription presented in the last
chapter and, more interestingly, to check the validity of
second-order hydrodynamics, it is interesting to look at the
simplest solvable instance of a Wigner distribution out of
the kinetic limit. The approach is a generalization to the off-
shell case of [24]. The starting point is very similar. In the
forward pointing light cone t > jzj, one assumes the so-
called “Bjorken symmetry”; that is, homogeneity in the
transverse plane, longitudinal boost invariance and reflec-
tion symmetry z → −z. The generalized collisional kernel
CW is treated in the relaxation time approximation (RTA):

Wðx; kÞ ¼ Wðτ; kT; w2; v2Þ

k · ∂W ¼ −
ðk · uÞ
τR

½W −Weq�≡ −
ðk · uÞ
τR

δW: ð25Þ

The same notation is in use as in [24]:

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; kT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2 þ ðkyÞ2

q
;

v ¼ tk0 − zkz; w ¼ zk0 − tkz: ð26Þ

The relaxation time approximation is a way to handle the
generalized collisional kernel CW , which in general is
notoriously very complicated, see for instance
Refs. [29,31,37,38]. The physical meaning is to assume
that the leading effect of the interaction is to pull back
the system to a local equilibrium configuration Weq. The
relaxation time τR represents the time scale for this drive
toward equilibrium, and the energy in the numerator is
necessary for dimensional reasons, and it grants, together
with the minus sign, that the collisional kernel always
drives the system toward equilibrium. Indeed, plugging the
RTA in Eq. (15),

ðk · uÞẆ ¼ −k · ∇W −
ðk · uÞ
τR

δW: ð27Þ

For k · u ¼ 0 this is just an orthogonality condition for the
spatial gradients. If ðk · uÞ ≠ 0 instead

Ẇ ¼ −
k · ∇W
ðk · uÞ −

1

τR
δW: ð28Þ

This is the evolution in the proper time defined by the four-
velocity field uμ. The spatial gradient can either drive
towards or out of equilibrium, but the collisional kernel is
manifestly driving toward equilibrium.
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According to the phenomenological assumption of a
leading effect driving towards equilibrium, the RTA treat-
ment can be expected to be more accurate for highly out-of-
equilibrium systems. If the system were already close to
equilibrium, one could expect the otherwise subleading
effects to become dominant.
The RTA is however limited in accuracy, as it is in the

classical case as well. It is a common approximation and it
is used for the numerical comparison here because it is very
simple, and it can be solved exactly. It has already been
used extensively for the relativistic Boltzmann equation
[16,19,20,24,26,41,44–48], and also for the Wigner dis-
tribution [34–36].
One of the few other simple approximations of the

extended collisional kernel is the Vlasov interaction with
external, classical fields. It does not drive towards equi-
librium and, for a classical plasma, it is a very different
physical situation than the ones that can be approximated
with the RTA. Of course both of them can be used
simultaneously, in an off-shell version of the Boltzmann-
Vlasov equation. This is precisely the situation that lead to
the classical version of the regularized moments [44]. In
this work, the RTAwill be used only for its simplicity, as a
first, nontrivial step to check the validity of the generalized
expansion in conditions similar to the ones expected in
heavy ion-collisions.
The main difference between the classical RTA and the

off-shell one is that the Wigner distribution must depend on
v. The frequency k0 (hence v itself) is not dictated by the
other variables for a generic, off-shell kμ. The requirement in
(30) to depend on w2 is to make manifest the invariance for
axis reflections, while the requirement to depend on v2 rather
than v does not come from the Bjorken symmetry, and it is a
mathematical simplification. Among other things, it entails
that the charge density in the comoving frame is vanishing
(no net charge). Considering that the only timelike four
vector consistentwith the symmetry isuμ ¼ ðt; 0; 0; zÞ=τ and
using the definitions (26), the evolution (25) simplifies:

	
∂τ þ 2

v2 − w2

τ
∂v2



W ¼ −

1

τR
δW: ð29Þ

Just like in the classical case, the conservation of energy and
momentum requires the effective temperature be the one
from the Landau matching. Choosing for the equilibrium
distribution and relaxation time

Weq ¼
2δðk2Þ
ð2πÞ3 e

− 1
TðτÞ

ffiffiffiffiffiffiffiffiffiffi
k2Tþw2

τ2

q
; τR ¼ 5η̄

TðτÞ ; ð30Þ

one has

EðτÞ ¼ EeqðTÞ ¼
6

π2
T4 ⇒ TðτÞ ¼

�
π2EðτÞ

6

�1
4

: ð31Þ

This choice (30) is mainly for mathematical simplicity. It
entails that at equilibrium the system has a conformal
equation of state, and in the kinetic limit it has a constant
ratio of shear viscosity over entropy η̄; more details about it
in Appendix D. Using the method of characteristics it is
possible to write an implicit solution of (29),

W ¼ Dðτ; τ0ÞWf:s: þ
2δðk2Þ
ð2πÞ3

Z
τ

τ0

ds
Dðτ; sÞ
τRðsÞ

e−

ffiffiffiffiffiffiffiffi
k2
T
þw2

s2

q
TðsÞ ; ð32Þ

with the damping function D and the free-streaming
Wf:s:,

Dðτ1; τ2Þ ¼ e
−
R

τ2
τ1

ds
τRðsÞ;

Wf:s:ðτ; kT; w2; v2Þ ¼ W0ðkT; w2; v20Þ;

v20 ¼ v2
�
τ0
τ

�
2

þ w2
τ2 − τ20
τ2

; ð33Þ

for a generic initial conditionW0 ¼ Wðτ ¼ τ0Þ. It is possible
then to use the self-consistency method used in
Refs. [24,26,48] to obtain the numerical values of (32) up
to an arbitrary precision. Because of the strong symmetry of
the system, the nontrivial components of the stress-energy
tensor are the proper energydensity, the longitudinal pressure
PL ¼ Tμνzμzν, and the transverse pressure PT ¼ Tμνxμxν,
with xμ ¼ ð0; 1; 0; 0Þ and zμ ¼ ðz; 0; 0; tÞ=τ. The only
moments (21) related to them, directly or indirectly, are

Lnðτ; ζÞ ¼ ϕμ1���μn
2 zμ1 � � � zμn ;

Tnðτ; ζÞ ¼ ϕα1α2μ1���μn
2 xα1xα2zμ1 � � � zμn ; ð34Þ

for instance, EðτÞ ¼ L0ðτ; ζ ¼ 0Þ, PT ¼ R
dζT0, PL ¼R

dζL1. Plugging (25) into (22), one has the evolution of
the Ln and Tn moments,

L̇n þ
1

τR
δLn ¼ −

2nþ 1

τ
Ln þ

1

τ
L̂Lnþ1;

Ṫn þ
1

τR
δTn ¼ −

2nþ 1

τ
Ln þ

1

τ
L̂Tnþ1; ð35Þ

where δLn and δTn are the difference between the moments
and their local equilibrium expectation value. It is possible to
directly integrate in ζ the nonhydrodynamic sources on the
right-hand side of (23), and obtain the ζ-independent set of
equations. Introducing the linear operator,

L̂fðζÞ ¼ 2ζfðζÞ −
Z

∞

ζ
dζ0fðζ0Þ; ð36Þ

the dynamical equations for the components of Tμν then
read
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Ė ¼ −
1

τ

�
E þ PL

�
;

ṖL þ 1

τR
δPL ¼ −

3

τ
PL þ 1

τ
Rð1Þ

L ;

ṖT þ 1

τR
δPT ¼ −

1

τ
PT þ 1

τ
Rð1Þ

T ; ð37Þ

the residual moments (an their equilibrium expectation
value) being

RðnÞ
L ¼

Z
∞

0

dζ

	
ðL̂ÞnLnþ1



⟶
eq ð2n − 1Þ!!

2nþ 3
E;

RðnÞ
T ¼

Z
∞

0

dζ

	
ðL̂ÞnTn



⟶
eq ð2n − 1Þ!!

ð2nþ 3Þð2nþ 1Þ E; ð38Þ

and their evolution, stemming directly from (35)

ṘðnÞ
L þ 1

τR
δRðnÞ

L ¼ −
2nþ 3

τ
RðnÞ

L þ 1

τ
Rðnþ1Þ

L ;

ṘðnÞ
T þ 1

τR
δRðnÞ

T ¼ −
2nþ 1

τ
RðnÞ

T þ 1

τ
Rðnþ1Þ

T : ð39Þ

Second-order viscous hydrodynamics corresponds to taking
only (37) as the dynamical equations, and substituting the
residual moments, e.g., with their equilibrium expectation
values. For the higher orders, one considers the residual
moments up to a maximum n as dynamical variables,
evolving according to (39) and approximating the (nþ 1)-
residual moments.
An interesting initial condition, which is far from the

kinetic limit but still provides initial values of Tμν close to
the ones appearing in heavy ion collisions, is

W0ðkT; w2; v2Þ ¼ 2

ð2πÞ3
1ffiffiffiffiffiffi
2π

p
σ
e
− v2

2τ2
0
σ2e−

σ
Tin ; ð40Þ

with the variance of the Gaussian factor being the on-shell

energy σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þ w2

τ2
0

q
. The initial energy and pressure

correspond to a Boltzmann gas with temperature T in,
however the distribution is strongly off shell and
during the whole evolution the weight corresponding to
ðk · uÞ ¼ 0 is never vanishing. The naive quantum gener-
alization of (5) is ill defined at all orders. On the other hand,
the regularized version (22), hence (37) and (39), are well
defined and can be used. In particular,

RðnÞ
L ðτ0Þ ¼

ð−1Þn
2nþ 3

Eðτ0Þ;

RðnÞ
T ðτ0Þ ¼

ð−1Þn
ð2nþ 3Þð2nþ 1Þ Eðτ0Þ; ð41Þ

therefore the initial error in the substitution Rð1Þ → Rjeq is
an outstanding 200%, which would have been simply

impossible for the classical Boltzmann equation, since
the residual moments are defined to be positive for an
on-shell non-negative distribution. However, the self-
coupling of the longitudinal and transverse pressure is
dominant and the total error ΔṖL=ṖL ¼ ΔṖT=ṖT ¼ 1=3.
With a 30% error on the sources, one can expect some
qualitative agreement between hydrodynamics and the
exact results, however it is interesting to note that in a
composite quantity like the trace anomaly Tμνgμν the self-
coupling part of the hydrodynamic quantities compensates
and one has a 100% error of its time derivative at the
beginning, making it likely that, differently from the energy
density and the anisotropy PL=PT, the trace anomaly will
not be well reproduced by hydrodynamics.
Selecting an initial temperature in (40) as T in ¼

600 MeV, 4πη̄ ¼ 3, and τ0 ¼ 0.25 fm=c, one has similar
conditions to the ones in heavy-ion collisions in which
hydrodynamics is applied.
As shown in Figs. 1 and 2, the temperature and the

anisotropy are relatively well reproduced, despite large
initial gradients [τRðτ0Þθðτ0Þ ≃ 1.6] and large pressure
corrections (PL=PT ≪ 1). This is at odds with the
classical requirements of hydrodynamics but well within
the expectations from the previous discussion. Indeed the
trace anomaly Tμνgμν ¼ E − 2PT − PL is badly repro-
duced by hydrodynamics alone, as expected, missing
both the correct sign and the magnitude of the absolute
value (see Fig. 3). The next steps in the regularized
expansion always provide a significant improvement
(Figs. 1–3), recovering the fast convergence already seen
for the classical moments expansion. Starting from the
tenth order, the approximated values for the temperature,

FIG. 1. Ratio of the energy density over the exact energy
density for second-order hydrodynamics (red dashed line), and
the next orders in the regularized expansion purple: dash-dotted
line for the next-to-leading order (NLO), blue dash-dotted for
next-to-next-to-leading-order (NNLO), green dotted for the next
one, and the yellow dotted line for the tenth order or higher.
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anisotropy and trace anomaly reproduce substantially the
exact results, and they are stable.1

Since hydrodynamics, and more in general the hydro-
dynamic expansion from the method of moments, was
already known to be a good approximation of kinetic
theory, one may wonder if the good approximation shown
in the comparison is just an artifact of the initial conditions.
One starts with a Tμν close to the one achievable in kinetic
theory, and the system does not have the time show
significant difference in the evolution with respect to the
on-shell case, despite being very far from the kinetic limit.
In order to check if this is the case, there is an additional
numerical comparison.

Another interesting initial condition is

W0 ¼
2

ð2πÞ3
e
− v2

2τ2
0
σ2
− σ
Tinffiffiffiffiffiffi

2π
p

σ

	
1 − 3P2

�
w
σ

�

; ð42Þ

with the same values for σ, τ0, and T0 as in the previous
case, and P2ðxÞ being the second Laguerre polynomial. The
initial values of the energy density and pressure then read

Eðτ0Þ ¼
6

π2
T4
in; PLðτ0Þ ¼ −

1

15
Eðτ0Þ;

PTðτ0Þ ¼
8

15
Eðτ0Þ; ð43Þ

while for the nonhydrodynamic moments

RðnÞ
L ðτ0Þ ¼ −

4nþ 1

2nþ 5

ð−1Þn
2nþ 3

Eðτ0Þ;

RðnÞ
T ðτ0Þ ¼ −

4n − 8

2nþ 5

ð−1Þn
ð2nþ 3Þð2nþ 1Þ Eðτ0Þ: ð44Þ

The negative longitudinal pressure is just impossible in the
kinetic limit. It is particularly important to look at the
comparisons with the exact solutions during the initial
states, since any agreement cannot be an artifact for the
“closeness to the kinetic results.” The qualitative expect-
ations due to the approximations in hydrodynamics are
rather similar as in the previous case. At the beginning of

the expansion there is a sizable error ΔRð1Þ
L =Rð1Þ

L ¼ 40%

and a very large ΔRð1Þ
T =Rð1Þ

T ¼ 275%. However, the self-
coupling of the hydrodynamic degrees of freedom is
dominant, and there is a moderate ΔṖL=ṖL ≃ 22% and

FIG. 2. Anisotropy evolution. The exact results in the black
solid line, hydrodynamics (red dashed line), and the next orders:
NLO (purple dash-dotted), NNLO (blue dash-dotted), NNNLO
(green dotted) and tenth order or higher (yellow dotted).

FIG. 3. Trace anomaly normalized to the energy density (color
code as in Figs. 1 and 2).

FIG. 4. Same as Fig. 1, but for the anisotropic initial condition
(42). Ratio of the energy density over the exact energy density.
The exact results in the black solid line, hydrodynamics (red
dashed line), and the next orders: NLO (purple dash-dotted),
NNLO (blue dash-dotted), and NNLO (green dotted), tenth order
or higher (yellow dotted).

1I numerically checked up to the 100th order.
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ΔṖ=ṖT ≃ 15%. It is reasonable then to expect a qualitative
agreement with the exact results. For the trace anomaly
Tμνgμν, the self-coupling part of the hydrodynamic quan-
tities compensates again, and one has ≃121% error in its
time derivative at the beginning, making it likely that, also
for this anisotropic initial condition, the trace anomaly will
not be well reproduced by hydrodynamics.
Indeed, as shown in Figs. 4 and 5, the energy density and

the anisotropy are relatively well reproduced; while the
trace anomaly, Fig. 6, is largely overestimated. A definitive
answer on the convergence of the regularized expansion is
hard to get from a theoretical point of view, even for simple
cases like the ones presented here. However, Figs. 4–6
clearly show that each additional step improves the
accuracy also for the anisotropic initial condition (42).
At the tenth order and higher, again, there is substantially
no practical difference with the exact solutions.

V. CONCLUSIONS

In this work, the method of moments is generalized, from
the relativistic Boltzmann equation, to the off-shell case
of the Wigner distribution, the quantum counterpart to the
classical distribution function. Despite following a very
similar equation, it is not possible to make a naive
generalization and recover the hydrodynamic expansion.
Because of the off-shell nature of the Wigner distribution,
the higher ranking tensor moments appearing at the very
beginning of the expansion are ill defined.
The off-shell effects are usually neglected but they can be

very large even for free fields, and a generalized method is
needed to extend the results of the method of moments to
the quantum case.
It is necessary to use a regularized set of parametric

moments to recover a well-defined and systematically
improvable expansion. In the kinetic (hence on-shell)
limit the generalized expansion reduces the classical
one.
This opens the possibility to generalize the recent

progress of spin hydrodynamics that stem from a semi-
classical approximation of the Wigner distribution to the
full off-shell case, on top of giving the instruments to
check the validity of hydrodynamics in the quantum
case, and providing higher order approximations, if
necessary.
The generalized expansion has been tested against the

exact solutions of the simplest solvable instance of the
Wigner distribution. The initial conditions have been
chosen to be very far from the kinetic limit. In fact, the
initial time derivative of the hydrodynamic degrees of
freedom is impossible to obtain in the on-shell case. It
shows the same fast convergence properties already seen
for the traditional (nonquantum) moments expansion, also
in the case of negative pressures. It is possible in this case to
check the systematic error committed by approximating
the nonhydrodynamic moments with a combination of the
hydrodynamic degrees of freedom. It appears that it is the
relative magnitude of these errors, compared to the con-
tribution from the self-coupling of the hydrodynamic
moments, that dictates if second-order hydrodynamics is
a good approximation or not. The magnitude of the
gradients or the size of the pressure corrections does not
really affect the accuracy, at least in the tested cases.
Different observables couple with different strength to the
nonhydrodynamic moments; it is therefore possible to
estimate which one is going to be well reproduced by
hydrodynamics, like the pressure anisotropy, or badly
reproduced, like the trace anomaly in the tested case.
This can be done, mostly, looking at the relative error at
the beginning of the evolution, and regardless of the
Knudsen number and inverse Reynolds numbers, as one
would have otherwise expected from considerations in the
gradient expansion approach.

FIG. 5. Anisotropy evolution for the (42) initial condition
(color code as in Fig. 4).

FIG. 6. Trace anomaly normalized to the energy density or
the (42) initial condition (color code as in Fig. 4).
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APPENDIX A: AN EXACT RESULT FROM THE
FREE, UNCHARGED, SCALAR FIELD

Free scalar fields are simple enough that one can
compute the exact Wigner distribution Wðx; kÞ for a given

state. As it is shown, for instance, in Refs. [42,43], the
Wigner distribution of free fields can be written in terms off
the expectation values of the two ladder operators. Using
the popular notation and normalization of the Peskin-
Schroeder book [49],

ϕðxÞ ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffiffiffi
2Ep

p 	
ape−ip·x þ a†peip·x



; ðA1Þ

½ap; a†q� ¼ ð2πÞ3δ3ðp − qÞ; ðA2Þ

the Wigner distribution of a free-uncharged field then
reads

Wðx; kÞ ¼
Z

d4v
ð2πÞ4 e

−ik·v
�
∶ϕ

�
xþ 1

2
v

�
ϕ

�
x −

1

2
v

�
∶
�

¼
Z

d3pd3q

2ð2πÞ6 ffiffiffiffiffiffiffiffiffiffiffi
EpEq

p �
δ4
�
k −

pþ q
2

�
ha†paqieiðp−qÞ·x þ δ4

�
kþ pþ q

2

�
ha†paqie−iðp−qÞ·x

þ δ4
�
k −

p − q
2

�
ha†pa†qieiðpþqÞ·xþδ4

�
k −

p − q
2

�
hapaqie−iðpþqÞ·x

�
: ðA3Þ

The lack of a factor of 2 in Eq (A3) compared to Eq (13) is
due to the 1=2 in the Lagrangian of a free scalar field,
compared to a charged one. It is a convention to preserve
Eq. (14) for both charged and uncharged fields. The normal
ordering is written explicitly because it is the only
renormalization needed in the free theory.
Since both p and q are on-shell parameters of the original

fields p2 ¼ q2 ¼ m2, one can prove that ðpþq
2
Þ2 ≥ m2 and

ðp−q
2
Þ2 < 0. Because of the Dirac deltas, the ha†paqi terms

contribute solely to the timelike partWðx; kÞjk2≥m2 , while the
other two to the spacelike oneWðx; kÞjk2<0. It is interesting to
note that both terms are not on shell in general. However the
spacelike part can never be on shell. Any relevant contribu-
tion to the hydrodynamic variables from this part and one can
exclude that the relativistic Boltzmann equation is a valid
approximation, and a consistent treatment of the off-shell
hydrodynamic expansion must be used.
It is rather easy at this point to specify a state of the

system having contributions to Tμν from the spacelike
parts. Needless to say, it is also easy to find examples in
which its contribution vanishes.
A very simple example, possibly the simplest, is a

superposition of states having N and N þ 2 particles.
Being the n-particles eigenstates of the four-momentum

jp1;…; pni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep1

� � � 2Epn

n!

r
a†p1

� � � a†pn j0i; ðA4Þ

the state considered in this section is

jΨi ¼ 1ffiffiffi
2

p
�YN

i¼1

Z
d3pi

ð2πÞ32Epi

ψðpiÞ
�
jp1…; pNi

þ eiΔϕffiffiffi
2

p
�YNþ2

i¼1

Z
d3pi

ð2πÞ32Epi

ψðpiÞ
�
jp1…; pNþ2i:

ðA5Þ
Both partial waves have a wave function which is mani-
festly invariant in the exchange pi ↔ pj, since they are
direct products of a single ψ . No additional symmetrization
is needed. With the normalizationZ

d3p
ð2πÞ22Ep

ψðpÞ
2 ¼ 1; ðA6Þ

and the regular normalization of the jp1;…pni states, the
total state jΨi is manifestly normalized to 1.
For mathematical simplicity it is assumed rotation invari-

ance in the lab frame ψðpÞ ¼ ψðpÞ and a real ψ ¼ ψ�. The
only phase between the two partial waves is the Δϕ.
Making use of the commutation relations (A2), one can

prove

ha†paqi ¼
N
2

ψðpÞψðqÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
EpEq

p þ N þ 2

2

ψðpÞψðqÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
EpEq

p
¼ ðN þ 1ÞψðpÞψðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
EpEq

p ; ðA7Þ
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which is equal to the reduced density matrix of a state
constructed as in (A5) but without a superposition of state,
just with a single wave with N þ 1 particles, and the wave
function which is just the N þ 1 products of ψ .
The skeleton of the proof is noting that the a†paq in front

of the free particle state defined as in (A4), can be “moved
one step to the right” leaving each time a ð2πÞ3δ3ðq − piÞ
and substituting the pi in the jp1;…pni state with a p form
a†p. The process is repeated a number of times equal to the
number of particles in the state, then the last aqj0i vanishes
and the process stops without leaving states with a different
particles’ number. The numerical factor stems from the
normalization of the states (A4) and the Lorentz covariant
momentum measure used in the definition of Ψ (A5).
With similar considerations, one can compute the other

two expectation values, which are even simpler since
hapaqi ¼ ðha†pa†qiÞ�. The two creation operators just add
two particles to the N particles state, and the only non-
vanishing overlap is with the N þ 2 state. Summing up,

ha†pa†qi ¼ e−iΔϕ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N þ 2

��
N þ 1

�s
ψðpÞψðqÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
EpEq

p : ðA8Þ

Because of the rotational system of the state, the only four-
velocity consistent with the symmetry is u ¼ ð1; 0; 0; 0Þ, as
seen from the lab frame. The isotropic pressure in x ¼ 0
then reads

1

3

Z
d4kWð0; kÞk · k ¼ 2ðN þ 1ÞP̃ þ cosðΔϕÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 2ÞðN þ 1Þ

p
P̃; ðA9Þ

with P̃ being the integral

P̃ ¼
Z

d3pd3q
4ð2πÞ6EpEq

�
p� q
2

�
2

ψðpÞψðqÞ: ðA10Þ

The integral does not depend on the sign � because of the
spherical symmetry. In Eq. (A9), the first term in the right-
hand side is the one from the timelike part ofW [theþ sign
in the integral (A10)], the second term is the one due to the
spacelike part (and originally with the − sign). Modulating
the relative phase Δϕ it is possible to add or remove up to
half of the other term. To be precise slightly more than that
since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 2ÞðN þ 1Þp
> N þ 1, if very close to it in the

large N limit. This relative difference of the order of �50%
is definitely not a small correction. The isotropic pressure
is a relevant variable in hydrodynamics, and one cannot
assume to be in the kinematic (thus on-shell) limit for the
hydrodynamic expansion regarding this state.
To finish, it is rather simple to prove that the naive

extension of the method of moments to the off-shell case is
not appropriate for this state. Reminding that k · u ¼ k0 due
to the spherical symmetry, for any kkk ≠ 0 it is possible to
compute the Wigner distribution,

Wðx; 0;kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 2ÞðN þ 1Þp

2

Z
d3pd3q
2ð2πÞ6

ψðpÞψðqÞ
2EpEq

δ

�
Eq − Ep

2

�
δ3
�
k −

p − q
2

�
½e−iðpþqÞ·xþiΔϕ þ eiðpþqÞ·x−iΔϕ�

¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 2ÞðN þ 1Þp

ð2πÞ6
Z

d2pT

�
ψð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ k2

p
Þ
�

2

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T þ k2
p cos

	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T þ k2
q

t − pT · xþ Δϕ


; ðA11Þ

being the variable of integration pT an orthogonal vector
to the k, pT · k ¼ 0. The last formula is not vanishing in
general, in particular for x ¼ 0 and Δϕ not a multiple of
π=2, making the moment of the naive expansion (17)
unusable.

APPENDIX B: THE WIGNER DISTRIBUTION
IN MORE GENERAL CASES

Equations (13)–(15) are not the most general. Just as in
relativistic kinematics, there is usually more than one
field (different particle species to consider [50]), and they
all contribute to the stress-energy tensor. The fields are
not necessarily scalars, and the Wigner distribution
fulfills another equation, usually referred to as the
constraint equation, on top of the kineticlike one (15).
For weak couplings (or just noninteracting fields), the

form of (14) remains the same, with more scalar con-
tributions from the different fields [29,51], but in general
the stress-energy tensor is more complicated. Because of
the interaction terms or the spin structure, see for instance
Ref. [29] for a general overview from the axiomatic field
theory framework. After all of this, it must be mentioned
that one has to introduce gauge links in gauge theories.
The gauge-covariant Wigner distributions might look the
same but it is not any longer two point functions of the
fields. It includes a contribution from the gauge fields up
to infinity orders [52,53]. It is not possible to take into
account all of these cases in detail. The main result which
is crucial for this work is that for all these cases one
can apply the Klein-Gordon operator □ −m2 to one of
the fields in the definition of the Wigner distribution
(see Refs. [51,54] for additional details) and obtain the
equation
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ℏ2

4
□ − ðk2 −m2c2Þ þ iℏk · ∂



Wðx; kÞ

¼ Source terms: ðB1Þ

Separating the real from the purely imaginary compo-
nents of this equation2

ℏ2

4
□W − ðk2 −m2c2ÞWðx; kÞ ¼ Source terms;

k · ∂Wðx; kÞ ¼ Source terms: ðB2Þ
The first equation is an off-shell, interacting, generali-
zation of the classical on-shell constraint ðk2 −m2ÞW≃
0 ⇒ W ∝ δðk2 −m2Þ. The second one is essentially (15),
without any particular assumption about the generalized
collisional kernel. The Wigner distribution always fulfills
an overdetermined set of equations. The details over the
constraint equation are beyond the scope of this work. Its
aim is not so solve off-shell transport, but to generalize
the hydrodynamic expansion. Equation (15) is the one
needed for that, as illustrated in the main text.
Regarding the form of the stress-energy tensor in (14),

either one has a free field, and it is correct, or it has to be
considered a phenomenological approximation; in the
sense that the contribution of the other fields does not
appear, except in the interaction itself, responsible of the
right-hand side in (15). In other words, the contribution of
the other fields is assumed to give a trivial (constant, within
the space-time scales of the problem) contribution to the
total Tμν, the dynamical part is given just by the scalar field.
This is not very different from the role of the Higgs field in
the standard model. The energy scales to excite the Higgs
bosons are usually considered too high for it to contribute
in a dynamical way to the local Tμν, but it still affects the
other fields with the masses (also in QCD), the shortening
of the range of the weak interaction, and overall it
contributes to the renormalized propagators.
More in general, for instance in the case of gauge

theories (with no approximations), one has the form

Tμν ¼
Z

d4kWμνðx; kÞ: ðB3Þ

In the generalized Wμν one includes all the fields. The
scalars will contribute throughWskμkν; the spinors through
traces of the γμ matrices, on top of the kμ (for instance, see
Ref. [53]). Substantially all the considerations bringing
to (19) and their evolution (20) are the same, with the
difference that two of the indices are not coming from khμi
momenta in the momentum integration and have to be
treated separately ϕμν;μ1���μs

n . Consequently, there is a (finite)

number of extra terms in their evolution equations. The
formulas are even lengthier than the already lengthy ones
appearing in the main text, and they do not add any physical
insight to the discussion. The generalization of the method
of moments for the regularized expansion follows exactly
the same logic passages. Because of that they will not be
reported here; it suffices to say that they are a straightfor-
ward, if tedious, extension. It is also very likely that in
specific cases, because of symmetry or some phenomeno-
logical approximations similar to the ones already used in
[32,36–38,51], one can further simplify them.

APPENDIX C: THE REGULARIZED MOMENTS
IN THE QUANTUM CASE

From a first look at Eqs. (22) and (23), it seems like the
procedure highlighted at the end of Sec. III for the higher
orders is just postponing the problem with the ill-defined
moments to the higher orders. The rank three and four
tensors in the right-hand side of Eq. (23) evolve according
to Eq. (22), which couples also to moments having even
lower index n than the starting ϕμ1���μs

n . Going to the higher
orders, one would see again some nonintegrable poles due
to the 1=ðk · uÞ or 1=ðk · uÞ2 in the integrand.
The purpose of this appendix is to present the modified

version of the procedure used in the classical case [44,45]
to restrict everything to one single generation of moments
with a fixed n; or, more precisely, two generations of
moments with fixed n in the off-shell case.
It also highlights why the regularized moments ϕμ1���μs

n

have been defined as in (21) with an exponential in the extra
parameter ζ, instead of the classical analog with a Gaussian
in the ξ [44,45].
In fact, the two instances are related. In the classical case,

that is, on-shell and positive frequency, the dot product
ðp · uÞ ≤ 0 is never negative. As it can be easily seen going
to the locally comoving frame in which u ¼ ð1; 0; 0; 0Þ and
reminding that ðp · uÞ is a scalar and does not change under
Lorentz boosts.
In other words, there is no difference, in the classical

case, between the contraction of ðp · uÞ and its absolute
value. Therefore, as long as the integral in the parameter ξ
can be performed before the momentum integrals

2ffiffiffi
π

p
Z

∞

0

dξe−ξ
2ðp·uÞ2 ¼ 1

jp · uj ¼
1

ðp · uÞ ; ðC1Þ

thus removing the Gaussian in ξ and reducing by one
the index of ðp · uÞn, as it has been used extensively
in Ref. [44].
All of this does not work in the off-shell case. The sign

of the frequency k0 of spacelike kμ vectors is a frame
dependent quantity, or, if one prefers a different perspec-
tive: if the frequency is vanishing in the lab frame k0 ¼ 0,
the sign of k · u ¼ −k · u depends on the projection of two
three-vectors and it cannot be known in advance. In general
ðk · uÞ ≠ jk · uj; hence, the choice of the definitions with an

2The Wigner distribution of scalar fields is real by construc-
tion. For matrix valued distributions, like in the case of spin 1=2,
one can repeat for the Hermitian and the anti-Hermitian part of
the Wigner distribution.
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exponential e−ζðk·uÞ2 in ζ for (19) and (21). Differentiation
and integration with respect to ζ will multiply or divide by
ðk · uÞ2, with no absolute values. One could have tried to
use the older prescription, as in Ref. [44], but with an
absolute value jk · uj in the definition of moments with
n ¼ 1 rather than ðk · uÞ in the off-shell case to preserve
the relations between the ξ dependent moments and the
ξ independent ones. Calling these classically inspired
moments ϕ̃μ1���μs

1 ðx; ξÞ ¼ Φ̃hμ1i���hμsiðx; ξÞ, to avoid confu-
sion with the ones in use in this work, the stress energy
tensor would read Tμν ¼ R

dξΦ̃μν
1 just like in the classical

case [44,45]. On the other hand, it has the unfortunate
consequence of having the evolution of the ϕ̃μ1���μs

1 depend-
ing on moments having a signðk · uÞ in their integral
definition instead of jk · uj because of the general relation

∂μjk · uj ¼ ∂μ½signðk · uÞðk · uÞ�
¼ ½2δðk · uÞðk · uÞkν∂μuν� þ signðk · uÞkν∂μuν
¼ 0þ signðk · uÞkν∂μuν: ðC2Þ

This sign cannot bewritten in terms of integral or derivatives
in ξ, hence the necessity of a new generation of moments.
Using very similar calculations it is immediate to show that
the exact evolution of the latter generation of moments
couples to moments having a δðk · uÞ in the integral
definition. Their evolution couples to moments having a
δ0, and hence, typically, integrals of derivative of the Wigner
distribution with respect to the kμ. All of it is an unnecessary
complication, which can be avoided by using the definitions
(19) and (21) instead of the classically inspired ones.
The only side effect is the need of two generations of

regularized moments, also in the on-shell limit in which one
could have used safely the previous prescription.
Coming to the reduction of the exact equation to only

two generations of moments, because of the exact relations
(24), one can rewrite Eq. (22), as two sets of well defined
equations for the n ¼ 2 and n ¼ 1 generations,

ϕ̇hμ1i���hμsi
2 þ C̃1

hμ1i���hμsi

¼ su̇ðμ1∂ζϕ
μ2���μsÞ
1 − θϕμ1���μs

2 − s∇αuðμ1ϕ
μ2���μsÞα
2

−∇αϕ
αhμ1i���hμsi
1 þ u̇α½2ϕαμ1���μs

1 þ 2ζ∂ζϕ
αμ1���μs
1 �

þ∇αuβ

	Z
∞

ζ
dζϕαβμ1���μs

2 − 2ζϕαβμ1���μs
2



; ðC3Þ

ϕ̇hμ1i���hμsi
1 þ C̃0

hμ1i���hμsi

¼ −su̇ðμ1ϕμ2���μsÞ
2 − θϕμ1���μs

1 − s∇αuðμ1ϕ
μ2���μsÞα
1 −∇α

×
Z

∞

ζ
dζϕαhμ1i���hμsi

2 þ u̇α

	Z
∞

ζ
dζϕαμ1���μs

2 − 2ζϕαμ1���μs
2




− 2ζ∇αuβϕ
αβμ1���μs
1 : ðC4Þ

The choice of n ¼ 2, instead of other even numbers, is
rather intuitive, noting that the energy density is
E ¼ limζ→0þ ϕ2, and the pressure tensor is Pμν ¼ R

dζϕμν
2 .

The choice ofn ¼ 1 for the odd number is because it enters in
the exact equations of theϕμ1���μs

2 without integrals in ζ, and it
might be more convenient numerically to limit the integral
part of this set of integro-differential equations. There is no
particular reason, however, to prefer this choice over any
other couple of numbers, as long as one is odd and one is
even, and both positive. The defining integrals of ϕμ1·μs

n are
typically fast converging. In particular for ζ and n positive,
they are uniformly converging for any Wigner distribution
Wðx; kÞ which is absolutely integrable in d4k. In particular,
all of the ζ integrals and derivatives in Eqs. (C3) and (C4) are
well defined (one can perform the integral and derivatives
before the d4k integration). The equations themselves are
well defined at all orders. The same can be said of the other
possible choices of fixed even and odd positive n. HavingW
integrable and absolutely integrable is rather weak as a
requirement. For instance, at leastWmultiplied by a rank two
polynomial in the kμs should be integrable too. The compo-
nents of Tμν are in this category and they should be finite
integrals, and differentiable in the xμs.
The fact that Eqs. (C3) and (C4) are well defined

equations with minimal requirements on the mathematical
structure of the Wigner distribution grants that the equation
of hydrodynamics (or modified versions of it) can be
systematically extended to higher orders like in the on-
shell case. However, it does not grant that any of the
approximations are causal or stable. After all even second-
order viscous hydrodynamics can violate causality, depend-
ing on the initial conditions [55]. General stability and
causality statements are not ready at the moment and
possibly one should extend the work done in Ref. [55].
It is also unclear, at the moment, if the choice of the
generations with n ¼ 2 and n ¼ 1 is the most convenient
from a phenomenological point of view, the same can be
said of the choice of the e−ζðp·uÞ in the regularized
moments. All of this is left for future research.

APPENDIX D: RELAXATION TIME
APPROXIMATION

In this appendix there are some clarifications about the
relaxation time approximation (RTA), and the link between
the relaxation time and shear viscosity. Many of the
practical constraints in the use of the RTA in the off-shell
case are the same as the ones in the classical one. For
instance, the formulas in the main text are “agnostic”
regarding the four-velocity, it can be the Landau definition
(following the energy flux) or the Eckart definition (fol-
lowing one timelike conserved current, e.g. the Baryon or
electric current) or other, less popular, prescriptions.
Equation (23) is correct regardless of the definition in
use of the four-velocity uμ.
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On the other hand, making use of the RTA with a k
independent τR forces one to use the Landau prescription,
since it is the only one compatible with the local con-
servation of four-momentum,

0 ¼ ∂μTμν ¼
Z

d4kkνðk · ∂ÞWðx; kÞ

¼ −
uμ
τR

Z
d4kkμkν½Wðx; kÞ −Weqðx; kÞ�

¼ −
uμ
τR

½Tμν − Tμν
eq �: ðD1Þ

Taking into account the local isotropy of the equilibrium
part, for instance Weq ∝ e−ðk·uÞ=TðxÞ, which has solely the
four-velocity uμ as a privileged vector

Tμν
eq ¼ Eequμuν − ΔμνPeq ðD2Þ

hence

uμTμν ¼ Euν þ qν ¼ Eequν ðD3Þ

using the general decomposition of the stress-energy tensor
(7). The only way to fulfill the last equation is to assume
that the four-velocity uμ entering the RTA is the one in the
Landau prescription, which is the timelike eigenvector of
the physical Tμν. Therefore qμ ¼ 0 by construction and
E ¼ Eeq. In the particular case of Weq depending exclu-
sively on uμ and T (e.g., no chemical potential associated to
conserved charges), the last equation is usually used as the
definition of the effective temperature field, the temperature
is the inverse function of E, which can be obtained
exclusively from Tμν: T ¼ E−1

eq ðEÞ, [clearly E−1
eq is the

inverse of the function EeqðTÞ]. For additional information
about the matching procedure in different cases (chemical
potential etc.) see for instance Refs. [14,39].
Clearly if Tμν does not have, even in a small neighbor-

hood, any timelike eigenvector, the RTA cannot be used at
all, the system is too wild. For the purpose of this paper it is
less relevant, since the Bjorken symmetry assumed for the
numerical calculations has only one vector compatible with
the symmetry, and it is timelike, therefore all the prescrip-
tions for the four-velocity are equivalent to the Landau one.
The more general part is not dependent on the choice and it
does not matter. It is flexible with respect to the choice of
the uμ prescription.
It is relevant however that the η̄ is, in general, not only for

the Bjorken symmetry, the shear-viscosity to entropy
ratio; more precisely the shear viscosity η divided by

the temperature scaled equilibrium enthalpy density
ðE þ PÞ=T, which is of course the canonical equilibrium
entropy density for a classical gas. Starting from the exact
(23) and removing the trace Ṗhμihνi − ΔμνΔαβṖhαihβi=3,
making use of the RTA one can remove from the ζ integral
the collisional kernel contribution, obtaining just −πμντR.
The equation then reads

π̇hμνi þ 1

τR
πμν ¼ � � � ; ðD4Þ

with Ohμνi a shorthand notation for the traceless, spacelike
part of a tensor. The function3 2βπ is the function of
temperature4 that multiplies the σμν ¼ ∇hμuνi in the right-
hand side. It is computed by splitting all the moments in the
right-hand side in their local equilibrium expectation value
and the remaining part, then adding all terms proportional
to σμν through an equilibrium expectation value integral.
Most of these moments, like the components of Tμν, are
already decomposed in a local equilibrium part and
corrections according to (7), but the other tensors in the
ζ integral are not. For an on-shell local equilibrium Weq

their local equilibrium part is classical, differently from the
full tensors, their ζ integral can be performed exactly term
by term. Therefore the βπ is the classical one, despite
having off-shell nonequilibrium contributions in the equa-
tion that can be very different from the classical ones, the βπ
is the same. The shear viscosity is defined in the method of
moments with the RTA as η ¼ βπτR and it corresponds to
the first order approximation of πμν for arbitrarily small
perturbations from global equilibrium (hence, small devia-
tions from the local equilibrium and small gradients and
time derivatives): πμν ¼ 2ησμνþ higher order corrections.5

Since the off-shell βπ in RTA is by construction the same
function as in the classical case, one has βπ ¼ ðE þ PÞ=5
and therefore η ¼ τRðE þ PÞ=5. For the specific relaxation
time in (30) one has η ¼ η̄ðE þ PÞ=T, therefore the ration
of the shear viscosity η with ðE þ PÞ=T is η̄, a constant by
construction. This is why such a choice is called “fixed
shear viscosity over entropy.”

3The 2 is a naming convention to fit the classical definition in
the nonrelativistic limit.

4In the more general case, it is also a function of the chemical
potential, and possible other intensive variables.

5Among the higher order terms, there is the time derivative of
πμν itself, which is considered doubly small, a deviation from
equilibrium and a derivative in an almost-equilibrated, almost-
static state.
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