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We continue to study the properties of the light pseudoscalar nonet within the combined framework of
Nambu–Jona-Lasinio model and 1=Nc expansion, assuming that current quark masses count of order
Oð1=NcÞ. The masses, mixing angles and decay constants of the π0, η and η0 are calculated. The role of the
Uð1ÞA anomaly is emphasized. It is shown that the gluon anomaly suppresses the leading order effects that
might otherwise be substantial for the η → 3π amplitude. A detailed comparison with the known results of
1=Nc chiral perturbation theory is made.
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I. INTRODUCTION

In the world of massless up, down and strange quarks,
the Lagrangian of quantum chromodynamics (QCD) is
symmetric under Uð3ÞL × Uð3ÞR chiral transformations.
This symmetry, however, is violated spontaneously by the
nonzero quark condensate, and by the axial Uð1ÞA
anomaly. The response of the quark-gluon vacuum to the
spontaneous symmetry breaking is the excitation of eight
Goldstone modes π, K and η, while the ninth Goldstone
mode η0 receives a large mass due to the Uð1ÞA anomaly. In
the real world, the π, K and η mesons acquire their masses
because chiral SUð3ÞL × SUð3ÞR symmetry is broken
explicitly by the nonzero quark masses mu ≠ md ≠ ms.
As a consequence, the physics of the pseudo Goldstone
bosons is based on three pillars: the value of the quark
condensate, the strong Uð1ÞA anomaly, and the pattern of
the light quark masses.
These three essential elements of pseudoscalars dynamics

are deeply correlated. Indeed, if Uð1ÞA were a good sym-
metry in nature, one would have a light isoscalar particle L
with the mass m2

L ≤ 3m2
π [1]. Moreover, if the ratio

ðmd −muÞ=ðmd þmuÞ ≃ 0.3 were appreciable, i.e., if it
were not hidden by the peculiar features of chiral dynamics
indicated above, the isotopic spin symmetry would be
substantially violated so that the mass eigenstates of neutral
pseudoscalar mesons would be pure, each containing only
one quark flavor pair: ūu, d̄d, and s̄s [2]. Another manifes-
tation of the correlation is the surprisingly large mass of
pseudoscalars compared with the light quark masses. As we

learned from current algebra, the masses of pseudoscalars
are proportional to the current quark masses. In the case of
the pion, the formula reads m2

π ¼ Bðmu þmdÞ, where the
constant B is nonzero in the chiral limit B0 ¼ −hq̄qi0=F2.
The quark condensate and the pion decay constant imply a
very large factor B0 ≃ 2.5 GeV (we give here the estimate
obtained in the framework of the Nambu–Jona-Lasinio
(NJL) model, chiral perturbation theory gives a relatively
smaller, but still pretty large value B0 ≃ 1.4 GeV) which
significantly enhances the effect of light quark masses.
The consequences of explicit and spontaneous violation

of chiral symmetry are most interestingly reflected in the
physical properties of neutral pseudoscalars π0, η and η0. It
is this aspect of chiral dynamics that this article is devoted
to. The π� and K mesons were considered in our previous
work [3]. The study is based on the effective meson
Lagrangian originated from the effective Uð3ÞL ×Uð3ÞR
symmetric four-quark interactions of the NJL type [4,5],
where we, following Leutwyler’s idea [6,7], count the light
quark masses to be of order Oð1=NcÞ.
To succeed in the quantitative description of effects

related to the explicit chiral symmetry breaking, we use the
asymptotic expansion of the quark determinant [8–10],
which is based on the Fock-Schwinger proper time method
and the Volterra series. This powerful tool allows not
only to isolate divergent parts of quark loop diagrams, but
also accurately reproduce their flavor structure. The latter
circumstance is fundamental in studying the explicit
violation of chiral symmetry in the NJL model.
A huge number of papers have been devoted to the study

of the properties of the neutral pseudo Goldstone particles.
Therefore, we consider it necessary at the beginning of
our presentation to answer the question of what is the
novelty of the results presented here in comparison with the
already well-known achievements in this actively devel-
oped area [11].
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In answering this question one should stress that the NJL
model has not previously been used for the theoretical
study of neutral pseudoscalar states under the assumption
that mi ¼ Oð1=NcÞ (except for a short letter [12]). We
think that the implementation of this idea may allow us to
look at the results of 1=Nc chiral perturbation theory
(1=NcχPT) [6,7,13–16] from a new angle, since the
prospect opens up to directly relate the low-energy con-
stants of 1=NcχPT with the parameters of the NJL model,
i.e., with the main characteristics of the hadronic vacuum.
The hypothesis mi ¼ Oð1=NcÞ should not be taken

literally, i.e., as a direct use of the Taylor expansion in
powers of quark masses. It is well known that the chiral
series is not of the Taylor type. It contains nonanalytic
terms, so-called chiral logarithms. The assumption to count
the light quark masses of order 1=Nc shifts the contribu-
tions of chiral logarithms to the next-to-next-to leading
order (NNLO). Correspondingly, at the next, NNNLO,
step, it is necessary to take into account the contribution of
two-loop meson diagrams, and so on. Thus, a full account
of current quark masses by the naive summation of the
Taylor series is a misleading procedure, because it does not
account for essential contributions of chiral logarithms
arising at higher powers of light quark masses. Hence only
the leading order (LO) result and the first 1=Nc correction
(NLO) to it has a polynomial form in the current quark
masses. It is this approximation that is used here to study
the π0-η-η0 system.
Our paper also reports on some progress in describing

explicit chiral symmetry breaking in comparison with
previous schemes developed on the basis of the NJL
model [17–23]. In particular, we show a deep connection
between the results obtained here and similar results known
from the 1=NcχPT (previous NJL approaches have been
less successful in this).
But there are also differences. In the NJL model, the

kinetic term of the free meson Lagrangian is the result of
calculating the self-energy meson diagram with a quark
loop. We show that this leads to a redefinition of the
original meson fields collected in the matrixU¼eiϕ∈Uð3Þ.
As a result, the neutral states in the octet-singlet basis ϕa

(a ¼ 0, 3, 8) are not pure, namely ϕa ¼
P

b F
−1
abϕ

R
b is a

superposition of rescaled eigenfunctions ϕR
a for which the

kinetic part of the Lagrangian is diagonal. The appearance
of such impurities in ϕa is the result of the explicit violation
of chiral symmetry. This has physical consequences: the
Uð1ÞA anomaly contributes at the next-to-leading order
(NLO) to the masses of π0, η, and η0 mesons suppressing
effects of flavor and isospin symmetry breaking [24].
One example of such suppression is found in the calcu-

lation of the η-π0 mixing angle ϵ. It is known that the
interference with η0, in the LO of the 1=Nc expansion,
strongly affects the amplitude of the η → 3π decay which is
proportional to ϵ. This effectwas discussed byLeutwyler [7],
who pointed out on its similarity with the other effect

occurring in the mass spectrum of η-η0. He has found that
chiral symmetry implies that the same combination of
effective coupling constants which determines the small
deviation from the Gell-Mann-Okubo formula also specifies
the symmetry breaking effects in the decay amplitude and
thus ensures that these are small. Indeed, belowwe show that
the NLO correction significantly suppresses the isospin
symmetry breaking effect observed at the LO. As a result,
one can not only obtain the phenomenological values of the η
and η0 masses, but also reduce the isospin breaking angle ϵ to
the value established early in [2].
We find a second example of the suppression effect of

the gluon anomaly calculating the η-η0 mixing angle. It is
known that in 1=NcχPT this angle is dramatically reduced
to about −10° from its LO value of −18.6° [15]. We show
that in the 1=Nc NJL model the magnitude of the NLO
corrections is rather small: its LO value −15° is corrected to
−15.8° after the NLO contributions are taken into account.
We also consider the scheme with two mixing angles,

which is widely discussed in the literature [25–29], and
demonstrate that in the NJL model it arises, as an
approximation, after the NLO corrections are included.
Unfortunately, within the framework of 1=Nc NJL model,
we fail to find a rigorous theoretical justification for
this mixing scheme. The latter is possible only in the
presence of off-diagonal terms in the kinetic part of the
free meson Lagrangian, which explicitly violates Zweig’s
rule [25]. Since quark loop diagrams contributing to the
self-energy meson graph satisfy this rule, off-diagonal
vertices do not arise in the NJL model. Nonetheless, we
show that the scheme with one mixing angle guarantees the
fulfillment of the well-known relations between weak
decay constants [30].
The article is organized as follows. In Sec. II, we present

the form of the free Lagrangian for the η-η0-π0 fields, which
arises as a result of the asymptotic expansion of the quark
determinant. Additionally, the contributions of the gluon
anomaly and the interaction that violates the Okubo-Zweig-
Iizuka (OZI) rule are considered. In Sec. III, we calculate
the coupling constants f0, f3 and f8 of neutral pseudo-
scalars and discuss their connection with already known
results. In Sec. IV, the masses and mixing angles are
calculated. In Sec. V, we consider the octet-singlet basis
and calculate the weak decay constants. In particular, it is
detailed here how the NLO corrections effectively lead to
the well-known scheme with two mixing angles. The
physical content of the initial fields ϕa is discussed in
Sec. VI. In Sec. VII, we shortly discuss the strange-
nonstrange mixing scheme. The comments about regulari-
zation dependence of our results are given in Sec. VIII.
The latter may be useful in order to have some idea of the
theoretical uncertainties behind the results presented in the
paper. Our conclusions are collected in Sec. IX. In order not
to clutter up the text with technical details, we put them in
three Appendixes.
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II. BASIC ELEMENTS

Let us first make a remark regarding the original form of
four-quark interactions considered in this and our previous
paper [3]. They include the Uð3ÞL ×Uð3ÞR chiral invariant
terms describing the scalar, pseudoscalar, vector, and axial-
vector nonets. This reflects the symmetry of QCD at
Nc → ∞. Actually this set of four-quark interaction chan-
nels is not complete in the spirit of Fierz transformations.
The symmetry of massless QCD allows the Fierz-invariant
terms, describing the singlet vector and axial-vector four-
quark couplings [31]. We neglect them here as it has also
been done in [31] when describing the meson spectrum.
The reason is that singlet-octet degeneracy is quite well
realized in the empirical mass data on spin-1 mesons.
Theoretically, it can be understood as an indication that
corresponding couplings are 1=Nc suppressed in compari-
son with the channels considered in our paper.
To study the main characteristics of the neutral pseudo-

scalars (masses, mixing angles and decay constants) we
need only a part of the effective Lagrangian describing
noninteracting π0, η, and η0 fields. Recall that in the NJL
model the effective meson Lagrangian results from the
evaluation of the one-loop quark diagrams. On the one
hand, this requires a redefinition of the initial field
functions, and on the other hand, it allows one to calculate
the meson coupling constants appearing as a result of such
a redefinition. The details of the one-loop calculations have
been presented in our previous work [3], so let us write out
only the final result arising for the diagonal pure flavor
states of the pseudoscalar nonet, ϕi (i ¼ u, d, s),

Lϕ2 ¼
X

i¼u;d;s

�
κAii
16GV

ð∂μϕiÞ2 −
Mimi

4GS
ϕ2
i

�
: ð1Þ

Here the coupling constants GS and GV characterize the
strength of theUð3ÞL ×Uð3ÞR chiral symmetric four-quark
interactions with spin zero and one correspondingly. Their
dimension is ðmassÞ−2, and at large Nc they are of order
Oð1=NcÞ. Mi is the mass of the constituent i-quark. The
heavy constituent masses arise through the dynamic break-
ing of chiral symmetry and are related to the masses of light
quarks mi by the gap equation. The diagonal elements of
the matrix κA is obtained in the result of eliminating
the mixing between pseudoscalar and axial-vector states.

They can be expressed through the main parameters of the
NJL model

ðκAÞ−1ii ¼ 1þ π2

NcGVM2
i J1ðMiÞ

; ð2Þ

where

J1ðMÞ ¼ ln

�
1þ Λ2

M2

�
−

Λ2

Λ2 þM2
: ð3Þ

Here,Λ is the cutoff characterizing the scale of spontaneous
symmetry breaking. The values of the parameters were
fixed in [3]. We collect them in Table I.
As one can see from (1), the quark one-loop diagrams

generating the kinetic part of the free Lagrangian lead to a
diagonal quadratic form in the flavor basis, which, after
redefining the fields

ϕi ¼
ffiffiffiffiffiffiffiffiffi
4GV

κAii

s
ϕR
i ≡ ϕR

i

fi
; ð4Þ

takes the conventional form

1

4

X
i¼u;d;s

ð∂μϕR
i Þ2 ¼

1

2

X
a¼0;3;8

ð∂μϕR
a Þ2: ð5Þ

The new field ϕR
i has the dimension of mass because the

coupling constant fi has this dimension and the initial field
ϕi is a dimensionless quantity. The transition from the
flavor components ϕR

i to the octet-singlet ones ϕR
a is

described by the matrix O given by Eq. (A4). Due to this
transformation, the transition to the octet-singlet basis ϕR

a
does not destroy the diagonal form of Eq. (5). As a
consequence, the unscaled field ϕa has admixture of scaled
components ϕR

b , with b ≠ a and vice versa ϕR
a ¼P

b Fabϕb (see Appendix A for details). The nondiagonal
elements of the symmetric matrix Fab given by Eq. (A10)
violate flavor symmetry. Both the SUð3Þ breaking term F08

and isospin breaking terms F03, F38 are 1=Nc-suppressed.
A bit later we will dwell on the connection of the elements
Fab with the decay constants of pseudoscalars.

TABLE I. The six parameters of the model Λ, GS, GV , mu, md, and ms are fixed by using the meson masses mπ0 ,
mπþ , mK0 , mKþ , the pion decay constant fπ and the cutoff Λ as an input. The electromagnetic corrections to the
masses of charged mesons are estimated taking into account the violation of Dashen’s theorem at next to leading
order in 1=Nc. To do this, we additionally used the value of fK and the phenomenological data on the η → 3π decay
rate. All units, except dimensionless quantities δM, a, ½Λ� ¼ GeV, and ½GS;V � ¼ GeV−2, are given in MeV.

Λ GS GV mu md ms M0 −hq̄qi1=30 Mu Md Ms F fπ fK δM a

1.1 6.6 7.4 2.6 4.6 84 274 275 283 290 567 90.5 92.2 111 0.67 3.50
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For the mass term in Eq. (1) we find

−Lm
ϕ2 ¼

X
i¼u;d;s

MimiðϕR
i Þ2

4GSf2i
¼ 1

2

X
a¼0;3;8

ϕR
aM2

1abϕ
R
b ; ð6Þ

where M2
1 is a symmetric matrix with the elements

ðM2
1Þ00 ¼

1

3GS
ðu2u þ u2d þ u2sÞ;

ðM2
1Þ88 ¼

1

6GS
ðu2u þ u2d þ 4u2sÞ;

ðM2
1Þ33 ¼

1

2GS
ðu2u þ u2dÞ;

ðM2
1Þ08 ¼

1

3
ffiffiffi
2

p
GS

ðu2u þ u2d − 2u2sÞ;

ðM2
1Þ03 ¼

1ffiffiffi
6

p
GS

ðu2u − u2dÞ;

ðM2
1Þ38 ¼

1

2
ffiffiffi
3

p
GS

ðu2u − u2dÞ: ð7Þ

Here and below, for the convenience of writing formulas,
we use the notation

Mimi

ðfiÞn
≡ uni : ð8Þ

Now it is necessary to take into account two important
points—the Uð1ÞA anomaly and the violation of the OZI
rule—both explained within the 1=Nc expansion [32–37].
The Uð1ÞA anomaly contributes to pseudoscalar masses
given by Eqs. (7) already at leading order [notice that we
count mi to be of order Oð1=NcÞ]. The OZI-violating
interactions are responsible for the 1=Nc correction to the
leading order result. The Lagrangians corresponding to
these processes have the form of the product of two traces.
At the quark-gluon level, such a contribution comes from
diagrams with quark loops coupled through the pure gluon
exchange.
The Lagrangian breaking the Uð1ÞA symmetry was

obtained in [37–40]. Using this result, we set

LUð1Þ ¼
λU
48

½trðlnU − lnU†Þ�2 ¼ −
λU
2
ϕ2
0; ð9Þ

where U ¼ eiϕ, and ϕ ¼ P
r ϕrλr, r ¼ 0; 1;…; 8, the

matrix λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
and λ1;…; λ8 are the eight Gell-

Mann matrices of SUð3Þ. The dimensional constant
λU ¼ OðN0

cÞ is the topological susceptibility of the purely
gluonic theory, ½λU� ¼ M4.
This Lagrangian implies the following contributions to

the matrix elements of the η0-η-π0 mass matrix

ðM2
2Þ00 ¼

λU
f20

;

ðM2
2Þ08 ¼

ffiffiffi
2

p
λU

3f0

�
1

f3
−

1

fs

�
;

ðM2
2Þ03 ¼

λUffiffiffi
6

p
f0

�
1

fu
−

1

fd

�
; ð10Þ

where the couplings f0 and f3 are given in Eqs. (A14).
Notice that, because of the Eq. (A13), an additional

mixing is induced between the rescaled neutral compo-
nents, which is associated with violations of the isospin and
SUð3Þf symmetries beyond the leading order. Here only
the terms which are responsible for leading and next-to-
leading order contributions (in 1=Nc counting) are retained.
The Lagrangian violating the OZI rule has the form [6]

LOZI ¼
iλZffiffiffi
6

p trðϕÞtr½χðU† −UÞ�; ð11Þ

where λZ ¼ OðN0
cÞ is a dimensional constant ½λZ� ¼ M2

and χ is given by the diagonal matrix

χ ¼ 1

GS
diagðu2u; u2d; u2sÞ: ð12Þ

As we will see, the counting rule λZ ∼ N0
c leads to a

coherent picture for the masses and decay constants of the
pseudoscalar nonet.
The quadratic part of the Lagrangian (11) is

LOZI →
2λZ
GS

ϕ0

X
i¼u;d;s

u2iϕi ð13Þ

and contributes only at next to leading order 1=N2
c in the

matrix elements

ðM2
3Þ00 ¼ −

4
ffiffiffi
2

p
λZffiffiffi

3
p

GSf0

X
i¼u;d;s

u3i ;

ðM2
3Þ08 ¼ −

2λZffiffiffi
3

p
GSf0

ðu3u þ u3d − 2u3sÞ;

ðM2
3Þ03 ¼ −

2λZ
GSf0

ðu3u − u3dÞ; ð14Þ

which interfere with the next-to-leading order contribution
of the gluon anomaly.

III. DECAY CONSTANTS f i

Our next task is to isolate the leading order contribution
together with the first 1=Nc correction to it in the formulas
above. Here we realize this plan for the decay couplings of
neutral states
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fi ¼
ffiffiffiffiffiffiffiffiffi
κAii
4GV

r
: ð15Þ

For that we need the nontrivial solution of the gap equation
MiðmiÞ. The latter, in the considered approximation, can be
written as a sum [3]

MiðmiÞ ¼ M0 þM0ð0Þmi þOðm2
i Þ; ð16Þ

where M0 is the mass of the constituent quark in the chiral
limit mi → 0, and

M0ð0Þ ¼ π2

NcGSM2
0J1ðM0Þ

≡ a: ð17Þ

Then, from Eq. (15), Eqs. (A14) and (A10) we find

f0 ¼ F

�
1þ ð2m̂þmsÞ

a − δM
6M0

�
¼ F00;

f8 ¼ F

�
1þ ðm̂þ 2msÞ

a − δM
6M0

�
¼ F88;

f3 ¼ F

�
1þ m̂

a − δM
2M0

�
¼ fπ ¼ F33; ð18Þ

where m̂ ¼ ðmu þmdÞ=2 and

a − δM ¼ 2að1 − κA0Þ
�
1 −

Λ4J1ðM0Þ−1
ðΛ2 þM2

0Þ2
�
: ð19Þ

Here F and κA0 are the values of the pion decay constant fπ
and κAii at mi ¼ 0.
Further, according to Leutwyler [30], 1=NcχPT provides

the relation among the decay constants:

f28 ¼
4

3
f2K −

1

3
f2π; ð20Þ

which is valid to first nonleading order. It can easily be
verified that, on using Eq. (18) and expressions for the
kaons decay couplings obtained in [3]

fK ≡ fK� þ fK0

2
¼ F

�
1þ ðm̂þmsÞ

a − δM
4M0

�
; ð21Þ

relation (20) is also satisfied in our approach.
The other relation which is a direct consequence of the

approach developed here is

f20 ¼
2

3
f2K þ 1

3
f2π: ð22Þ

This result is known from [27], where the authors used a
different method to obtain it.

For the constants f0 and f8, in addition to the above
quadratic relations, one can establish the following linear
relations with the constants fπ and fK

f0 ¼
1

3
ð2fK þ fπÞ; f8 ¼

1

3
ð4fK − fπÞ: ð23Þ

In contrast to the formulas (20) and (22), there are no
higher-order terms in these relations which must be
systematically discarded.
The nondiagonal elements of the matrix Fab in the

considered approximation are

F38 ¼
Fðmu −mdÞ
4

ffiffiffi
3

p
M0

ða − δMÞ ¼ −
1ffiffiffi
3

p ðfK0 − fK�Þ;

F03 ¼
Fðmu −mdÞ
2

ffiffiffi
6

p
M0

ða − δMÞ ¼ −
ffiffiffi
2

3

r
ðfK0 − fK�Þ;

F08 ¼
Fðm̂ −msÞ
3

ffiffiffi
2

p
M0

ða − δMÞ ¼ −
2

ffiffiffi
2

p

3
ðfK − fπÞ: ð24Þ

They are negative. The first two are associated with the
isospin symmetry breaking, and the last one with the
violation of SUð3Þ symmetry: F08=F03 ¼ 2R=

ffiffiffi
3

p
, where

R ¼ ðms − m̂Þ=ðmd −muÞ.

IV. MASSES AND MIXING ANGLES

Let us now consider meson mass relations. For that
we expand the elements of the resulting mass matrix
M2 ¼ P

i¼1;2;3 M
2
i [see Eqs. (7), (10), and (14)] in powers

of 1=Nc retaining only the first two terms.

M2
ab ¼ μ2ab þ Δμ2ab þOð1=N3

cÞ: ð25Þ

The leading 1=Nc-order result is

μ200 ¼
2

3
B0ð2m̂þmsÞ þ λ2η;

μ288 ¼
2

3
B0ðm̂þ 2msÞ;

μ233 ¼ 2B0m̂ ¼ μ̄2
π� ;

μ208 ¼ −2
ffiffiffi
2

p

3
B0ðms − m̂Þ;

μ203 ¼ −
ffiffiffi
2

3

r
B0ðmd −muÞ;

μ238 ¼ −
1ffiffiffi
3

p B0ðmd −muÞ; ð26Þ

where λ2η ≡ λU=F2, and

B0 ¼
2GVM0

GSκA0
¼ M0

2GSF2
¼ −

hq̄qi0
F2

: ð27Þ

1=Nc NAMBU–JONA-LASINIO MODEL: π0, … PHYS. REV. D 108, 036012 (2023)
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It coincides with the formulas obtained by Leutwyler [6],
but in the case under consideration, all parameters (except
for λU) are related to the main parameters of the four-quark
dynamics.
It is clear from (26), that mixing of ϕR

3 with ϕR
0 and ϕR

8 is
due to the breaking of isospin symmetry. In the first order in
the mass difference md −mu, this mixing is removed by
rotating to small angles ϵ0 and ϵ, respectively. The ϕR

0 -ϕ
R
8

mixing is due to the breaking of SUð3Þ symmetry and can
be removed by rotating to the angle θ. With an accuracy to
the first order in the breaking of isospin symmetry, the
transformation of the neutral components to the physical
π0, η, and η0 states has the form

ϕR
0 ¼ π0ðϵ0 cos θ − ϵ sin θÞ − η sin θ þ η0 cos θ;

ϕR
8 ¼ π0ðϵ cos θ þ ϵ0 sin θÞ þ η cos θ þ η0 sin θ;

ϕR
3 ¼ π0 − ϵη − ϵ0η0: ð28Þ

This orthogonal transformation diagonalizes the mass
matrix M2, giving the eigenvalues (the mass squares)
and eigenvectors of physical states (for more details see
Appendix B).
The result of the diagonalization of the mass-matrix (26)

is well known: The predicted mass of the η meson mη ¼
494 MeV is much smaller than its phenomenological value
mη ¼ 548 MeV and the angle θ is θ ≃ −20°. The numerical
values of the parameters used are given in Table II [see
set (a)].
Recall that the difference between the masses of the

charged and neutral pions is due primarily to the electro-
magnetic interaction. The contribution of the strong inter-
action is proportional to ðmd −muÞ2 and is thereby
negligibly small. The model estimate is

m2
π0

¼ m̄2
π� þ B0

2M0

ðmd −muÞ2δM ≃ m̄2
π� : ð29Þ

Here, the overline indicates that the masses were obtained
without taking into account electromagnetic corrections.
Now, we do the next step and calculate the first correction

Δμ2ab to the leading term. This correction includes the
contributions from Eqs. (7), (10), and (14). Note that when
calculating these corrections, we systematically neglect the

terms ðmd −muÞ2, replacing, for example, the sum m2
u þ

m2
d ¼ 2m̂2 þ ðmd −muÞ2=2 only by its first term. This is

also in agreement with the accuracy with which the rotation
matrix (28) is defined. As a result, we find

Δμ200 ¼
2B0

3

�
ð2m̂2 þm2

sÞ
δM
M0

− 2ΔNð2m̂þmsÞ
�
;

Δμ208 ¼
2

ffiffiffi
2

p

3
B0ðms − m̂Þ

�
ΔN − ðms þ m̂Þ δM

M0

�
;

Δμ288 ¼
2B0

3M0

ðm̂2 þ 2m2
sÞδM;

Δμ233 ¼
2B0

M0

m̂2δM;

Δμ203 ¼
ffiffiffi
2

3

r
B0ðmd −muÞ

�
ΔN − 2m̂

δM
M0

�
;

Δμ238 ¼ −
1ffiffiffi
3

p B0

M0

ðm2
d −m2

uÞδM; ð30Þ

where

ΔN ≡ 2
ffiffiffi
6

p λZ
F2

þ λUGS
a − δM
2M2

0

: ð31Þ

Here it is appropriate to make a few remarks about
formula (30). Let us first comment on the origin of different
contributions. Corrections caused by Eq. (7) are the terms
that remain after we putΔN ¼ 0. In fact, they coincide up to
a common factor with the known result of 1=NcχPT [15].
The correspondence between factors is

δM
M0

↔ 16
B0

F2
ð2Lr

8 − Lr
5Þ: ð32Þ

Next, the corrections proportional to λU in (30) are
related with the Uð1ÞA anomaly: The corresponding con-
tribution to Δμ200 arises due to the NLO correction to the
coupling f0 in (10). The other two contributions to Δμ208
and Δμ203 are the result of an admixture of rescaled neutral
octet components in the singlet field ϕ0 described by the
Eq. (A13). Both account for the symmetry breaking
corrections due to the Uð1ÞA anomaly. Such corrections
interfere with the OZI violating contributions of
Lagrangian (11) and, as a result, the effective coupling

TABLE II. In the first row, set (a), we show the leading order result for mixing angles θ, ϵ and ϵ0. Quark masses are
given in MeV, θ in degrees, small angles ϵ and ϵ0 in radians. The numerical value of λ2η (in GeV2) is extracted from
the experimental value of mη0 . Set (b) describes a fit which takes into account the first 1=Nc-correction. In this case
the light quark masses are given up to NLO corrections included. The two input parameters λ2η and ΔN , are fixed by
the phenomenological masses of mη, mη0 .

Set mu md ms λ2η ΔN θ θ0 Δθ ϵ ϵ0 Δϵ ϵ0 ϵ00 Δϵ0

(a) 2.6 4.6 93 0.671 −19.7° 0.0187 0.0033
(b) 2.6 4.6 84 0.805 0.36 −15.76° −14.97° −0.79° 0.0114 0.0177 −0.0063 0.0021 0.0033 −0.0012
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constant ΔN arises. If we compare the formulas for Δμ208,
Δμ203 with the analogous expressions obtained in [15], one
can establish a correspondence

ΔN ↔ −ρ=2 ¼ Λ1=2 − Λ2 þ 4L5M2
0=F

2
0; ð33Þ

where on the right-hand sidewe have retained the notation of
work [15], so one should not confuse the notationM0 (singlet
mass) adopted therewith the constituent quarkmassM0 used
here. The only difference between the NJL approach con-
sidered here and the1=NcχPT is the absence of theNLO term
−M2

0Λ1 in our expression for Δμ200. Probably it is this
circumstance that leads to different estimates for the mixing
angle θ in the compared approaches.
The representation of the mass matrix M2 as the sum of

the leading contribution and the 1=Nc correction to it
implies a similar representation for all parameters of the
transformation that is used to diagonalize the mass matrix:
θ ¼ θ0 þ Δθ, ϵ ¼ ϵ0 þ Δϵ, ϵ0 ¼ ϵ00 þ Δϵ0. Accordingly,
the eigenvalues obtained should have a similar form (see
Appendix B for details).
To obtain numerical values, we fix the main parameters

of the model as it was in the case of the charged particles
(see the Table I). Additionally, the phenomenological
values of the masses of η and η0 mesons are used to fix
the topological susceptibility λU and the OZI-violating
coupling constant λZ. As a result, we obtain the values of
the mixing angles θ, ϵ and ϵ0 (see set (b) in Table II).
Numerically, the η − η0 mixing angle θ ¼ −15.8° pre-

dicted by the model is consistent with a recent result from
lattice QCD θ ¼ ð−15.1þ5.9

−6 Þ° [41], and phenomenology:
(a) θ ¼ ð−15.4� 1.0Þ° [27]; (b) θ ¼ ð−16.9� 1.7Þ° (this
value was deduced from the rich set of J=ψ decays into
a vector and a pseudoscalar meson) [42]; (c) θ ¼
ð−15.5� 1.3Þ° (this is a result of thorough analysis of
many different decay channels in which the authors took
into account the flavor SUð3Þ-breaking corrections due to
constituent quark mass differences) [43].
It should be also noted that the angle θ obtained here

differs noticeably from the estimate θ ≃ −10° worked out in
the framework of 1=NcχPT [15]. We have already pointed
out the reason for this discrepancy above. Here we note that
the 1=Nc NJL model does not lead to a huge effect from
taking into account NLO contributions observed in [15]. As
one can see from the Table II, the LO result θ0 receives only
a 5% NLO correction.
Numerical estimates show that the mixing angles ϵ and ϵ0

are substantially modified at NLO. The corrections account
for around 35% of the LO result. In particular, the mixing
angle ϵ is found to be ϵ ¼ 0.65° while the LO result is
ϵ0 ¼ 1.0°. This result can be compared with the estimate
ϵ ¼ 0.56° that arises in χPT when only octet degrees of
freedom are included [44]. The similar behavior is found
for the angle ϵ0 ¼ 0.12° which is equal ϵ00 ¼ 0.19° at LO.

Since the NJL model in the LO reproduces analytically
the mixing angles ϵ and ϵ0 known from [7]

ϵ0 ¼ ϵ̄0 cos θ0
cos θ0 −

ffiffiffi
2

p
sin θ0

cos θ0 þ sin θ0=
ffiffiffi
2

p ;

ϵ00 ¼ ϵ̄0 sin θ0
sin θ0 þ

ffiffiffi
2

p
cos θ0

sin θ0 − cos θ0=
ffiffiffi
2

p ; ð34Þ

where the angle ϵ̄0 has been obtained by Gross, Treiman,
and Wilczek [2] disregarding the η − η0 mixing

ϵ̄0 ¼
ffiffiffi
3

p

4

md −mu

ms − m̂
¼ 0.011; ð35Þ

we observe the known effect: The mixing with the η0
increases significantly the value of the angle ϵ0 compared to
ϵ̄0. The LO estimate ϵ0 ¼ 0.018we found is consistent with
the estimates ϵ ≃ 2ϵ̄0, for θ0 ≃ −22° made in [7], and ϵ ¼
0.017� 0.002 in [28], both obtained under the same
assumptions: The use of Daschen’s theorem and η − η0
mixing. This is frustrating because ϵ enters the amplitude
η → 3π, making the width unacceptably large. This effect
was considered in [7], where it was indicated that the
problem lies in the accuracy of the LO result. Deviations
of order 20–30% are to be expected and this does not
indicate that the 1=Nc expansion fails. It was claimed
that the effect can be resolved by taking into account the
higher order corrections. Our calculations show that this is
exactly what happens. The 1=Nc correction Δϵ leads to
complete agreement of our result ϵ ¼ 0.011, both with the
result of the current algebra and with the result of χPT.
From this we conclude that the LO effect of η − η0
mixing on the angle ϵ is completely offset by the NLO
corrections.
Equation (31) must be discussed in a little more detail due

to its relation to the low energy constants of 1=NcχPT given
by Eq. (33). Recall that ΔN is treated as a small parameter,
because it represents a term of order 1=Nc. Indeed, it is
reasonably small, our estimate is ΔN¼−0.46þ0.82¼0.36.
It can be seen that the contribution of the gluon anomaly (the
second term) differs in sign from the OZI-rule violating
contribution (the first term) and dominates. This way the
gluon anomaly suppresses the effects of SUð3Þ and isospin
symmetry breaking in Δμ208 and Δμ203. Of course, the
opposite can also be said: the OZI rule violating interaction
(11) reduces the effect of the gluon anomaly in these
channels.
Further, since the following relations hold

2
ffiffiffi
6

p λZ
F2

↔
Λ1

2
− Λ2;

λUGS
a − δM
2M2

0

↔ 4L5

M2
0

F2
0

; ð36Þ
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we obtain the following estimates for the couplings on the
right-hand side of these relations, namely, Λ1=2 − Λ2 ¼
−0.46 and 4L5M2

0=F
2
0 ¼ 0.82. These values are noticeably

lower than the estimates obtained in [15], where, for
instance, set (NLO No. 1) gives the values −0.65 and
1.12 correspondingly. In this case, however, it would
be naive to expect complete agreement between the
approaches, since the Λ1 is also responsible for NLO
correction to Δμ200 in 1=NcχPT, which, as we have already
noted above, is not the case in the 1=Nc NJL model.

V. WEAK-DECAY COUPLING CONSTANTS
IN THE OCTET-SINGLET BASIS

To find the decay constants of pseudoscalars we should
relate the fields ϕa (a ¼ 0, 8, 3) to the physical eigenstates
P ¼ η0; η; π0. As we have already learned, a transition to the
physical fields P is carried out in two steps

ϕ⟶
Ff

ϕR ⟶
Uθ

P: ð37Þ

At the first step, the dimensionless field ϕ ¼ P
ϕaλa

arising in the effective meson Lagrangian through the
exponential parametrization U ¼ ξ2 ¼ expðiϕÞ is replaced
by the dimensional variable ϕR given in the same basis [see
Eq. (A7)]. The symmetric matrix Ff (A9) is worked out in
such a way that the kinetic part of the free Lagrangian takes
the standard form. Then, at the second step, diagonalizing
the mass part of the free Lagrangian by the rotation Uθ [for
definition of matrix Uθ see Eq. (B2)], we come to the
physical fields P ¼ η0; η; π0.
The first step of the described procedure generalizes the

standard construction of the effective Lagrangian of pseudo
Goldstone fields to the case of explicitly broken flavor
symmetry. Here [7], the pseudo Goldstone field ϕ is also
represented by the exponent U ¼ expðiϕÞ, and the pion
decay constant F appears in the kinetic part of the effective
Lagrangian

1

4
F2trð∂μU∂

μU†Þ

to make the field ϕ dimensional by redefining Fϕ ¼ ϕR.
In the NJL model the factor at the kinetic part of the

Lagrangian arises from a direct calculation of the quark
one-loop diagrams. In the case of broken flavor symmetry
mu ≠ md ≠ ms, the place of the factor F is taken by the
matrix Ff. As a result, to redefine the field ϕ, it is necessary
to use the matrix Ff, i.e., Ffϕ ¼ ϕR, and not a simple
factor F. Obviously, in the chiral limit Ff is a diagonal
matrix Ff ¼ Fdiagð1; 1; 1Þ.
After these general remarks, we find a matrix containing

the constants Fa
P in their projection onto the octet-singlet

basis a ¼ 0, 8, 3. This can be achieved by using the product
of two transformations UθFf. As a result we have

P ¼
X

a¼0;8;3

Fa
Pϕa ¼

0
BB@

F0
η0 F8

η0 F3
η0

F0
η F8

η F3
η

F0
π0

F8
π0

F3
π0

1
CCA
0
B@

ϕ0

ϕ8

ϕ3

1
CA; ð38Þ

where ½Fa
P� ¼ M, and

F0
η0 ¼ F00 cosθþF08 sinθ;

F8
η0 ¼ F80 cosθþF88 sinθ;

F3
η0 ¼ F30 cosθþF38 sinθ− ϵ0F33;

F0
η ¼ −F00 sinθþF08 cosθ;

F8
η ¼ −F80 sinθþF88 cosθ;

F3
η ¼ −F30 sinθþF38 cosθ− ϵF33;

F0
π0
¼ F03þF00ðϵ0 cosθ− ϵ sinθÞþF08ðϵ0 sinθþ ϵcosθÞ;

F8
π0
¼ F83þF80ðϵ0 cosθ− ϵ sinθÞþF88ðϵ0 sinθþ ϵcosθÞ;

F3
π0
¼ F33: ð39Þ

Some useful relations between these constants are collected
in Appendix C.
To lowest order in 1=Nc, we have F08 ¼ F03 ¼ F38 ¼ 0

and then in (38) we arrive to the standard pattern with one
mixing angle θ.
In the formulas above, it is necessary to take into account

only the terms that do not exceed the accuracy of our
calculations here. Hence, expanding in powers of 1=Nc and
retaining only the first two terms, we find

F0
η0 ¼f0cosθ0−FΔθþ sinθ0;

F0
η¼−f0 sinθ0−FΔθþcosθ0;

F8
η0 ¼f8 sinθ0þFΔθ−cosθ0;

F8
η¼f8cosθ0−FΔθ− sinθ0;

F3
η0 ¼−

fK0 −fK�ffiffiffi
3

p ðsinθ0þ
ffiffiffi
2

p
cosθ0Þ−ϵ00fπ−Δϵ0F;

F3
η¼−

fK0 −fK�ffiffiffi
3

p ðcosθ0−
ffiffiffi
2

p
sinθ0Þ−ϵ0fπ−ΔϵF;

F0
π0
¼−

ffiffiffi
2

3

r
ðfK0 −fK�Þþf0ðϵ00cosθ0−ϵ0 sinθ0Þ

−F½Δθþðϵ00 sinθ0þϵ0cosθ0Þ−Δϵ0cosθ0þΔϵsinθ0�;

F8
π0
¼−

ffiffiffi
1

3

r
ðfK0 −fK�Þþf8ðϵ00 sinθ0þϵ0cosθ0Þ

þF½Δθ−ðϵ00cosθ0−ϵ0 sinθ0ÞþΔϵ0 sinθ0þΔϵcosθ0�;
F3
π0
¼fπ; ð40Þ

where
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Δθ� ≡ Δθ � 2
ffiffiffi
2

p

3F
ðfK − fπÞ: ð41Þ

To obtain the numerical values of weak decay constants
we use parameter set (b) given in Table II. As a result,
we find

Fa
P ¼ F

0
B@

1.16 −0.54 −0.0054
0.12 1.20 −0.016

−0.001 0.011 1.02

1
CA: ð42Þ

The numerical estimations show that the η0-meson contains
a noticeable (∼50%) admixture of the octet component ϕ8.
On the contrary, the η meson is nearly a pure octet: The
admixture of ϕ0 is an order of magnitude lower than ϕ8.
Note, that the analysis done in the work [30] led to the
same conclusion. The neutral pion is a pure ϕ3-state, the
admixture of which in the η meson is three times greater
than in the η0 state.
We also get the following estimates for ratios

f8
fπ

¼ 1þ 4

3F
ðfK − fπÞ ¼ 1.28; ð43Þ

f0
fπ

¼ 1þ 2

3F
ðfK − fπÞ ¼ 1.14; ð44Þ

which perfectly agrees with the values f8 ¼ 1.27ð2Þfπ and
f0 ¼ 1.14ð5Þfπ obtained exclusively on the transition form
factors of η and η0, reanalyzed in view of the BESIII
observation of the Dalitz decay η0 → γeþe− in both space-
and timelike regions [45].
The 1=Nc-corrections to the leading order result allows

one to distinguish two mixing angles ϑ8 and ϑ0, which are
often used in the phenomenological analysis of η-η0
data [27]. Indeed, from Eq. (40) one infers

F8
η0 ¼ f8

�
sin θ0 þ

F
f8

Δθ− cos θ0
�

¼ f8 sinðθ0 þ FΔθ−=f8Þ≡ f8 sin ϑ8;

F0
η ¼ −f0

�
sin θ0 þ

F
f0

Δθþ cos θ0

�
¼ −f0 sinðθ0 þ FΔθþ=f0Þ≡ −f0 sinϑ0: ð45Þ

That gives ϑ8 ¼ θ0 þ FΔθ−=f8 ¼ −24.2°, and ϑ0 ¼
θ0 þ FΔθþ=f0 ¼ −6.0°. Further, if we restrict ourselves
only to the first correction, we get

ϑ8 ¼ θ0 þ Δθ− ¼ −26.9°;

ϑ0 ¼ θ0 þ Δθþ ¼ −4.6°;

ϑ0 − ϑ8 ¼
4

ffiffiffi
2

p

3F
ðfK − fπÞ: ð46Þ

This result agrees with a low energy theorem [30], which
states that the difference between the two angles ϑ0 − ϑ8 is
determined by fK − fπ. The numerical values of the angles
again can be compared with the result of [45]: ϑ8 ¼
−21.2ð1.9Þ° and ϑ0 ¼ −6.9ð2.4Þ°.

VI. PHYSICAL CONTENT OF ϕa

Let us establish a connection between the octet-singlet
components ϕ0, ϕ8, and ϕ3 and the physical eigenstates
P ¼ η0; η; π0. For that one needs to know the matrix FP

a in
the inverse to the (38) relation

ϕa ¼
X

P¼η0;η;π0
FP

aP ¼

0
B@

F η0
0 F η

0 F π0
0

F η0
8 F η

8 F π0
8

F η0
3 F η

3 F π0
3

1
CCA
0
B@

η0

η

π0

1
CA; ð47Þ

Its dimension is ½FP
a � ¼ M−1. The entries of the matrix

FP
a ¼F1=fU−1

θ can be found with the use of formulas (A13)
and (28).
It is not difficult to establish that the matrix elements FP

a

have the form (39), where one should substitute Fa
P → FP

a ,
and Ff → F1=f. Then, expanding the result in the 1=Nc

series, we find to first nonleading order

F η0
0 ¼ 1

f0
cosθ0 −

Δθ−
F

sinθ0;

F η
0 ¼ −

1

f0
sinθ0 −

Δθ−
F

cosθ0;

F η0
8 ¼ 1

f8
sinθ0þ

Δθþ
F

cosθ0;

F η
8 ¼

1

f8
cosθ0 −

Δθþ
F

sinθ0;

F η0
3 ¼ fK0 − fK�ffiffiffi

3
p

F2
ð

ffiffiffi
2

p
cosθ0þ sinθ0Þ−

ϵ00
f3

−
Δϵ0

F
;

F η
3 ¼

fK0 − fK�ffiffiffi
3

p
F2

ðcosθ0 −
ffiffiffi
2

p
sinθ0Þ−

ϵ0
f3

−
Δϵ
F

;

F π0
0 ¼

ffiffiffi
2

3

r
fK0 − fK�

F2
þ 1

f0
ðϵ00 cosθ0 − ϵ0 sinθ0Þ

−
Δθ−
F

ðϵ00 sinθ0þ ϵ0 cosθ0Þþ
Δϵ0

F
cosθ0 −

Δϵ
F

sinθ0;

F π0
8 ¼ fK0 − fK�ffiffiffi

3
p

F2
þ 1

f8
ðϵ00 sinθ0 þ ϵ0 cosθ0Þ

þΔθþ
F

ðϵ00 cosθ0 − ϵ0 sinθ0Þþ
Δϵ0

F
sinθ0þ

Δϵ
F

cosθ0;

F π0
3 ¼ f−1π ; ð48Þ

where
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1

f0
¼ 1

F

�
2 −

fπ þ 2fK
3F

�
;

1

f8
¼ 1

F

�
2 −

4fK − fπ
3F

�
;

1

f3
¼ 1

F

�
2 −

fπ
F

�
: ð49Þ

The elements of matrix FP
a numerically are

FP
a ¼ 1

F

0
B@

0.76 0.42 0.011

−0.0074 0.73 0.01

0.0012 −0.0071 0.98

1
CA: ð50Þ

Thus, we see that the singlet component, in addition to the
leading contribution of η0, has a noticeable admixture of η.
The latter dominates in the octet component ϕ8, while the
neutral pion dominates in ϕ3.
Since matrices Fa

P and FP
a are mutually inverse, one

would expect that the numerical result (50) should be
reasonably close (up to the approximations made) to the
result obtained by the direct inversion of matrix (42). This

is indeed the case for all elements of matrix (50) exceptF η0
8 .

The latter turns out to be an order of magnitude smaller than

such a qualitative estimate gives: F η0
8 ¼ −0.082=F. Here

there is a significant compensation between two terms:

F η0
8 ¼ ð0.175 − 0.182Þ=F. The first term is the SUð3Þ

breaking contribution with cosine, the second one is
ðF=f8Þ sin θ0. In the limit of exact SUð3Þ symmetry this
term gives −0.258. The SUð3Þ-breaking correction in f8
makes it to be equal −0.182. This combined effect of
mixing angle θ0 and SUð3Þ breaking pushes η0 out of
the octet.

VII. THE STRANGE-NONSTRANGE
MIXING SCHEME

Instead of a flavor octet-singlet basis, one could choose a
scheme with a mixture of strange and nonstrange compo-
nents. It is also often used in the literature (the so-called
Feldmann-Kroll-Stech scheme [27]). Therefore, we will
briefly focus on it here. To do this, just as we did in
Appendix A, let us represent the field ϕR by its components
in the orthogonal basis λα ¼ ðλS; λq; λ3Þ

ϕR ¼
X

α¼S;q;3

ϕR
α λα; ð51Þ

where trðλαλβÞ ¼ 2δαβ, and

λq ¼
1ffiffiffi
3

p ð
ffiffiffi
2

p
λ0 þ λ8Þ;

λS ¼
ffiffiffi
2

p
λs ¼

1ffiffiffi
3

p ðλ0 −
ffiffiffi
2

p
λ8Þ: ð52Þ

It follows then

ϕR
α ¼ 1

2

X
a¼0;8;3

ϕR
a trðλaλαÞ ¼

X
a¼0;8;3

U−1
αaðθid; 0; 0ÞϕR

a ; ð53Þ

or

ϕ̃R ≡
0
B@

ϕR
S

ϕR
q

ϕR
3

1
CA¼

0
B@

cosθid − sinθid 0

sinθid cosθid 0

0 0 1

1
CA
0
B@

ϕR
0

ϕR
8

ϕR
3

1
CA; ð54Þ

where the ideal mixing angle θid ¼ arctan
ffiffiffi
2

p
≃ 54.7°.

Now, it is easy to establish from (28) that the physical
states P ¼ ðη0; η; π0Þ are the linear combinations of states
ϕ̃R ¼ ðϕR

S ;ϕ
R
q ;ϕR

3 Þ, namely

P ¼ Uðθ; ϵ; ϵ0ÞUðθid; 0; 0Þϕ̃R ¼ Uðφ; ϵ; ϵ0Þϕ̃R; ð55Þ

where the angle φ ¼ θ þ θid, or numerically φ ¼ 39.0°,
and the matrix U is defined in (B2). This result agrees with
phenomenological estimates φ ¼ 39.3°� 1.0° in [27],
and lattice data obtained by ETM Collaboration [46]
φ ¼ 38.8°� 2.2°� 2.4°, where the second errors refer to
uncertainties induced by chiral extrapolations to the physi-
cal point. The anomaly sum rule approach to the transition
form factors with a systematic account of the η-η0 mixing
and quark-hadron duality gives a bit smaller result:
φ ¼ ð38.1� 0.5Þ° [47].

VIII. DEPENDENCE ON THE
REGULARIZATION SCHEME

The results presented above are based on a well-defined
regularization scheme, proper-time regularization. In this
case, two integrals with quadratic J0ðMiÞ and logarithmic
J1ðMiÞ divergences are regulated by subtracting off suit-
able counterterms

JαðMiÞ ¼
Z

∞

0

dt
t2−α

ρt;Λe−tM
2
i ð56Þ

at the scale Λ, ρt;Λ ¼ 1 − ð1þ tΛ2Þe−tΛ2

. The choice of
the regularizing kernel is made in such a way that the
expressions for regularized integrals coincide with the
one obtained in the covariant four-dimensional Euclidean
regularization scheme. This implies, in particular, the
following form of the gap equation

fðMi;ΛÞ≡Mi

�
1 −

NcGS

2π2
J0ðMiÞ

�
¼ mi: ð57Þ

Let us recall that the choice of regularization essentially
determines the NJL model. A reasonable regularization
must satisfy two main criteria: the minimum effective
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potential condition should lead to a gap equation, and the
vacuum corresponding to the nontrivial solution should
possess the Goldstone modes. It is also desirable that the
regularization does not break the symmetry of the model.
All these requirements are met by the Fock-Schwinger
method used here. It is one of the standard regularization
prescriptions often used in the literature [48,49].
The gap equation for mi ¼ 0 and a fixed value of GS,

GSΛ2 >
2π2

Nc
¼ 6.58; ð58Þ

has a solution M0ðΛÞ that changes drastically with Λ.
Figure 1 shows three curves corresponding to the values of
Λ deviating from the value chosen in our work Λ ¼
1.1 GeV by 10%. Such behavior is associated with the
original quadratic divergence of the integral J0ðM0Þ, and is
typical for any of the regularization schemes commonly
used in the NJL model. In particular, one can obtain that
M0ð1.0 GeVÞ ¼ 19.7 MeV, M0ð1.1 GeVÞ ¼ 274 MeV,
M0ð1.2 GeVÞ ¼ 468 MeV for GS ¼ 6.6 GeV−2. It shows
that M0 changes a lot with Λ, and it does make sense to
consider only 1% (or less) deviations in the value ofΛ. This
case is shown in Fig. 2. It can be seen that the correspond-
ing solutions of the gap equation differ only marginally

Λ ¼ 1.10� 0.01 GeV; M0 ¼ 274� 20 MeV; ð59Þ
i.e., a 1% change in the value of the cutoff Λ leads to about
7% changes in the value of M0. This can be a source of
theoretical uncertainties associated with the regularization
scheme used.
Since all other vacuum characteristics are expressed in

terms of these two parameters (and GV ¼ 7.4 GeV−2), it is
easy to establish that

a ¼ 3.50−0.28þ0.33; δM ¼ 0.67þ0.10
−0.12 ;

F ¼ 90.54þ2.82
−3.10 MeV; jhq̄qi1=30 j ¼ 275þ6

−7 MeV: ð60Þ

Note that a 1% change in the value of Λ leads to a 3%
change in the value of the constant F, i.e., the physical
constant fπ coincides with F within the error. Indeed, our
estimates give

fπ ¼ 92.22þ2.54
−2.74 : ð61Þ

It should be noted that current knowledge about the constant
fπ ¼ 92.277ð95Þ MeV [50] imposes such a strict bounda-
ries on the range of values admissible for the cutoff Λ (or
alternatively on the coupling of four-quark interactionsGS),
that one could reach such accuracy in theNJLmodel only by
the precise tuning of Λ ¼ 1100.00þ0.55

−0.16 MeV.
It is also interesting to check how successful the NJL

model predictions are for the low-energy constants L5 and
L8 of the 1=NcχPTwhich are scale independent at the order
considered. Here the 1=Nc NJL model gives

L5 ¼
a − δM
8M2

0

GSF4 ¼ ð2.1−0.3þ0.4Þ10−3;

L8 ¼
a

16M2
0

GSF4 ¼ ð1.3 ∓ 0.1Þ10−3: ð62Þ

The values of these constants are consistent with their
phenomenological estimates made in χPT: L5 ¼
ð2.2� 0.5Þ10−3, L8 ¼ ð1.1� 0.3Þ10−3 [44], however
these values have to be redetermined using the logic of
the mixed expansion scheme adopted in the 1=NcχPT.
Such calculations were made, for example, in [15].
Neglecting the contributions of chiral logarithms, the
authors obtained the following estimates: 2L5 þL8 ¼
ð5.26� 0.01Þ10−3, 2L8 −L5 ¼ ð0.8� 0.9Þ10−5. Our result
(62) for these combinations leads to the values
2L5þL8¼ð5.47−0.73þ0.89Þ10−3, 2L8 − L5 ¼ ð0.50þ0.06

−0.09Þ10−5.
The NLO analysis of the η-η0 mixing in [51] gives
L5 ¼ ð1.86� 0.06Þ10−3, and L8 ¼ ð0.78� 0.05Þ10−3.
As pointed out in [52], L8 cannot be determined on purely

0.1 0.2 0.3 0.4 0.5 0.6
M

–0.05

0.05

0.10

0.15

0.20

0.25

0.30
f (M, Λ)

FIG. 1. The left side of the equation (57) as a function of Mi
(both in GeV) is shown for the three cutoff values: Λ ¼ 1.0 GeV,
Λ ¼ 1.1 GeV, and Λ ¼ 1.2 GeV (top down).

0.1 0.2 0.3 0.4 0.5 0.6
M

0.05

0.10

0.15

0.20

f (M, Λ)

FIG. 2. The same as in Fig. 1, but with the 1% deviation
in values of Λ, namely Λ ¼ 1.09 GeV, Λ ¼ 1.10 GeV, and
Λ ¼ 1.11 GeV (top down).
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phenomenological grounds. As a consequence, the sign of
the difference 2L8 − L5 is fixed only in the framework of a
specific model. We see that in the 1=Nc NJL model the sign
is positive

2L8 − L5 ¼
δM
8M2

0

GSF4 > 0; ð63Þ

in contrast to the estimates in [51]. It is clear that inequality
(63) is ensured by a positive value of δM ¼ 0.67 (with a
15% theoretical uncertainty).
This analysis can be extended to all the estimates we

obtained above. This will be done a little later, when we
have accumulated enough theoretical material on various
physical properties and processes involving pseudoscalar
mesons.

IX. CONCLUSIONS

We continued studying the properties of the nonet of
pseudoscalar mesons in the NJL model, where we changed
the counting rule for the masses of current quarks. In the
recent work [3] the charged states were considered, and in
this work the same tool has been applied to calculate the
main characteristics of the neutral members of the nonet.
The realistic description of neutral modes is impossible

without the use of Lagrangians responsible for breaking the
axial Uð1ÞA symmetry and OZI rule. They are well known,
so we did not set ourselves the goal of obtaining them on
the basis of corresponding multiquark interactions.
Four-quark interactions generate the kinetic part of the

free Lagrangian and make a major contribution to the
particle masses. We calculated these one-loop diagrams and
demonstrated that the singlet component ϕ0 (as well as
other two ϕ3 and ϕ8) is a superposition of three eigenvec-
tors ϕR

a , a ¼ 0, 3, 8 which diagonalize the kinetic part of
free Lagrangian in the octet-singlet basis. We have shown
that this is a direct result of explicit symmetry breaking in
the superconducting model.
Since the singlet field ϕ0 acquires a mass term due to the

gluon anomaly, the following transition to the eigenstates
ϕR
a induces contributions to the off-diagonal elements Δμ208

and Δμ203 of the mass matrix already in the next order of the
1=Nc expansion. We have shown that due to this mecha-
nism, the gluon anomaly substantially weakens the effects
of explicit chiral symmetry breaking observed in the
leading order.
It is interesting to note that this mechanism copes with

the problem that Leutwyler pointed out at the time: The
value of the π0-η mixing angle ϵ turns out to be too large if
we restrict ourselves to only the LO contribution. This will
have a catastrophic effect on the width of the η → 3π decay.
We have shown that taking into account the NLO correction
eliminates this difficulty.
The mass matrix of neutral states is diagonalized by a

rotation parameterized by three mixing angles θ, ϵ and ϵ0.

In particular, rotation through the angle θ eliminates the
η-η0 mixing. However, when considering the decay con-
stants of η and η0 mesons, one angle θ is not enough.
Therefore, a picture with two mixing angles is often used.
We have shown that NLO corrections effectively lead to a
two-angle pattern, but unfortunately could not give its full
theoretical justification.
It should be emphasized that the above results would be

more complete if calculations of electromagnetic decays of
pseudoscalar mesons were carried out. We are currently
working on this issue.
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APPENDIX A: RESCALING
OF NEUTRAL FIELDS

In this appendix we obtain some useful relations between
the neutral fields before and after rescaling.
Recall that the neutral field ϕ can be represented by its

components taking values in the algebra of the Uð3Þ group
or more specifically in the subset of the diagonal hermitian
generators λa or their linear combination

ϕ ¼
X

a¼0;8;3

ϕaλa ¼
X

i¼u;d;s

ϕiλi ðA1Þ

In what follows, we will use either a octet-singlet basis
ðλ0; λ8; λ3Þ, or the flavor one ðλu; λd; λsÞwhich are related in
a standard way

λu ¼
λ3
2
þ

ffiffiffi
2

p
λ0 þ λ8
2

ffiffiffi
3

p ¼ diagð1; 0; 0Þ;

λd ¼ −
λ3
2
þ

ffiffiffi
2

p
λ0 þ λ8
2

ffiffiffi
3

p ¼ diagð0; 1; 0Þ;

λs ¼
λ0 −

ffiffiffi
2

p
λ8ffiffiffi

6
p ¼ diagð0; 0; 1Þ: ðA2Þ

Obviously that trϕ2 ¼ 2
P

ϕ2
a ¼

P
ϕ2
i . As a consequence

we also have

ϕi ¼
X

a¼0;8;3

Oiaϕa; ϕa ¼
X

i¼u;d;s

O−1
ai ϕi; ðA3Þ

where ϕi ¼ ðϕu;ϕd;ϕsÞ, ϕa ¼ ðϕ0;ϕ8;ϕ3Þ, and
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O ¼ 1ffiffiffi
3

p

0
BB@

ffiffiffi
2

p
1

ffiffiffi
3

p
ffiffiffi
2

p
1 −

ffiffiffi
3

p
ffiffiffi
2

p
−2 0

1
CCA; O−1 ¼ 1

2
OT: ðA4Þ

It yields the property
P

a OiaOja ¼ 2δij.
The kinetic part of the free Lagrangian takes the standard

form if one rescaled the flavor components

fiϕi ¼ ϕR
i : ðA5Þ

The rescaled field ϕR can also be characterized by its
components in any of λ-matrix bases

ϕR ¼
X

i¼u;d;s

ϕR
i λi ¼

X
a¼0;8;3

ϕR
aλa: ðA6Þ

Our task here is to find out how rescaling (A5) modifies
the octet-singlet components ϕa. As we will show, in octet-
singlet components rescaling (A5) has a nondiagonal form.
Thus, we need to find the matrix F and its inverse one F−1

in the relations

ϕR
a ¼

X
b

Fabϕb; ϕa ¼
X
b

ðF−1ÞabϕR
b : ðA7Þ

Given that λi ¼
P

a Oiaλa=2, we find from the left-hand
side of Eqs. (A6) and (A3)

X
i

fiϕiλi ¼
X
i;b

fiOibϕbλi ¼
1

2

X
i;b;a

fiOibOiaϕbλa: ðA8Þ

Comparing the result with the right-hand side of Eq. (A6)
we conclude that

Fab ¼
1

2

X
i¼u;d;s

OiaOibfi: ðA9Þ

It follows then

F00 ¼
1

3
ðfu þ fd þ fsÞ;

F08 ¼ F80 ¼
1

3
ffiffiffi
2

p ðfu þ fd − 2fsÞ;

F03 ¼ F30 ¼
1ffiffiffi
6

p ðfu − fdÞ;

F88 ¼
1

6
ðfu þ fd þ 4fsÞ;

F38 ¼ F83 ¼
1

2
ffiffiffi
3

p ðfu − fdÞ;

F33 ¼
1

2
ðfu þ fdÞ: ðA10Þ

Starting from equation (A1) and acting in a similar way,
we find

X
i

ϕR
i

fi
λi ¼

X
i;b

λiOib
ϕR
b

fi
¼ 1

2

X
i;b;a

OibOia
ϕR
b

fi
λa: ðA11Þ

That gives

ðF−1Þab ¼
1

2

X
i¼u;d;s

OiaOib
1

fi
: ðA12Þ

It follows that the elements of the inverse matrix
are obtained from the formulas (A10) by replacing
fi → 1=fi. Formally, if the notation of matrix F explicitly
specifies its dependence on fi, namely Ff, then for the
inverse matrix F−1 we can use the shorthand F1=f.
In particular, the second equation in (A7) takes the form

ϕ0 ¼
ϕR
0

f0
þ
�
1

fu
−

1

fd

�
ϕR
3ffiffiffi
6

p þ
�
1

fu
þ 1

fd
−

2

fs

�
ϕR
8

3
ffiffiffi
2

p ;

ϕ8 ¼
ϕR
8

f8
þ
�
1

fu
−

1

fd

�
ϕR
3

2
ffiffiffi
3

p þ
�
1

fu
þ 1

fd
−

2

fs

�
ϕR
0

3
ffiffiffi
2

p ;

ϕ3 ¼
ϕR
3

f3
þ
�
1

fu
−

1

fd

�
ϕR
8 þ ffiffiffi

2
p

ϕR
0

2
ffiffiffi
3

p ; ðA13Þ

where the following notations are used

f−10 ¼ 1

3
ðf−1u þ f−1d þ f−1s Þ;

f−18 ¼ 1

6
ðf−1u þ f−1d þ 4f−1s Þ;

f−13 ¼ 1

2
ðf−1u þ f−1d Þ: ðA14Þ

APPENDIX B: DIAGONALIZATION OF THE
MASS MATRIX AND PHYSICAL STATES

Let us recall some useful details of the diagonalization
procedure of the mass matrix (25). For that we use the
transformation

0
B@

ϕR
0

ϕR
8

ϕR
3

1
CA ¼ U−1ðθ; ϵ; ϵ0Þ

0
B@

η0

η

π0

1
CA: ðB1Þ

where U−1 is a matrix defined by

U−1ðθ;ϵ;ϵ0Þ ¼

0
B@
cosθ −sinθ ϵ0 cosθ− ϵsinθ

sinθ cosθ ϵ0 sinθþ ϵcosθ

−ϵ0 −ϵ 1

1
CA: ðB2Þ

The matrix is an element of SOð3Þ which is parametrized
by three angles θ, ϵ, ϵ0. The first arises from the mass
difference of the strange and nonstrange quarks and breaks
SUð3Þ, i.e., in the limit of exact SUð3Þ symmetry θ → 0.
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The other two angles describe the isospin breaking effects.
They are proportional to the difference md −mu. This
factor is small, thus we systematically neglect the higher
powers of ϵ and ϵ0.
The considered orthogonal transformation diagonalizes

the mass matrix M2 if the mixing angles satisfy the
conditions

ϵ ¼ ðM2
03 sin θ −M2

38 cos θÞ=ðm2
η −m2

π0
Þ;

ϵ0 ¼ −ðM2
03 cos θ þM2

38 sin θÞ=ðm2
η0 −m2

π0
Þ;

tan 2θ ¼ 2M2
08=ðM2

00 −M2
88Þ; ðB3Þ

where the masses of neutral states are

m2
η;η0 ¼

1

2

�
M2

00 þM2
88 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

00 −M2
88Þ2 þ 4M4

08

q �
;

m2
π0

¼ M2
33: ðB4Þ

Since the mass matrix (25) is the sum of the leading
contribution and the first correction to it, then the angles
should be sought in a similar form, namely θ ¼ θ0 þ Δθ,
ϵ ¼ ϵ0 þ Δϵ, and ϵ0 ¼ ϵ00 þ Δϵ0. The angles θ0, ϵ0, and ϵ00
are of order N0

c. They are responsible for diagonalizing the
leading contribution. The extra terms Δθ, Δϵ, and Δϵ0 are
of order 1=Nc. They are responsible for diagonalizing the
mass matrix with corrections included.

tan 2θ0 ¼
2μ208

μ200 − μ288
;

Δθ ¼ 1

4
sin 4θ0

�
Δμ208
μ208

−
Δμ200 − Δμ288
μ200 − μ288

�
;

ϵ0 ¼ ðμ203 sin θ0 − μ238 cos θ0Þ=ðμ2η − μ2
π0
Þ;

Δϵ ¼ Δθ
μ203 cos θ0 þ μ238 sin θ0

μ2η − μ233

þ Δμ203 sin θ0 − Δμ238 cos θ0
μ2η − μ233

−
μ203 sin θ0 − μ238 cos θ0

ðμ2η − μ233Þ2
ðΔμ2η − Δμ233Þ;

ϵ00 ¼ −ðμ203 cos θ0 þ μ238 sin θ0Þ=ðμ2η0 − μ2
π0
Þ;

Δϵ0 ¼ Δθ
μ203 sin θ0 − μ238 cos θ0

μ2η0 − μ233

−
Δμ203 cos θ0 þ Δμ238 sin θ0

μ2η0 − μ233

þ μ203 cos θ0 þ μ238 sin θ0
ðμ2η0 − μ233Þ2

ðΔμ2η0 − Δμ233Þ; ðB5Þ

The eigenvalues are the squares of the η, η0, π0 masses

m2
η;η0 ¼ μ2η;η0 þ Δμ2η;η0 ;

m2
π0
¼ μ233 þ Δμ233; ðB6Þ

where

μ2η;η0 ¼
1

2

�
μ200 þ μ288 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ200 − μ288Þ2 þ 4μ408

q �
;

Δμ2η;η0 ¼
1

2

�
Δμ200 þ Δμ288

∓ ðμ200 − μ288ÞðΔμ200 − Δμ288Þ þ 4μ208Δμ208ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ200 − μ288Þ2 þ 4μ408

p �
;

m2
π0
¼ m̄2

π� : ðB7Þ

It is these formulas that are used to fix the model parameters
by masses of η and η0 mesons.

APPENDIX C: SOME USEFUL RELATIONS

Equations (39) imply a number of linear and quadratic
relations between coupling constants.
The linear relations are

F0
η0 cos θ − F0

η sin θ ¼ F00;

F0
η0 sin θ þ F0

η cos θ ¼ F08;

F8
η0 cos θ − F8

η sin θ ¼ F08;

F8
η0 sin θ þ F8

η cos θ ¼ F88;

F3
η0 cos θ − F3

η sin θ ¼ F03 þ F33ðϵ sin θ − ϵ0 cos θÞ;
F3
η0 sin θ þ F3

η cos θ ¼ F38 − F33ðϵ cos θ þ ϵ0 sin θÞ: ðC1Þ

The second order relations are

ðF8
ηÞ2 þ ðF8

η0 Þ2 ¼ ðF88Þ2 þ ðF08Þ2;
ðF0

ηÞ2 þ ðF0
η0 Þ2 ¼ ðF00Þ2 þ ðF08Þ2;

F8
ηF0

η þ F8
η0F

0
η0 ¼ F88F08 þ F00F08: ðC2Þ

From Eqs. (40) we obtain the analog of the Gell-Mann-
Okubo formula

ðF8
ηÞ2 þ ðF8

η0 Þ2 ¼ f28 ¼
1

3
ð4f2K − f2πÞ; ðC3Þ

and other well-known relation

F8
ηF0

η þ F8
η0F

0
η0 ¼

ffiffiffi
2

p
ðf20 − f28Þ ¼

2
ffiffiffi
2

p

3
ðf2π − f2KÞ: ðC4Þ

Both of them are valid to first nonleading order.
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If in these formulas we put

F8
η ¼ f8 cosϑ8; F8

η0 ¼ f8 sinϑ8; ðC5Þ

F0
η ¼ −f0 sin ϑ0; F0

η0 ¼ f0 cosϑ0; ðC6Þ
then the relation (C3) is identically satisfied, and the
formula (C4) takes the form

f0f8 sinðϑ8 − ϑ0Þ ¼
2

ffiffiffi
2

p

3
ðf2π − f2KÞ: ðC7Þ

Taking here into account that

f0f8 ¼ F2

�
1þ ðm̂þmsÞ

a − δM
2M0

�
¼ f2K; ðC8Þ

we arrive to the modified Leutwyler formula [30]

sinðϑ0 − ϑ8Þ ¼
2

ffiffiffi
2

p ðf2K − f2πÞ
3f2K

ðC9Þ

from which it is possible to determine the value of the
difference ϑ0 − ϑ8 ¼ 25°.
The problem with using the formulas (C5) and (C6) is

that when they are substituted into the linear relations (20)
we are forced to conclude that ϑ0 ¼ ϑ8 ¼ θ.
The reason is clear. Both linear (C1) and quadratic (C2)

relations, when used, imply the rejection of higher-order
terms. This means that the formulas (C5) and (C6) also
need to be limited to terms of the required precision. In the
main text of the paper, we showed how this can be realized.
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