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In this work we calculate the decay widths of ϕð2170Þ to ϕη and ϕη0 by considering ϕð2170Þ as a ϕKK̄
state, with KK̄ clustering as f0ð980Þ. These decay widths have been recently determined by the BESIII,
BABAR, and Belle collaborations with the aim of unraveling the nature of ϕð2170Þ. By analyzing the data
on the cross sections of the process eþe− → ϕη, two solutions were found by the BESIII collaboration with
the same χ2 per number of degrees of freedom (n.d.f.), mass and width for ϕð2170Þ. However, different
values for Bϕð2170Þ

ϕη Γϕð2170Þ
eþe− were obtained, where Bϕð2170Þ

ϕη is the branching fraction of ϕð2170Þ → ϕη and

Γϕð2170Þ
eþe− is the decay width for ϕð2170Þ → eþe−: 0.24þ0.12

−0.07 eV (solution I) and 10.11þ3.87
−3.13 eV (solution II).

In case of Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− , a value of 7.1� 0.7� 0.7 was determined by the BESIII collaboration from fits

to the data on the cross section of eþe− → ϕη0. The Belle collaboration has also determined Bϕð2170Þ
ϕη Γϕð2170Þ

eþe−

more recently, although the statistical significance related to the signal of ϕð2170Þ in the data is low. We

calculate the decay widths of ϕð2170Þ to ϕη and ϕη0, and compare their ratio Γϕð2170Þ
ϕη =Γϕð2170Þ

ϕη0 with the one

determined by using the above mentioned experimental data. Considering the theoretical and experimental
uncertainties, the lower limit of our theoretical result (≃2.6) is close to the upper value obtained (≃2) by
using the solution II of BESIII for Bϕð2170Þ

ϕη Γϕð2170Þ
eþe− , as well as to the upper limit found (≃2.8) when

considering the solutions III and IV of the Belle collaboration for Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− .

DOI: 10.1103/PhysRevD.108.036010

I. INTRODUCTION

From the perspective of the Okubo-Zweig-Iizuka (OZI)
rule [1,2], the ϕð2170Þ meson [3–5], as an excited state of
ϕð1020Þ, is expected to have non suppressed decay modes
to the ϕη and ϕη0 channels. Determining the decay width of
ϕð2170Þ to these channels can thus provide valuable
information on the nature of ϕð2170Þ, in view of the broad
spectrum of interpretations suggested since its discovery:
a ss̄ state, a tetraquark, a hybrid state, a bound ΛΛ̄ state, a
three meson state [6–27].
With this motivation, the BESIII collaboration has studied

the processes eþe− → ϕη [28] and eþe− → ϕη0 [29], where
a signal for ϕð2170Þ was observed in both cases (with a
statistical significance of 6.9σ in the first case and larger than

10σ in the second). By fitting the data, two solutions with
the same χ2=n:d:f., mass and width for ϕð2170Þ, but

different value for the product Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− , were found

in Ref. [28]: 0.24þ0.12
−0.07 eV (solution I) and 10.11þ3.87

−3.13 eV
(solution II), respectively. The first solution is compatible
with the result earlier obtained by the BABAR collaboration,
due to the large uncertainty in the latter, 1.7�0.7�1.3 [30].
Recently, the Belle collaboration [31] has also determined

the value for Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− from fits to the data on
eþe− → ϕη, finding four possible solutions with the same
χ2=n:d:f.∶ 0.09� 0.05 (solution I), 0.06� 0.02 (solution
II), 16.7� 1.2 (solution III), 17.0� 1.2 (solution IV). The
results (solutions I and III) are compatible with those of
BESIII within uncertainties. In the fitting procedure of the
Belle collaboration the mass and width of ϕð2170Þ are fixed
to the central values obtained by the BESIII collaboration
when studying eþe− → ϕη in Ref. [28]. Based on their
results, the Belle collaboration estimated an upper limit for

Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− with 90% confident level, being 0.17 eV (for
two of the fits) or 18.6 eV (for the remaining two fits).
However, the estimated statistical significance for the
signal of ϕð2170Þ in the data of Ref. [31] is low, 1.9σ, and
fits to the data without considering ϕð2170Þ did not seem
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to produce a difference in the quality of the line shape of
the eþe− → ϕη cross section.
In view of the different solutions obtained by the

experimental collaborations, a large uncertainty in the
determination of the ratio of the decay widths of ϕð2170Þ
to ϕη, Γϕð2170Þ

ϕη , and ϕη0, Γϕð2170Þ
ϕη0 is clearly expected. This

could be related to the fact that the cross section for the
eþe− → ϕη process in the region of ≃2 GeV is dominated
by the signal of ϕð1680Þ and its large width (≃369 MeV
[28]): as can be seen in the data of Ref. [28] (which below
2 GeV correspond to that of Ref. [30]), the signal for
ϕð2170Þ looks like a small bump on top of a background,
which is dominated by the tail of the ϕð1680Þ resonance.
This certainly can lead to difficulties in determining
the decay width of ϕð2170Þ → ϕη with precision from fits
to the data.
In the last years, several model calculations on the partial

decay widths of ϕð2170Þ have been done by considering
different inner structures for the state, producing a broad

range of results for the ratio Rη=η0 ≡ Γϕð2170Þ
ϕη =Γϕð2170Þ

ϕη0

[6–13,15–21]. The same models predicted ratios of the
partial decay widths of ϕð2170Þ to K̄KR, where KR
represents a kaonic resonance, like Kð1460Þ, K1ð1270Þ,
K1ð1400Þ, etc., which are not compatible with the
values determined by using the recent results for

Bϕð2170Þ
K̄KR

Γϕð2170Þ
eþe− [32]. In this way, practically all the models

describing ϕð2170Þ as a ss̄ state, or as a hybrid, or as a
tetraquark state have been challenged. It is then important
to discuss whether such models provide, or not, a reliable
prediction for Rη=η0. As we will argue, calculating such ratio
might not help in distinguishing between some of the
different inner structures proposed for ϕð2170Þ, but it can
certainly serve to question some of them.
Inspired by the growing interest in the experimental

determination of the decay widths of ϕð2170Þ to ϕη and
ϕη0, in this work we calculate such widths by considering
ϕð2170Þ as a ϕKK̄ state obtained when KK̄ generates
f0ð980Þ [27]. Within such a description, not only the mass
and width of ϕð2170Þ are obtained, with results which are
compatible within uncertainties with the experimental ones,
but also the cross section data on eþe− → ϕf0ð980Þ are
well reproduced [33]. Ratios of decay widths of ϕð2170Þ
to K̄KR have also been showing to be compatible
with those found by using the available data [33], including
the suppression of the decay mode ϕð2170Þ →
K̄�ð892ÞK�ð892Þ. Such an agreement between theory
and experiment is highly nontrivial which implies that
our result for Rη=η0 must be considered as being reliably
determined.

II. FORMALISM

Once ϕð2170Þ is interpreted as a state generated from the
interactions in the ϕKK̄ system, with KK̄ forming f0ð980Þ,

we need to devise the mechanisms through which a state
with such an intrinsic nature could decay to ϕη and ϕη0. As
can be seen in Ref. [34] (see the review on “Scalars mesons
below 1 GeV”), there seems to accumulate evidence on
the molecular nature of f0ð980Þ. We follow Refs. [35,36],
where f0ð980Þ is generated mainly from the two-body
dynamics involved in the KK̄, ππ coupled channel system,
in isospin 0, and in the s-wave. Although the coupled
channel space has been sometimes enlarged by adding the
ηη channel due to the proximity of its threshold to the
nominal mass of f0ð980Þ [37], channels like ηη0 and η0η0 are
typically desconsidered for the opposite reason. However,
such channels can be incorporated within the formalism of
Refs. [35,36] by considering η and η0 as mixtures of a
singlet η1 and an octet η8 of SU(3) [38,39], with

jηi ¼ cos βjη8i − sin βjη1i;
jη0i ¼ sin βjη8i þ cos βjη1i; ð1Þ

where β is a mixing angle whose value is in the range
≃ − 15° to −22° [40–43]. Within this mixing scheme,
f0ð980Þ couples, besides KK̄ and ππ, to channels like
ηη, ηη0, η0η0. This allows mechanisms for the decay of
ϕð2170Þ to ϕη and ϕη0 via triangular loops, as shown
in Fig. 1.
In this way, knowing the couplings constants of ϕð2170Þ

to ϕf0ð980Þ, and of f0ð980Þ to ηη, ηη0, and η0η0, we can
determine the contributions from the diagrams in Fig. 1 and
calculate the decay width of ϕð2170Þ to ϕη and ϕη0. Calling
tϕR→ϕP to the amplitude for the process ϕR → ϕP, where
ϕR is a shorthand notation for ϕð2170Þ and P ¼ η; η0, the
decay width ΓϕR→ϕP is given by

ΓϕR→ϕP ¼
Z

dΩ
jp⃗ϕ=Pj

96π2m2
ϕR

X
pol

jtϕR→ϕPj2: ð2Þ

In Eq. (2), jp⃗ϕ=P j is the modulus of the linear momentum of
the ϕ (or P) in the rest frame of the decaying particle, mϕR

represents the mass of ϕð2170Þ, R
dΩ represents the

integration on the solid angle, and
P

pol indicates the
sum over the polarizations of the particles in the initial
and final states. A factor 1=3 is included from the average
over the polarizations of the initial state.

FIG. 1. Mechanisms for the decay of ϕR ≡ ϕð2170Þ as a
molecular ϕf0ð980Þ state to the channels ϕη and ϕη0.
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Using the Feynman rules, the amplitude tϕR→ϕP can be
written as

−itϕR→ϕP ¼
X
P0

Z∞

−∞

d4q
ð2πÞ4 ð−itϕR→ϕf0Þ

×
i

ðP − k − qÞ2 −m2
f0
þ iϵ

×
i

ðkþ qÞ2 −m2
ϕ þ iϵ

i
q2 −m2

P0 þ iϵ

× ð−itϕ→ϕP0 Þð−itf0P0→PÞ; ð3Þ

where P0 ¼ η; η0, tϕR→ϕf0 , tϕ→ϕP0 , tf0P0→P are the ampli-
tudes describing the transitions ϕð2170Þ → ϕf0ð980Þ,
ϕ → ϕP0, and f0P0 → P, respectively, and mϕ, mf0 and
mP0 represent the masses of ϕ, f0ð980Þ and P0, respec-
tively. Considering ϕð2170Þ as a state obtained from
the interaction of a ϕ with a f0ð980Þ in the s-wave, the
amplitude tϕR→ϕf0 can be written as

tϕR→ϕf0 ¼ gϕR→ϕf0ϵϕR
ðPÞ · ϵϕðkþ qÞ; ð4Þ

where gϕR→ϕf0 is the coupling constant of ϕð2170Þ to
ϕf0ð980Þ. This coupling constant can be obtained from the
model of Ref. [27] by considering that, for energies around
the mass of ϕð2170Þ and invariant masses of the KK̄
system around the mass of f0ð980Þ, the three-body T-
matrix for ϕðKK̄Þ0 → ϕðKK̄Þ0, where the subscript 0 in
KK̄ represents isospin, is proportional to the two-body
t-matrix of ϕf0ð980Þ → ϕf0ð980Þ. This proportionality
factor can be determined by imposing the unitarity
relation for the two-body t-matrix, i.e., Im½t−1ϕf0→ϕf0

� ¼
jp⃗CM

ϕ=f0
j=ð8π ffiffiffi

s
p Þ, with s being the Mandelstam variable

of the system and jp⃗CM
ϕ=f0

j the modulus of the linear
momentum of ϕ (or f0) in the center-of-mass frame
[27,33]. The partial decay width of ϕð2170Þ → ϕP
depends on jgϕR→ϕf0 j, whose value, using the model of
Ref. [27], as given in Ref. [33] is

jgϕR→ϕf0 j ¼ 3123� 561 MeV: ð5Þ

Using this result, a good reproduction of the eþe− →
ϕf0ð980Þ data was achieved, as shown in Ref. [33].

In case of tf0P0→P , since f0ð980Þ can be generated from
the s-wave interaction of two pseudoscalars, we can write
the amplitude tf0P0→P simply as the coupling constant of
f0ð980Þ to the PP̄0 system, i.e.,

tf0P0→P ¼ gf0→PP̄0 : ð6Þ

This coupling constant is obtained from the residue of
the corresponding two-body PP̄0 t-matrix in the complex
energy plane. The latter t-matrix is determined by solving
the Bethe-Salpeter equation in its on-shell factorization
form [36,44,45],

t ¼ ð1 − VGÞ−1V: ð7Þ

In Eq. (7), V andG are matrices (the latter being diagonal) in
the coupled channel space and their elements are, respec-
tively, the amplitudes Vij for the processPiP̄0

i → PjP̄0
j and

the loop functionsGk for the two pseudoscalar mesons being
propagated in the intermediate channel k [36],

Gkð
ffiffiffi
s

p Þ ¼
ZQmax

0

dQ
Q2

ð2πÞ2
ωPk

þ ωP̄0
k

ωPk
ωP̄0

k
½s − ðωPk

þ ωP̄0
k
Þ þ iϵ� ;

ð8Þ

with ωPk=P̄0
k
ðQÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þm2

Pk=P̄0
k

q
. This Gi can be regu-

larized through the dimensional regularization scheme or
with a cutoff Qmax for the center of mass momentum
Q ¼ jQ⃗j. Values of Qmax ∼ 1000 MeV lead to a good
reproduction of the ππ phase-shift in isospin 0, among
other observables, up to

ffiffiffi
s

p
≃ 1200 MeV [35,36].

The Vij amplitudes mentioned above are determined
from the lowest-order chiral Lagrangian LPP, considering
the η − η0 mixing [38,39,44],

LPP ¼ 1

12f2π
hð∂μPP − P∂μPÞ2 þMP4i: ð9Þ

In Eq. (9), fπ is the weak decay constant of a pion,
fπ ≃ 93 MeV, P is a matrix containing the fields related to
the pseudoscalar mesons,

P ¼

0
BB@

AðβÞηþ BðβÞη0 þ π0ffiffi
2

p πþ Kþ

π− AðβÞηþ BðβÞη0 − π0ffiffi
2

p K0

K− K̄0 CðβÞηþDðβÞη0

1
CCA; ð10Þ
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where

AðβÞ ¼ −
sin βffiffiffi

3
p þ cos βffiffiffi

6
p ;

BðβÞ ¼ sin βffiffiffi
6

p þ cos βffiffiffi
3

p ;

CðβÞ ¼ −
sin βffiffiffi

3
p −

ffiffiffi
2

3

r
cos β;

DðβÞ ¼ −
ffiffiffi
2

3

r
sin β þ cos βffiffiffi

3
p ; ð11Þ

and M is a matrix having as elements

M ¼

0
B@

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

1
CA; ð12Þ

where mπ , mK represent the masses of the pion and of the
kaon, respectively. The convention −iV ¼ iL has been
followed when applying the Feynman rules.
When solving Eq. (7), we include the pseudoscalar-

pseudoscalar channels KK̄, ππ, ηη, ηη0, η0η0 as coupled
channels and consider η − η0 mixing angles β between −15°
to −22°, instead of assuming ideal mixing (sin β ¼ −1=3,
thus β ≃ −19.47°) [45]. The elements of V in Eq. (7) are
projected on the s-wave, producing a function of the
Mandelstam variable s of the system, the weak decay
constants of the pseudoscalars and the masses of the
particles involved in the process. When calculating the
pseudoscalar-pseudoscalar t-matrix, we consider two cases:
(I) V determined with different weak decay constants for
the pseudoscalars, with fπ¼93MeV, fK ¼113MeV, fη ¼
fη0 ¼ 111 MeV, and G obtained with Qmax ¼ 1020 MeV
[36]; (II) V determined with fπ ¼fK ¼fη¼fη0 ¼93MeV
and G calculated with Qmax ¼ 700 MeV [44,46]. As
shown in the Appendix, these two cases enfold the
experimental results, including the error bars, on the
s-wave ππ phase shift in isospin 0, where f0ð980Þ is
observed. Note that for the case (I), the factor f2π appearing

in Vij needs to be replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fPi

fP̄0
i
fPj

fP̄0
j

q
[36]. In

Table I we give the pole positions and coupling constants
of f0ð980Þ to the ηη, ηη0, η0η0 channels for three different
mixing angles and refer the reader to the Appendix for more
details.
Next, we need to determine tϕ→ϕP0 . This amplitude,

which involves two vector and a pseudoscalar mesons, can
be obtained by using the Lagrangian [47–49]

LVVP ¼ gVVPffiffiffi
2

p ϵμναβh∂μVν∂αVβPi; ð13Þ

where P is given by Eq. (10), gVVP ¼ 3m2
V=ð16π2f3πÞ, with

mV ≃mρ, fπ ≃ 93 MeV, and

Vμ ¼

0
BBB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA: ð14Þ

Considering Eq. (13) and the Feynman rules, we get the
following tϕ→ϕP0 amplitude,

tϕ→ϕP0 ¼ 2gϕ→ϕP0ϵμναβqμkαϵϕνðkþ qÞϵϕβðkÞ; ð15Þ

with gϕ→ϕP0 ¼ − gVVPffiffi
2

p CP0 , where

CP0 ¼

8>><
>>:

− 1ffiffi
3

p sin β −
ffiffi
2
3

q
cos β; for P0 ¼ η;

−
ffiffi
2
3

q
sin β þ 1ffiffi

3
p cos β; for P0 ¼ η0:

ð16Þ

To obtain Eq. (15) we have made used of the antisymmetric
properties of the Levi-Civita tensor ϵμναβ.
Using the above amplitudes, we can write Eq. (3) as

itϕR→ϕP ¼ −
X
P0

gϕR→ϕf0gf0→PP0gϕ→ϕP0ϵμ
0

ϕR
ðPÞ

×
Z∞

−∞

d4q
ð2πÞ4 ϵ

μναβqμkαϵϕβðkÞ
�
−gμ0ν

þ ðkþ qÞμ0 ðkþ qÞν
m2

ϕ

�
1

ðP − k − qÞ2 −m2
f0
þ iϵ

×
1

ðkþ qÞ2 −m2
ϕ þ iϵ

1

q2 −m2
P0 þ iϵ

; ð17Þ

TABLE I. Pole position and coupling constant gi of f0ð980Þ to
the channel i for three mixing angles, including ideal mixing,
β ≃ −19.47°. The notation M − iΓ=2, with M being the mass of
the resonance and Γ its width, is used to denote the pole obtained.
The first (second) row in each entry represents the result obtained
for case (I) [(II)].

β (Degrees) −15 −19.47 −22

Pole (MeV) 979.7 − i11.0 984.10 − i10.3 986.3 − i9.7
971.6 − i9.8 975.3 − i9.6 977.4 − i9.4

gηη ðMeVÞ −3529 − i261 −3169 − i346 −2966 − i405
−3972 − i142 −3615 − i178 −3413 − i201

gηη0 ðMeVÞ 1534þ i101 1490þ i145 1443þ i177
1677þ i45 1628þ i61 1588þ i72

gη0η0 ðMeVÞ −2057 − i187 −2127 − i261 −2152 − i318
−2270 − i118 −2369 − i149 −2412 − i170
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where a sum over the polarizations of the internal vector
meson has been carried out. Using the antisymmetric
properties of the Levi-Civita tensor, Eq. (17) can be
written as

itϕR→ϕP ¼
X
P0

2gϕR→ϕf0gf0→PP0gϕ→ϕP0

× ϵμναβϵϕRνðPÞkαϵϕβðkÞIμ; ð18Þ

where Iμ represents the tensor integral

Iμ ¼
Z∞

−∞

d4q
ð2πÞ4

qμ
½ðP − k − qÞ2 −m2

f0
þ iϵ�

×
1

½ðkþ qÞ2 −m2
ϕ þ iϵ�½q2 −m2

P0 þ iϵ� : ð19Þ

To calculate Iμ we proceed as follows: from Eq. (19),
after integrating on d4q, the integral Iμ can depend on two
quadrimomenta, kμ and Pμ. Using the Lorentz covariance,
we can write then Iμ as

Iμ ¼ aP0kμ þ bP0Pμ; ð20Þ

where aP0 and bP0 are unknown coefficients to be deter-
mined. These coefficients can be expressed in terms of two
scalar integrals and they depend on the mass of P0 (besides

other quantities). Indeed, by multiplying Eq. (20) by kμ

and Pμ, respectively, we obtain a system of two coupled
equations which permits to express the coefficients aP0

and bP0 as

aP0 ¼ P2ðk · IÞ − ðk · PÞðP · IÞ
k2P2 − ðk · PÞ2 ;

bP0 ¼ −
ðk · PÞðk · IÞ − k2ðP · IÞ

k2P2 − ðk · PÞ2 ; ð21Þ

with

k · I ¼
Z∞

−∞

d4q
ð2πÞ4

k · q
½ðP − k − qÞ2 −m2

f0
þ iϵ�

×
1

½ðkþ qÞ2 −m2
ϕ þ iϵ�½q2 −m2

P0 þ iϵ� ;

P · I ¼
Z∞

−∞

d4q
ð2πÞ4

P · q
½ðP − k − qÞ2 −m2

f0
þ iϵ�

×
1

½ðkþ qÞ2 −m2
ϕ þ iϵ�½q2 −m2

P0 þ iϵ� : ð22Þ

Next, we must mention that we work in the rest frame of the
decaying particle, thus, Pμ ¼ ðP0; 0⃗Þ, with P0 ¼ mϕR

. In
this way, we can write the preceding integrals as

k · I ¼
Z∞

−∞

d3q
ð2πÞ3

Z∞

−∞

dq0

ð2πÞ
k0q0 − k⃗ · q⃗

½ðP − k − qÞ2 −m2
f0
þ iϵ�

1

½ðkþ qÞ2 −m2
ϕ þ iϵ�½q2 −m2

P0 þ iϵ�

≡
Z∞

−∞

d3q
ð2πÞ3 ½k

0I1ðmf0 ; mϕ; mP0 Þ − k⃗ · q⃗I0ðmf0 ; mϕ; mP0 Þ�;

P · I ¼ P0

Z∞

−∞

d3q
ð2πÞ3

Z∞

−∞

dq0

ð2πÞ
q0

½ðP − k − qÞ2 −m2
f0
þ iϵ�

1

½ðkþ qÞ2 −m2
ϕ þ iϵ�½q2 −m2

P0 þ iϵ�

≡ P0

Z∞

−∞

d3q
ð2πÞ3 I1ðmf0 ; mϕ; mP0 Þ; ð23Þ

where we have introduced

Inðm1; m2; m3Þ≡
Z∞

−∞

dq0

ð2πÞ
ðq0Þn

½ðP − k − qÞ2 −m2
1 þ iϵ�

1

½ðkþ qÞ2 −m2
2 þ iϵ�½q2 −m2

3;þiϵ� ð24Þ

with n ¼ 0, 1. The integral in Eq. (24) can be obtained by separating explicitly the q0 dependence in the denominator and by
using Cauchy’s theorem, finding

Inðm1; m2; m3Þ ¼ −i
Nnðm1; m2; m3Þ
Dðm1; m2; m3Þ

; ð25Þ
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where

Dðm1; m2; m3Þ ¼ 2E1E2E3ðP0 þ E1 þ E2Þðk0 þ E2 þ E3ÞðP0 − E1 − E2 þ iϵÞðP0 − k0 − E1 − E3 þ iϵÞ
× ð−P0 þ k0 − E1 − E3 þ iϵÞðk0 − E2 − E3 þ iϵÞ; ð26Þ

N0ðm1; m2; m3Þ ¼ ðE1 þ E2Þ½ðE1 þ E3ÞðE2 þ E3ÞðE1 þ E2 þ E3Þ − E3ðk0Þ2� − ðP0Þ2E1ðE2 þ E3Þ þ 2E1E3k0P0; ð27Þ

N1ðm1; m2; m3Þ ¼ −E3½k0ðE1 þ E2ÞfE1ðE1 þ E2 þ 2E3Þ þ ðE2 þ E3Þ2 − ðk0Þ2g þ P0fðk0Þ2ð2E1 þ E2Þ
− E2ðE2 þ E3Þð2E1 þ E2 þ E3Þg − ðP0Þ2k0E1�; ð28Þ

with E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗Þ2 þm2

1

q
, E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗Þ2 þm2

2

q
,

E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

3

p
. The integral in d3q in Eq. (23) can be

obtained as

Z∞

−∞

d3q
ð2πÞ3 ð� � �Þ →

Z∞

0

djq⃗jjq⃗j2
ð2πÞ2

Z1

−1

dcosθFðΛ; jk⃗þ q⃗jÞ

× FðΛ̄; jq⃗CM
P=P̄0 jÞð� � �Þ; ð29Þ

where we choose k⃗ ¼ jk⃗jẑ, and q⃗ ¼ jq⃗j sin θðcosϕîþ
sinϕĵÞ þ jq⃗j cos θk̂, such that k⃗ · q⃗ ¼ jk⃗jjq⃗j cos θ and the
integral in dϕ is trivial. In Eq. (29), F is a form-factor
introduced for the vertices ϕR → ϕf0 and f0P0 → P andΛ,
Λ̄ are cutoffs for the center-of-mass momentum of the
particles forming these states. It is important to mention
here that although the integrals are convergent, form factors
at the vertices of ϕR → ϕf0 and f0 → PP̄0 are introduced
to take into account the finite size of ϕð2170Þ and f0ð980Þ.
In case of the vertex ϕð2170Þ → ϕf0 a value of Λ ≃mϕ þ
mf0 ≃ 2000 MeV is considered, while for the vertex
f0ð980ÞP0 → P the value of Λ̄ is related to the cutoff
used to regularize G in Eq. (7) when generating f0ð980Þ
from the interaction of two pseudoscalar mesons in
s-wave, i.e., Λ̄ ≃ 1000 MeV. Note that the modulus of
the linear momentum of P (or P0) in the rest frame of
f0ð980Þ, jq⃗CMP=P0 j, is related to k⃗ and q⃗ through a boost from

a frame where f0ð980Þ has linear momentum −ðk⃗þ q⃗Þ to
the one in which f0ð980Þ is at rest. Typical expressions
for the form factors in Eq. (29) are Lorentz [50],

FðΛ; jQ⃗jÞ ¼ Λ2

Λ2 þ jQ⃗j2 ; ð30Þ

or Gaussian functions,

FðΛ; jQ⃗jÞ ¼ e−
jQ⃗j2
2Λ2 : ð31Þ

For a better comparison of the results obtained by using
different form factors, the latter are normalized in such a
way that [50]

Z
Qmax

0

djQ⃗jΘðQmax − jQ⃗jÞΘðQmax − jQ⃗jÞ

¼
Z

ΛL

0

djQ⃗jF2
LðjQ⃗j;ΛLÞ

¼
Z

ΛG

0

djQ⃗jF2
GðjQ⃗j;ΛGÞ; ð32Þ

where Qmax coincides with the cut-off of Eq. (8). The
subscripts L, G in Eq. (32) represent the Lorentz and
Gaussian functional form of the form factors.
Once we have established how to calculate the

integrals appearing in the coefficients aP0 and bP0 , by
using Eqs. (18) and (20), we can write

itϕR→ϕP ¼
X
P0

2gϕR→ϕf0gf0→PP0gϕ→ϕP0

× ϵμναβϵϕRνðPÞkαϵϕβðkÞPμbP0 : ð33Þ

Note that in Eq. (33) the term of Iμ related to aP0 does not
contribute as a consequence of the antisymmetric properties
of the Levi-Civita tensor.
To determine the decay width ΓϕR→ϕP , we need to

calculate
P

pol jtϕR→ϕP j2. Using Eq. (33), we have

X
pol

jtϕR→ϕPj2 ¼
X
P0

a;P0
b

4jgϕR→ϕf0 j2gf0→PP̄0
a

× g�
f0→PP̄0

b
gϕ→ϕP0

a
g�ϕ→ϕP0

b
ϵμναβϵμ0ν0α0β0

×

�
−gν0ν þ Pν0Pν

m2
ϕ

�
kα

�
−gβ

0
β þ kβ

0
kβ

m2
ϕ

�

× PμbP0
a
b�P0

b
kα

0
Pμ0 ; ð34Þ

where P0
a, P0

b ¼ η, η0. Once again, using the antisymmetric
properties of the Levi-Civita tensor, we obtain
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X
pol

jtϕR→ϕPj2 ¼
X
P0

a;P0
b

4jgϕR→ϕf0 j2gf0→PP̄0
a
g�
f0→PP̄0

b

× gϕ→ϕP0
a
g�ϕ→ϕP0

b
ϵμναβϵμ0να0βkαPμkα

0

× Pμ0bP0
a
b�P0

b
: ð35Þ

Next, considering the property of the Levi-Civita tensor

ϵμναβϵμ0ν0α0β0 ¼ −

�����������

gμμ0 gμν0 gμα0 gμβ0

gνμ0 gνν0 gνα0 gνβ0

gαμ0 gαν0 gαα0 gαβ0

gβμ0 gβν0 gβα0 gββ0

�����������
; ð36Þ

the product of the tensors appearing in Eq. (35) can be
written as

ϵμναβϵμ0να0β ¼ 2ðgμα0gαμ0 − gμμ0g
α
α0 Þ: ð37Þ

Using Eq. (37) we obtain the following expression forP
pol jtϕR→ϕPj2:

X
pol

jtϕR→ϕPj2 ¼
X
P0

a;P0
b

8jgϕR→ϕf0 j2gf0→PP̄0
a
g�
f0→PP̄0

b

× gϕ→ϕP0
a
g�ϕ→ϕP0

b
½ðk · PÞ2 − k2P2�bP0

a
b�P0

b
:

ð38Þ

Expanding explicitly the sum in the preceding equation,
we obtain

X
pol

jtϕR→ϕPj2 ¼ 8jgϕR→ϕf0 j2½jgf0→Pηj2jgϕ→ϕηj2jbηj2

þ 2Refgf0→Pηg�f0→Pη0gϕ→ϕηg�ϕ→ϕη0bηb
�
η0 g

þ jgf0→Pη0 j2jgϕ→ϕη0 j2jbη0 j2�½ðk ·PÞ2 − k2P2�:
ð39Þ

This is the expression which is used for calculating the
decay width of ϕð2170Þ → ϕη, ϕη0 through Eq. (2). Since
in the rest frame of the decaying particle k · P ¼ k0P0, with
P0 ¼ mϕR

and

k0 ¼ m2
ϕR

þm2
ϕ −m2

P

2mϕR

; ð40Þ

the expression in Eq. (39) does not depend on the solid
angle present in Eq. (2). In this way, we can carry the
integral on dΩ explicitly and write

ΓϕR→ϕP ¼ jp⃗ϕ=P j
24πm2

ϕR

X
pol

jtϕR→ϕP j2; ð41Þ

with
P

pol jtϕR→ϕPj2 given by Eq. (39).

III. RESULTS AND DISCUSSIONS

Let us now discuss the results of our calculations. In
Table II we show the decay widths of ϕð2170Þ to ϕη and
ϕη0 obtained by using different η − η0 mixing angles and
form factors, as mentioned in Sec. II. In particular, we
consider Lorentz and Gaussian form factors. As can be
seen, the values found with different mixing angles as well
as different form factors are compatible within error bars.
The central value and the uncertainty in the results shown in
Table II represent, respectively, the mean and standard
deviation obtained for the widths when generating random
numbers for the coupling of ϕð2170Þ to ϕf0 within the
interval established by Eq. (5).
The results of Table II show several interesting facts. For

instance, the decay width obtained for the process
ϕð2170Þ → ϕη is relatively small when compared to the
total width of ϕð2170Þ (≃50–100 MeV), in spite of the
large phase space available (mϕ þmη ≃ 1547 MeV). At the
same time, the decay mode of the state to the ϕη0 channel,
for which there is less phase space available for decaying
(mϕ þmη0 ≃ 1978 MeV), although having a smaller decay
width than that for ϕη, is not very much suppressed. We
also find that the decay widths reduce when increasing the
modulus value of the η − η0 mixing angle. These properties
are a direct consequence of the nature of ϕð2170Þ as a
ϕf0ð980Þ molecular state, of f0ð980Þ as a state generated
from the interaction of two pseudoscalars and of the vector-
vector-pseudoscalar vertices, which altogether establish
the decay mechanisms of ϕð2170Þ to ϕη and ϕη0 shown
in Fig. 1.

TABLE II. Decay widths (in MeV) of ϕð2170Þ to ϕη and ϕη0
for different η − η0 mixing angles, β, and different form factors.
The labels L and G indicate the consideration of a Lorentz (L) or
Gaussian (G) form factors, while the numbers I and II refer to the
model used to calculate the PP̄0 t-matrix.

β (Degree) −15 −19.47 −22

Γϕð2170Þ
ϕη

LI 4.30� 0.93 3.27� 0.71 2.76� 0.60
GI 5.14� 1.11 3.91� 0.85 3.29� 0.71
LII 3.38� 0.73 2.59� 0.56 2.20� 0.48
GII 4.17� 0.91 3.20� 0.69 2.71� 0.59

Γϕð2170Þ
ϕη0

LI 0.84� 0.18 0.83� 0.18 0.81� 0.18
GI 0.94� 0.20 0.93� 0.20 0.91� 0.20
LII 0.80� 0.18 0.80� 0.17 0.79� 0.17
GII 0.95� 0.21 0.94� 0.20 0.93� 0.20
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Using the results of Table II, we list in Table III the

values found for the ratio Rη=η0 ¼ Γϕð2170Þ
ϕη =Γϕð2170Þ

ϕη0 consid-
ering different mixing angles and form factors. A comment
is here in order before continuing further with the dis-
cussions. Within the theoretical approach developed, it is
not expected that Rη=η0 depends on the coupling constant
gϕR→ϕf0 . This is so because the latter coupling, as can be
seen in Fig. 1, is involved in the primary vertex of the decay
mechanisms represented in Fig. 1 and, thus, it should
cancel when calculating Rη=η0 . However, for a better
comparison of our result for Rη=η0 with the value obtained

by using experimental data as Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− =

Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− , we consider the results given in Table II

for Γϕð2170Þ
ϕη and Γϕð2170Þ

ϕη0 as being independent from each
other. This is inline with the fact that the values of

Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− and Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− were extracted from
fits to the data on the cross section of the processes
eþe− → ϕη [28,31] and of eþe− → ϕη0 [29], respectively,
finding different nominal values for the mass and width of
ϕð2170Þ. In view of this, and since gϕR→ϕf0 depends on the
mass and width of ϕð2170Þ, we find it reasonable to
implement the propagation of errors when calculating Rη=η0

from the results of Table II.
Calculating the average and standard deviation of the

values of Rη=η0 shown in Table III, we get

Rη=η0 ¼ 3.9� 1.3: ð42Þ

We can compare this result with the ratio Rexp
η=η0 ≡

Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− =Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− obtained by using the

values Bϕð2170Þ
ϕP Γϕð2170Þ

eþe− found in Refs. [28,29]:

Rexp
η=η0 ¼

�
0.034þ0.018

−0.011 solution I;

1.42þ0.58
−0.48 solution II;

ð43Þ

and with the results obtained for Rexp
η=η0 by using for

Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− the value found in Ref. [31], which gives

Rexp
η=η0 ¼

8<
:

0.013� 0.007 solution I;

0.009� 0.003 solution II;

2.4� 0.4 solutions III; IV:

ð44Þ

As can be seen, we get, in general, values of Rη=η0 which are
higher than those extracted from the experimental data.
However, our lower limit of 2.6 for Rη=η0 in Eq. (42) is close
to the upper limit of 2 for solution II in Eq. (43) as well as to
the upper limit of 2.8 for solutions III and IV of Eq. (44).
Such an agreement alone is not trivial to find, but together
with the results obtained in Ref. [33] is remarkable.
At this point, it is important to emphasize that the

properties of ϕð2170Þ obtained from the independent fits
to the data on Ref. [28] and to that of Ref. [29] are not very
compatible. In these fits, it is considered that the line shapes
of the cross sections eþe− → ϕη, eþe− → ϕη0 are repre-
sented by a coherent sum of phase space and a Breit-
Wigner, the latter depending on the mass and width of

ϕð2170Þ as well as of the product Γϕð2170Þ
eþe− Bϕð2170Þ

ϕP , with P
being η or η0. In Ref. [28], the mass and width extracted
for ϕð2170Þ from fits to data on the cross section
of eþe− → ϕη are of 2163.5� 6.2� 3 MeV and
31.1þ21.1

−11.6 � 1.1 MeV, respectively. But in Ref. [29], the
corresponding mass and width obtained from fits to the
data on the cross section of eþe− → ϕη0 are, respectively,
2177.5� 4.8� 19.5 MeV and 149.0� 15.6� 8.9. While
the masses obtained in Refs. [28] and [29] are compatible
within uncertainties, the widths differ significantly, even
when considering the corresponding uncertainties. The
reason for such large deviations is still unclear, but it could
affect the determination of Rη=η0 with the present data.
Further, in Ref. [31], where the Belle collaboration studied
the process eþe− → ϕη, the mass and width for ϕð2170Þ in
the fits is fixed to the values found in Ref. [28].
In view of such discrepancies on the properties of

ϕð2170Þ, dividing the value of Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− obtained

in Ref. [28] with the one for Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− found in
Ref. [29] may not be the best way of predicting the ratio

Γϕð2170Þ
ϕη =Γϕð2170Þ

ϕη0 . In spite of that, it is worth stressing once
more that our lowest value for Rη=η0 is close to the highest
values found with some of the solutions of Refs. [28,29,31].
Determination of experimental data with higher precision is
necessary to deduce a precise value of Rη=η0 .

A. Comparison with other models

It is also important to compare our result for Rη=η0 with
the results found in other theoretical models trying to
understand the properties and nature of ϕð2170Þ.

1. ϕð2170Þ as a ss̄ state

In Ref. [6], using the 3P0 decay model with simple
harmonic oscillator qq̄ wave functions, a 33S1 ss̄ vector

TABLE III. Values for the ratio Rη=η0 between Γϕð2170Þ
ϕη and

Γϕð2170Þ
ϕη0 for different η − η0 mixing angles, β, and form factors.

The meaning of the labels is the same as in Table II.

β (Degree) −15 −19.47 −22

Rη=η0 LI 5.12� 1.57 3.93� 1.21 3.39� 1.04
GI 5.47� 1.68 4.21� 1.29 3.63� 1.11
LII 4.21� 1.29 3.25� 1.00 2.80� 0.86
GII 4.41� 1.35 3.40� 1.04 2.93� 0.90

MALABARBA, KHEMCHANDANI, and TORRES PHYS. REV. D 108, 036010 (2023)

036010-8



state, also denoted as ϕð3SÞ, with an estimated mass of
2050 MeV and a width of ≃380 MeV was predicted (here
the spectroscopic notation n2sþ1LJ is used to denote the nth
state with spin s, orbital angular momentum L and total
angular momentum J for a quark-antiquark system, with
L ¼ 0; 1; 2;… being represented by the letters S, P, D,
etc.). Such a state has a decay width to ϕη of 21 MeV, while
its decay width to ϕη0 is 11 MeV, leading to a ratio of the
two to be ≃1.91 MeV. Although the value obtained for
Rη=η0 within the model of Ref. [6] is of similar order to ours,
the individual widths found are much larger. Interestingly,
the value of Rη=η0 obtained within the model of Ref. [6] is
close to the upper (lower) limit found for solution II
(solutions III and IV) in Eq. (43) [Eq. (44)]. However,
in view of the discrepancy of the mass and width obtained
for the 33S1 ss̄ state in Ref. [6] with those of ϕð2170Þ,
associating the ratio Rη=η0 found for such state with that for
ϕð2170Þ is not very meaningful.
In Ref. [7], the possibility of ϕð2170Þ being a 23D1 ss̄

meson [also denoted as ϕð2DÞ] and its decay modes
were studied by considering the 3P0 and the flux tube
models. Although the decay widths of ϕð2170Þ to differ-
ent channels, like K̄Kð1460Þ, K̄�ð892ÞK�ð892Þ, depend
strongly on the parameters of the model, it is concluded
that such state can either decay strongly to K̄Kð1460Þ,
K̄K�ð1410Þ, K̄K1ð1270Þ, K̄�ð892ÞK�ð892Þ, and K̄K or to
K̄K1ð1400Þ, ηh1ð1380Þ, K̄�ð892ÞK�ð892Þ, K̄K1ð1270Þ.
Both situations are ruled out by the experimental findings
of Ref. [32], where the decay mode of ϕð2170Þ to
K�þð892ÞK�−ð892Þ is suppressed and the corresponding
partial decay widths to K−Kþ

1 ð1400Þ and K−Kþ
1 ð1270Þ

are comparable. These facts, however, can be understood
within the a ϕf0 description for ϕð2170Þ, as shown in
Ref. [33]. Besides, with the chosen model parameters,
the decay width to ϕη is found to be zero, while for ϕη0
is ≃3 MeV.
In Ref. [8], by using a modified version of the Godfrey-

Isgur model [51], a 33S1 ss̄ state, with a mass of 2149 MeV,
and a 23D1 ss̄ state, with a mass of 2276MeV, are obtained.
In this way, ϕð2170Þ lies between these two states. The
decay widths found for the ϕð3SÞ state to ϕη and ϕη0
by considering a mass of 2188 MeV for the state are,
respectively, 6.66 and 0.0862 MeV, thus Rη=η0 ≃ 77. In case
of the ϕð2DÞ state, a decay width of 0.879 MeV
(0.0887 MeV) is obtained for the ϕη (ϕη0) channel, having
then Rη=η0 ≃ 9.9. The values found for Rη=η0 for the ϕð3SÞ
and ϕð2DÞ states are not compatible with those of Eqs. (43)
and (44). As already mentioned by the authors of Ref. [8],
the width found for the ϕð3SÞ state is of 217 MeV, which is
not compatible with that of ϕð2170Þ, while for the ϕð2DÞ
state, the width obtained is of 186 MeV, with a significant
fraction (18%) of this value corresponding to its decay to
K�ð892ÞK̄�ð892Þ. This latter finding is not supported by the
results obtained by the BESIII collaboration in Ref. [32],

where the decay of ϕð2170Þ → K�ð892ÞK̄�ð892Þ is found
to be suppressed.
In Ref. [9], the ss̄mass spectrum is determined within a

nonrelativistic linear potential quark model and strong
decay widths are evaluated using the 3P0 model. A 33S1 ss̄
vector state with a mass of 2198 MeV and a width of
∼240–270 MeV is obtained, with K�ð892ÞK̄�ð892Þ and
KK̄�ð1410Þ being the main decay modes. Such properties
are not compatible with those observed in Ref. [32]. In any
case, considering a mass of 2175 MeV for the 33S1 ss̄
state, its decay width to ϕη is ≃8.9 MeV, while to ϕη0 the
value obtained is 0.36 MeV. In this way, Rη=η0 ≃ 25, which
is not compatible with the results inferred from
Refs. [28,29,31]. Assigning lower masses to ϕð3SÞ (in
the range 2079–2135 MeV) leads to Rη=η0 ≥ 100.
In Ref. [9], a ϕð2DÞ with mass in the interval

2050–2200 MeV is also considered. In case of the mass
being ≃2175 MeV, the width of the ϕð2DÞ state is too
broad (∼300 MeV) to associate such a state with ϕð2170Þ.
Besides this, the main decay modes are KK̄�ð1410Þ and
K�ð892ÞK̄�ð892Þ, findings which are not compatible with
those of Ref. [32]. The value obtained for Rη=η0 is the same
as in case of the ϕð3SÞ state. If, however, the mass of
the ϕð2DÞ state is considered to be in the range 2079–
2135 MeV, a smaller width is found (≃175–225 MeV), but
the partial decay width to K�ð892ÞK̄�ð892Þ is still large,
comparable with that to the KK̄1ð1400Þ channel. Also,
ϕð2170Þ → K�ð892ÞK̄�ð892Þ is still one of the main
decay modes, which is not compatible with the properties
obtained in Ref. [32]. For completeness, it is worth
mentioning that in the latter case the decay width to ϕη
is 0.34 (0.64) MeV and to ϕη0 is of 0.3 (0.23) MeV
for a mass of the state of 2079 (2135) MeV, thus, Rη=η0 ≃
1.13 (2.8). Since the masses and widths of the ϕð3SÞ and
ϕð2DÞ states are in the same range, and both states have
similar strong decay properties, the authors of Ref. [9]
argue about the possibility that the experimental signal
observed for ϕð2170Þ could be a superposition of the ϕð3SÞ
and ϕð2DÞ states. In spite of this, the authors of Ref. [9]
assert that such mixing should not reduce the decay width
of the state to K�ð892ÞK̄�ð892Þ, and the strong suppression
of the decay mode of ϕð2170Þ to K�ð892ÞK̄�ð892Þ
observed in Ref. [32] would remain a mystery within
the formalism of Ref. [9].
In Ref. [10] the mass spectrum and decay behavior of

excited states of ρ, ω and ϕ mesons above 2 GeV are
determined by using an unquenched potential model. A
ϕð3SÞ state with a mass of 2103 MeV and a width of
156 MeV is found, as well as a ϕð2DÞ state with 2236 MeV
of mass and 265 MeVof width. None of these results match
the nominal mass and width of ϕð2170Þ. However, by using
some effective Lagrangians and by fixing the coupling
constants of the ρ, ω and ϕ states obtained to K̄KR from
experimental data, the authors of Ref. [10] can describe the
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experimental data on the cross sections of eþe− → KþK−,
K̄K�

2ð1430Þ þ cc, K−Kþ
1 ð1270Þ, K�þð892ÞK�−ð892Þ

obtained by the BABAR and BESIII collaborations. Note,
however, that to do that, the mass and width of the ϕð3SÞ
and ϕð2DÞ states are considered as free parameters in the
fitting procedure. The values of mass and width found for
these ϕ states from the fits are mϕð3SÞ ¼ 2183� 1 MeV,
Γϕð3SÞ ¼ 185� 4 MeV, mϕð2DÞ ¼2290�3MeV, Γϕð2DÞ ¼
312� 6 MeV. As can be seen, the masses, as well as the
widths, of the ϕð3SÞ and ϕð2DÞ states obtained from
the fit differ significantly from their theoretical results. The
authors of Ref. [10] interpret the disagreement between
the nominal mass and width of ϕð2170Þ extracted from the
data and those of the ϕð3SÞ and ϕð2DÞ states obtained
within their model in terms of the interference between the
latter states. However, in view of the discrepancy between
the theoretical results obtained for the masses and widths of
these states and those needed to explain the data consid-
ered, it is not clear if such interference is responsible for the
signal observed for ϕð2170Þ.

2. ϕð2170Þ as a ss̄g hybrid

The state ϕð2170Þ has also been interpreted as a ss̄g
hybrid, with a mass between 2100–2200 MeV and a width
of ≃120–170 MeV [11–13]. In Ref. [12], the ratio Rη=η0 for
a 1−− ss̄ hybrid with mass ≃2000–2200 MeV changes
significantly with the parameters of the model, ranging
from 9.5–200. These values are not compatible with those
found in Eqs. (43) and (44). In case of the model of
Ref. [11], the decay widths of the state to ϕη and ϕη0 are 1.2
and 0.4 MeV, respectively. In this way, a value of 3 is
obtained for Rη=η0, inline with our result. However, in the
models of Refs. [11,12], the decay mode of such a hybrid
state to K̄Kð1460Þ is highly suppressed. This fact is in
contradiction with the experimental result of Ref. [32] as
well as with the one obtained by considering ϕð2170Þ as a
ϕf0 state [33]. We can conclude then that simply measuring
the ratio Rη=η0 might not be enough to distinguish between a
ss̄g and a ϕf0 inner structures for ϕð2170Þ.
In Ref. [14], the formation of ss̄g hybrids has been

investigated from lattice QCD in the quenched approxi-
mation by considering spatially extended ss̄ and ss̄g
operators and no conclusive information could be obtained
for the state ϕð2170Þ. The authors of Ref. [14], however,
argue that, independently of whether ϕð2170Þ is a ss̄meson
or a ss̄g hybrid, the ratio Rη=η0 is expected to be the same in
both cases since the same decay dynamics of the state to ϕη
and ϕη0 can be presumed. In this way, the ratio Rη=η0 is
determined by the flavor-octet-singlet mixing angle, pro-
ducing the physical η and η0 particles, and the correspond-
ing phase space kinematical factors. By considering mixing
angles between −10° and −20°, values of Rη=η0 ≃ 0.14–0.58
are obtained. These values are compatible with the result
0.23� 0.10� 0.18, which is obtained by dividing the

value of Bϕð2170Þ
ϕη Γϕð2170Þ

eþe− available from the BABAR col-

laboration [3] by the value for Bϕð2170Þ
ϕη0 Γϕð2170Þ

eþe− of the BESIII
collaboration [29]. The value Rη=η0 ≃ 0.14–0.58, however,
is not compatible with the ratios shown in Eqs. (43)
and (44), determined using the data from the BESIII/
Belle collaboration. Nevertheless, the authors of Ref. [14]
conclude that the ratio Rη=η0 may not be the most useful
quantity to distinguish a ss̄ nature for ϕð2170Þ from a
hybrid ss̄g.

3. ϕð2170Þ as a tetraquark state

In Ref. [15] a QCD sum rule analysis is made to study
the possible tetraquark sss̄s̄ nature of ϕð2170Þ. By con-
sidering the standard sum rule convergence criteria, and a
rather small Borel window, a mass of 2460� 160 MeV
was found, which is larger than the nominal value of
ϕð2170Þ. The author of Ref. [15] considers then a more
phenomenological approach and a mass of 2210�
90 MeV is obtained. Neither the full width nor the partial
decay widths of ϕð2170Þ were obtained in Ref. [15]. Such
information is essential to know if the state obtained can be,
or not, related to ϕð2170Þ.
In Ref. [16] a QCD sum rule analysis of the nature of

ϕð2170Þ by considering diquark-antidiquark ðssÞðs̄s̄Þ and
meson-meson ðs̄sÞðs̄sÞ currents is done. Two independent
interpolating currents where found and a mass of 2300�
400 MeV is obtained for ϕð2170Þ. Note that the central
value for the mass of ϕð2170Þ is about 130 MeV higher
than the nominal one, although as a consequence of the
large uncertainty obtained in the mass sum rule, their result
could be compatible. Neither the full width nor the partial
decay widths of ϕð2170Þ were determined in Ref. [16].
By considering a flux tube model, the possible sss̄s̄

tetraquark nature of ϕð2170Þ was investigated in Ref. [17]
by solving the four-body Schrödinger equation. Based on
the symmetry of the wave function of the tetraquark system
under the exchange of two identical quarks, two possible
rearrangements for the quarks were obtained in Ref. [17].
In one of this configuration, a mass of 2290 MeV was
determined for ϕð2170Þ, while for the other configuration
a mass of 2188 MeV was found. Considering this latter
result, the authors of Ref. [17] associated a tetraquark
nature with ϕð2170Þ. However, apart from the mass, no
other observables which could be compared with the
experimental data to support such an assignment were
determined in Ref. [17].
In Ref. [18], the calculation done in Ref. [16] was

improved by considering two different mixtures between
two interpolating currents. For one of the mixtures con-
sidered, a mass of 2410� 250 MeV is obtained, while for
the other mixture, a mass of 2340� 170 MeV is found.
The authors associate the latter result with ϕð2170Þ and use
the former one to suggest the existence of a partner for
ϕð2170Þ. Note, however, that it is basically the lower limit
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of the mass obtained for ϕð2170Þ in Ref. [18] the value
which is compatible with the experimental result and the
central value found in Ref. [18] is still far from the nominal
mass of ϕð2170Þ. Also, no other observables, like full
width, partial decay widths, etc., were determined in
Ref. [18]. Thus it is not clear if the tetraquark state obtained
in Ref. [18] with mass 2340� 170 MeV can be related
to ϕð2170Þ.
By assuming a tetraquark nature for ϕð2170Þ, the authors

of Ref. [19] studied the decay modes of ϕð2170Þ in terms
of the so-called fall-apart mechanism [52]. By considering
a sss̄s̄ nature for ϕð2170Þ, the authors arrived to the
conclusion that the decay widths of ϕð2170Þ to
K̄K1ð1270Þ and K̄K1ð1400Þ should be similar, while the
decay to K̄�ð892ÞK�ð892Þ should be suppressed. These
facts seem to be compatible with those observed by the
BESIII collaboration in Ref. [32]. The ratios of the widths
of ϕð2170Þ to ϕη, ϕη0, ϕf0ð980Þ are determined to be

Γϕð2170Þ
ϕη ∶Γϕð2170Þ

ϕη0 ∶Γϕð2170Þ
ϕf0ð980Þ ∼ 0.015∶0.025∶1, thus a value

of ≃0.6 is obtained for Rη=η0. Such a value is close to the
lower limit of 0.94 of the solution II of Eq. (43). Similarly,
the authors of Ref. [19] also estimated the ratios between
some partial decay widths for ϕð2170Þ by assuming a qq̄ss̄
nature for ϕð2170Þ, with q ¼ u, d, and by considering
f0ð980Þ to be a tetraquark state.
Continuing with the discussion on the studies inves-

tigating the tetraquark nature of ϕð2170Þ, a QCD sum rule
analysis performed in Ref. [20] for a vector sss̄s̄ current
produces a mass of 3080� 110 MeV. This mass lies well
above the nominal mass of ϕð2170Þ, disfavoring such
internal structure for the state.
In Ref. [21], the possible sss̄s̄ nature of ϕð2170Þ was

investigated within a framework based on a nonrelativistic
potential quark model by considering that the four quarks
rearrange themselves in a diquark-antidiquark configura-
tion. Masses in the range of ≃2440–2990 MeV are
obtained for JPC ¼ 1−− tetraquark states. These masses
are much higher than the nominal value for ϕð2170Þ and
the authors of Ref. [21] reached the conclusion that
ϕð2170Þ might not be a good candidate for a sss̄s̄ state.

4. ϕð2170Þ as a ΛΛ̄ state and an estimation
of the ϕη, ϕη0 partial decay widths

The ϕð2170Þ state has also been interpreted as a ΛΛ̄
bound state [25,26]. In Ref. [25], using a one-boson
exchange model, where ϕ, ω, σ, η and η0 exchange
was considered, the authors studied the ΛΛ̄ system by
solving the Schrödinger equation. Two states were found
in Ref. [25]: a 3S1 state, with a binding energy of
≃50–83 MeV, and a 1S0 state, whose binding energy is
in the range ≃8–13 MeV. The former was associated with
ϕð2170Þ while the latter was related to ηð2225Þ. In
Ref. [26], considering the model of Ref. [25], the com-
positeness condition [53] was used to determine the

coupling of ϕð2170Þ and ηð2225Þ to ΛΛ̄ and several partial
decay widths to meson-meson final states were evaluated.
In particular, the authors found that ϕð2170Þ would decay
dominantly to KK̄, with a decay width of ≃74–88 MeV.
However, the authors of Ref. [26] did not determine the
partial decay widths of ϕð2170Þ to ϕη, ϕη0.
Since the decay mechanism of ϕð2170Þ to ϕη and ϕη0 as

a ΛΛ̄ state (see Fig. 2) proceeds through a triangular loop,
as in case of the ϕf0ð980Þ description, it would be
interesting1 to estimate the corresponding decay widths
within the model of Ref. [26]. In this way we can compare
the ratio Rη=η0 with the result extracted from the exper-
imental data, as well as with the value obtained within
our model.
Before continuing with further discussions, some

remarks are here in order. The authors of Ref. [26] consider
an effective Lagrangian of the type gPΛΛΨ̄Λγ5ΨΛϕP to
describe the PΛΛ vertex, with ΨΛ and ϕP being the
corresponding fields. Such a vertex structure coincides
with that determined from chiral symmetry [54], i.e.,
fPΛΛΨ̄Λγμγ5ΨΛ∂

μϕP , for on-shell baryons, with the cou-
pling fPΛΛ being related to the previous one through
gPΛΛ ¼ 2mΛfPΛΛ [25]. Obtaining fPΛΛ by considering
the η − η0 mixing of Eq. (10) (as in Ref. [55]), results in the
following relations:

fηΛΛ ¼
ffiffiffi
2

3

r
D
fπ

�
sin β þ cos βffiffiffi

2
p

�
;

fη0ΛΛ ¼
ffiffiffi
2

3

r
D
fπ

�
sin βffiffiffi

2
p − cos β

�
; ð45Þ

with D ≃ 0.75–0.8 [56]. In this way,

fηΛΛ
fη0ΛΛ

¼ gηΛΛ
gη0ΛΛ

¼ −
cos β þ ffiffiffi

2
p

sin βffiffiffi
2

p
cos β − sin β

; ð46Þ

instead of −ðcosβþsinβÞ=ðcosβ−sinβÞ, used in Ref. [25].
We will estimate the partial decay widths of ϕð2170Þ
within the ΛΛ̄ description using the couplings gPΛΛ of

FIG. 2. ϕð2170Þ decaying to ϕη, ϕη0 within the ΛΛ̄ description.

1We thank the referee for such a suggestion.
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Refs. [25,26] as well as the values arising from Eq. (46) for
different η − η0 mixing angles β.
Considering the effective Lagrangians of Ref. [26] to

describe the contributions of the vertices involved in Fig. 2,
we find the following amplitude for ϕð2170Þ → ϕP, with
P ¼ η, η0,

−itϕR→ϕP ¼ igϕR→ΛΛ̄gϕΛΛgPΛΛϵ
μ
ϕR
ðPÞϵνϕðkÞ

×
Z∞

−∞

d4q
ð2πÞ4Tr½ð=kþ=qþmΛÞγμð=P−=k−=q−mΛÞ

× γ5ð=qþmΛÞγν�
1

ðP− k− qÞ2 −m2
Λ þ iϵ

×
1

ðkþ qÞ2 −m2
Λ þ iϵ

1

q2 −m2
Λ þ iϵ

; ð47Þ

where mΛ is the mass of the Λ (Λ̄) particle and gPΛΛ, gϕΛΛ
and gϕR→ΛΛ̄ are the coupling constants of the vertices
involved. Using the properties of the γ-matrices, we can
calculate the trace present in Eq. (47) to obtain

−itϕR→ϕP ¼ 4mΛgϕR→ΛΛ̄gϕΛΛgPΛΛϵμναβk
αPβϵμϕR

ðPÞ

× ϵνϕðkÞ
Z∞

−∞

d4q
ð2πÞ4

1

ðP − k − qÞ2 −m2
Λ þ iϵ

×
1

ðkþ qÞ2 −m2
Λ þ iϵ

1

q2 −m2
Λ þ iϵ

: ð48Þ

Using Eqs. (24) and (25), we can write Eq. (48) as

−itϕR→ϕP ¼ 4mΛgϕR→ΛΛ̄gϕΛΛgPΛΛ

× ϵμναβkαPβϵμϕR
ðPÞϵνϕðkÞIΛP; ð49Þ

where

IΛP ≡
Z∞

−∞

d3q
ð2πÞ3 I0ðmΛ; mΛ; mΛÞ: ð50Þ

The integral in Eq. (50) can be calculated numerically, as
explained earlier. In this way, summing over the polar-
izations of the vector mesons and using Eq. (37), we find

X
pol

jtϕR→ϕPj2 ¼ 32m2
ΛjgϕR→ΛΛ̄j2jgϕΛΛj2jgPΛΛj2

× jIΛPj2½ðk · PÞ2 − k2P2�: ð51Þ

Using Eqs. (41) and (51) we can determine the decay width
of ϕð2170Þ to ϕη and ϕη0 within the ΛΛ̄ description for
the state. Considering the values for the coupling constants
involved in Eq. (51) as given in Refs. [25,26], we find
the decay widths of ϕð2170Þ → ϕη;ϕη0 to be ≃17 and

15.5 MeV, respectively, leading to a ratio Rη=η0 ≃ 1.1. It can
be readily deduced that the couplings of Refs. [25,26]
correspond to an η − η0 mixing angle of β ≃ −11°.
However, as mentioned earlier, β ≃ −15° to ∼ − 22° are
extracted from the experimental data [40–43]. It is not
clear to us if such values are admissible in the formalism
of Ref. [25], but if we use them, the decay width of
ϕð2170Þ → ϕη is found to be in the interval ≃10–21 MeV,
while for ϕð2170Þ → ϕη0 we obtain 18–33 MeV, leading to
a ratio Rη=η0 ≃ 0.43–0.86. In this way, with the coupling
constants of Refs. [25,26] the value obtained for Rη=η0 is
compatible with the result of Eq. (43) (solution II). But
considering β ≃ −15° ∼ −22° in the model of Refs. [25,26],
Rη=η0 ≃ 0.43–0.86, which could be close to the lower limit
of Eq. (43) (solution II). Here, it is also important to recall
that since theΛ’s in the decay mechanism depicted in Fig. 2
are not on-shell, the use of a PΛΛ vertex structure different
to that considered in Ref. [26] could produce a different off-
shell behavior for the decay process. This could change the
results obtained for the decay widths and the Rη=η0 ratio.
We, however, stick to the formalism of Ref. [26] in order to
estimate the partial widths in their model.
Further, it is also relevant to mention that there exists

a controversy on the possible ΛΛ̄ nature of ϕð2170Þ. In
Ref. [57] the ΛΛ̄ interaction was studied by using the same
one-boson-exchange model of Ref. [25] and by solving a
3-dimensional reduction of the 4-dimensional Bethe-
Salpeter equation. As in case of Ref. [25], JP ¼ 1−, 0−

states are found, but the mass obtained for the 1− state lies
close to the ΛΛ̄ threshold. The authors of Ref. [57] related
then the 1− state found to Xð2239Þ, which was observed by
the BESIII collaboration in the cross-sectional data of
eþe− → KþK− [58], and not to ϕð2170Þ. Since the authors
of Ref. [57] consider the same input Lagrangians as those
of Ref. [25], the former authors attributed the discrepancies
between the two models to different treatments, such as
different method to solve the dynamical equations, rela-
tivistic effects considered, etc.
The formation of baryon-antibaryon states has also

been studied within QCD sum rules [59]. In case of the
ΛΛ̄ system, in Ref. [59] a vector state with mass 2340�
120 MeV is obtained and the authors concluded that the
state found is above the ΛΛ̄ threshold.

IV. CONCLUSIONS

In this work we have studied the decay modes of
ϕð2170Þ to ϕη and ϕη0. To do this, we consider ϕð2170Þ
to be a state generated from the dynamics involved in the
ϕf0ð980Þ system, with f0ð980Þ being generated from the
interaction of two pseudoscalars in the s-wave. Such
internal structures for ϕð2170Þ and f0ð980Þ produces
mechanisms for decaying to ϕη and ϕη0 involving triangu-
lar loops. The results obtained for the decay widths of
ϕð2170Þ to ϕη and ϕη0 indicate that the former is larger by a
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factor Rη=η0 ≃ 2.6–5.2. Comparing this answer with the
one obtained using the BESIII and Belle results for the
branching fractions of ϕð2170Þ, we find that our lower
limit of 2.6 is close to the upper limit obtained for Rη=η0 by
using the solutions II of the BESIII or III, IV of the Belle
collaborations. We also find that models with different
inner structures for ϕð2170Þ may produce similar values
for Rη=η0, even if the predictions for other observables are
different. Data with higher precision are necessary to
understand the nature of ϕð2170Þ.
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APPENDIX: AMPLITUDES FOR THE
PSEUDOSCALAR-PSEUDOSCALAR

INTERACTION

In this appendix we provide the amplitudes for the
processes PiP̄0

i → PjP̄0
j projected on total isospin 0 and in

the s-wave, with Pi, P̄0
i (Pj, P̄0

j) being the pseudoscalars
constituting the channel i (j). In our approach, we consider
the following coupled channels in the isospin base: KK̄
(channel number 1), ππ (2), ηη (3), ηη0 (4), η0η0 (5). We
also follow the isospin phase convention jπþi ¼ −jI ¼ 1;
I3 ¼ þ1i, jKþi ¼ −jI ¼ 1=2; I3 ¼ 1=2i, where I repre-
sents the isospin of the particle and I3 its third projection
[35]. Using the Clebsch-Gordan coefficients, for total
isospin I ¼ 0 of the two-pseudoscalar system, we have
the following combinations:

jππ; I ¼ 0; I3 ¼ 0i ¼ −
1ffiffiffi
3

p ½jπþπ−i þ jπ−πþi þ jπ0π0i�;

jKK̄; I ¼ 0; I3 ¼ 0i ¼ −
1ffiffiffi
2

p ½jKþK−i þ jK0K̄0i�;

jηη; I ¼ 0; I3 ¼ 0i ¼ jη0η0i;
jηη0; I ¼ 0; I3 ¼ 0i ¼ jη0η00i;
jη0η0; I ¼ 0; I3 ¼ 0i ¼ jη00η00:i ðA1Þ

The isospin 0 projected amplitudes, Vij, and loop func-
tions, Gi, are then obtained as

Vij ¼ hPjP̄0
j; I ¼ 0; I3 ¼ 0jVjPiP̄0

i; I ¼ 0; I3 ¼ 0i;
Gi ¼ hPjP̄0

j; I ¼ 0; I3 ¼ 0jGjPiP̄0
i; I ¼ 0; I3 ¼ 0i: ðA2Þ

Equation (A2) provides Vij and Gi in terms of the
corresponding ones in the charge basis. The amplitudes

in the charge basis are obtained from the Lagrangian in
Eq. (9) by using the Feynman rules. To calculateGi, as well
as Vij, we consider an average mass for the members of the
same isospin multiplet.
When solving Eq. (7) in the center-of-mass frame of the

system, the function Gi=2 needs to be used whenever i is
a channel constituted by two identical pseudoscalars. By
doing this, double counting is avoided when integrating on
d3q the terms in the series, obtained by iteration, of Eq. (7).
Such a procedure is equivalent to adding a factor 1=

ffiffiffi
2

p
in

those isospin states [35] of Eq. (A1) involving identical
particles in the isospin basis. This latter normalization of
the states is sometimes referred to as the unitary normali-
zation [35,45]. The only difference is that in the latter case,
the t-matrix element tij obtained by solving Eq. (7) needs

to be multiplied by a factor
ffiffiffi
2

p
niþnj, where ni (nj) is 1 if

channel i (j) is constituted by two identical pseudoscalars,
otherwise it is 0.
In the following, we list the results obtained for Vij in

terms of the η − η0 mixing angle β. To simplify the notation,
we define the factors Cβ ≡ cos β and Sβ ≡ sin β, with β
being the mixing angle of Eq. (1):

V11 ¼ −
3s
4f21

; ðA3Þ

V12 ¼ −
1

2

ffiffiffi
3

2

r
s

f1f2
; ðA4Þ

V13 ¼
1

6
ffiffiffi
2

p
f1f3

h
8Sβð

ffiffiffi
2

p
Cβ þ SβÞm2

K

þ Cβð9Cβs − 2ðCβ þ 2
ffiffiffi
2

p
SβÞm2

π − 6Cβm2
ηÞ
i
;

ðA5Þ

V14 ¼
1

6
ffiffiffi
2

p
f1f4

h
−4ð

ffiffiffi
2

p
ðC2

β − S2βÞ þ 2CβSβÞm2
K

þ 2ð
ffiffiffi
2

p
ðC2

β − S2βÞ − CβSβÞm2
π

þ 3CβSβð3s −m2
η −m2

η0 Þ
i
; ðA6Þ

V15 ¼
1

6
ffiffiffi
2

p
f1f5

h
8CβðCβ −

ffiffiffi
2

p
SβÞm2

K

þ Sβð9sSβ þ 2ð2
ffiffiffi
2

p
Cβ − SβÞm2

π − 6Sβm2
η0 Þ
i

ðA7Þ

V22 ¼
−2sþm2

π

f22
; ðA8Þ

V23 ¼
ðC2

β þ 2S2β − 2
ffiffiffi
2

p
CβSβÞm2

πffiffiffi
3

p
f2f3

ðA9Þ
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V24 ¼
ð ffiffiffi

2
p

Cβ − 2SβÞð2Cβ þ
ffiffiffi
2

p
SβÞm2

π

2
ffiffiffi
3

p
f2f4

; ðA10Þ

V25 ¼
ð1þ C2

β þ 2
ffiffiffi
2

p
CβSβÞm2

πffiffiffi
3

p
f2f5

ðA11Þ

V33 ¼
1

9f23

h
−4ð4C4

β þ 12C2
βS

2
β þ 8

ffiffiffi
2

p
C3
βSβ

þ 4
ffiffiffi
2

p
CβS3β þ S4βÞm2

K þ ð7C4
β þ 12C2

βS
2
β

þ 20
ffiffiffi
2

p
C3
βSβ þ 16

ffiffiffi
2

p
CβS3β − 2S4βÞm2

π

i
; ðA12Þ

V34 ¼ −
1

324f3f4

h
ð

ffiffiffi
6

p
Cβ − 2

ffiffiffi
3

p
SβÞ3ð2

ffiffiffi
3

p
Cβ þ

ffiffiffi
6

p
SβÞm2

π

þ 24
ffiffiffi
3

p
ð

ffiffiffi
2

p
Cβ þ SβÞ3

× ð−
ffiffiffi
3

p
Cβ þ

ffiffiffi
6

p
SβÞð2m2

K −m2
πÞ
i
; ðA13Þ

V35 ¼ −
1

9f3f5

h
ð2C4

β − 3C2
βS

2
β − 2

ffiffiffi
2

p
C3
βSβ

þ 2
ffiffiffi
2

p
CβS3β þ 2S4βÞð4m2

K −m2
πÞ
i
; ðA14Þ

V44 ¼ −
1

9f24

h
ð2C4

β − 3C2
βS

2
β − 2

ffiffiffi
2

p
C3
βSβ

þ 2
ffiffiffi
2

p
CβS3β þ 2S4βÞð4m2

k −m2
πÞ
i
; ðA15Þ

V45 ¼ −
1

324f4f5

h
ð

ffiffiffi
6

p
Cβ − 2

ffiffiffi
3

p
SβÞð2

ffiffiffi
3

p
Cβ þ

ffiffiffi
6

p
SβÞ3m2

π

þ 8
ffiffiffi
3

p
ð

ffiffiffi
2

p
Cβ þ SβÞ

× ð−
ffiffiffi
3

p
Cβ þ

ffiffiffi
6

p
SβÞ3ð2m2

K −m2
πÞ
i
; ðA16Þ

V55 ¼ −
1

9f25

h
4ðC4

β þ 12C2
βS

2
β − 4

ffiffiffi
2

p
C3
βSβ

− 8
ffiffiffi
2

p
CβS3β þ 4S4βÞm2

K

þ ð2C4
β − 12C2

βS
2
β þ 16

ffiffiffi
2

p
C3
βSβ

þ 20
ffiffiffi
2

p
CβS3β − 7S4βÞm2

π

i
: ðA17Þ

Note that Vij ¼ Vji, with i; j ¼ 1; 2;…5, and fi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fPi

fP̄0
i

p
, with Pi and P̄0

i being the pseudoscalars con-
stituting the channel i.
When solving Eq. (7), we have considered two cases: (I)

different values for the pseudoscalar weak decay coupling
constants in Eqs. (A3)–(A17), with fπ ¼ 93 MeV,
fK ¼ 113 MeV, fη ¼ fη0 ¼ 111 MeV [36], and Qmax ¼
1020 MeV in Eq. (8); (II) fπ ¼ fK ¼ fη ¼ fη0 ¼ 93 MeV

and Qmax ¼ 700 MeV [44,46]. Note that different values
of these pseudoscalar coupling constants are related to
breaking of the SU(3) symmetry and the changes produced
in V can be reabsorbed in the model by readjusting the
cutoff Qmax while considering fπ ¼ fK ¼ fη ¼ f0η.
Using the matrices

V ¼

0
BBBBB@

V11 � � � V15

V21 � � � V25

..

. . .
. ..

.

V51 � � � V55

1
CCCCCA
;

G ¼

0
BBBBB@

G11 0 � � � 0

0 G22=2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � G55=2

1
CCCCCA
; ðA18Þ

we solve Eq. (7) and search for poles of tij in the complex
energy plane. To do this the loop function needs to be
analytically continued to the complex energy plane. This
can be done by changing Gi to Gi − 2iImfGig whenever
we are above the threshold of the channel i, with Gi being
determined in the first Riemann sheet [35].
In Fig. 3 we show, for the case of ideal mixing, jt11j2

as a function of ER and EI , with ER (EI) being the real
(imaginary) part of the complex energy

ffiffiffi
s

p ¼ ER þ iEI,
and the corresponding contour plot. As shown in the figure,
a pole at

ffiffiffi
s

p
0 ¼ 984.0 − i10.3 MeV is obtained, character-

izing an isospin 0 state with mass of 984 MeV and half-
width of 10.3 MeV. This state can be related to f0ð980Þ, as
can be seen in Fig. 4, where the ππ phase shift obtained in
isospin 0 is represented and a good agreement with the
experimental data is found.
Once the pole position is found and identified with

f0ð980Þ, we can determine the couplings constants of f0 to
the channels considered to generate the state. To do this,
we consider that close to the pole position, the matrix
element tij can be written as

tijðsÞ ¼
gigj
s − s0

; ðA19Þ

where gi (gj) is the coupling constant of f0ð980Þ to the
channel i (j) and s0 is the corresponding pole position
(in the Mandelstam variable s). In this way, the product
gigj can be interpreted as the residue of tij at s ¼ s0.
Considering a closed contour around the pole positionffiffiffi
s

p
0 and Cauchy’s theorem, we can determine the product

gigj as

gigj ¼
1

2πi

I
dstijðsÞ ¼

1

πi

I
dEEtijðEÞ; ðA20Þ
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with E ¼ ffiffiffi
s

p
. Equation (A20) determines the couplings gi,

i ¼ 1; 2;…; 5, up to a phase. In our case, we fix the phase
by calculating g1 by means of Eq. (A20) and calculate
the other couplings by using Eq. (A20) for the product
g1gj, j ¼ 2; 3;…; 5.
A remark about the gi couplings, obtained with the

prescription Gi → Gi=2 whenever channel i is formed
by two identical particles, is here in order. A process
f0ð980Þ → PP can be described in terms of an effective
Lagrangian given by

L ¼ gϕf0ϕPϕP; ðA21Þ

where ϕf0 , ϕP are, respectively, fields related to the
f0ð980Þ and the pseudoscalar P particles. In Eq. (A21),
g is a coupling which reproduces the partial decay width of
f0 to the PP channel, considering the latter to be an open
channel for decay. The Lagrangian in Eq. (A21) produces
an amplitude for the process f0 → PP given by

tf0→PP ¼ 2g; ðA22Þ

where the factor 2 is a consequence of the different ways
the two pseudoscalar fields in Eq. (A21) can create the
corresponding pseudoscalars particles in the final state.
Using Eq. (A22) and considering the nature (scalar and
pseudoscalar) of the particles involved, the decay width of
f0 → PP can be written as

Γf0→PP ¼ jp⃗Pj
16πm2

f0

jtf0→PPj2: ðA23Þ

In Eq. (A23), jp⃗Pj is the modulus of the linear momentum
of P in the rest frame of the decaying particle, mf0 is the
mass of f0 and a factor of 1=2! has been included as a
consequence of the presence of two identical particles in
the final state. Using Eq. (A22), the preceding equation can
be written as

Γf0→PP ¼ jp⃗P j
8πm2

f0

ð2jgj2Þ: ðA24Þ

In terms of the coupling constant gPP determined by
solving Eq. (7) with the above mentioned prescription
for the loop function, the partial decay width of f0 → PP
can be obtained as

Γf0→PP ¼ jp⃗Pj
16πm2

f0

jgPP j2: ðA25Þ

By comparing Eqs. (A24) and (A25), we get that
jgPP j ¼ 2jgj. We can then conclude that using Eq. (6)
already implements the factor 2 present in Eq. (A22).
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FIG. 4. Phase shift for ππ → ππ in the s-wave and isospin 0.
The light shaded region corresponds to the boundaries
obtained by considering the extremities of the error bars on
the data [60–64]. The dark shaded region represents the un-
certainty in our model.

FIG. 3. Top: pole related to f0ð980Þ generated as a conse-
quence of the two-pseudoscalar dynamics in the s-wave. In the
figure, the modulus squared of the t-matrix element for the
transition KK̄ → KK̄ in isospin 0 is represented as a function of
the real (ER) and imaginary (EI) parts of

ffiffiffi
s

p
. Ideal η − η0 mixing

has been considered in this case. Bottom: contour plot for jt11j2.
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