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Under the basis light-front quantization framework, we investigate the leading-twist transverse-
momentum-dependent parton distribution functions (TMDs) for Λ and Λc baryons, the spin-1=2 composite
systems consisting of two light quarks (u and d) and a s=c quark. We evaluate the TMDs using the overlaps
of the light-front wave functions in the leading Fock sector, which are obtained by solving the light-front
eigenvalue equation. We also study the spin densities of quarks in momentum space for various
polarizations. In the same model, we compare the TMDs of the strange and charmed baryons and
the proton by reviewing their spin structures in the quark model and the probabilistic interpretations of
their TMDs.
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I. INTRODUCTION

Basis light-front quantization (BLFQ) has emerged
recently as a promising nonperturbative tool to obtain the
particle properties and observables from a Hamiltonian
based, in part, on QCD [1–16]. By employing the light-
front wave functions (LFWFs) of the strange and charmed
baryons recently obtained within the BLFQ framework [14],
we calculate the transverse-momentum-dependent parton
distributions (TMDs) of the Λ and Λc baryons. Due to their
short lifetime, it is difficult to directly extract the TMDs ofΛ

and Λc from experiments, but we provide additional moti-
vations for conducting such calculations.
First, Λ is one of the central objects of current hyper-

nuclear physics and its properties are also connected with the
properties of neutron stars [17–20]. The study of the internal
structure of the Λ baryons could also help us to understand
the internal structure of hypernuclei more generally. Further,
as the lightest charmed baryon, the Λc provides an exper-
imental and theoretical place for studying the dynamics of
light quark systems in a heavy quark environment, and for
studying CP violation in weak decays [21–23].
Second, TMDs contain information about three-

dimensional (3-D) structures including spin-momentum
correlations inside the hadron [24–26], so they are central
objects of future EIC [27] and EicC experiments [28]. There
exist many theoretical calculations on the electromagnetic
form factors of heavy baryons [29–39]. However, currently
there exist few theoretical predictions of the strange and
charmed baryon TMDs. Thus, our predictions can provide a
baseline for future theoretical and experimental investigations
of the 3-D structures of the strange and charmed baryons.
In this study, we diagonalize an effective Hamiltonian to

obtain the LFWFs of Λ and Λc, the overlaps of which give
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the TMDs. Currently, we truncate the Fock sector expan-
sion to the valence Fock sector, which means that the
proton,Λ, andΛc are modeled as a bound state of uud, uds,
and udc quarks, respectively. With this picture in mind, it is
very interesting to test the influence of the quark mass by
comparing the TMDs of those three baryons. We find
consistency in expected mass effects within the qualitative
and quantitative behaviors of the TMDs. In turn, this
supports the use of the BLFQ framework to describe
key properties of the heavy baryons.
The paper is organized as follows: in Sec. II we introduce

the light-front Hamiltonian approach under the BLFQ
framework. In Sec. III, we define the twist-2 TMDs of
spin-1=2 baryons, and derive the overlap forms of the
TMDs. Then we review their probabilistic interpretations.
In Sec. IV, we present the numerical results of Λ and Λc
baryons and compare them with those of the proton.
Finally, we summarize our work in Sec. V.

II. BASIS LIGHT-FRONT QUANTIZATION

A. A light-front Hamiltonian approach

In light-front field theory [40], the light-front variables
are defined as V� ≡ V0 � V3, V⃗⊥ ≡ ðV1; V2Þ,1 and the
energy-momentum relation is PþP− − P2⊥ ¼ M2, where
Pþ and P− represent the longitudinal momentum and
the light-front Hamiltonian of systems, respectively.
Upon quantization, this provides the light-front eigenvalue
equation

HLFjP;Λi ¼ M2jP;Λi; ð1Þ

where HLF ≡ PþP− − P2⊥. jP;Λi is the light-front state
with the momentum P and the light-front helicity Λ. M is
the system mass. We will focus on a bound state solution
which is expanded in the Fock space as [42]

jP;Λi ¼
X
n

X
λ1;λ2;…;λn

Z Yn
i

½dxid2k⃗⊥i�
2ð2πÞ3 ffiffiffiffi

xi
p

× 2ð2πÞ3δ
�
1 −

Xn
i

xi

�
δ2
�
P⃗⊥ −

Xn
i

k⃗⊥i

�

×ΨΛ
n;fλigðfxi; k⃗⊥igÞjfxiPþ; k⃗⊥i þ xiP⃗⊥; λigi; ð2Þ

where i is the index of the parton inside the bound state,
xi ≡ kþi =P

þ refers to the longitudinal momentum fraction,

kþi is the longitudinal momentum of the parton, k⃗⊥i is the
intrinsic transverse momentum, and λi is the light-front
helicity. The above two δ functions ensure the conservation
of momentum in the longitudinal direction and the

transverse plane. The LFWF, ΨΛ
n;fλig, is boost invariant

and independent of the hadron momentum, ðPþ; P⃗⊥Þ, but
depends on the parton momenta, fxi; k⃗⊥ig, and the parton
helicities fλig. The Fock state jψai is

jψai≡ jfxiPþ; k⃗⊥i þ xiP⃗⊥; λigi ¼ b̂†i0 � � � d̂†j0 � � � â†k0 � � � j0i;
ð3Þ

where b̂†i0 , d̂
†
j0 , and â†k0 represent the creation operators of

quarks, antiquarks, and gluons, respectively. j0i is the light-
front vacuum state.
From Eq. (1), the light-front Hamiltonian matrix element

is expressed as

Hab ¼ hψajHLFjψbi: ð4Þ

The eigenequation, Eq. (1), can then be converted to the
following matrix form

HabΨb ¼ M2Ψa; ð5Þ

which is solved to obtain the Fock sector related LFWFs
fΨag that encode the structural information of the bound
states.
At a fixed light-front time, xþ ≡ x0 þ x3, the bound state

of a baryon can be expressed in terms of jqqqi, jqqqqq̄i,
jqqqgi, and other Fock sectors [13]. For numerical calcu-
lations, we must truncate the infinite Fock sector expansion
to a finite Fock space in Eq. (2). In this work, the baryon
bound states are restricted to the valence Fock sector,
which means there are only the three-quark LFWFs ΨΛ in
Eq. (2). Instead of the full light-front QCD Hamiltonian,
HQCD ≡ PþP−

QCD − P2⊥, the current Hamiltonian we use,
HLF, contains an effective Hamiltonian Heff and a con-
straint term H0 [11–14],

HLF ¼ Heff þH0: ð6Þ

For the valence Fock sector of the baryon, the effective
Hamiltonian consists of the kinetic energy of quarks, a
confining potential, and the one-gluon exchange (OGE)
interaction [11–14],

Heff ¼
X
i

k⃗2⊥i þm2
qi

xi
þ 1

2

X
i;j

Vconf
i;j þ 1

2

X
i;j

VOGE
i;j ; ð7Þ

where the longitudinal momentum fraction is conservedP
i xi ¼ 1, and mqi is the constituent quark mass. For

compactness of notation, we will define these terms in
mixed coordinate and momentum space variables where
there is no ordering ambiguity. Ultimately, they will be
evaluated in a BLFQ basis space with integrations over all
coordinates and momenta. We adopt a confining potential

1Here we follow a different convention than Refs. [40,41].
Thus, the projection operators and the phase factor in the
definitions of TMD correlators in Eq. (22) are also different.
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which contains the transverse and the longitudinal parts as
employed in Refs. [11–13,43]

Vconf
i;j ¼ κ4r⃗2⊥ij −

κ4

ðmqi þmqjÞ2
∂xiðxixj∂xjÞ; ð8Þ

where r⃗⊥ij ¼ ffiffiffiffiffiffiffiffixixj
p ðr⃗⊥i − r⃗⊥jÞ signifies the relative coor-

dinate. κ represents the strength of the confinement, and
∂x ≡ ð∂=∂xÞr⊥ij

.
The last term in Eq. (7) represents the OGE potential [5].

Here, we show a schematic form of the OGE potential
[11–13,43]

VOGE
i;j ¼ 4πCFαs

Q2
ij

ūλ0iðp0
iÞγμuλiðpiÞūλ0jðp0

jÞγμuλjðpjÞ; ð9Þ

where CF ¼ −2=3 is the color factor, and αs is the coupling
constant. ūλiðpiÞ and uλiðpiÞ represent the spinor wave
functions. Q2

ij is the kinematical variable,

Q2
ij ¼

1

2

��
p⃗2⊥i þm2

qi

xi
−
p⃗02⊥i þm2

qi

x0i

−
ðp⃗2⊥i − p⃗02⊥iÞ þ μ2g

xi − x0i

�
− ði → jÞ

�
; ð10Þ

where μg is the gluon mass that regulates the infrared
divergence in OGE. In Eq. (9), we omitted the integral sign,
delta function, harmonic oscillators, and creation and
annihilation operators. We present the explicit expression
for the OGE potential in the Appendix.
Since we will be working in an overcomplete basis (see

the next subsection for details) we require a Lagrange
multiplier term to isolate the internal motion from the
spurious center-of-mass (c.m.) motion in the LFWFs.
Therefore in Eq. (6), we introduced the constraint term

H0 ¼ λLðHc:m: − 2b2IÞ; ð11Þ

which effectively drives a factorization of the transverse
c.m. motion from the intrinsic motion, where 2b2 is the
two-dimensional harmonic oscillator (2-D HO) zero-point
energy (see below), and λL is a Lagrange multiplier
[12,13,44]. The c.m. motion is governed by

Hc:m: ¼
�X

i

k⃗⊥i

�
2

þ b4
�X

i

xir⃗⊥i

�
2

; ð12Þ

where r⃗⊥i is the coordinate of each quark. One can set λL
sufficiently large to shift the excited states of the c.m.
motion to higher energy away from the low-lying states
[12,13,44].
According to Eqs. (7)–(10), four model parameters will

be introduced to solve the light-front eigenvalue equation,
Eq. (5). Those parameters are: the coupling constant, the

kinetic/OGE masses, and the strength of the confining
potential.

B. The BLFQ framework

In this section, we introduce BLFQ, which provides
a computational framework for solving the relativistic
many body bound state problem in quantum field theories
[1–7,10–15]. To solve the eigenvalue equation, Eq. (5), we
first calculate the light-front Hamiltonian matrix, Eq. (4), in
a chosen basis space. The Fock-sector basis states in Eq. (4)
are taken to be direct products of the single-particle states
jαi ¼⊗i jαii. For simplicity, we take every single-particle
basis state jαii to be the direct product of the momentum
eigenstates in the longitudinal direction, the 2-D HO basis
states in the transverse plane, and the light-cone helicity
eigenstates.
In the longitudinal direction, we adopt the discretized

light cone quantization (DLCQ) basis [42] using the
standard normalization in a one-dimensional box of
length 2L,

kþi ¼ 2π

L
ki; ð13Þ

where ki is an integer (half-integer) for bosons (fermions).
In the transverse plane, we use the 2-D HO basis function
given by

ϕm
n ðk⃗⊥; bÞ ¼

1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π × n!

ðnþ jmjÞ!

s
e−k⃗

2⊥=ð2b2Þ

×

�jk⃗⊥j
b

�jmj
Ljmj
n

�
k⃗2⊥
b2

�
eimθ; ð14Þ

where θ ¼ argðk⃗⊥Þ, and Ljmj
n is the associated Laguerre

polynomial. The radial quantum number ni, the orbital
quantum number mi, and the HO basis scale parameter b
define the HO energy Eni;mi

¼ ð2ni þ jmij þ 1Þb2. Each
single-particle basis state contains four quantum numbers
jαii ¼ jki; ni; mi; λii, where λi refers to the light-front
helicity. All the Fock-sector basis states have the same
total angular momentum projection Λ since it is conserved
by our Hamiltonian, H, defined in Eq. (6),X

i

ðλi þmiÞ ¼ Λ: ð15Þ

For the limited valence Fock space of the present work, we
may suppress the flavor and color degrees of freedom.
For the purpose of numerical calculations, we must not

only truncate the infinite basis to the leading (valence
quarks only) Fock sector but also truncate the infinite basis
within the valence Fock sector. In the longitudinal direc-
tion, the sum of the longitudinal momentum of all the basis
states is the same as the longitudinal momentum of the
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Fock particles in the bound state Pþ ¼Pi k
þ
i . We then

use a dimensionless variable K ¼Pi ki to parametrize Pþ,
and the longitudinal momentum fraction x is defined as
xi ¼ kþi =P

þ ¼ ki=K. In the transverse plane, we truncate
the total transverse quantum numbers such that

Nmax ≥
X
i

ð2ni þ jmij þ 1Þ: ð16Þ

Nmax determines the ultraviolet (∼b
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
) cutoff and the

infrared (∼b=
ffiffiffiffiffiffiffiffiffiffi
Nmax

p
) cutoff in momentum space [45].

After setting the truncation parameters fNmax; Kg and
solving the eigenvalue equation, Eq. (5), within the BLFQ
framework, we obtain the LFWFs in the momentum
space as

ΨΛ
fλigðfxi; p⃗⊥igÞ ¼ hP;Λjfxi; p⃗⊥i; λigi
¼
X

fni;mig
ΨΛðfxi; ni; mi; λigÞ

Y
i

ϕmi
ni ðp⃗⊥i; bÞ; ð17Þ

where ΨΛðfxi; ni; mi; λigÞ is the LFWF in the BLFQ basis
obtained by diagonalizing Eq. (5). p⃗⊥i is the transverse
single-particle momentum.
For the LFWFs of the bound states in Eq. (2) and TMDs

(see below), the transverse variable k⃗⊥ is the intrinsic
transverse momentum. The BLFQ method adopts the 2-D
HO basis states in the transverse plane which enables one to
transform the single-particle coordinate into the relative
coordinate by the Talmi-Moshinsky (TM) transform [46] as

ϕm1
n1 ðp1Þϕm2

n2 ðp2Þ ¼
X
NMnm

MNMnm
n1m1n2m2

ϕM
N ðKÞϕm

n ðkÞ; ð18Þ

where MNMnm
n1m1n2m2

is the TM coefficient, the labels ðN;MÞ
represent the c.m. quantum numbers, and ðn;mÞ represent
the relative quantum numbers.
For the baryons truncated to the valence quark Fock

sector, when we need the LFWF expressed in terms of

internal coordinates alone, the procedure for converting the
single-particle coordinates to the relative is as follows: first,
quark 1 and quark 2 are TM transformed to obtain the
quantum numbers ðN12;M12Þ of their c.m. and the quantum
numbers (n12,m12) of the relative motion via Eq. (18).
Second, these quantum numbers are TM transformed with
quark 3, and finally, we get the quantum numbers ðn;mÞ of
the struck quark 3 relating to the system center of mass.

C. The spin structure of baryons in the quark model

In this subsection, we review the spin structure of the Λ
and Λc baryons in the quark model. The results will be used
to identify the Λ and Λc baryons from BLFQ and analyze
their structure.
In the quark model [47], light and strange baryons are

composed of three light or strange quark qqq. Despite the
different masses of light and strange quarks, the SU(3)
flavor symmetry holds approximately in nature. Therefore,
we can still analyze the structures of light and strange
baryons under the framework of SU(3) flavor symmetry. In
the flavor (f) SU(3) framework, qfqfqf ¼ 3 ⊗ 3 ⊗ 3 ¼
10s ⊕ 8ρ ⊕ 8γ ⊕ 1a, subscript (a) s represents the total
(anti)symmetry, and subscripts ρ and γ refer to the mixed
symmetry. In spin (s) space, qsqsqs ¼ 2 ⊗ 2 ⊗ 2 ¼
4s ⊕ 2ρ ⊕ 2γ. In nonrelativistic models, the quarks of
the baryon ground states have zero orbital angular momen-
tum, and the spatial wave function is symmetric (S wave).
Due to the Pauli exclusion principle and the color

confinement, the flavor-spin wave functions of baryon
ground states must be symmetric while the color wave
function is the antisymmetric color singlet 1a. In the quark
model, the Λ baryon and the proton belong to the baryon
octet. With the flavor-spin symmetry SU(6) analysis, the
flavor-spin wave functions of the baryon octet are
η ¼ 1ffiffi

2
p ðϕρχρ þ ϕγχγÞ, where ϕ is the flavor wave function,

and χ is the spin wave function. ForΛ baryons with positive
helicity, the flavor-spin wave function is

jΛ;↑iflavor-spin ¼
1ffiffiffi
2

p
�
1

2
ðjsudi þ jusdi − jsdui − jdsuiÞ ⊗ 1ffiffiffi

6
p ðj↑↓↑i þ j↓↑↑i − 2j↑↑↓iÞ

þ 1ffiffiffiffiffi
12

p ðjdsui − jsdui þ jsudi − jusdi þ 2judsi − 2jdusiÞ ⊗ 1ffiffiffi
2

p ðj↑↓↑i − j↓↑↑iÞ
�
: ð19Þ

Using the spin operator σ̂q of quarks, the spin projection hσ̂qi ¼ hΛ;↑jσ̂qjΛ;↑i of both the u quark and the d quark insideΛ
baryons is zero, while that of the s quark isþ1=2, which means the s quark is always parallel to the Λ baryon. However, the
proton has a different spin structure given by

jp;↑iflavor−spin ¼
1ffiffiffi
2

p
�
1ffiffiffi
6

p ð2juudi − jduui − juduiÞ ⊗ 1ffiffiffi
6

p ðj↑↓↑i þ j↓↑↑i − 2j↑↑↓iÞ

þ 1ffiffiffi
2

p ðjduui − juduiÞ ⊗ 1ffiffiffi
2

p ðj↑↓↑i − j↓↑↑iÞ
�
: ð20Þ
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It shows hσ̂ui ¼ 2=3 and hσ̂di ¼ −1=6, which means that
the proton spin at a low scale is primarily carried by the u
quarks.
In flavor space, c quarks with a heavy mass will break

flavor symmetry. The charmed baryon Λc does not belong
to the three light quark multiplet but to the two light

quark system: qfqf ¼ 3 ⊗ 3 ¼ 3̄a ⊕ 6s—the antitriplet 3̄a
[48,49]. For Λc, the flavor wave function is antisym-
metric under the exchange of the first two quarks,
ϕ ¼ 1ffiffi

2
p ðjudci − jduciÞ. The spin wave function must also

be antisymmetric under the exchange of the first two
quarks. So the flavor-spin wave function of Λc is

jΛc;↑iflavor-spin ¼
1ffiffiffi
2

p ðjudci − jduciÞ ⊗ 1ffiffiffi
2

p ðj↑↓↑i − j↓↑↑iÞ; ð21Þ

which shows the same spin structure as Λ. The spin
projection of u and d quarks is zero, hσ̂u;di ¼ 0, and the
c quark is always parallel to the Λc baryon, hσ̂ci ¼ 1=2.
In conclusion, according to the quark model, u and d

quarks have no contributions to the spin of the Λ and Λc
baryons in S waves, only the s (c) quark contributes to the
spin of the Λ (Λc) baryon. Both u and d quarks contribute
to the proton spin, but the u quarks dominate over the
d quark.

III. TMDs

Leading-twist TMDs provide the densities or differences
of densities for a struck parton having the longitudinal
momentum fraction x, relative transverse momentum k⃗⊥,
and a particular polarization in a hadron [25,26]. For spin-
1=2 baryons, TMDs of quarks are defined through the
quark-quark correlator function as [50–52],

Φ½Γ�
q

�
P; S; x ¼ kþ

Pþ ; k⃗⊥
�

¼ 1

2

Z
dz−d2z⊥
2ð2πÞ3

× eik·zhP; Sjψ̄qð0ÞΓWð0⊥; z⊥ÞψqðzÞjP; Sijzþ¼0
; ð22Þ

where ψq is the quark field operator, and index q means a
particular flavor. The quark fields in Eq. (22) are accom-
panied by the gauge links W, necessary to render the
gauge-invariance [53,54]. jP; Si defines the bound state of
a baryon with spin S and four-momentum P where the
transverse momentum is zero P⊥ ¼ 0 [55]. The Dirac
matrix Γ determines the Lorentz structure of the correlator
Φ½Γ� and its “twist” τ [56]. For the leading twist (τ ¼ 2), the
Dirac matrices Γ can only take three kinds, γþ, γþγ5, and
iσiþγ5 (i ¼ 1, 2), where σiþ ¼ i

2
½γi; γþ�. In the light-front

field theory [40], the quark field is decomposed into a “good”
componentψþ, anda “bad” componentψ− (ψ� ≡ 1

4
γ∓γ�ψ),

where the bad component ψ− depends on the good compo-
nent ψþ and the transverse gauge fields Aj,

ψ−ðzÞ ¼
γþ

2i∂þ
½ið∂j − igAjðzÞÞγj þm�ψþðzÞ; ð23Þ

where j only sums 1 and 2. g (g2=4π ¼ αs) is the coupling
constant and m is the quark mass. The constraint equation
comes from the QCD equation of motion in the light-cone
gauge Aþ ¼ 0. Fortunately, the leading-twist Dirac matrices
project the correlator into terms containing only “good”
fields, so the correlator has no additional complexity and no
suppression in the power of M=Pþ [57].
By analyzing parity, charge conjugation, Hermiticity

invariance, and using Gordon identities, one can para-
metrize the quark-quark correlator of spin 1=2 baryons to
get eight leading-twist TMDs [50–52],

Φ½γþ�ðx; k⃗⊥; SÞ ¼ f1 −
ϵij⊥ki⊥S

j
⊥

M
f⊥1T; ð24Þ

Φ½γþγ5�ðx; k⃗⊥; SÞ ¼ S3g1L þ k⃗⊥ · S⃗⊥
M

g1T; ð25Þ

Φ½iσjþγ5�ðx; k⃗⊥;SÞ ¼ Sj⊥h1þS3
kj⊥
M

h⊥1L

þSi⊥
2ki⊥k

j
⊥− ðk⃗⊥Þ2δij
2M2

h⊥1T þ
ϵji⊥ki⊥
M

h⊥1 ;

ð26Þ

where i; j ¼ 1; 2 and antisymmetric tensor ϵ12⊥ ¼ −ϵ21⊥ ¼ 1.
S3 and Sj⊥ represent the helicity and transverse component
of the hadron’s spin, respectively. Based on Jaffe–Ji
classification [41], the letters f, g, and h respectively refer
to unpolarized, longitudinally polarized, and transversely
polarized struck quarks; subscript L (T) refers to the
longitudinal (transverse) polarization of the baryon; sub-
script 1 indicates the leading twist; the⊥ symbol represents
a transverse momentum dependence with an uncon-
tracted index.
If one takes the naive time-reversal symmetry into

account, the Sivers function f⊥1T [58] and the Boer-
Mulders function h⊥1 [50] will disappear [55,59]. These
functions are called T-odd functions. The rest are T-even
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TMDs [52]. TheT-odd effect ofTMDswas firstmentioned in
Ref. [58]. Reference [60] provides an intuitive picture of
quark orbital angular momentum and what they called
“surface effect.” If one wants to get the nonzero results of
the T-odd functions in semi-inclusive deep inelastic scatter-
ing or Drell-Yan process, one must take the final or initial
state interactions into account [61]. In this present work, we
do not consider the effect of the gauge links W. In the unit
matrix approximation, W ≈ 1, only the T-even TMDs
survive.

A. Overlap representations

Based on light-front field theory [40], we can obtain the
TMDs as overlaps of the LFWFs. The critical step is to
separate different TMDs in Eqs. (24)–(26). We decompose
the bound state of the baryon jP; Si in terms of the light-
front helicity state of the baryon jP;Λi by the rotation
transformation [62],

ðjP;þSi; jP;−SiÞ ¼ ðjP;þi; jP;−iÞuðθ;φÞ; ð27Þ

where the baryon polarization state jP; Si is in a generic
direction S ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. The SU(2)
rotational matrix is

uðθ;φÞ ¼
 
cos θ

2
e−i

φ
2 − sin θ

2
e−i

φ
2

sin θ
2
ei

φ
2 cos θ

2
ei

φ
2

!
: ð28Þ

Therefore, one can represent the correlator, Eq. (22), in the
light-front helicity form as follows,

Φ½Γ�
Λ0Λ;qðx; k⃗⊥Þ ¼

1

2

Z
dz−d2z⊥
2ð2πÞ3 eik·z

× hP;Λ0jψ̄qð0ÞΓψqðzÞjP;Λijzþ¼0
: ð29Þ

In the spinor space, the struck quarks have different
helicity structures for different gamma matrices Γ in
Eq. (29). We define the TMD correlators in terms of the
helicity amplitude as

Φ½Γ�
Λ0Λ;qðx; k⃗⊥Þ ¼

X
λλ0

ΦΛ0λ0;Λλ;qðx; k⃗⊥Þkþūλ0 ðkÞΓuλðkÞ: ð30Þ

Based on the light-cone bound states of the baryon in
Eq. (2) and the anticommutator of fermionic fields, we can
obtain the overlap representation of the TMD correlators
in Eq. (30),

ΦΛ0λ0;Λλ;qðx; k⃗⊥Þ

¼
X
λ2λ3

Z
dx2d2k⃗⊥2dx3d2k⃗⊥3

2ð2πÞ3ð2πÞ3

× δð1 − x − x2 − x3Þδð2Þðk⃗⊥ þ k⃗⊥2 þ k⃗⊥3Þ
× ΨΛ0�

λ0λ2λ3
ðk̃; k̃2; k̃3ÞΨΛ

λλ2λ3
ðk̃; k̃2; k̃3Þ; ð31Þ

where k̃≡ ðx; k⃗⊥Þ. Λ and Λ0 are the helicities of the initial-
state baryon and the final-state baryon, respectively. λ and
λ0 are the helicities of the initial-state struck quark and the
final-state struck quark, respectively. One can decompose
the light-front helicity amplitudes, Eq. (31), into the TMDs
as [63]

ΦΛ0λ0;Λλ;q ¼

0
BBBBBB@

1
2
ðfq1 þ gq1LÞ − kR

2M ðih⊥q
1 − h⊥q

1L Þ kL
2M ðif⊥q

1T þ gq1TÞ hq1
kL
2M ðih⊥q

1 þ h⊥q
1L Þ 1

2
ðfq1 − gq1LÞ k2L

2M2 h
⊥q
1T

kL
2M ðif⊥q

1T − gq1TÞ
− kR

2M ðif⊥q
1T − gq1TÞ k2R

2M2 h
⊥q
1T

1
2
ðfq1 − gq1LÞ − kR

2M ðih⊥q
1 þ h⊥q

1L Þ
hq1 − kR

2M ðif⊥q
1T þ gq1TÞ kL

2M ðih⊥q
1 − h⊥q

1L Þ 1
2
ðfq1 þ gq1LÞ

1
CCCCCCA
; ð32Þ

where kR;L ¼ k1⊥ � ik2⊥. The row indices are the final-
state light-front helicities of the baryon and the struck
quark ðΛ0; λ0Þ ¼ ðþ;þÞ, ðþ;−Þ, ð−;þÞ, ð−;−Þ, while the
column indices are the initial-state light-front helicities
ðΛ; λÞ ¼ ðþ;þÞ, ðþ;−Þ, ð−;þÞ, ð−;−Þ.
In this work, we focus on the internal structure of Λ and

Λc baryons. We treat the baryons as composite particles
composed only of the valence quarks. We expand the
baryon bound state jP;Λi in Fock space truncated to the
leading Fock sector in Eq. (2), where the index i refers to
the flavor index (i ¼ u, d, s, for Λ; i ¼ u, d, c, for Λc).
We employ the Hermiticity properties of TMDs and

ignore the gauge links, Φ�
Λ0λ0;Λλ ¼ ΦΛλ;Λ0λ0 . Further, the

helicities flip symmetry of the LFWFs in BLFQ [13] is

ΨΛ
λ1;λ2;λ3

¼ ð−ÞΛ−λ1−λ2−λ32
þ1Ψ−Λ�

−λ1;−λ2;−λ3 : ð33Þ

Under the approximation that the gauge link is the identity
operator, the TMDs are obtained by the following overlaps
of the three-quark LFWFs

f1 ¼
X
λ1λ2λ3

Z
½D�½jΨþ

λ1λ2λ3
j2 þ jΨ−

λ1λ2λ3
j2�; ð34Þ

g1L ¼
X
λ2λ3

Z
½D�½jΨþ

þλ2λ3
j2 − jΨþ

−λ2λ3 j2�; ð35Þ

f⊥1T ¼ 0; ð36Þ
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g1T ¼ 2M

jk⃗⊥j2
X
λ2λ3

Z
½D�½ℜðkRΨþ�

þλ2λ3
Ψ−

þλ2λ3
Þ�; ð37Þ

h1 ¼
X
λ2λ3

Z
½D�ℜ½Ψþ�

þλ2λ3
Ψ−

−λ2λ3 �; ð38Þ

h⊥1T ¼ 2M2

jk⃗⊥j4
X
λ2λ3

Z
½D�ℜ½k2LΨþ�

−λ2λ3Ψ
−
þλ2λ3

�; ð39Þ

h⊥1 ¼ 0; ð40Þ

h⊥1L ¼ 2M

jk⃗⊥j2
X
λ2λ3

Z
½D�½ℜðkLΨþ�

þλ2λ3
Ψþ

−λ2λ3Þ�; ð41Þ

where
R ½D�≡ R dx2d2k⃗⊥2

2ð2πÞ3ð2πÞ3. We omit the variables ðx; k2⊥Þ of
the TMDs and ðfk̃igÞ of the LFWFs, where k̃3 ¼ ð1 − x −
x2;−k⃗⊥ − k⃗⊥2Þ is owing to the δ functions in Eq. (31) and
the conservation of momentum. It is worth mentioning that
the six T-even TMDs under the BLFQ framework are
mutually independent [64], while in other models they are
related [62,65,66].

B. Probabilistic interpretations

From the overlap forms of f1 in Eq. (34) and g1L in
Eq. (35), we know their probabilistic interpretations. The
f1 describes the distribution of unpolarized quarks with
the given momentum k̃ in an unpolarized hadron; the g1L
describes the difference between the number densities of
quarks with the positive and negative helicities in a
longitudinally polarized hadron. However, the probabilistic
interpretations of the other TMDs are hidden in their
overlap forms, especially f⊥1T and h⊥1 . In Refs. [41,59],
the authors summarized the probabilistic interpretations
of the twist-2 TMDs by analyzing the bilocal operator
structure and the parametrization of the TMD correlators.
In this section, we review the probabilistic interpretations of
f1ðx; k2⊥Þ, g1Lðx; k2⊥Þ, and h1ðx; k2⊥Þ.
Employing the helicity projection operator ÔR=L ≡

1
4
ð1� γ5Þ and the transverse polarization projection

operator Ô↑=↓ ≡ 1
4
ð1� γ1γ5Þ, the Dirac matrices in the

leading-twist TMD correlators project the bilocal quark
operator into

ψ̄ð0ÞγþψðzÞ ¼ 2ψ†
þð0ÞψþðzÞ; ð42Þ

ψ̄ð0Þγþγ5ψðzÞ ¼ 2ðψ†
þ;Rð0Þψþ;RðzÞ − ψ†

þ;Lð0Þψþ;LðzÞÞ;
ð43Þ

ψ̄ð0Þiσ1þγ5ψðzÞ ¼ 2ðψ†
þ;↑ð0Þψþ;↑ðzÞ − ψ†

þ;↓ð0Þψþ;↓ðzÞÞ;
ð44Þ

where ψþ represents the “good” field. ψþ;R and ψþ;L

represent the states of the quark field with positive and
negative helicity, respectively. ψþ;↑ and ψþ;↓ denote the
states of the quark field with transverse polarization ↑ and
transverse polarization ↓, respectively.
Substituting Eqs. (42)–(44) into the correlators of the

left-hand side of Eqs. (24)–(26), inserting a complete set
of on-shell intermediate states fjnig, and employing the
translation operator, we have

Φ½γþ� ¼
X
n

δ3ðP − k − pnÞjhP; Sjψþð0Þjnij2; ð45Þ

Φ½γþγ5� ¼
X
n

δ3ðP − k − pnÞfjhP; Sjψþ;Rð0Þjnij2

− jhP; Sjψþ;Lð0Þjnij2g; ð46Þ

Φ½iσ1þγ5� ¼
X
n

δ3ðP − k − pnÞfjhP; Sjψþ;↑ð0Þjnij2

− jhP; Sjψþ;↓ð0Þjnij2g; ð47Þ

where δ3ðP − k − pnÞ≡ δðPþ − xPþ − pþ
n Þδ2ðP⃗⊥ − k⃗⊥−

p⃗⊥nÞ. pþ
n and p⃗⊥n are the longitudinal and transverse

momenta of the intermediate state, respectively.
P

n rep-
resents summing over the phase space of all the inter-
mediate states jni, including jqqi, jqqgi, jqqqq̄i, etc. In
Eq. (45), we know that the TMD correlator Φ½γþ� means the
probability density of finding an unpolarized quark with
the longitudinal momentum fraction x and the transverse
momentum k⊥ inside a hadron with the spin S and the four-
momentum P. In Eq. (46), the TMD correlator Φ½γþγ5�
denotes the difference between the densities of quarks with
positive helicity and with negative helicity in a hadron. In
Eq. (47), the TMD correlator Φ½iσjþγ5� represents the differ-
ence between the densities of quarks with different trans-
verse polarizations in a hadron.
Through the analysis of the structure of the above bilocal

operators, we know the meaning of the TMD correlators. In
Ref. [41], the authors express those leading-twist TMD
correlators in the entries of the spin density matrix of
quarks in the baryon. Here, we define

Pq;s=H;Sðx; k⃗⊥Þ ¼
X
n

δ3ðP − k − pnÞjhP; Sjψþ;sð0Þjnij2;

ð48Þ

which represents the probability density of finding a
s-polarized quark with ðx; k⃗⊥Þ in a hadron with polarization
S. Then the TMD correlators in Eqs. (24)–(26) are

Φ½γþ� ¼ Pq=H;Sðx; k⃗⊥Þ

¼ f1ðx; k2⊥Þ −
ϵij⊥ki⊥S

j
⊥

M
f⊥1Tðx; k2⊥Þ; ð49Þ
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Φ½γþγ5� ¼ Pq;þ=H;Sðx; k⃗⊥Þ − Pq;−=H;Sðx; k⃗⊥Þ

¼ S3g1Lðx; k2⊥Þ þ
k⃗⊥ · S⃗⊥
M

g1Tðx; k2⊥Þ; ð50Þ

Φ½iσjþγ5� ¼ Pq;↑=H;Sðx; k⃗⊥Þ − Pq;↓=H;Sðx; k⃗⊥Þ

¼ Sj⊥h1ðx; k2⊥Þ þ S3
kj⊥
M

h⊥1Lðx; k2⊥Þ

þ Si⊥
2ki⊥k

j
⊥ − ðk⃗⊥Þ2δij
2M2

h⊥1Tðx; k2⊥Þ

þ ϵji⊥ki⊥
M

h⊥1 ðx; k2⊥Þ; ð51Þ

where Pq=H;S represents the probability density of an
unpolarized quark.
In the infinite-momentum frame, we define the azimuth

angles of the transverse momentum ϕk, the hadron spin ϕS,
and the quark spin ϕs in the plane orthogonal to the
direction of hadron motion, respectively. After integrating
the TMD correlators over ϕk, the other TMDs without
collinear interpretations disappear,

Pq=Hðx; k⃗⊥Þ ¼ f1ðx; k2⊥Þ; ð52Þ

Pq;þ=H;þðx; k⃗⊥Þ − Pq;−=H;þðx; k⃗⊥Þ ¼ g1Lðx; k2⊥Þ; ð53Þ

Pq;↑=H;↑ðx; k⃗⊥Þ−Pq;↓=H;↑ðx; k⃗⊥Þ ¼ cosðϕS −ϕsÞh1ðx;k2⊥Þ;
ð54Þ

where the labels “þ=−” and “↑=↓” denote longitudinal and
transverse polarization, respectively.
The above derivation is model independent. It reveals the

probabilistic meaning of TMDs from the perspective of
field operators. f1 describes the distribution of unpolarized
quarks; g1L (h1) describes the difference of the distribution
of longitudinally (transversely) polarized quarks in a
longitudinally (transversely) polarized baryon.

C. Inequality relations

In Sec. III A, we derived the LFWF overlap forms of
the TMDs. After flipping the helicity of the LFWF in the
unpolarized TMD in Eq. (34),

f1 ¼
X
λ1λ2λ3

Z
dx2d2k⃗⊥2

2ð2πÞ3ð2πÞ3 ½jΨ
þ
þλ2λ3

j2 þ jΨþ
−λ2λ3 j2�; ð55Þ

we find the bound relation between f1ðx; k2⊥Þ and
g1Lðx; k2⊥Þ from their overlap representations in Eqs. (35)
and (55),

jg1Lðx; k2⊥Þj ≤ f1ðx; k2⊥Þ: ð56Þ

In addition, the T-even twist-2 TMDs have other bounds
[63,67],

0 ≤ f1ðx; k2⊥Þ; ð57Þ

jh1ðx; k2⊥Þj ≤ f1ðx; k2⊥Þ; ð58Þ

jh1ðx; k2⊥Þj ≤
1

2
jf1ðx; k2⊥Þ þ g1Lðx; k2⊥Þj; ð59Þ

k2⊥
2M2

jh⊥1Tðx; k2⊥Þj ≤
1

2
jf1ðx; k2⊥Þ − g1Lðx; k2⊥Þj: ð60Þ

All the relations listed above are independent of any model.
We test our results for consistency with those relations.

IV. NUMERICAL RESULTS

According to Eqs. (34)–(41), our results for the valence
quark TMDs of Λ and Λc baryons are obtained from the
overlaps of the three-quark LFWFs. In total, we have six
model parameters: the light and heavy quark mass in the
kinetic energy, ðmq=kÞ, the light and heavy quark mass
in the OGE interaction, ðmq=gÞ, the strength of confining
potential, (κ), and the coupling constant, ðαsÞ, in the OGE
interaction [11,13], and we select three computational
parameters: the HO scale parameter b ¼ 0.6 GeV and
the truncation parameters Nmax ¼ 8, K ¼ 16.5. With the
model parameters shown in Table I, we identify the ground
state as the Λ and Λc baryons and get the TMDs from
the LFWFs of the Λ and Λc baryons with masses MΛ ¼
1.116 GeV and MΛc

¼ 2.287 GeV, respectively.

A. The TMDs of valence quarks

Figure 1 shows our model results for the T-even TMDs
without evolution effects or gauge links for the valence
quarks inside the Λ and Λc baryons in the BLFQ frame-
work. Our results satisfy the inequality relations in
Eqs. (56)–(60). We only show results for the u quark
instead of both the light quarks. The reason is that the light
quark’s TMDs are nearly identical, since they have the
same mass and they have the same structure in the flavor-
spin symmetry analysis (see Sec. II C). It is worth noting
that in the spin analysis of the quark model, the spatial wave
function contains only the S-wave in Sec. II C. However,
our results contain not only the S-wave contributions

TABLE I. List of the model parameters with the truncation
fNmax; Kg ¼ f8; 16.5g for Λ, Λc [14] and the proton [13]. All are
in the unit of GeV except αs.

αs mq=k=mq=g ms=k=ms=g mc=k=mc=g κ

Λ 1.06 0.30=0.20 0.39=0.29 � � � 0.337
Λc 0.57 0.30=0.20 � � � 1.58=1.48 0.337
proton 1.10 0.30=0.20 � � � � � � 0.337
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but also the combined contributions from P-waves and
D-waves, but for the Λ (Λc) baryon, the former contributes
74% (96%) significantly larger than the latter two com-
bined 26% (4%). Therefore, the conclusions of Sec. II C
apply well to our results.
For clarity, the 2-D sections in the transverse momentum

k⊥-direction and the longitudinal momentum fraction
x-direction of these TMDs are shown in Figs. 2 and 3
for the Λ baryon and the Λc baryon, respectively.
Figure 2 shows the quark TMDs for the Λ and Λc

baryons as functions of k2⊥ at fixed x ¼ 4.5=16.5 for light
quarks, and x ¼ 10.5=16.5 for s and c quarks, respectively.
For the s and c quarks, we select a different fixed
x ¼ 10.5=16.5, since the c quark TMDs for Λc concentrate
at a larger x region and this choice makes them visually
clearer. All the TMDs for theΛ andΛc baryons at any fixed x
have their peaks at the transverse momentum k2⊥ ¼ 0 GeV2,
consistent with the dominance of the S waves.
Figure 3 shows the quark TMDs for the Λ and Λc

baryons as functions of x at fixed k2⊥ ¼ 0.01GeV2. The
plots reveal a peak or a valley structure near x ≈ 0.2ð0.1Þ
for the light quarks, and larger x ≈ 0.3ð0.7Þ for the s (c)
quark inside the Λ (Λc) baryon, respectively. The reason is
that the heavy quarks carry more longitudinal momentum
fraction in the bound system. We can find that the helicity

and the transversity TMDs of light quarks are almost zero,
while those of s and c quarks are comparable to the
unpolarized TMD f1. This is understandable since, in the Λ
and Λc baryons dominated by S waves, the light quarks are
unpolarized with similar densities of positive or negative
helicity. In addition, all of the valence quarks inside the Λc
baryon have a narrow longitudinal distribution compared to
those in the Λ baryon because of the significantly higher
mass difference between heavy and light quarks in the
former. Due to the considerably heavier c quark, it is more
localized at larger values of x than the light quarks.
Consequently, the light quarks occupy smaller x regions
and cannot carry a large longitudinal momentum fraction x,
leading to their concentration at these small x. On the other
hand, the heavy quark inside the Λ baryon is less massive
than that in the Λc baryon, enabling the s quark to carry
both large and small longitudinal momentum fractions.
Thus, compared to the Λc baryon, the light and heavy
quarks in the Λ baryon are dispersed more extensively in
the longitudinal direction.
Furthermore, we examine the sensitivity of our results to

our basis space parameters by conducting a sample study.
In this study, we keep all fitted model parameters fixed and
vary only Nmax over a sample size from 6 to 10 around the
value used for our results presented here while keeping

FIG. 1. Three-dimensional plots for TMDs of the light quarks and the s and c quark inside Λ (two columns on the left) and Λc baryons
(two columns on the right) ignoring the gauge link. The images from the first row to the third row are the unpolarized TMD fq1 , the
helicity TMD gq1L, and the transversity TMD hq1 , respectively. The BLFQ computations are carried out at Nmax ¼ 8 and K ¼ 16.5.
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K ¼ 16.5 fixed. Figure 4 shows the light quark unpolarized
TMD, f1, for theΛ andΛc baryons as functions of x and k2⊥
at fixed K ¼ 16.5 with different Nmax. For Λ, the unpo-
larized TMD, f1, at k2⊥ ¼ 0.01 GeV2 varies by less than
9% over the range of 0.1 ≤ x ≤ 0.4, and the unpolarized
TMD, f1, at x ¼ 4.5=16.5 varies by less than 8% over the
range of 0GeV2 ≤ k2⊥ ≤ 0.05GeV2. A similar phenomenon
is observed for Λc. We conclude that changing these
truncation parameters but not tuning model parameters
slightly affects particular observables.

B. The spin-density of valence quarks

Twist-2 TMDs have a probabilistic interpretation, as
discussed above, but the probability density of different
polarizations is mixed [41,59]. To understand the full 3-D

dynamics of partons in the composite system, we discuss
the spin densities of valence quarks in the transverse
momentum plane [66],

ρðk⃗⊥; s;SÞ

¼ 1

2

�
f1 þ Si⊥ϵijk

j
⊥
1

M
f⊥1T þ λΛg1L þ λSi⊥ki⊥

1

M
g1T

þ si⊥ϵijk
j
⊥
1

M
h⊥1 þ Λsi⊥ki⊥

1

M
h⊥1L þ si⊥Si⊥h1

þ si⊥ð2ki⊥kj⊥ − k⃗2⊥δijÞSj⊥
1

2M2
h⊥1T
�
; ð61Þ

where s ¼ ðλ; s⃗⊥Þ and S ¼ ðΛ; S⃗⊥Þ are the spin of the
struck quark and the baryon, respectively. For a generic

FIG. 2. Two-dimensional plots for the k2⊥-dependence of TMDs at fixed x for the valence quarks inside Λ and Λc baryons. The BLFQ
computations are carried out at Nmax ¼ 8 and K ¼ 16.5.

FIG. 3. Two-dimensional plots for the x-dependence of TMDs at fixed k2⊥ for the valence quarks inside Λ and Λc baryons. The BLFQ
computations are carried out at Nmax ¼ 8 and K ¼ 16.5.
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TMD j, we introduce the x-integrated function defined
as [66]

jðk2⊥Þ ¼
Z

dxjðx; k2⊥Þ: ð62Þ

From Eq. (61) and omitting the T-odd TMDs f⊥1T and h⊥1 ,
we can form the following six densities of quarks with
different polarization of the struck quark and the hadron
ignoring the gauge links. For an unpolarized baryon, we
define the unpolarized spin-density

ρðkx; kyÞ ¼ fq1; ð63Þ

as the probability density of finding an unpolarized quark
with a given k⃗⊥ in an unpolarized baryon.
The helicity density

ρþ=þðkx; kyÞ ¼
1

2
ðfq1 þ gq1LÞ ð64Þ

represents the probability density of finding a longitudi-
nally polarized quark with k⃗⊥ in a longitudinally polarized
baryon.
The transversity density

ρ↑=↑ðkx; kyÞ ¼
1

2

�
fq1 þ hq1 þ

k2y − k2x
2M2

h⊥q
1T

�
ð65Þ

describes the probability density of finding a transversely
polarized quark in the baryon with the same transverse
polarization.

In the baryon with transverse polarization along the
y-axis, the Worm-gear density

ρþ=↑ðkx; kyÞ ¼
1

2

�
fq1 þ

ky
M

gq1T

�
ð66Þ

refers to the probability density of finding a longitudinally
polarized quark.
The Kotzinian-Mulders density

ρ↑=þðkx; kyÞ ¼
1

2

�
fq1 þ

ky
M

h⊥q
1L

�
ð67Þ

represents the probability density of finding a quark with
transverse polarization along the y-axis in a longitudinally
polarized baryon.
Finally, the Pretzelosity density

ρ↑=→ðkx; kyÞ ¼
1

2

�
fq1 þ

kxky
M2

h⊥q
1T

�
ð68Þ

means the probability density of finding a quark with
different transverse polarization to the baryon.
The first and second superscripts of the above spin-

densities indicate the respective polarization of the struck
quark and the baryon. The label “+” refers to longitudinal
polarization. The label “↑= →” means transverse polariza-
tion along the y=x-axis.
In Fig. 5, we show the spin densities of the valence

quarks inside the Λ and Λc baryons in the transverse-
momentum plane in the BLFQ framework. The contour
plots in the first row of Fig. 5 show the unpolarized spin
density defined in Eq. (63). The unpolarized density is

FIG. 4. The unpolarized TMD, f1, of the light quark inside the Λ and Λc baryons with K ¼ 16.5 at different Nmax but with all model
parameters held fixed.
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FIG. 5. The density plots of valence quarks inside the Λ and Λc baryons in the transverse-momentum plane with different
polarizations. The plots in the first row are the unpolarized density, Eq. (63), as the probability density of finding unpolarized quarks at a

given k⃗⊥ in the unpolarized baryon. The plots in the second row are the helicity density, Eq. (64), as the probability density of finding
longitudinally polarized quarks in the baryon with the same longitudinal polarization. The plots in the third row are the transverse
density, Eq. (65), as the probability density of finding transversely polarized quarks in the baryon with the same transverse polarization.
The plots in the fourth row are the Worm-gear density, Eq. (66), as the probability density of finding longitudinally polarized quarks in
the y-axis transversely polarized baryon. The plots in the fifth row are the probability density, Eq. (67), of finding y-axis transversely
polarized quarks in the longitudinally polarized baryon. All the densities are in the unit of GeV−2. The BLFQ computations are carried
out at Nmax ¼ 8 and K ¼ 16.5.
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independent of the transverse azimuth angle. As expected,
it is circularly symmetric around the direction of the baryon
perpendicular to the paper’s surface. Due to the same
reason, the helicity spin density given in Eq. (64) in the
second row also has a circular symmetry in the transverse-
momentum plane. On the other hand, the transverse density
in Eq. (65) involves a slight distortion term similar to
quadrupole moment, thus ρ↑=↑ for the valence quarks
shows an elliptical structure whose major axis is the
polarization axis, especially for the light quarks inside Λ.
In the fourth row of Fig. 5, the contour plots show the

Worm-gear density defined in Eq. (66). For the Λ baryon,
it has a slight shift in the ky-axis because the baryon is
transversely polarized along the ky direction, and the
longitudinal polarization of the quark does not affect the
transverse azimuth distribution. In the fifth row of Fig. 5,
the ρ↑=þ density of the s quark inside the Λ baryon is
asymmetric in the ky-axis, but the ρ↑=þ densities of the light
u=d quarks almost have no shift. Because the Kotzinian-
Mulders TMD h⊥1L of the light quarks is smaller than fq1 , the
distortion is suppressed. In the bottom row, the ρ↑=→

density also shows an elliptical structure whose major axis
is in the line ky ¼ kx for the light quarks and ky ¼ −kx for
the s quark. The different asymmetry of the ρ↑=→ density
comes from the different signs of h⊥1T for the light quarks
and for the s quark.
For the Λc baryon, the helicity density ρþ=þ and the

transversity density ρ→=→ of the c quark are almost twice as
high as the unpolarized density. This is because the c quark
is scarcely antiparallel to the Λc baryon, resulting in the
antiparallel probabilities Pc;−=Λc;þ and Pc;↓=Λc;↑ being
small. The phenomenon also exists for the s quark of
the Λ baryon. The other spin densities have no visible
shifts. The reason is that all the TMDs for Λc concentrate
in small jk⊥j regions, and all the distortion terms contain
transverse momentum factors, such as k2y − k2x for the ρ→=→.
Thus, the distortion terms are suppressed by the small
transverse momentum k⊥. Owing to the spin structure of
Λc, the TMDs of polarized light quarks are also very small.

C. The comparison with protons

Due to the short lifetime of Λ and Λc baryons, exper-
imental measurements and studies on their TMDs may
pose significant challenges. We compare the TMDs of the
strange and charmed baryons with those of easy-to-detect
protons in the same octet under the same BLFQ framework
to gain insight into their properties and clarify their
differences. We adopt the model parameters for the proton
mentioned in Table I in Refs. [11–13] and the same
truncation Nmax ¼ 8 and K ¼ 16.5.
Figure 6 compares the x-dependence of the unpolarized

TMD f1 of the light quarks and the s and c quarks at
different k2⊥. It is clear that f1 of the u quarks inside the
proton and Λ have almost the same shape except for the

magnitude, which differs by a factor of 2. This is because
we set the constituent u quark mass inside the proton and Λ
to be the same and a proton has two valence u quarks in the
quark model. In addition, the proton and the Λ baryon
belong to the same baryon octet and have almost the same
mass: the former is 938 MeV and the latter is 1115 MeV,
which suggests a similar unpolarized structures. For Λc, the
light quarks concentrate at smaller x and distribute more
narrowly than in the light baryons because relatively lighter
quarks carry smaller longitudinal momentum fraction in a
heavy baryon. In the right column in Fig. 6, we find that the
peak locations of x-dependence f1 for the heavy quark are
different. For the proton, the d quark plays the role of the
heavy quark. The heavier quarks have their peaks located
at higher-x, revealing that they carry larger longitudinal
momentum fraction.
While gradually increasing the transverse momentum

k2⊥, the peak in amplitude of x-dependence of f1 for the Λc
baryon drops rapidly compared to Λ and the proton as
illustrated in Fig. 6. Considering the probabilistic inter-
pretation of the quark unpolarized TMD f1 in Sec. III B, we
define the mean squared transverse momentum of f1 for
quarks as

hk2⊥if1 ¼
R
dx
R
d2k⊥k2⊥f1ðx; k2⊥ÞR

dx
R
d2k⊥f1ðx; k2⊥Þ

: ð69Þ

ForΛ,Λc, and the proton, the mean hk2⊥i are summarized in
Table II. The hk2⊥i of the light quarks inside the Λc baryon
is almost twice that of Λ and the proton. This is consistent
with the physical intuition that the radius, r ∼ 1=k, of the
heavy system is smaller than that of the light system.
Figure 7 shows the x-dependence of the helicity TMD

g1L and the transversity TMD h1 at different k2⊥. The
TMD g1L (h1) describes the difference in the distribution
of partons with opposite longitudinal (transverse) polari-
zation in longitudinally (transversely) polarized baryons,
which reflects the internal spin structure of baryons
[41,59,63,66].
In Sec. II C, we discussed the picture for the spin

structure of Λ, Λc, and the proton in the quark model.
The u and d quarks have no contribution to the spin of theΛ
and Λc baryons in S waves, while the u quarks primarily
contribute to the spin of the proton. Although our BLFQ
results contain S-wave, P-wave, and D-wave contributions,
the contribution from the S wave strongly dominates over
the P-wave and D-wave contributions. In the first column
of Fig. 7, the amplitudes of the gu1L and the hu1 for the Λ
baryon, and the Λc baryon are not zero, because the
presence of P-wave and D-wave components results in
light quarks with the spin parallel to Λ and Λc. However,
the gu1L and hu1 are much smaller than those in the proton,
which means light quarks inside the Λ and Λc baryons are
less polarized compared to the proton.
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In Sec. II C, another implication of the simple picture is
that heavy quarks primarily contribute to the spin of Λ and
Λc in the S wave, while the d quark has a small but negative
contribution to the spin of the proton. In the second column
of Fig. 7, g1L and h1 for heavy quarks inside the Λ and Λc
baryons are positive, but those for the d quark in the proton
are negative. This shows that the spin of s (c) quark is
primarily parallel to the Λ (Λc) baryon, while the spin of d
quark is primarily antiparallel to the proton.

V. SUMMARY

We introduced the basis light-front quantization (BLFQ)
approach, a method of obtaining the bound state wave

functions by solving the eigenvalue equation of the light-
front Hamiltonian. Under the BLFQ framework, we further
introduced a model Hamiltonian to solve the structures of
strange and charmed baryon systems. Then we obtained the
LFWFs of Λ and Λc by diagonalization of the light cone
Hamiltonian in an efficient basis representation.
Employing the LFWFs, we calculated the T-even twist-2

TMDs of the strange and charmed baryons. The TMDs
satisfy all established inequalities and are independent
of each other. Our results, within limitations owing to
neglected sea quarks and gluons, show that heavier quarks
carry a larger longitudinal momentum fraction. Further,
using the TMDs, we obtained the spin densities of valence
quarks inside the Λ and Λc baryons. We discussed the
probabilistic interpretations of twist-2 TMDs in connection
with the quark model, and compared the TMDs of the Λ
and Λc baryons to the proton. The comparison illustrates
the differences in the baryon structures caused by different
flavor symmetries and masses of the valence quarks, as
expected from the quark model.
The main purpose of this study is to understand the

structure of the baryons in the valence Fock sector.
Considering the difficulty in accessing parton structures
of heavy baryons experimentally, future studies will focus
on particle structures that can be accessed experimentally,
such as the T-odd TMDs of the proton and the pion.

TABLE II. The mean square of the transverse momentum of the
valence quarks in baryons. For Λ, the s quark plays the role of the
heavy quark. For the proton, light refers to the u quarks and heavy
refers the d quark. All numbers are in the unit of GeV2.

hk2⊥ilight hk2⊥iheavy
Λ 0.067 0.057
Λc 0.116 0.099
Proton 0.061 0.071

FIG. 6. Two-dimensional plots for the x-dependence of the unpolarized TMD f1 for light quarks and heavy quarks inside protons, Λ,
and Λc. Light (heavy) quarks are compared in the left (right) column. For the proton, light refers to the u quarks and heavy refers the d
quark. For Λ, the s quark plays the role of the heavy quark.
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FIG. 7. Two-dimensional plots for the x-dependence of the helicity TMD g1L (first row of three vertical panels) and the transversity
TMD h1 (second row of three vertical panels) for light quarks and heavy quarks inside protons, Λ, and Λc. Light (heavy) quarks are
compared in the left (right) column. For the proton, light refers to the u quarks and heavy refers the d quark. For Λ, the s quark plays the
role of the heavy quark.
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APPENDIX: THE OGE POTENTIAL

In this appendix, we present the explicit expression for
the effective OGE potential [5],

VOGE
i;j ¼ CFαs

K

X
αiα

0
iαjα

0
j

δ
kiþkj
k0iþk0j

b†α0i
b†α0j

bαjbαi

R
d2p⃗⊥id2p⃗⊥jd2p⃗0⊥id

2p⃗0⊥j

ð2πÞ2ð2πÞ2ð2πÞ2ð2πÞ2
ð2πÞ2δ2ðp⃗⊥i þ p⃗⊥j − p⃗0⊥i − p⃗0⊥jÞ

ðxi − x0iÞQ2
ij

× ϕmi
ni ðp⊥iÞϕmj

nj ðp⊥jÞϕm0
i�

n0i
ðp⊥i0 Þϕ

m0
j�

n0j
ðp0⊥jÞðPþÞ2ūλ0iðp0

iÞγμuλiðpiÞūλ0jðp0
jÞγμuλjðpjÞ: ðA1Þ

We follow the convention in Appendix C of Ref. [3], where
the spinors, uλðpÞ and ūλðpÞ, are dimensionless. K is the
longitudinal truncation. b†α and bα are the creation and
annihilation operators in the BLFQ basis [3]. The relations
between the normal creation and annihilation operators and
the BLFQ ones are given by

b†λðpÞ ¼
X
nm

b†αϕm�
n ðp⊥Þ ðA2Þ

bλðpÞ ¼
X
nm

bαϕm
n ðp⊥Þ; ðA3Þ

where the quantum number set, α, includes the longitudinal
momentum quantum number k, the radial quantum number
n, the orbital quantum number m, and the light-front
helicity λ.
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