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We formulate an S-matrix theory in which localization effects of the particle interactions involved in a
scattering process are consistently taken into account. In the limit of an infinite spread of all interactions,
the S-matrix assumes its standard form. To better understand the significance of the emerging quantum
phenomena in this formalism, we consider a solvable field-theoretic model with spatial Gaussian spreads at
the interaction vertices. This solvable model, which was previously introduced in the literature, enables
accurate descriptions of detection regions that are either close to or far from the source. In close analogy
with light diffraction in classical optics, we call these two regions near-field and far-field zones, or the
Fresnel and Fraunhofer regions. We revisit the question whether mixed mediators produce an oscillating
pattern if their detection occurs in the Fresnel region. Besides corroborating certain earlier findings of the
S-matrix amplitude in the forward Fresnel and Fraunhofer regimes, we observe several novel features with
respect to its angular dependence which have not been accounted before in the literature. In particular, we
obtain a “quantum obliquity factor” that suppresses particle propagation in the backward direction, thereby
providing an explicit quantum field-theoretic description for its origin in diffractive optics. Present and
future colliders, as well as both short and long baseline neutrino experiments, would greatly benefit from
the many predictions that can be offered from such a holistic localized S-matrix theory.
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I. INTRODUCTION

Despite the initial scepticism expressed by Einstein,
Podolsky and Rosen (EPR) [1] concerning the complete-
ness of quantum mechanics (QM), the nonlocal nature of
the quantum-mechanical wave function has been vindicated
by now in vast number of experiments through the violation
of the famous Bell’s inequalities [2]. An astounding
physical consequence of the property of nonlocality in
QM is the emergence of the so-called quantum entangle-
ment between quantum states which became the primary
engineering principle in many applications of modern
quantum theory, including quantum information, quantum
technology and particle physics [3,4].
With the advent of the more complete framework

of Quantum Field Theory (QFT), physical observables
associated with scattering processes are encoded in the
so-called S-matrix [5,6]. The development of a unitary

S-matrix theory allowed us to make accurate predictions for
(differential) cross sections of 2 → n processes in momen-
tum space which have been tested with great success in
collider experiments (for a review, see [7]). However, in its
standard formulation, the S-matrix provides no space-time
information of the nonlocal form of Feynman propagators,
thus limiting considerably its degree of applicability. For
instance, the production and decay of long-lived particles,
like those that occur inK-, B- andD-meson systems, would
necessitate the knowledge of the production and detection
vertices, along with the momenta of the particles in both
the initial and final state of such processes. Likewise,
the necessity of describing the observed phenomenon of
neutrino oscillations in space within the framework of
QFT [8–23] would require the development of an S-matrix
theory that takes into account finite-size localization effects
of particle interactions. Hereafter, we refer to such a theory,
for brevity, as a localized S-matrix theory (LSMT).
Another important application of such an LSMTwill be to

successfully regulate t-channel kinematic singularities of
tree-level transition amplitudes [24–27] that appear in the
physical region of the phase space. In the LSMT framework,
this can be done without appealing, for example, to statistical
uncertainties of the particle momenta in the colliding
muon beams [28–31]. Hence, the dynamics regulating
such t-channel singularities can be fundamentally different
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from that presented in other approaches. Other applica-
tions of an LSMT may include new-physics searches for
displaced vertices during the hadronization process at
high-energy colliders like LHC [32,33], or its peripheral
experiments [34], FASER [35,36], MATHUSLA [37,38]
and SHiP [39]. Such considerations may lead to an
improved interpretation of the experimental data.
In this paper we aim to formulate an S-matrix theory in

which effects in particle interactions are consistently taken
into account in scattering processes. The proposed con-
struction of the LSMT receives its standard S-matrix
form in the well-defined limit in which the spread of all
interaction vertices is taken to be infinite. To illustrate the
key features of our localized S-matrix formalism, we will
consider a 2 → 2 scattering process within a solvable QFT
model in which the production and detection vertices are
assumed to have a spatial spread of Gaussian form.
The aforementioned solvable QFT model was previously

introduced in [12] where several basic properties of
propagation and oscillation of neutrinos were analyzed
in two physical regions that depend on the distance jlj of
the detector from the source. Here, we further consolidate
these earlier findings by borrowing a terminology known
from light diffraction in classical optics. Exactly as in
diffractive optics, depending on jlj, we have two regions
which we call the near-field and far-field zones, or the
Fresnel and Fraunhofer regions. These two regions depend
on the spatial spread of the production or detection vertices,
which we generically denote as δl, and the magnitude jpj
of the net three-momentum p of all particles in the initial
or final state. Hence, the Fresnel (near-field) zone refers
typically to distances jlj in the interval, 0 ≤ jlj≲ jpjδl2,
while the Fraunhofer (far-field) regime sets on in its full
glory when jlj ≫ jpjδl2.
In this article we also study in more detail all emerging

quantum phenomena that result from our localized S-matrix
formalism in the context of the solvable QFT model
presented in [12]. In particular, we reexamine the question
whether mediators of a particle-mixing system like
neutrinos produce an oscillating pattern their detection
occurs in the Fresnel region. As well as confirming certain
earlier results [12] concerning the analytic behavior of the
S-matrix amplitude in the forward Fresnel and Fraunhofer
zones, we find several novel features with respect to its
angular dependence which have not been discussed in
adequate detail before in the literature. Most remarkably,
we obtain a “quantum obliquity factor” in the transition
amplitude that suppresses the propagation of the mediator in
the backward direction, when the latter has real momentum.
This suppression is achieved without imposing the restric-
tions owing to the Huygens-Fresnel’s principle, but it is
rather a consequence of the inherent boundary conditions
that the Feynman propagator obeys. Thus, an alternative
quantum field-theoretic explanation can be obtained for the
origin of the obliquity factor in diffractive optics [40].

The localized S-matrix theory that we will be developing
here could be utilized at high-energy colliders to describe
hadronization in a framework consistent with quantum
mechanics, beyond the so-called Lund model [41,42].
Likewise, short and long baseline neutrino experiments
would benefit from the development of LSMT that will
provide a more accurate interpretation of the low-energy
neutrino oscillation data.
The paper is organized as follows. After this introductory

section, we briefly review in Sec. II the basic results
emanating from the conventional S-matrix theory by
considering a 2 → 2 process in a simple scalar field theory.
We then discuss a localized modification of this standard
S-matrix theory, and present exact analytic results within a
solvable QFT model. In close analogy with diffractive
optics, we present in Sec. III approximate analytic expres-
sions of the S-matrix amplitude in the near- and far-field
zones as functions of the distance jlj of the detector from
the source. In Sec. IV we give exact results by analyzing
numerical examples, which confirm explicitly the validity
of the Fresnel and Fraunhofer approximations discussed in
the previous section. In addition, we show the complete
angular dependence of the transition amplitude in the
polar coordinates ðjlj; θÞ, where θ (with 0 ≤ θ ≤ π) is
the angle between the distance vector l and the total three-
momentum p of the colliding particles in the initial state of
the scattering process. Finally, Sec. V provides a succinct
summary of our results and discusses possible future
research directions. Technical details of the calculation
of the localized S-matrix amplitude within a solvable QFT
model are given in Appendices A, B and C.

II. THE LOCALIZED S-MATRIX

In a local QFT, the notion of nonlocality enters through
the Feynman propagator, which we denote here asΔFðx; yÞ.
A remarkable property of the Feynman propagator is that it
has nonzero support for two space-time points, x and y,
which happen to be localized at spacelike separations, i.e.,
ΔFðx; yÞ ≠ 0, for ðx − yÞ2 < 0. In fact, this property enc-
odes the counterintuitive nonlocal phenomenon of quantum
entanglement in QM which was called by Einstein in a
letter to Max Born in 1947: “spooky action at a distance.”
But exactly as happens with quantum entanglement in QM,
no true information between any two space-like separated
points, x and y, can be transferred faster than the speed of
light, and as such, QFT respects causality [6,43,44].
In the standard S-matrix theory emerging from

QFT [6,45–49], the transition amplitudes resulting from
the so-called Lehmann–Symanzik–Zimmermann (LSZ)
formalism [5] do not depend on space-time, but only on
the four-momenta of all particles in the initial and final state
of a scattering process. Hence, any information concerning
the location of the interactions in a 2 → n process is lost
after integration over an infinite space-time volume. If
these interactions are restricted locally within a space-time
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volume of finite size, the resulting S-matrix will depend on
the space-time coordinates and other quantities that para-
metrize the spread due to coherent QM uncertainties at the
interaction vertices. The formulation of such a LSMT is that
we wish to put forward in this paper.1

In the remainder of the section, we consider a 2 → 2
scattering process in a (local) QFT model with scalar
fields. We first recall the simple derivation of the ordinary
S-matrix element for such a process in the Born approxi-
mation. We then turn our attention to the localization
profiles introduced in this S-matrix element, when the
interaction vertices occur in a confined region of space-
time. Finally, we revisit the analytic results obtained in the
solvable QFT model of [12].

A. Standard S-matrix theory

Let us consider a simple scalar field theory consisting of
five real scalar fields: S1;2, χ1;2, and Φ. The interactions of
this QFT model are governed by the local Lagrangian,

LintðxÞ ¼ λS1ðxÞχ1ðxÞΦðxÞ þ gS2ðxÞχ2ðxÞΦðxÞ; ð2:1Þ

where λ and g are two real couplings. In the Born
approximation of this QFT model, any scattering between
S1;2 and χ1;2 will be mediated by the exchange of a particle
Φ involving a single Feynman diagram.
To set the stage for our formalism, let us for definiteness

consider the scattering process: S1ðp1Þχ1ðp2Þ →
S2ðk1Þχ2ðk2Þ. At the tree level, this 2 → 2 process may
be represented by the s-channel Feynman diagram shown
in Fig. 1. For later convenience, we define the total four-
momenta, p ¼ p1 þ p2 and k ¼ k1 þ k2, of all particles in
the initial and final state, respectively. Applying the LSZ
formalism [5], the transition amplitude TF, for the afore-
mentioned process, may be evaluated as

TF ¼ −λg
Z

d4q
ð2πÞ4

1

q2 −m2
Φ þ iϵ

Z
d4xd4ye−iðp−qÞ·xeiðk−qÞ·y

¼ λg
ð2πÞ4

jpj2 − q̃2 − iϵ
δð4Þðp− kÞ; ð2:2Þ

with q̃2 ¼ ðp0Þ2 −m2
Φ. Note that energy-momentum con-

servation, p ¼ k, arises as a result of Lorentz invariance
and the local nature of the interactions. If the particle Φ
obeys the on-mass shell (OS) condition in the s-channel of
Fig. 1, we may naively incorporate its decay width ΓΦ by
complexifying its squared mass (e.g., see [10,26]), which
amounts to making the substitution, m2

Φ → m2
Φ þ imΦΓΦ,

in (2.2). For simplicity, we ignore possible finite width
effects in this work, by setting ΓΦ ¼ 0.

We should emphasize here that the transition amplitude
TF is not only Lorentz invariant, but also enjoys the
fundamental property of analyticity which in turn implies
the so-called crossing symmetry [6]. Specifically, the tran-
sition amplitude for the (t-channel) process S1ðp1ÞS2ðp2Þ →
χ1ðp0

1Þχ2ðp0
2Þ can be recovered from the s-channel ampli-

tude given in (2.2). In this case, the relevant four-momenta,
p and k, are defined as: p ¼ p1 − p0

1 and k ¼ p0
2 − p2. As a

consequence of the analyticity of the S-matrix, we can only
change the signs of the momenta of the incoming and
outgoing particles, but the analytic structure of the amplitude
in (2.2) remains intact. This property of analyticity is that we
wish to preserve in our formulation of a localized modifi-
cation of the S-matrix which we discuss below.

B. Analytic localized extension of the S-matrix

As stated earlier, the amplitude TF in (2.2), as derived
from the usual S-matrix theory, pertains to a scattering of
particles with definite four-momenta. Hence, by virtue
of the uncertainty principle, no information about its
space-time dependence is available. However, both the
particles themselves and their interactions may be localized
in a finite space-time volume. Following [11,12], we will
assume the latter and regard all particles in the initial and
final state of a process as being well described asymptoti-
cally by plane waves to a very good approximation. Such a
consideration will be equivalent to the more often discussed
wave-packet approach (e.g., see [18]), since the localized
interactions may be viewed as intersections of the wave
packets of the initial and final particles at the vertices of a
scattering process.
Let us first consider the production vertex at some

generic space-time point x. To introduce a finite nonzero
spread at x, we define the Lorentz-invariant Gaussian
function [12,20]

Gðx; hxi;ΔpÞ ¼ e−ðx−hxiÞμΔpμνðx−hxiÞν ; ð2:3Þ

where the energy-momentum uncertainty tensor, Δpμν, is
defined through the relation: ΔpρμΔxμσ ¼ δρσ, with

FIG. 1. The Feynman diagram for the process S1ðp1Þχ1ðp2Þ →
S2ðk1Þχ2ðk2Þ.

1For other attempts along this research direction, see
[8–11,13–23,26–31].
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Δxμν ¼ hxμxνi − hxμihxνi: ð2:4Þ

Here, the parameters hxμi and hxμxνi characterize the
uncertainties in the four-position x. As we will see below,
such finite uncertainties will trigger a nominal violation in
the conservation of the four-momentum. However, this
apparent violation should be treated with caution, and be
interpreted instead as a nonconservation of the mean total
momenta of the particles taking part in a localized scatter-
ing process. In fact, their momentum uncertainties, say δpμ,
imply that the particles are not momentum eigenstates, so
only their momentum mean values pμ will be of physical
relevance in our formalism. Since the exponent of (2.3)
describes a complicated four-dimensional ellipsoid, we
may simplify the analysis by assuming the factorizable
form: Δpμν ¼ δpμδpν. In this case, we have

Gðx; hxi; δpÞ ¼ e−½ðx−hxiÞ·δp�2 ; ð2:5Þ

where hxi is the center of the production vertex or the
source, and δp is the would-be four-momentum uncer-
tainty. We note that δp may naively be associated with an
effective interaction radius δx as δxμ ¼ 1=δpμ.
By analogy, we may introduce the following localization

function for the detection vertex at a generic four-position y:

Gðy; hyi; δkÞ ¼ e−½ðy−hyiÞ·δk�2 ; ð2:6Þ

where hyi and δk are the centre of the detection vertex and its
would-be four-momentum uncertainty, respectively, with the
effective interaction radius δy defined as δyμ ¼ 1=δkμ.
Taking into account the localization functions in (2.5)

and (2.6) for the four-positions x and y, the localized
amplitude TL for the process S1χ1 → Φ� → S2χ2 takes on
the form

TLðp; k; hxi; hyi; δx; δyÞ

¼ −λg
Z

d4xd4ye−½ðx−hxiÞ·δp�2e−½ðy−hyiÞ·δk�2

× e−ip·xþik·y

Z
d4q
ð2πÞ4

eiq·ðx−yÞ

q2 −m2
Φ þ iϵ

; ð2:7Þ

which, up to a constant, coincides with [12]. To be specific,
the amplitude TL describes the annihilation of the particles
S1 and χ1 with a sum of four-momenta p, at a mean four-
position hxi with an uncertainty δx, and the subsequent
creation of the particles S2 and χ2 with a sum of four-
momenta k, at a mean four-position hyi with an uncertainty
δy. In fact, such a setting may be applied equally well to
describe particles that are forced to go through a restricted
area of an aperture with a shape that is expressed by a
function with a given localization profile, e.g., of the
Gaussian form like in (2.5). Hence, the localized S-matrix
that we have been developing here can be viewed as another

equivalent approach that allow us to describe particle
diffraction, such as light diffraction, within the framework
of QFT.
In various experiments, the system under study can be

considered stationary to a good approximation. For exam-
ple, in collider experiments, stochastic cooling [50] pro-
duces monochromatic beams with small cross-sectional
area. Confining particles via an external field means that the
corresponding momentum operator does not commute
with the interacting Hamiltonian of the system. This means
that although the particles are approximate energy eigen-
states, they suffer from three-momentum uncertainties.
This is also the case in diffraction, where a monochromatic
beam passes through an aperture of finite size. Similarly,
in neutrino (or meson) oscillation experiments, time-
uncertainties are much larger [51,52] compared to spatial
ones. Thus, any temporal uncertainty has to be included
incoherently, at the amplitude-squared level. Therefore, for
several applications of interest that we mentioned in the
Introduction, we may simplify our computations by adopt-
ing the working hypothesis that time uncertainties are
much bigger than the corresponding spatial uncertainties,
δx and δy, and so take the infinite limit: δx0; δy0 → ∞, or
equivalently the zero limit: δp0; δk0 → 0. This simplifica-
tion will result in a localized transition amplitude TL which
will be proportional to an irrelevant overall time-dependent
phase. This stationary assumption, as well as the imposed
spherical symmetry, render our model solvable, and so they
allow our considerations to serve as a proof-of-concept of
the LSMT. In general, beyond these assumptions, the
amplitude can be computed using numerical methods.
As illustrated in Fig. 2, a further simplification occurs if

all spatial uncertainties are taken to be equal, i.e., δxi ¼ δx
and δyi ¼ δy, for all i ¼ 1; 2; 3. Then, up to an overall
frame-dependent phase factor eiðp·hxi−k·hyiÞ, the localized
amplitude for the process S1χ1 → Φ� → S2χ2 becomes

TLðp; k;l; δx; δyÞ

¼ −2πδðp0 − k0Þλg
Z

d3xd3ye−x
2=δx2e−y

2=δy2

× eiðp·x−k·yÞ
Z

d3q
ð2πÞ3

e−iq·ðx−y−lÞ

−jqj2 þ q̃2 þ iϵ
; ð2:8Þ

where we have introduced the average distance vector
l≡ hyi − hxi. Notice that in addition to the momentum
dependence of standard amplitude TF, the localized ampli-
tude TL now depends on the distance vector l between the
production and detection vertices, and their uncertainties,
δx, δy. Hence, the amplitude TL is frame-independent as
well, as a consequence of the Poincare invariance of the
theory. Moreover, it is not difficult to see that in the infinite
limits δx; δy → ∞, the amplitude TL in (2.8) becomes,
up to an overall phase factor eip·l, identical to the ordinary
S-matrix amplitude TF in (2.2).
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As shown in [12] and in Appendices A, B, and C using a
different method, the various integrations over angular and
radial variables in (2.8) can be performed analytically,
yielding the amplitude

TLðp; k;l; δx; δyÞ ¼ 2πδðp0 − k0Þλg π
2

8

δx3δy3

jLj
× e−½ðjpj2þq̃2Þδx2þðjkj2þq̃2Þδy2�=4

× ðeiq̃jLjErfcz− − e−iq̃jLjErfczþÞ:
ð2:9Þ

In the above, we have used the shorthand notation: L¼
l− i

2
ðpδx2 þkδy2Þ, jLj≡ ffiffiffiffiffiffiffiffiffiffiffi

L ·L
p

, and z� ¼− i
2
q̃δl�jLj

δl ,
with δl2 ¼ δx2 þ δy2. In (2.9), Erfcz is the complementary
error function analytically continued with a complex argu-
ment z ∈ C as follows:

Erfcz ≔ 1 −
2ffiffiffi
π

p
Z

z

0

dte−t
2

: ð2:10Þ

We should point out that the localized amplitude TL for
the process S1χ1 → Φ� → S2χ2 remains finite in the OS
kinematic region, jpj ¼ jkj ¼ q̃, as long as δl is finite,
even if one assumes a vanishing Φ-decay width ΓΦ. On the
other hand, due to the analyticity of TL, the same analytic
expression in (2.9) may be used to regulate the t-channel
singularities [24,25,27], which can occur in the crossing
symmetric process S1S2 → Φ� → χ1χ2 in the physical
region. Unlike other methods that model the finite size
of the interacting beams [28–30], LSMT takes into account
the finite size of the interaction volume coherently, where
all spatial uncertainties are implemented at the amplitude
level TL, and not at its square jTLj2. As well as being devoid
of t-channel infinities, the amplitude TL also contains
information for the distance between the source and the
detector, through the distance vector l. The latter can shed
light on phenomena that may take place on both micro-
scopic and macroscopic distances, like neutrino oscillations
[12], which we discuss in more detail in Secs. III and IV.

We note that the localized amplitude given in (2.9), is
finite at jLj ¼ 0. This can be easily deduced by observing
that TL is an even function with respect to jLj, implying
that jLjTL is an odd one. Then, by means of a Taylor series
expansion, one may verify that jLjTL approaches zero at
least as fast as jLj, so TL is finite at jLj ¼ 0.
As shown in Ref. [12], the computation of the amplitude

for fermions is analogous to the scalar case we study here.
Therefore, if we consider particles at different Lorentz
representations, the corresponding amplitude has a similar
form to (2.9), with some extra factors that depend on the
Lorentz structure of the particles. Thus, our conclusions can
be extended to other cases.
Although the process we study is simple with only one

Feynmann diagram, the results we obtain are fairly general.
This formalism can explain spatial oscillations of mixed
mediators [12], regularize t-channel singularities, and
shows a correspondence between QFT and diffraction.
Introducing more particles, interactions, or channels
increases the complexity of the computation, but we do
not expect that complexity will spoil the analytic features of
the formalism under study.
We conclude this section by presenting two more

interesting limits concerning TL stated in (2.9).

1. Zero-spread limit

In the limit of vanishing spread of the production and
detection vertices, i.e., δx; δy → 0, the complementary error
functions take the values: Erfczþ→0 and Erfcz−→2. In this
vanishing limit of δl, the localized amplitude (2.9), sim-
plifies to

TLðp; k;lÞ ¼ 2πδðp0 − k0Þλg π
2

4
δx3δy3

eiq̃jlj

jlj : ð2:11Þ

This form of the amplitude implies that the exchanged
particle passes through definite points in space, hxi and hyi.
In fact, TL gets proportional to the Green’s function of
the Euclidean 3D space, eiq̃jlj=jlj. Since the momentum
uncertainties diverge when δl → 0, the resulting incoming

FIG. 2. A schematic representation of the scattering process S1χ1 → Φ� → S2χ2 with localized interactions, which corresponds to the
transition amplitude TLðp; k;l; δx; δyÞ in (2.8).
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and outgoing momenta, p and k, will be unrelated to each
other and so arbitrary. However, the three-momentum of the
mediator may be identified by its wave number, q̃. If q̃2 ≥ 0,
this would correspond to a real particle with momentum q̃.
Instead, for q̃2 < 0, the amplitude TL would fall off
exponentially as e−jq̃jjlj, representing a decaying mode that
travels an effective mean distance of 1=jq̃j from a point
source.

2. Momentum conservation limit

For most experimental settings, we expect jpjδl;
jkjδl ≫ 1, so that the violation of energy-momentum
conservation is marginal, with p ≃ k. In principle, we
may enforce a total four-momentum conservation limit by
assuming a translationally invariant localization of the form
e−ðx−y−lÞ2=δl2 , instead of two independent Gaussians cen-
tered at hxi and hyi. Upon integration over the coordinates,
the above restricted form of the smearing profile gives rise
to the 3D δ-function, δð3Þðp − kÞ, in (2.9). This ensures
four-momentum conservation between the incoming and
outgoing particles, i.e., p ¼ k, even though one still has in
general q ≠ p for the momentum q of the exchanged
particle Φ. In addition, the overall constant changes by a
factor 1

π3=2
δl3

δx3δy3.

Putting everything together, the localized amplitude TL
reads

TLðp; k;l; δlÞ ¼ ð2πÞ4δðp0 − k0Þδð3Þðp − kÞλg

×
ffiffiffi
π

p
8

δl3

jLj e
−δl2ðjpj2þq̃2Þ=4

× ðeiq̃jLjErfcz− − e−iq̃jLjErfczþÞ; ð2:12Þ

where L ¼ l − i
2
pδl2, and δl and the complex arguments

z� are defined after (2.9). Without compromising the main
features of our localized S-matrix formalism, we shall
employ the simplified amplitude TL given by (2.12). To
further simplify matters, we strip off an overall factor of
ð2πÞ4δð4Þðp − kÞλg from TL in (2.12), and define a corre-
sponding localized matrix element M as follows:

Mðp; q̃;l; δlÞ ¼
ffiffiffi
π

p
8

δl3

jLj e
−δl2ðjpj2þq̃2Þ=4

× ðeiq̃jLjErfcz− − e−iq̃jLjErfczþÞ: ð2:13Þ

Our analysis in the following two sections will utilize this
last form of the matrix element M.

III. NEAR- AND FAR-FIELD APPROXIMATIONS

Although the matrix element M in (2.13), for a generic
localized process S1χ1 → Φ� → S2χ2 is given in a closed
form, it still remains difficult to deduce from the latter what
its main physical implications are. To better understand

these, we derive in this section analytical approximations
of M as a function of the distance vector l between the
production of the Φ-mediator and its detection, the spatial
distance uncertainty δl, as well as of the total three-
momentum p of the incoming particles S1 and χ1. In all
our approximations, we consider that jpjδl ≫ 1, which
happens to be a valid assumption for most realistic
situations. In close analogy with diffractive optics, we
differentiate two regions: (i) the Fraunhofer or far-field
zone where jlj ≫ jpjδl2, and (ii) the Fresnel or near-field
zone in which jlj ≪ jpjδl2.
Depending on the magnitude of z� of the complemen-

tary error function Erfcz defined in (2.10), we may use
either a Taylor series expansion [53],

Erfcz ≃ 1 −
2ffiffiffi
π

p z; ð3:1Þ

for jzj ≪ 1, or an asymptotic expansion [53],

Erfcz ≃
e−z

2

ffiffiffi
π

p
z
; ð3:2Þ

when jzj ≫ 1 and arg z < 3π=4. If arg z ≥ 3π=4, the
asymptotic expansion may be obtained after applying first
the identity: Erfcz ¼ 2 − Erfcð−zÞ.

A. Fraunhofer Zone

In the Fraunhofer or far-field region, the distance is
jlj ≫ jpjδl2, so the complex vector norm jLj may then be
approximated as

jLj ≃ jlj − i
2
cos θjpjδl2 −

sin2θjpj2δl4

8jlj ; ð3:3Þ

where θ is the angle between l and p. In this limit, we can
ignore the exponentially suppressed term of (3.2). Thus,
Erfcz− ≃ 2 and Erfczþ ≃ 0, and the matrix element reads

M ≃
ffiffiffi
π

p
4

δl3
eiq̃jlj

jlj e−ðp−q̃ l̂Þ
2δl2=4; ð3:4Þ

with l̂ being a unit vector along the distance vector l. The
square of the matrix elementM in (3.4) obeys the expected
inverse-square law 1=jlj2 for q̃2 ≥ 0, i.e., for physical
intermediate states. This result is in agreement with the
so-called Grimus-Stockinger theorem [9], which is only
applicable in the Fraunhofer regime [12,16,17,19].
For off-shell particle virtualities with q̃2 < 0, the

approximate matrix element M in (3.4) can be analytically
continued from q̃ → ijq̃j, and so one can show that M falls
off exponentially, i.e., M ∝ e−jq̃jjlj=jlj. We note that this
exponential fall-off of M with increasing distance jlj is
much stronger than the generic weaker scaling behavior of
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M ∝ jlj−2, claimed in [9,21]. Furthermore, it is not
difficult to see from (3.4) that for q̃2 < 0, one has M ∝
exp½ijq̃jp · l̂δl2=2�, but this only surviving phase leads to
no favorable direction on the particle propagation in the
Fraunhofer zone, i.e., jMj is completely independent of θ.
We should also observe that for finite spatial uncertain-

ties δl, the localized matrix element M is devoid of the
s-channel singularity haunting the ordinary S-matrix ampli-
tude TF in (2.2), in the OS limit jpj → q̃. Further more,
for a given angle θ�, there is a characteristic momentum,
which we call jpj�, that maximizes the norm of M, jMj. In
particular, we find that jpj� is shifted from its OS value
jpj� ¼ q̃ in the forward direction to smaller values, accord-
ing to the simple relation: jpj� ¼ q̃ cos θ�. Such shifts may
be probed in observations that would involve nonzero
angles θ, and as such, they may provide a nontrivial test of
LSMT under study.
Finally, it is interesting to remark that if the Φ-mediator

has real momentum (q̃2 > 0), the localized amplitude M
will be suppressed away from the forward (θ ¼ 0) direc-

tion, because of the exponential factor e−ðp−q̃ l̂Þ
2δl2=4

in (3.4). This factor also disfavors propagation in the
backward hemisphere for angles θ ≥ π=2, and so it
resembles the engineered obliquity factor that features in
the well-known Helmholtz–Kirchhoff diffraction formula
(see, e.g. [40]). But unlike the classical case, the LSMT
provides naturally the necessary “quantum obliquity fac-
tor” which although it suppresses, it does not prohibit
particle propagation in a classically forbidden region. As
we will see in the next subsection, this property still holds
true for the Fresnel region as well.

B. Fresnel zone

In the Fresnel or near-field region, in which
jlj ≪ jpjδl2, the complex norm jLj may be expanded as

jLj ≃ −
i
2
jpjδl2 þ jlj cos θ þ ijlj2

jpjδl2
sin2θ; ð3:5Þ

when cos θ < 0. Although jLj should be multiplied by −1
for cos θ ≥ 0, we can still use (3.5), since the amplitude
(2.9), is an even function of jLj.
Given the central working hypothesis jpjδl ≫ 1, it

follows that jjpj þ q̃jδl ≫ 1. This in turn implies that
jzþj ≫ 1. Consequently, Erfczþ can be expanded as in
(3.2). On the other hand, the size of jz−j depends on the
magnitude of the dimensionless quantities: jp̂ · lj=δl and
jjpj − q̃jδl, where p̂≡ p=jpj is a unit vector along the
three-momentum p. The first quantity, jp̂ · lj=δl, gives a
measure of the projection of l onto the direction of p in
units of δl. The second one, jjpj − q̃jδl, quantifies the
degree of “off-shellness” of the exchanged Φ particle.
The various possible hierarchies of the two quantities,

jp̂ · lj=δl and jjpj − q̃jδl, form three subregions. These

are succinctly summarized in Table I. In detail, sub-
region I is defined by the constraint: jjpj − q̃jδl ≫
maxð1; jp̂ · lj=δlÞ, which implies that jz−j ≫ 1. Sub-
region II corresponds to jp̂ · lj ≪ δl and jjpj − q̃jδl ≪ 1,
and so it is jz−j ≪ 1. Finally, subregion III is given by
jp̂ · lj ≫ δl and jjpj − q̃jδl2 ≪ jp̂ · lj, which results in
jz−j ≫ 1. Notice that jjpj − q̃jδl ≪ 1 defines a resonant
region for theΦmediator. But as happened in the Fraunhofer
zone, the maximum of the modulus of the matrix element,
jMj, is not guaranteed to occur on the resonance point,
jpj ¼ q̃, as the angle θ varies from 0 to π.

1. Subregion I: jjpj− q̃jδl ≫ maxð1;jp̂ · lj=δlÞ
In this subregion, Erfcz� can be approximated as in

(3.2). Then, the matrix element becomes

M ≃
δl3

8jLj
�
1

z−
−

1

zþ

�
eip·l−ðjlj=δlÞ2

≃
δl2eip·l−ðjlj=δlÞ2

ðjpj2 − q̃2Þδl2 þ 4½ip · l − ðjlj=δlÞ2� : ð3:6Þ

We should note that this approximation is accurate up to
corrections O½δl2jp × lj4=ðjpjδlÞ6�. There are other rel-
evant higher order terms that depend on the sign of q̃2 and
p · l, as well as on their relative size. For example, when
both p̂ · l and q̃2 are negative with jq̃jδl2=2 < jp̂ · lj,
higher order terms Oðexp½jq̃jp̂ · lþ q̃2δl2=2�Þ that may
potentially appear are getting suppressed by their negative
exponent. Finally, like in the Fraunhofer region for q̃2 < 0,
there is no directional constraint on jMj in this subregion.
In subregion I, for q̃δl2 ≫ jlj, the characteristic

momentum jpj� that maximizes jMj obeys the relation:
jpj�≃ q̃þ2ð1−2cos2θÞjlj2=ðq̃δl4Þ. Thus, we have jpj�>q̃
(jpj� < q̃) for j cos θj < 1=

ffiffiffi
2

p
(j cos θj > 1=

ffiffiffi
2

p
). On the

other hand, if q̃δl2 ≪ jlj, the momentum that maximizes
the matrix element turns out to be: jpj�≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijcos2θjp jlj=δl2,
which does not respect Fresnel’s central constraint:
jpjδl2 ≫ jlj. In this case, the matrix element in subregion
I does not exhibit a maximum. Instead, it decreases
monotonically with the momentum, i.e., jMj ∝ 1=jpj2.
We note that for cos θ ¼ 0, the matrix element M as

TABLE I. The three Fresnel subregions as described in more
detail in the text. The conditions which hold in all subregions
are jpjδl2 ≫ jlj and jpjδl ≫ 1. Note that the latter entails
jjpj þ q̃jδl ≫ 1, which in turn implies jzþj ≫ 1 for all sub-
regions.

Subregion Conditions
Magnitude

of z−

I jjpj − q̃jδl ≫ maxð1; jp̂ · lj=δlÞ jz−j ≫ 1
II jp̂ · lj ≪ δl and jjpj − q̃jδl ≪ 1 jz−j ≪ 1
III jp̂ ·lj≫ δl and jjpj− q̃jδl2 ≪ jp̂ ·lj jz−j ≫ 1
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approximated in (3.6), appears to have singularities, when
jpj2 ¼ q̃2 þ 4jlj2=δl4. However, these would-be singular-
ities are not present. They originate from z� ¼ 0, and so
they violate the basic assumption jz�j ≫ 1 that underlies
the validity of this approximation.

2. Subregion II: jp̂ · lj ≪ δl and jjpj− q̃jδl ≪ 1

If the momenta obey the resonant condition,
jjpj − q̃jδl ≪ 1, and also jp̂ · lj ≪ δl, we then have
jz−j ≪ 1. Making use of (3.1), the matrix element may
be approximated as

M ≃
i

ffiffiffi
π

p
4

δl
jpj

�
1þ 2ffiffiffi

π
p p̂ · l

δl
−

iffiffiffi
π

p ðjpj − q̃Þδl
�

× exp

�
−
1

4
ðjpj − q̃Þ2δl2 þ q̃

�
ip̂ · l −

jp̂ × lj2
jpjδl2

��

þ 1

2

eip·l−ðjlj=δlÞ2

jpjðjpj þ q̃Þ : ð3:7Þ

We observe that for a finite δl, the singularity of the
S-matrix amplitude TF in (2.2) at jpj ¼ q̃ is successfully
regulated. Furthermore, the value of the matrix element M
in the OS limit, jpj → q̃, gets reduced as θ increases, with a
minimum in the backward direction θ ¼ π. On the other
hand, for θ → 0, jMj increases slightly with the distance
jlj. Thus, there seems to be a focusing effect that makes the
observation (or decay) more probable away from the origin,
jlj ¼ 0. Also, this phenomenon may affect the assumed
flux for the Φ particles at the source.
The value of the characteristic momentum jpj� that gives

rise to a maximum jMj is estimated to be

jpj� ≃ q̃þ 2

q̃δl2

�jp̂ × lj2
δl2

− 1

�
: ð3:8Þ

Although this estimate assumes jjpj − q̃jδl ≪ 1, the result-
ing value of jpj� may lie outside or be at the boundary of
this Fresnel subregion. In such case,M should be estimated
numerically using (2.13), as done in Sec. IV. However, the
above exercise is still useful as it shows that the maximum
occurs at jpj� that may be below and above q̃, for jp̂ × lj <
δl and jp̂ × lj > δl, respectively.
We must remark that the approximate matrix element

in (3.7), offers a rather accurate description of the exact
amplitude M in subregion II. The main higher order
contribution is O½jp̂ · lj=ðjpj2δlÞ�. All other higher order
corrections turn out to be subdominant.

3. Subregion III: jp̂ · lj ≫ δl and jjpj− q̃jδl2 ≪ jp̂ · lj
If the detection vertex obeys the restrictions: jp̂ · lj ≫

δl and jjpj − q̃jδl2 ≪ jp̂ · lj, the complementary error
functions are then expanded as in (3.2). Despite jz−j ≫ 1 in
both subregions I and III, we find that the matrix element

assumes different forms as different terms dominate in the
expansion of the arguments z�. Hence, in subregion III the
matrix element will be approximated as

M ≃� iδl2
ffiffiffi
π

p
2

exp
h
− 1

4
ðjpj∓ q̃Þ2δl2 � q̃

�
ip̂ ·l− jp̂×lj2

jpjδl2
�i

jpjδlþ 2ip̂ ·l=δl

þ δl2eip·l−ðjlj=δlÞ2

ðjpj2 − q̃2Þδl2 þ 4½ip ·l− ðp̂ ·l=δlÞ2� : ð3:9Þ

In the above, the upper (lower) sign corresponds to
cos θ > 0 (cos θ < 0), i.e., toward the forward (backward)
direction, and originates from the second (first) term of
(2.13). Instead, the last term in (3.9) remains the same in
both directions. Evidently, as jp · lj ≫ jpjδl ≫ 1, it is not
difficult to verify that the matrix element in (3.9) is finite in
the resonant region jpj ≃ q̃.
In this subregion, the angular dependence is more

involved than that in the other two. However, backward
particle propagation gets strongly disfavored within sub-
region III. We may elucidate this by first considering
propagation in the forward direction, θ ¼ 0. In this
case, the parameters satisfy: jlj ≫ δl, jlj ≪ jpjδl2, and
jjpj − q̃jδl2 ≪ jlj. Under these conditions, (3.9), is domi-
nated by its first term which is only slightly reduced as the
distance increases. On the other hand, for θ ¼ π, the second
term in (3.7) will become dominant. In this case, however,
propagation in the backward direction will be disfavored,
because of the exponential suppression factor e−ðjlj=δlÞ2.
These attributes will be discussed in more detail in Sec. IV,
where the exact matrix element (2.13) will be numerically
evaluated.
In subregion III, the characteristic momentum, jpj�, that

maximizes (locally) jMj depends on both the angle θ
and the average distance jlj. To explicitly demonstrate
this dependence, we consider again the forward and
backward directions which have θ ¼ 0 and θ ¼ π, respec-
tively. In the former, we have jpj� ≃ q̃ − 2=ðq̃δl2Þ, while
it is jpj� ≃ q̃ − 2jlj2=ðq̃δl4Þ in the latter. Although the
shift of the maximum is negative, its magnitude in the
backward direction is enhanced by a factor of ðjlj=δlÞ2.
We note that this enhancement should not be fully trusted,
as it originates from a jpj� whose value lies outside or
is on the boundary of this subregion, such that
jjpj� − q̃jδl2 ≥ jp̂ · lj�.
The matrix element (3.9) is obtained by ignoring several

higher order corrections. For example, the first term is
accurate up to O½jlj=ðjpj2δl3Þ�. Although such terms are
found to be subdominant, they need to be included in order
to obtain an accurate numerical value for the matrix
element M. Nevertheless, we find that the relative numeri-
cal difference by evaluating the two expressions in (3.9)
and (2.13) is typically within the 20% level.
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4. Standard S-matrix limit in the Fresnel region

The standard S-matrix limit is a special case of sub-
regions I and II. For the former, taking the limit jlj=δl → 0
is a straightforward exercise. For the latter, thanks to the
δ-function representation

lim
ϵ→∞

ϵe−ϵ
2x2 →

ffiffiffi
π

p
δðxÞ; ð3:10Þ

it can be shown that

M ¼ iπ
2

eiq̃ p̂ ·l

jpj δðjpj − q̃Þ: ð3:11Þ

This last expression can be rewritten as

M ¼ iπeip·lδþðjpj2 − q̃2Þ; ð3:12Þ

where δþðjpj2 − q̃2Þ≡ δðjpj2 − q̃2ÞθðjpjÞ.
Finally, as δl=jlj → ∞ for any finite value of jlj, we

may combine the approximate expressions in (3.6) and
(3.7) in order to write the matrix element into the more
familiar form (e.g., see [49]):

M ¼ eip·l
�
iπδþðjpj2 − q̃2Þ þ P

	
1

jpj2 − q̃2


�
; ð3:13Þ

where Pf…g denotes the Cauchy principal value. Also,
notice that the appearance of an overall (unobservable)
l-dependent phase in (3.13) due to the spatial translation
invariance of the original localized amplitude in (2.8).
Otherwise, the matrix elementM in (3.13) matches exactly
with the standard result of the S-matrix amplitude in (2.2).

5. Oscillations of mixed mediators in the Fresnel region

The approximations, (3.7) and (3.9), of the matrix
element in the Fresnel subregions II and III indicate that
the propagation of mixed mediators will also give rise to
their oscillation in this regime, where jpjδl2 ≫ jlj. First,
we should observe that exponential suppression factors,
such as those mentioned in [14], play no role here, as
they are direction-dependent and vanish not only in the
forward direction (θ ¼ 0), but also in the backward
direction (θ ¼ π).
Let us have a closer look at the phenomenon of

oscillations within subregion III in the forward direction
(θ ¼ 0). As a mixed system of mediators, we may consider
two exchanged particles, Φ1;2, with different masses, m1;2,
obeying the hierarchy: 0 < Δm ¼ m2 −m1 ≪ m1;2. After
setting all coupling constants of the theory to 1, for
simplicity, the total matrix element M will be the sum of
two matrix elements, M1;2, describing the exchange of the
particles Φ1;2 in the s-channel, i.e., M ¼ M1 þM2. Each
matrix element M1;2 can then be expanded according to
(3.9), with q̃21;2 ¼ ðp0Þ2 −m2

1;2. Although the complex

norms jM1;2j individually do not predominantly depend
on jlj, there is still a phase difference betweenM1 andM2,
given by exp½iðq̃1 − q̃2Þp̂ · l�. Obviously, this phase differ-
ence induces an oscillating pattern in jMj with oscillation
length: Losc ¼ jq̃1 − q̃2j−1. This pattern is exactly the same
as in the frequently discussed Fraunhofer zone, but it has an
almost constant amplitude jMj with the distance jlj like
plane waves as observed in [12,19], rather than it is
decreasing as 1=jlj as spherical waves. A similar con-
clusion would be reached if we had considered subregion
II, which represents a region in the deep Fresnel zone, as it
lies much closer to the QM center hxi of the source. Here,
we must caution the reader that statistical uncertainties, σl,
play a significant role in oscillations. These are usually
larger than δl, i.e., σl ≳ δl, and so they will reduce the
amplitude of oscillations, at least by a factor Losc=σl ≪ 1,
in oscillation scenarios with Losc ≪ δl [12,14]. Statistical
uncertainties are a source of decoherence with σl ≳ δl,
which means that the features we pointed out in the Fresnel
region may be obscured. However, the amplitude will still
be finite, because σl cannot introduce singularities.
In the backward direction (θ ¼ π) of subregion III, the

last term on the right-hand side of (3.9) will dominate, and
so jMj ¼ jM1 þM2j will have a tiny oscillating amplitude.
As a result, there will be no visible oscillations in this
region. As for subregion I, it is worth commenting that it is
a kinematic region signifying a highly off-shell regime
of particle propagation, since we have the condition:
jjpj − q̃j ≫ jlj=δl2, specifically in the forward (backward)
direction where θ ¼ 0ðπÞ. According to the analytic
matrix-element approximation in (3.6), no oscillations from
mixed mediators will take place in this subregion.
In conclusion, the predictions derived from our LSMT

can be tested against experiments designed to measure
directional dependence of interactions, as well as particle
oscillations. The latter may not only take place in the
usually considered Fraunhofer region which lies far away
from the source, but also within the Fresnel zone as we have
explicitly demonstrated here.

IV. EXACT RESULTS

Thus far, we have established that in both the Fresnel and
Fraunhofer regions no kinematic singularities occur in the
localized matrix elementM given in (2.13). In addition, we
have examined how the maximum of jMj depends on the
kinematic parameters, and also have shown that detection
in the backward direction is generally suppressed. In this
section, we present typical numerical examples using the
exact matrix element M in (2.13), in order to analyse with
greater accuracy its dependence on the momentum jpj,
the distance jlj, and the angle θ (with 0 ≤ θ ≤ π). The
qualitative behavior of the matrix element does not
depend on the absolute scale of the parameters. Thus,
we express all parameters in terms of δl as our basic unit of
measurement, and fix the momentum of the exchanged Φ
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particle to have the value: q̃ ¼ 5=δl, chosen such that the
effects we have been studying become readily visible in the
figures we show in this section. The other parameters that
appear inM are varied independently, in order to showcase
the various phenomena within the different near- and far-
field regimes of interest, and at their interfacial regions.

A. Momentum dependence

To start with, let us first consider the Fraunhofer region.
In this region, the localized matrix element M may be
approximated as in (3.4) and is exponentially dependent on
the initial momentum jpj. Like jMj itself, its maximum also
depends significantly on the angle θ, defined by the vectors
p and l. In Fig. 3(a), we display a numerical example,
which shows the value of the matrix element (over its value
for jpj ¼ 0) in the far-field regime for a set of different
angles. The distance between production and detection is
set to jlj ¼ 100δl. As expected, the forward direction
(θ ¼ 0) corresponds to the maximum values of jMj, while
larger observation angles θ give rise to lower values of jMj.
The (global) maximum in the forward direction is obtained
for jpj� ¼ q̃, while jpj� ¼ q̃=

ffiffiffi
2

p
when θ ¼ π=4. If obser-

vation occurs toward the backward hemisphere (θ ≥ π=2),
the matrix element M suffers a monotonous exponential
suppression on jpj.
We now turn our attention to the Fresnel zone, in which

jpjδl2 > jlj. To this end, we show in Fig. 3(b) how
jMj=jMjjpj¼0 changes with the momentum jpj in this zone.
In this near-field region, the matrix element exhibits a more
complicated dependence on p and θ. This is evident by the
different forms we obtained in Sec. III. 2 for subregions I,
II, and III [cf. (3.6), (3.7), and (3.9)]. Because of the
specific choice of the spatial parameter, jlj ¼ 2δl, the

three Fresnel subregions depend strongly on the observa-
tion angle θ. For jjpj − q̃jδl ≫ maxð1; jp̂ · lj=δlÞ, all
angles fall in subregion I. To be more precise, we observe
that as jpj surpasses q̃ all lines converge to the asymptotic
curve of jMj ∝ 1=jpj2, as expected from (3.6). If the
mediator happens to be kinematically close to its mass
shell, i.e., when jjpj − q̃jδl ≪ 1, according to the approxi-
mate matrix elements (3.7) and (3.9), we expect to find
some maxima at initial momentum both above and below q̃.
In the perpendicular direction ðθ ¼ π=2Þ, if the resonant
condition, jpj ≃ q̃, is satisfied, the observation vertex is
always in subregion II. Hence, as jp̂ × lj > δl, the
maximum occurs when jpj� ≳ q̃ [cf. (3.8)]. Unlike
θ ¼ π=2, the angles θ ¼ 0 and θ ¼ π are entirely in
subregion III, when jpj ≃ q̃. As jlj ¼ 2δl, the projection
of l on p̂ is not well beyond the interaction radius, δl.
Therefore, the estimate of the matrix element in subregion
III [cf. (3.9)] may not be accurate. Nevertheless, in the
forward direction, we observe that jpj� is close to the
position of the maximum of the matrix element jMj as
approximated in (3.9), i.e., jpj� ≃ q̃ − 2=ðq̃δl2Þ ≃ 4.6=δl.
On the other hand, for θ ¼ π, the maximum of jMj in (3.9),
occurs at jpj� ≃ q̃ − 2jlj2=ðq̃δl4Þ ≃ 3.4=δl. This results in
jjpj� − q̃jδl2 ≃ 1.6δl ∼ jp̂ · lj�, which indicates that this
estimate may not be applicable in this case. Indeed, as
shown in Fig. 3(b), a numerical evaluation reveals a
continuous decrease of the exact matrix element (2.13)
as jpj increases. Directions with θ ¼ π=4 and θ ¼ 3π=4
turn out to be close to the boundary between subregions II
and III, and have maxima at jpj� ≲ q̃. In general, we can see
that, apart from the successful regularization of the singu-
larity at jpj ¼ q̃, the matrix element exhibits distinguish-
able qualitative behavior at different zones. This may be

FIG. 3. (a) The ratio jMj=jMjjpj¼0 as a function of jpj for different azimuthal angles θ in the Fraunhofer zone, with jlj ¼ 100δl,
q̃ ¼ 5=δl. (b) jMj=jMjjpj¼0 versus jpj for different angles θ in the Fresnel zone, with jlj ¼ 2δl, q̃ ¼ 5=δl. In both (a) and (b) panels,
the gray vertical line corresponds to jpj ¼ q̃.
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exploited by experiments, in searches for new particles
as well as to study other potential implications of this
formalism.
The aforementioned shift of jpj� for various distances

and angles is illustrated in Figure 4. To be specific,
Figures 4 shows jpj� as a function of jlj, for discrete
choices of directions between θ ¼ 0 and θ ¼ π. The values
of jpj� in the Fraunhofer zone agree with (3.4). That is,
jpj� ¼ 0 for θ ≥ π=2, jpj� ¼ q̃=

ffiffiffi
2

p
for θ ¼ π=4, and jpj� ¼

q̃ for θ ¼ 0. Because of the assumed values of the input
parameters, the resulting jpj� cannot be estimated by (3.6),
(3.7), and (3.9), for a wide range of jlj values in the Fresnel
zone. However, Fig. 4 still reflects the behavior expected
from these estimates. In particular, as jlj=δl → 0, we
expect that the maximum to occur at jpj� ≲ q̃, as the matrix
element is described by (3.7), as long as jjpj� − q̃jδl ≪ 1.
At greater distances, jpj� can be both below and above q̃.
Consider, for example, the numerical estimates of jpj�, for
θ ¼ π=4 in Fig. 4. As the distance between the production
and detection increases, the corresponding Fresnel sub-
region changes from II to III. This causes jpj� to increase
between jlj ≪ δl and jlj ≃ 2δl. As the distance jlj is
getting even larger, jpj� moves toward its value found in the
Fraunhofer region, i.e., it falls to jpj� ≃ q̃=

ffiffiffi
2

p
. This results

in the maximum we observe in Fig. 4 around jlj ¼ 2δl.
In the perpendicular direction (θ ¼ π=2), if the resonant
condition (jjpj� − q̃jδl ≪ 1) is satisfied, observation
occurs in subregion II regardless of the distance jlj, as

long as jlj≲ jpj�δl2. According to (3.8), this means that
jpj� starts lower than q̃, and increases as jp × lj surpasses
δl. Once jlj approaches the boundary with the Fraunhofer
zone, jpj� drops to jpj� ¼ 0, around jlj ¼ 2.5δl.

B. Spatial dependence

One important aspect of LSMT under consideration is its
introduction of an explicit dependence on the average
distance vector l between the production and detection
vertices. This explicit radial dependence has been used to
model neutrino oscillations [12], but it can also be used for
other studies, such as displaced vertex searches [32,33] for
long-lived particles. Therefore, it is worth examining the
predictions derived from the exact matrix element M in
(2.13) in the Fraunhofer zone, the three Fresnel subregions,
and all their interfaces.
To illustrate the spatial dependence of the exact matrix

element M in (2.13), we show in Fig. 5(a) the ratio
jMj=jMjjlj¼0 as a function of jlj in the OS region where
jpj ¼ q̃, for selected values of θ between 0 and π. As can
be seen from this figure for θ ¼ 0 (in black), there is a
maximum at a location away from the source. This implies
a greater flux of outgoing particles in the forward direction.
This is a distinct prediction that originates from our
localized S-matrix amplitude and might well be tested in
dedicated experiments. There is a significant dependence
on the direction of l, and as θ gets larger, the matrix
element M displays no local maximum. In particular, for
θ ≥ π=2, the exact M decreases exponentially between
jlj ≃ δl and jlj ≃ jpjδl2 (the vertical gray lines). This
means that propagation toward the backward hemisphere
(θ ≥ π=2) is suppressed, which is consistent with our
findings for the near- and far-field approximations in
(3.4), (3.7), and (3.9). Finally, it is interesting to notice
that in the Fraunhofer region (jlj ≫ jpjδl2), the matrix
element evaluated at a point in the forward direction
(θ ¼ 0) is more than ten orders of magnitude larger than
its value at an equidistant point, lying in the backward
direction (θ ¼ π).
In Fig. 5(b) we now show the spatial dependence of the

exact matrix element in (2.13), for an off-shell kinematic
configuration, with jpj ¼ 10=δl, while the rest of the
parameters are as in Figure 5a. We observe that the absence
of a maximum away from the origin in any direction. Also,
for jlj≲ 2δl, all directions result in similar values of jMj,
as expected from (3.6). This means that off-shell propa-
gation close to the interaction area can occur in all
directions with equal probability. However, at greater
distances, the forward direction is preferred, as jMj falls
off exponentially for larger angles. Like in the on-shell
case, at jlj ≫ jpjδl2, all θ angles predict a matrix element
jMj ∝ 1=jlj.
In Figs. 6, 7, we present, as polar density plots, the radial

and angular dependence of the exact matrix element M in
(2.13) for on-shell and off-shell kinematic configurations of

FIG. 4. The characteristic momentum jpj�, for which the
maximum value of jMj is attained, as a function of the mean
distance jlj, for different angles θ, with q̃ ¼ 5=δl. In the near-
field region, in which jlj ≪ jpjδl2, all detection angles θ
converge to the same jpj� value, which does not coincide with
the usual OS momentum q̃. In the far-field region, where
jlj ≫ jpjδl2, jpj� is highly θ-dependent. In the forward direc-
tion, jpj� ¼ q̃ as expected, while for θ > 0 jpj� < q̃. For angles
θ > π=2, jpj� → 0, since the matrix element jMj decreases
monotonically with jpj.
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the mediator propagator. More explicitly, in Fig. 6(a),
we show jMj normalized with respect to its value at
θ ¼ 0 for jpj ¼ q̃ ¼ 5=δl. The radial parameter is jlj with
the three gray concentric circles indicating jlj ¼ δl,
jpjδl2, and 10 × jpjδl2. The various colors represent the

order of magnitude of jMj=jMjθ¼0, and we explicitly show
four curves (in red) with the values jMj=jMjθ¼0 ¼
0.8; 0.4; 4 × 10−11, and 2 × 10−11. As expected, in the
far-field region the radial dependence jlj cancels out as
jMj=jMjθ¼0 ≃ ejpjq̃ cos θ=2. Furthermore, in the near-field

FIG. 5. (a) The ratio jMj=jMjjlj¼0 versus distance jlj, for jpj ¼ q̃ ¼ 5=δl and discrete choices of the angle θ between 0 and π. (b) The
same as in the left frame (a), but with jpj ¼ 10=δl.

FIG. 6. (a) Numerical estimates of the exact matrix element jMj in (2.13) normalized by its value in the forward direction, jMjθ¼0. The
red contours show specific values for jMj=jMjθ¼0 ¼ 0.8; 0.4; 4 × 10−11, and 2 × 10−11. (b) The same as in (a), but for jMj normalized by
its value jMjjlj¼0 at the origin jlj ¼ 0. The red contours delineate the curves on which the logarithm of the aforementioned ratio is 1.5
and 0.5. The black point outside jlj ¼ δl indicates the maximum of jMj=jMjjlj¼0 ≃ 1.7. In both panels (a) and (b), the values of the
parameters are taken as in Fig. 5(a). The gray circles show jlj ¼ δl, jlj ¼ jpjδl2 (the boundary between the Fraunhofer and Fresnel
regions), and jlj ¼ 10jpjδl2. The various colors show the order of magnitude of the ratios: jMj=jMjθ¼0 in (a) and jMj=jMjjlj¼0 in (b),
for a given distance jlj and angle θ.
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region, the radial dependence cannot be factored out, as
implied by (3.7) and (3.9). As a result, the spatial pattern in
the Fresnel zone displays a strong angular dependence.
Focusing on angles θ ≲ π=4, e.g. looking at the curve for
jMj=jMjθ¼0 ¼ 0.8, both jlj and θ increase for jlj > δl, in
order to keep the ratio jMj=jMjθ¼0 constant. However,
as jlj approaches jpjδl2, θ starts decreasing until jlj≃
jpjδl2. Thus, jMj=jMjθ¼0 ¼ 0.8 has a nontrivial behavior
as observation moves from the near-field to the far-
field zone.
In Fig. 6(b), we display the norm of the matrix element

over its value at the origin, jMj=jMjjlj¼0, for the same
parameters as in Fig. 5(a). The various colors represent
the order of magnitude of jMj=jMjjlj¼0, along with the
two curves (in red) for jMj=jMjjlj¼0 ¼ 1.5 and 0.5. We
also indicate with a black dot the point where the global
maximum occurs. This figure shows the overall jlj and θ
dependence of jMj. We observe that in the far-field regime,
the behavior of jMj=jMjjlj¼0 matches perfectly well with
that predicted by (3.4). Like in Fig. 6(a), there is an
effective boundary at jlj ≃ jpjδl2 that severely restricts
propagation in the backward hemisphere (θ ≥ π=2).
Figure 6b also shows how the maximum observed in
Fig. 5(a) changes for different angles and distances.
We notice that jMj only increases for θ < π=2 and
reaches a maximum indicated by a black dot at which

jMj=jMjjlj¼0 ≃ 1.7. This maximum occurs at a distance
marginally larger than δl at θ ¼ 0.
Although an off-shell mediator will generate a similar

far-field pattern (for q̃2 > 0), the Fresnel regime is quanti-
tatively different. This is shown in Fig. 7(a), where we
compute jMj=jMjθ¼0 for the same parameters as in
Fig. 6(a), but for the off-shell point: jpj ¼ 2q̃. In contrast
to the OS case (jpj ¼ q̃), this ratio exhibits maxima away
from the origin, in the perpendicular direction ðθ ¼ π=2Þ,
which are indicated symmetrically with two black dots.
Interestingly, the ratio is larger than 1, even toward the
backward direction well within the Fresnel zone. However,
close to the interface between the near- and far-field zone,
there is a drastic exponential suppression when θ > π=2,
similar to the one we saw in Fig. 6(a). At larger distances,
the matrix element falls off as 1=jlj, in agreement with our
expectations in the Fraunhofer regime [cf. (3.4)].
Figure 7(b) shows the spatial profile of jMj=jMjjlj¼0 for

an off-shell mediator with jpj ¼ 2q̃. We observe that there
are significant differences with its on-shell counterpart in
Fig. 6(b). Specifically, the curves, for which the ratios
jMj=jMjjlj¼0 are being kept constant, are almost indepen-
dent of the angle well within the Fresnel zone. This
property is also reflected in the approximation (3.6), as
well as in Fig. 5(b). Thus, close to the source, no preferred
direction exists and propagation happens at all angles with

FIG. 7. (a) The ratio jMj=jMjθ¼0 in polar coordinates ðjlj; θÞ in the Fresnel zone, for the same input parameters as in Fig. 5(b). The red
curves correspond to jMj=jMjθ¼0 ¼ 0.5 and 1.1. The maximum value of this ratio is jMj=jMjθ¼0 ¼ 1.7 (black dots), obtained
approximately along the perpendicular direction θ ≃ π=2. (b) The ratio jMj=jMjθ¼0 in the Fresnel region, for the same input parameters
as in (a). The red curves correspond to jMj=jMjθ¼0 ¼ 0.5, 0.1, and 10−3. In contrast to the on-shell case, the maximum value of this ratio
corresponds to jlj ≃ 0 in the forward direction.
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almost equal probabilities. As jlj approaches jpjδl2, the
forward direction becomes more favorable, whereas the
matrix element for angles θ ≳ π=2 falls off exponentially, in
line with our numerical estimates in Fig. 5(b).
In summary, we find that the numerical estimates

presented here by utilizing the exact localized matrix
element M stated in (2.13) give firm support to the validity
of the more intuitive Fresnel and Fraunhofer approxima-
tions discussed in Sec. III.

C. Possible experimental probes

The approach we have been studying in this article can
be applied to a number of experiments. For instance, in
μþμ− colliders the LSMT will provide a regularization of
t-channel singularities [26–31] by means of QM uncer-
tainties. Notably, the LSMT can be used to explain the
spatial pattern of diffraction well beyond the realm of
classical electrodynamics. As an example, we discuss in
this subsection neutrino experiments, like the currently
projected long-baseline neutrino experiment DUNE [54],
which can be more challenging.
In such neutrino experiments like DUNE, a proton beam

collides with a target to produce charged pions, π�. These
pions pass through a series of magnets that cause them
to follow more converging trajectories. Then, the so-
collimated beam of pions decay into neutrinos (and
leptons), thus creating a neutrino beam. Several detectors
along the path of the neutrino beam measure the “neutrino
flux.” Strictly speaking, in the LSMT neutrinos are con-
sidered to be mediators of the interactions between the pion
beam and the detector.2 This in turn means that the
neutrinos are virtual particles and so they are not directly
observed. For instance, in the far-field region described by
the matrix element (3.4), neutrinos could be interpreted as
spherical waves propagating with momentum of magnitude
q̃, which means that the expected scaling M ∼ 1=jlj (i.e.,
inverse squared law) is justified. This semiclassical inter-
pretation breaks down for distances close to or inside the
Fresnel zone, as the matrix element in the several sub-
regions takes on different forms. A typical event is usually
registered as energy deposition to the detector due to its
interaction with the pion beam. According to the LSMT, the
characteristics of this interaction, such as its angular
distribution, is a consequence of a flux of virtual neutrinos,
with event rates as predicted by the amplitude (2.12).
It is worth mentioning that the angular distribution of

number of events for different pion energies can be
measured by utilizing the technology of liquid argon time
projection chambers (LArTPCs). Particle detectors based
on LArTPCs have excellent scintillation properties [55], as

well as unique capabilities of measuring within the flux
both the position and the direction of the propagating
neutrinos at different distances from the source. An
experimental project being in progress is the short-baseline
neutrino (SBN) programme at Fermilab that consists of
ICARUS [56], MicroBooNE [57], and the short-baseline
near detector (SBND) [58].
For the aforementioned experiments, the angular distri-

bution of the number of events may be evaluated as

dN
dΩ

¼
Z

dEπ�
dσπ�
dΩ

dLπ�

dEπ�
: ð4:1Þ

Here, Lπ� is the luminosity of the pion beam, Eπ� is the
energy of the charged pions, and σπ� is the total cross
section of all interactions between the pion beam and the
detector. The luminosity at different pion energies can be
measured in similar experiments or extracted from simu-
lations, e.g. by making use of the Geant4 toolkit [59]. In such
a setup, the cross section can be calculated using the matrix
element (2.13). The momentum p that determines the value
of σπ� can be found by precisely measuring k, which is the
momentum difference between the initial and final
momenta of the particles in the detector. For instance, if
the pion beam-detector interaction results in a recoiled
nucleon inside the detector, then k becomes the final-state
momentum of the nucleon in the laboratory frame.
In an idealized experiment, measuring and comparing

against LSMT predictions should in principle be straight-
forward. However, there can be several experimental
and theoretical challenges under more realistic conditions.
For instance, in LArTPCs there are other processes that
can take place, beyond 2 → 2 collisions, which need to be
taken into account consistently within the LSMT frame-
work. Since both statistical and quantum uncertainties
affect measurements, analyses analogous to the studies
in [10–12,14] will provide more accurate results. Another
possible complication may arise from considering a non-
spherically symmetric spatial smearing, which is expected
to make the computation of the corresponding amplitudes
more difficult. In the absence of an analytic form, numeri-
cal methods can be used to compute these amplitudes [60].
Such analyses are beyond the scope of our paper, since our
main concern here is to lay the foundations for a consistent
formulation of LSMT.
We note that the exact value of δl cannot be obtained

from first principles and should be inferred from the
experiment. For instance, performing experiments on
similarly prepared pion beams can help us estimate or
impose bounds on δl. Such bounds will enable us to place
detectors in the Fraunhofer region, which can be used to
determine an accurate value of δl that corresponds to each
single-energy band of the initial-state pion beam.
Estimating δl from the morphology of the pion beam

will have significant implications for the predictions

2These interactions proceed through the t-channel which can in
principle exhibit singularities along with the neutrino oscillations.
The LSMT can incorporate consistently both the regularization of
t-channel singularities and neutrino oscillations in space.
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obtained from the LSMT. Let us, for example, consider a
pion beam for which the individual pions exhibit a QM
uncertainty δl ∼ 10−5 cm. In addition, let us also assume
that the magnitude of the average momentum of the pion
beam is jpj ∼ 10 GeV. In such an experimental setting,
the interface between the Fresnel and Fraunhofer zones,
jlj ¼ δl2jpj, extends up to jlj ∼ 1 km. This will enable us
to probe all subregions of the near-field regime by placing
conveniently the detectors at distances jlj ≲ 1 km. Such
arrangements will provide another possible experimental
probe for testing the validity of our LSMT.

V. SUMMARY AND FUTURE DIRECTIONS

Nonlocality, as expected to originate from the Feynman
propagator, is an inherent property of QM and plays an
instrumental role in understanding several nonlocal phe-
nomena in many applications of modern quantum theory,
ranging from simple two-particle quantum-entangled sys-
tems, like those that occur in an EPR experiment [1], to
more complex situations in quantum information and
quantum technology [4]. Here, our aim was to extend this
notion of nonlocality to the standard S-matrix of QFT. In
particular, we put forward an S-matrix theory in which each
particle interaction in a scattering process is taken to be
localized in a volume of finite size. For brevity, we called
such a theory the localized S-matrix theory (LSMT).
Evidently, such an LSMT assumes its standard S-matrix
form, when the infinite spread limit in the localization of all
interactions is considered.
To gain insight into the formalism of the LSMT, we have

considered a simple 2 → 2 scattering process within an
analytically solvable QFT model that was previously
discussed in [12]. This solvable QFT model is based on
two working hypotheses. First, we have taken the QM
uncertainty in time, δt, to be much bigger than the
combined QM uncertainty δl of the detector and the
source. In fact, we have worked in the limit of δt → ∞,
which in turn implies that the (mean) energy is conserved at
each interaction vertex of the scattering process. Second,
we have assumed that both the production and detection
points of interaction have spatial spreads with spherical
Gaussian form. The latter hypothesis enables us to carry
out most of the complex integrations that we encounter, and
so arrive at an analytic result that only depends on well-
tabulated complementary error functions with complex
arguments. In spite of the above assumptions, we should
expect that the results presented here for the different near-
and far-field zones will still be generically valid, up to
obvious amendments, for other scenarios with QM local-
izations that go beyond the spherical approximation con-
sidered here.
In the context of a solvable QFT model discussed earlier

in [12], we have derived several analytic approximations of
the localized S-matrix amplitude for detection regions that
are either quite close to the source or very far from it.

Adopting a terminology known from light diffraction in
classical optics, we called these two regions interchange-
ably the near-field and far-field zones, or the Fresnel and
Fraunhofer regions. The Fresnel (near-field) zone is con-
fined to distances jlj from the source that lie in the interval,
0 ≤ jlj≲ jpjδl2, where p is the net three-momentum of all
particles in the initial or final state of the process. Instead,
the Fraunhofer (far-field) region characterizes the region far
from the source, for which jlj ≫ jpjδl2.
We have found that the Fresnel zone may be subdivided

into three subregions according to the values of the two
dimensionless quantities, jp̂ · lj=δl and jjpj − q̃jδl. A
more detailed description of subregions I, II, and III is
given in Table I. For all these three Fresnel subregions, we
observed that the on-shell transition amplitude M does not
fall off as 1=jlj as a function of the distance jlj between the
source and the detector, thereby confirming the nondis-
persive, plane-wave behavior ofM in the forward direction,
in agreement with earlier observations made first in [12],
and subsequently in [14,19,23] in different settings.
Remarkably enough, in the same forward direction of
propagation, we have observed a novel focusing phenome-
non manifesting itself with the appearance of a small area
where the magnitude jMj of the transition amplitude can
be higher than its value at the origin, where jlj ¼ 0. As
expected, in the Fraunhofer region, we recover the usual
1=jlj reduction of jMj. In both the near- and far-field
regions, we have confirmed the phenomenon of oscillations
if the mediators form a mixed system of particles, as is the
case, for example, for neutrino oscillations.
Another novelty of the present study is the analysis of the

transition amplitude M beyond the forward direction of
propagation, as a function of the angle θ defined by the
average distance vector l and the total three-momentum
vector p of the particles in the initial state. An important
finding of such an analysis was the observation that in the
backward direction (θ ¼ π), the amplitude M is extremely
suppressed. One may therefore conclude that the Feynman
propagator provides the necessary “quantum obliquity
factor” to suppress the propagation of on-shell particles
in the backward direction. We must emphasize here that
this desirable property of M is achieved without the need
to impose certain boundary conditions on the system. In
this way, the LSMT can provide a quantum field-theoretic
explanation for the origin of the obliquity factor in
diffractive optics. In the same vein, it is appealing to
suggest that the analytic result for M (which depends
on complexified error functions) represents an analytic
QFT extension of the famous Euler-Cornu spiral [40] in
classical optics to the complete off-shell region of particle
propagation.
In realistic situations, we expect that the temporal and

spatial QM uncertainties due to finite space-time volume
effects on a localized S-matrix amplitude, M, will depend
on the experimental setup, including the preparation and
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detection of the initial and final states. In addition to the
coherent QM uncertainties, one must therefore include
incoherent statistical uncertainties to be added at the
squared amplitude level, jMj2, along with phase-space
and other classical resolution effects [8,14,16,20,22,23].
In this context, the LSMT offers an important element in a
holistic construction of a more elaborate multilocal Wigner
function [61,62] which may include all possible uncertain-
ties for all realistic experimental settings. Hence, as well as
both short and long baseline neutrino experiments, future
high-energy colliders have the potential to probe many of
the predictions resulting from such an LSMT. For instance,
one may exploit the crossing symmetry of the localized
S-matrix amplitude to regulate the notorious t-channel
singularities at μþμ− colliders [26–31]. Other applications
of the LSMT may include spatial analyses of parton
showering and displaced vertices during the hadronization
process at high-energy colliders like the LHC [32,33].
We envisage that such analyses might also lead to improved
interpretation of data from B-meson observables at
the LHCb.
In this paper we only laid out the foundations for an

analytic LSMT. However, further work must be done if we
wish to go beyond the Born approximation. For example,
for the 2 → 2 process under study, we expect that box
contributions to the localized transition amplitude M will
decay exponentially faster with increasing distance jlj
from the source than the one-particle-reducible propagator
effects. In this way, a physical separation between the
irreducible (box) and reducible (self-energy) loop diagrams
may be possible, thus enabling a better understanding of
S-matrix diagrammatic approaches like those based on the
pinch technique [63]. On the other hand, apart from scalar
mediators that we have analyzed here in a solvable QFT
model, it should be straightforward to generalize LSMT
and include localized exchange graphs with fermions and
gauge bosons. We shall return to address some of the issues
mentioned above in a future study.
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APPENDIX A: CALCULATION OF THE
LOCALIZED S-MATRIX AMPLITUDE

Here we will present the main steps that we followed to
derive the analytic expression (2.9) for the amplitude TL
pertaining to the process S1χ1 → Φ�ðqÞ → S2χ2.
To start with, we first note that integration over the time

coordinates x0, y0 and q0 in (2.7) can be carried out using
the usual definition of δ-functions. More explicitly, we have

Z
dx0dy0

dq0

2π
e−ip

0x0eik
0y0eiq

0ðx0−y0ÞGðq0;qÞ

¼ 2πδðp0 − k0ÞGðp0;qÞ; ðA1Þ

where Gðp0;qÞ is some analytic function with respect to
p0. Note that the appearance of δðp0 − k0Þ is a consequence
of energy conservation in the infinite limit of time uncer-
tainties, that is for δx0; δy0 → ∞. Making use of (A1), the
localized amplitude reads

TLðp; k; hxi; hyi; δx; δyÞ

¼ −2πδðp0 − k0Þλg
Z

d3xd3ye−ðx−hxiÞ2=δx2e−ðy−hyiÞ2=δy2

× eip·x−ik·y
Z

d3q
ð2πÞ3

e−iq·ðx−yÞ

−jqj2 þ q̃2 þ iϵ
; ðA2Þ

where q̃2 ¼ ðp0Þ2 −m2
Φ (with q0 ¼ p0 ¼ k0), and hxi and

hyi are two spatial vectors. By completing the square in the
exponents of (A2), we can perform the Gaussian integrals
over d3x and d3y. Ignoring an overall phase factor
eiðp·hxi−k·hyiÞ, we may recast the amplitude in (A2) into
the more convenient form:

TLðp; k;l; δx; δyÞ ¼ −2πδðp0 − k0Þλgπ3δx3δy3

× e−ðjpj2δx2þjkj2δy2Þ=4
Z

d3q
ð2πÞ3

×
eiq·L−q2δl2=4

−jqj2 þ q̃2 þ iϵ
; ðA3Þ

with L ¼ l − i
2
ðpδx2 þ kδy2Þ, l ¼ hyi − hxi, and δl2 ¼

δx2 þ δy2.
Our next step will be to integrate over the polar and

azimuthal coordinates of q in (A3). This angular integration
is done explicitly in Appendix B, so here we only use the
generic formula derived in (B4). By virtue of (B4), the
transition amplitude TL becomes
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TLðp; k; hxi; hyi; δx; δyÞ ¼ −2πδðp0 − k0Þλg π
2

δx3δy3

2

×
e−ðjpj2δx2þjkj2δy2Þ=4

jLj
Z
0

∞
dq

×
q sinðqjLjÞe−q2δl2=4

−q2 þ q̃2 þ iϵ
; ðA4Þ

with q≡ jqj ∈ R and jLj≡ ffiffiffiffiffiffiffiffiffiffiffi
L ·L

p
∈ C.

The last step will be to integrate over the radial
momentum coordinate q ¼ jqj in (A4). As outlined in
Appendix C, this last radial integration leads to a result
expressed in terms of the well-documented complementary
error functions [64], which is the one given by (2.9) and
reported earlier in [12].
Alternatively, to make contact with diffractive optics, we

can reexpress the amplitude TL in terms of the well-known
Fresnel integrals [64] as

TLðp;k;l;δx;δyÞ ¼ 2πδðp0 − k0Þ λgπ2

4ð1þ iÞ
δx3δy3

jLj e−½ðjpj2þq̃2Þδx2þðjkj2þq̃2Þδy2�=4
�
eiq̃jLjC

�
2z−ffiffiffi
π

p ð1− iÞ
�
− e−iq̃jLjC

�
2zþffiffiffi
π

p ð1− iÞ
�

þ ieiq̃jLjS
�

2z−ffiffiffi
π

p ð1− iÞ
�
− ie−iq̃jLjS

�
2zþffiffiffi
π

p ð1− iÞ
�
− ið1þ iÞ sinðq̃jLjÞ

�
: ðA5Þ

Here, the Fresnel integrals are

CðzÞ ¼
Z

z

0

dt cosðπt2=2Þ; SðzÞ ¼
Z

z

0

dt sinðπt2=2Þ;

ðA6Þ

which are analytically continued to complex arguments
z ∈ C.

APPENDIX B: ANGULAR INTEGRATION

To calculate the angular part of the integral in (A3), we
first note that

Z
d3qGðjqjÞeiq·L ¼

Z
0

∞
djqjGðjqjÞjqjnþ2

X
n

in

n!

Z
2π

0

dϕ

×
Z

1

−1
d cos θðq̂ ·LÞn; ðB1Þ

where we assume that GðjqjÞ falls off sufficiently quickly,
so that the integral converges, allowing for the operations of
sum and integration to be exchanged. Since L ¼ lþ iw is
in general a complex vector, we cannot simply rotate the
axes in order to bring simultaneously the vectors l and w
on the z-y plane. However, we note that this integral should
be invariant under Oð3Þ rotations. The latter implies

Z
2π

0

dϕ
Z

1

−1
d cos θðq̂ ·LÞn ¼ 2παnjLjn; ðB2Þ

where the coefficients αn are constants that do not depend
on L. Consequently, we may determine these constants by
calculating the respective integrals using the real projection
of L, l ∈ R3. Thus, we get

Z
2π

0

dϕ
Z

1

−1
d cos θðq̂ · lÞn ¼ 2πjljn

Z
1

−1
dzzn: ðB3Þ

From the latter, we may deduce αn ¼
R
1
−1 dzz

n. Taking this
last relation into consideration, we may evaluate the
angular part of the integral in (B1) as follows:

Z
d3qGðjqjÞeiq·L

¼ 2π

Z
0

∞
djqjjqj2GðjqjÞ

X
n

in

n!

Z
1

−1
dzjqjnjLjnzn

¼ 2π

Z
djqjjqj2GðjqjÞ

Z
1

−1
dzeijqjjLjz

¼ 4π

jLj
Z

∞

0

djqjjqjGðjqjÞ sinðjqjjLjÞ: ðB4Þ

APPENDIX C: RADIAL INTEGRATION

In (A4), we have to evaluate the integral over the radial
momentum coordinate q ¼ jqj. To do so, we first rewrite it
as follows:

I ¼
Z
0

∞
dq

q sinðqjLjÞe−q2δl2=4

−q2 þ q̃2 þ iϵ

¼ −
1

2

Z
∞

−∞
dq

q sinðqjLjÞe−q2δl2=4
q2 − q̃2 − iϵ

¼ 1

2

∂

∂jLj
Z

∞

−∞
dq

eiqjLje−q2δl2=4

q2 − q̃2 − iϵ
: ðC1Þ

The last expression can be further simplified with the help
of the Schwinger representation of the propagator,

1

q2 − q̃2 − iϵ
¼ i

Z
∞

0

dte−itðq2−q̃2−iϵÞ: ðC2Þ

Then, the integral (C1) may be rewritten as
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I ¼ i
2

∂

∂jLj
Z

∞

−∞
dq

Z
∞

0

dte−itðq2−q̃2−iϵÞeiqjLje−q2δl2=4

¼ −
ffiffiffi
π

p
2

Le−q̃δl
2=4

Z þi∞

δl2

du
e−b

2u−L2=u

u3=2
: ðC3Þ

In the last equality of (C3), we have introduced the para-
meters: L ¼ jLj and b2 ¼ −ðq̃2 þ iϵÞ=4. Furthermore, the

contour of the complex integration with respect to u is taken
to be along the line: uðtÞ ¼ δl2 þ 4it, with t ∈ ½0;þ∞Þ.
We note that the integrand is analytic on the integration

contour. This is to be expected, since this corresponds to a
simple change of variables. This means that we only need
to find the antiderivative of the integrand, and take the
appropriate limits. We do so by first expressing (C3) in an
equivalent form:

I ¼ −
ffiffiffi
π

p
4

Le−q̃δl
2=4

�
e2bL

Z þi∞

δl2

du
e−ðbuþLÞ2=u

u3=2
þ e−2bL

Z þi∞

δl2
du

e−ðbu−LÞ2=u

u3=2

�

¼ −
ffiffiffi
π

p
4

e−q̃δl
2=4

�
−e2bL

Z þi∞

δl2
du

bu − L

u3=2
e−ðbuþLÞ2=u þ e−2bL

Z þi∞

δl2
du

buþ L

u3=2
e−ðbu−LÞ2=u

�
; ðC4Þ

with b ¼ �½iq̃ − ϵ=ð2q̃Þ�=2.
After observing that

−
ffiffiffi
π

p d
du

Erfc

�
bu� Lffiffiffi

u
p

�
¼ bu ∓ L

u3=2
e−ðbu�LÞ2=u; ðC5Þ

we may now employ this relation to reexpress the integrals
in the second equality of (C4) as follows:

I ¼ −
ffiffiffi
π

p
4

e−q̃δl
2=4

ffiffiffi
π

p �
e2bLErfc

�
buþ Lffiffiffi

u
p

�

− e−2bLErfc

�
bu − Lffiffiffi

u
p

��

To evaluate the limit of this expression at u → þi∞, we
introduce a real positive quantity R (with R ≫ δl), such
that

ffiffiffi
u

p ¼ 1þ iffiffiffi
2

p RþOðδlÞ: ðC7Þ

Then, u → þi∞ implies R → þ∞. Thus, jL= ffiffiffi
u

p j∼
jLj=R → 0. In order to determine the infinite limit that
appears in (C6), we need to evaluate

Λ� ¼ lim
u→þi∞

Erfcðb ffiffiffi
u

p Þ

¼ lim
R→þ∞

Erfc

�
� 1þ i

2
ffiffiffi
2

p
�
iq̃ −

ϵ

2q̃

�
R

�
; ðC8Þ

where the sign � depends on our choice of the branch we
choose for b. We find that Λþ ¼ 2 and Λ− ¼ 0. Choosing
the negative branch of b for the integral I in (C6) yields

I ¼ −
π

4
e−q̃

2δl2=4

�
eiq̃jLjErfc

�
−
i
2
q̃δl −

jLj
δl

�

− e−iq̃jLjErfc
�
−
i
2
q̃δlþ jLj

δl

��
; ðC9Þ

after replacing L back with jLj. It should be pointed out
that the same result for the integral I would be obtained
if the positive branch of b was chosen. This follows from
the fact that the difference between the positive (Iþ) and
negative (I−) branch in (C6) gives a u-independent expres-
sion evaluated at two different integration limits, viz.

Iþ − I− ∝ sinh

��
iq̃ −

ϵ

2q̃

�
L

�����
u→þi∞

u¼δl2
¼ 0: ðC10Þ

Interestingly enough, the above exercise demonstrates
that although (C.3), is symmetric under the exchange of
b → −b, maintaining this property of I in its final expres-
sion in (C9) requires a more nuanced treatment.
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