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We initiate a study of the gravitational-wave signatures of a phase transition that occurs as the Universe’s
temperature increases during reheating. The gravitational-wave signatures of such a heating phase
transition are different from those of a cooling phase transition, and their detection could allow us to probe
reheating. In the lucky case that the gravitational-wave signatures from both the heating and cooling phase
transitions were to be observed, information about reheating could in principle be obtained utilizing the
correlations between the two transitions. Frictional effects, leading to a constant bubble wall speed in one
case, will instead behave as an “antifriction” force in the other and accelerate the bubble wall. This
antifriction will often take the bubble into a runaway regime, significantly enhancing the amplitude of the
heating phase transition gravitational-wave signal. The efficiency, strength, and duration of the phase
transitions will be similarly correlated in a reheating-dependent way.

DOI: 10.1103/PhysRevD.108.036006

I. INTRODUCTION

The remarkable transparency of the Universe to light
allows us to look far back in time and learn about the early
Universe. Using this fact, we can observe the clumping of
matter as a function of redshift, as well as infer early
Universe properties from the cosmic microwave back-
ground (CMB) power spectrum. At around a redshift of
z ∼ 1100, however, this treasure trove of information ceases
as the Universe becomes opaque to light.
Gravitational waves (GWs) offer a unique opportunity to

look even further back in time. Unlike light, the Universe is
never opaque to GWs, and thus they allow us to observe the
Universe at its very youngest. This unique opportunity
comes at the cost of it being much harder to observe GWs
than it is to observe light. It is only recently that they have
been observed for the first time by the LIGO-Virgo
Collaboration [1]. With future detectors such as LISA
[2–5], BBO [6–8], and DECIGO [9–12] on the horizon, the
prospects of GW detection are bright.

One of the main mechanisms by which GWs can teach us
about the early Universe comes in the form of a stochastic
GW background (SGWB), the CMB of GWs. Stochastic
GWs can result from any number of well-motivated early
Universe phenomena such as inflation [13–16], reheating/
preheating [17–29], phase transitions [4,5,30–38], topo-
logical defects [39,40], and second-order scalar perturba-
tions [41–45]. There exists a massive literature on
stochastic GWs and what can be learned from them; see,
e.g., Refs. [33,46–59]. The GW source that we focus on in
this article is a first-order phase transition (PT). In PTs the
Universe evolves from a metastable or false vacuum state to
a stable or true vacuum state through the nucleation and
subsequent expansion of “bubbles” of the new phase. The
complicated dynamics of bubble collisions can gener-
ate GWs.
One of the most interesting early Universe events is the

process called reheating. Inflation cools the Universe to a
temperature T of zero due to its exponential expansion.
Meanwhile, the late-time Universe is well described by the
standard model of cosmology, where the Universe is a hot
thermal bath cooling due to the expansion of the Universe.
Clearly, sometime in between these two events the
Universe must have gone from T ¼ 0 to T > 0, a process
referred to as reheating (RH). This makes RH a particularly
special era in the history of the Universe, since in almost all
models the temperature only ever decreases afterwards.
Subsequent events such as entropy dumps only serve to
cool the Universe more slowly rather than cause new RH
events. Because RH likely only occurred once in our
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Universe, it is a unique and interesting event to study, and it
is the target that we aim to elucidate.
In this article, we wish to probe how RH can be tested

experimentally. Because RH is the only time when the
temperature of the Universe increases, we are led to study
signatures that arise from a period of increasing temper-
ature. We therefore study the GW signature resulting from a
heating phase transition (hPT) as opposed to the more
commonly studied cooling phase transition (cPT).1

The GWs of a cPT (which we denote as cGWs) are
chiefly generated by the colliding bubble walls, plasma
sound waves, and plasma turbulence. The resulting sig-
nature is commonly characterized by the efficiencies (κcPT),
the strength of the phase transition (αcPT), the velocity of
the bubble wall (vw;cPT), the duration (β−1cPT), and the
temperature of the phase transition (TcPT). The same
quantities,mutatis mutandis, characterize the GW signature
of a hPT (hGW for short), with the addition of two more
that parametrize reheating. In this work we take RH to
begin at a Hubble scale Hi corresponding to a time when
the reheaton, the particle whose decay reheats the Universe,
starts decaying with a rate Γχ . The hPT parameters, e.g.,
βhPT, are related to their corresponding cPT parameters,
e.g., βcPT, and they can be expressed in terms of each other
up to Oð1Þ numbers and RH parameters.
In general, the difference between a hPT and a cPT will

be more than just a change in the parameters, as the
dependence of the GW signal on both the PT parameters
and frequency will change. For example, in a cPT plasma

sound waves last for an entire Hubble time before the
expansion of the Universe damps them. The result of this
prolonged emission time is that the power in GWs is
enhanced by a factor of βcPT=HcPT. In a heating PT, sound
waves will instead be damped by the heating process,
which adds total energy to the plasma, damping the sound
waves and giving a smaller enhancement of βhPT=Γχ . While
in this paper we focus more on the amplitude of the GWs,
these same processes could also change the frequency
dependence of the GW signal in interesting ways. In
addition, novel plasma effects related to the restoration
of symmetry that accompanies an hPT can enhance the
amplitude of the GW signal coming from bubble collisions.
In this article, we study how a hPT percolates and

describe how hPT and cPT parameters are related in a
particularly simple model. Additionally, we study the
special case when the heating and cooling PTs are both
observable at future GW detectors. In these lucky scenar-
ios, information about reheating can likely be obtained.
Even if only a hPT were observed, it is possible that much
could be learned from its frequency distribution.
In Sec. II we present a toy model with a phase transition,

the object of our study. In Sec. III we investigate the details
of how a heating phase transition completes, and review the
cooling case. Section IV describes how GWs are generated
by a heating and cooling phase transition, highlighting their
differences. Section V details what is needed for an hPT to
be found at future GW detectors. Finally, we conclude in
Sec. VI, and supplement our results with four appendices.
For the reader’s convenience, in Table I we provide a list of
our notation and some of the parameters most commonly
used in the literature.

TABLE I. Summary of the notation used in this paper to denote various quantities of interest.

Variable Meaning

Hi Hubble expansion rate when reheating starts
Γχ Decay rate of the reheaton
ρχ , ρr, T Energy densities in the reheaton and radiation, and the temperature of the latter
Φ Higgs-like scalar field, whose spontaneous-symmetry-breaking potential drives the phase transition
hΦib, hΦis Broken and symmetric minima of the temperature-dependent Φ potential
fμ; A; λg Coefficients of the quadratic, cubic, and quartic terms in the Φ potential
0 < Δ < 1 The useful combination Δ ¼ 4A2=ð3λμ2Þ, which controls much of the physics of the phase transition
TmaxðtmaxÞ Maximum temperature during reheating, and the time at which it is reached
TcðtcÞ Critical temperature and time: when the broken and symmetric phases are degenerate
T0ðt0Þ Binodal temperature and time: when the symmetric phase becomes a maximum of the Φ potential
T1ðt1Þ Spinodal temperature and time: when the broken phase no longer exists
TnðtnÞ Nucleation temperature and time: when one bubble per Hubble patch is formed
TcPTðtcPTÞ Percolation temperature and time: when the cooling phase transition completes
ThPTðthPTÞ The same as above, but for a heating phase transition
Γ=V Bubble nucleation rate per unit volume
S Euclidean bounce action of the bubble nucleation rate
hðtÞ Metastable volume fraction: the fraction of the volume of the Universe in the false vacuum
nbðtÞ Bubble number density
R̄PT Average distance between bubbles at percolation time
β Inverse duration of the phase transition

1This abbreviation is not to be confused, of course, with CPT
symmetry.
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II. A TOY MODEL WITH A PHASE TRANSITION

There are two main ingredients in the toy model that we
consider. The first one deals with how RH takes place.
While there is a plethora of ways to achieve RH, as a
representative toy model we consider a Universe whose
energy density is entirely contained in a reheaton field χ,
with RH proceeding via χ decays. For simplicity we
assume that the daughter particles constitute an interacting
dark sector (DS) with g� degrees of freedom, which
quickly form a thermal bath.2 Eventually this DS plasma
reheats the visible sector (VS) containing the Standard
Model (SM) via some portal interactions, whose form is
irrelevant to our purposes and we thus leave it unspecified.
This scenario is characterized by two parameters: the
Hubble scaleHi at which χ starts to decay (which depends
on the initial energy density ρχ;i of the reheaton) and the
decay rate Γχ .

3 Roughly speaking, the reheaton-dominated
era lasts for a time Δtχ ∼ 1=Γχ equal to its lifetime, after
the onset of its decay.
The other ingredient of our toy model is the field Φ

responsible for the first-order phase transition. Φ is a
component of a thermal bath after reheating, and will
eventually generate GWs. As is standard, we base our
model of Φ on the Higgs boson, where thermal corrections
give rise to a cubic term in its potential and, consequently,
to a first-order phase transition. We consider a finite
temperature T potential [62–64]

V ¼ μ2

2
ðT2 − T2

0ÞΦ2 −
A
3
TΦ3 þ λ

4!
Φ4: ð1Þ

The parametersA, μ, λ, andT0 havemodel-dependent values
but we allow them to vary freely, in order to ensure the
wide applicability of our results. These parameters come
about from the coupling of Φ to other particles and the
subsequent mass difference between the two phases hΦis ≡
hΦisymmetric ¼ 0 and hΦib ≡ hΦibroken ≠ 0. The particles
and their interactions with Φ also play a crucial role in the
dynamics driving bubble expansion. Note that the term
−μ2T2

0Φ2=2 clearly corresponds to a tachyonic tree-level
mass forΦ, which leads to the usual spontaneous-symmetry-
breaking mechanism at zero temperature, with hΦi0≡
hΦib;T¼0¼

ffiffiffiffiffiffiffi
3=λ

p
μT0 and V0≡VðhΦi0Þ¼−3μ4T4

0=ð8λÞ.
There are several temperature values that are important in

our model, as illustrated in Fig. 1. These temperatures are

determined by the parameter combinationΔ≡ 4A2=ð3λμ2Þ.
The first is T0, the temperature below which the symmetric
phase hΦis ceases to be a minimum: for T < T0 only the
broken phase, with hΦib, is a minimum. The second temper-
ature is the critical temperature Tc ¼ T0=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
at which

the broken and symmetric phases have equal energies. Since
degenerate minima are a requirement for there to be a first-
order PT, we demand our potential parameters to satisfy
Δ < 1, which allows for the critical temperature to exist. For
subcritical temperatures (T < Tc) the broken phase is
energetically preferred by the system, whereas for super-
critical temperatures (T > Tc) the symmetric phase is more
energetically favorable. Finally, there is the temperature
T1 ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð8 − 9ΔÞp

abovewhich the broken phase ceases
to exist: for T > T1, the only minimum is the symmetric
phase. Note that if Δ ≥ 8=9 the broken phase always exists.
In the literature, T0 and T1 are sometimes called the binodal
and spinodal temperatures, respectively. If, however, A ¼ 0
(Δ ¼ 0 and T0 ¼ T1 ¼ Tc) there is no potential barrier
separating the symmetric and broken phases and the phase
transition is second order. Furthermore, thermal corrections
to the self-energy of particles (what is commonly called
“daisy resummation” [64–68]) may lower or erase the Φ
potential barrier at high temperatures, thus weakening the
strength of the first-order phase transition, or even negating it
altogether. This puts a more stringent lower bound on A and
therefore onΔ. As an estimate of this bound, we demand that
these corrections be smaller than 50% at Tc, which means
Δ≳ 0.27λ=μ2 or A≳ 0.45λ. See Fig. 10 and Appendix B 3
for more details.

FIG. 1. Finite-temperature potential VðΦÞ, with its symmetric
(hΦis ¼ 0) and broken (hΦib ≠ 0) minima. For T < T0 (T > T1)
the minimum corresponding to the symmetric (broken) phase
disappears. At the critical temperature Tc both minima are
degenerate. A cooling phase transition (blue arrow) from the
metastable symmetric phase to the stable broken phase can take
place for subcritical temperatures T < Tc, whereas a heating
phase transition (red arrow) from the metastable broken phase to
the stable symmetric phase can occur for supercritical temper-
atures T > Tc.

2For the OðTeVÞ temperatures we consider, an interaction rate
Γth ∼ g2T is efficient enough to thermalize the DS plasma.

3The reheaton may itself be the inflaton in simple models such
as m2χ2 inflation. In this case, we expect Γχ ∼Hi ∼mχ for Oð1Þ
couplings, since inflation terminates when χ ∼mPl, where mPl is
the Planck mass [60]. In other models such as hybrid inflation
[61], the reheaton and inflaton are separate particles, and Hi and
Γχ are not necessarily related.
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III. PHASE TRANSITIONS DURING REHEATING

In this section we detail the dynamics of phase tran-
sitions during reheating. While the cases of heating and
cooling phase transitions are very similar, there are impor-
tant differences. Because of this, we review some of the
previous literature on first-order phase transitions, occa-
sionally highlighting our new results. Of these, our dis-
cussion of heating phase transitions during reheating takes
the center stage. Although mentioned in passing in
Refs. [69,70], a detailed study of the properties of hPTs
taking place during RH has not, to the best of our knowl-
edge, been published in the literature.
The thermal history that we consider is shown in Fig. 2.

Initially, all of the energy density is in χ, the temperature is
zero, and Φ is in the broken phase. As χ decays, a DS
thermal bath develops and the temperature of the Universe
increases as a function of time. During this “heating” era
the energy density in the radiation grows linearly with time,
ρr ≈ Γχtρχ;i. Eventually, the temperature grows larger than
Tc [i.e., the radiation density is ρr > ρrðTcÞ≡ ρr;c] and the
broken phase in which the Universe finds itself becomes
metastable. This means that a first-order hPT can now occur
via the nucleation of bubbles of the stable, symmetric
phase, which subsequently expand. At some point, corre-
sponding to a temperature ThPT, these bubbles fill the entire
Universe, which has now fully transitioned to the sym-
metric phase, and we can say that the hPT is completed.
Once the Universe reaches its maximum temperature

Tmax at a time tmax, it begins to cool down due to Hubble
expansion. Famously, Tmax is larger than what is commonly

known as the reheating temperature, the temperature of the
plasma after the energy transfer from the reheaton [71–75].
It depends on how much of the reheaton energy could be
transformed into radiation before one Hubble time, roughly
ρr;max ∼ ρχ;i min½1;Γχ=Hi�. After this maximum the tem-
perature eventually falls below Tc, and the symmetric phase
of the Universe is now metastable. The previous process
repeats but in reverse, with bubbles of the broken phase
forming and growing, eventually filling up the Universe at
some time when it is at a temperature TcPT, at which point it
can be said that the first-order cPT is finished.
There are a few necessary conditions for PTs to take

place. The first one is Tc < Tmax, namely, that the Universe
should reheat above the critical temperature of the system.
Otherwise, the broken phase is always stable and the
Universe remains in it throughout reheating, which means
no PT takes place. It is also important that the PT completes
before the metastable minimum disappears, i.e., TcPT > T0

and ThPT < T1. If this is not satisfied, Φ will simply roll
down to the stable minimum before a significant number of
bubbles are formed, thereby preventing the production of a
sizable amount ofGWs. There are two times tc1 and tc2 when
T ¼ Tc, which take place while the plasma is heating and
cooling, respectively; see Fig. 2. In addition, we denote by t1
the time at which T ¼ T1 and the broken phase disappears,
and by t0 the time at which T ¼ T0 and the symmetric phase
disappears. Therefore, the conditions stated above can be
understood as follows: the hPT must complete at a time thPT
within the interval ðtc1;min½tc2; t1�Þ, whereas the cPT must
complete at a time tcPT within ðtc2; t0Þ.
The similarities and differences between cPTs and hPTs

force us to make a brief housekeeping comment on
notation: we use the generic subindex “PT” to denote that
a quantity is evaluated at the end of a PT (tPT), for
statements that apply equally to the heating or cooling
cases. However, if it is imperative to specify whether the
quantity in question is evaluated at the end of an hPT or a
cPT (thPT or tcPT, respectively), we make this explicit.
Throughout the rest of this section we review the dynamics
of PTs, highlighting the differences between the well-
studied cPTs and the novel hPTs.
The most common definition in the literature of the

end of a first-order PT is the time tPT at which the fraction
hðtPTÞ of the volume of the Universe found in the
metastable phase (metastable volume fraction for short)
has been reduced to 1=e [37,63]. This is often called the
percolation time. It can be shown [37,63,76,77] that hðtÞ is
given by4

FIG. 2. Thermal history of the Universe in our toy model, in
which a reheaton energy density ρχ (blue) reheats a radiation
energy density ρr (red) via decays. The reheating history is
entirely determined by two parameters: the reheaton decay rate Γχ

and the Hubble expansion rate Hi at the time ti ¼ 0 at which
these decays begin to take place. The curves in the figure only
depend on the ratio of the two parameters; we chose Γχ ¼ Hi as
our reference point. The dashed black line represents the value
ρr;c, where the radiation is at its critical temperature, here taken to
be 80% of the maximum temperature, Tc ¼ 0.8Tmax. tc1 and tc2
are the two times when T ¼ Tc.

4For simplicity, we ignore the expansion of the Universe in
Eqs. (2) and (9). We have checked that this simplification has
only a negligible impact on our results for the parameter space of
interest; see Appendix C 3.
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hðtÞ ¼ exp

�
−
Z

t

tc

dt0
Γðt0Þ
V

4π

3
v3wðt − t0Þ3

�
; ð2Þ

where vw is the bubble wall velocity, and Γ=V is the bubble
nucleation rate per unit volume [37,62,78],

Γ
V
≈ T4

�
S
2π

�
3=2

e−S: ð3Þ

Here S is the Euclidean bounce action associated with
nucleating a Φ critical bubble of the lower-energy phase
(see Appendix B 2 for its precise definition).
Because at Tc the broken and symmetric phases are

degenerate, there is no free energy available to generate a
phase transition from one to the other. As such, S diverges
and Γ=V vanishes. Since S is a monotonically decreasing
function of jT − Tcj, the rate Γ=V grows exponentially
from 0 as the temperature moves away from Tc in either
direction, i.e., both during the hPTand the cPT; this behavior
can be seen in Fig. 3. As long as the parameter A controlling
the height of the potential barrier that separates both phases is
not too large, this exponential growth will generally guar-
antee a time atwhich the probability of nucleating one bubble
in a Hubble space-time patch approaches 1. The time at
which this happens is called the nucleation time tn
[4,5,76,79] and it is roughly given by

ΓðtnÞ
V

≈HðtnÞ4: ð4Þ

The exponential sensitivity of Γ=V to S means that in
most cases the phase transition will occur in what is called
the exponential nucleation regime [32,80–82], which can
be observed in Fig. 3.5 In this regime, we can approximate
the bounce action as S ∼ S0 þ S1t so that the nucleation rate
is changing exponentially quickly. As a result, the times
tc ≲ tn ≲ tPT all take place in quick succession, and most of
the bubbles of the new phase are nucleated towards the tail
end of the process. In this regime, since tn ≈ tc, we can
write

ΓðtnÞ
V

≈HðtcÞ4 ð5Þ

⇒

�
ΓðtnÞ
V

�
1=4

≈ 10−15 TeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρtotðtcÞ
1 TeV4

r
; ð6Þ

and SðtnÞ ≈ 4 ln ðTc=HðtcÞÞ; ð7Þ

where in the last equality we have solved for SðtnÞ from
Eq. (5) by keeping the dominant exponential behavior in
Eq. (3) and ignoring the prefactor.
Once percolation is achieved and the PT ends at tPT, the

bubbles of the new phase are large enough that they are
very close to each other and begin to collide. It is these
collisions and the subsequent behavior of the system that
give rise to gravitational waves. The quantity of interest is
the mean bubble separation scale at percolation R̄PT,
defined in terms of the bubble number density nbðtÞ as
follows:

R̄PT ≡ nbðtPTÞ−1=3; ð8Þ

with nbðtÞ≡
Z

t

tc

dt0
Γðt0Þ
V

hðt0Þ: ð9Þ

From R̄PT and the bubble-wall velocity vw one can obtain
the characteristic time scale β−1 of the PT6:

FIG. 3. Example of the bubble nucleation rate Γ=V divided by
H4 as a function of time t. The red curve corresponds to
nucleation during an hPT [t ∈ ðtc1;min½tc2; t1�], whereas the blue
curve corresponds to nucleation during a cPT [t ∈ ðtc2; t0)]. The
dashed lines indicate the unrealized evolution of Γ=V, since they
correspond to times after the phase transitions have actually
finished. The horizontal line marks Γ=V ¼ H4. The vertical lines
correspond to different times of interest. For this plot we chose
the parameters corresponding to the starred benchmark point
in Fig. 6, namely, Tc ¼ 1 TeV, Hi ¼ 2 × 10−15 TeV ¼ Γχ (i.e.,
Tc ¼ 0.8Tmax), and g� ¼ 10, the potential coefficients
fμ; A; λg ¼ f1; 0.72; 1g (Δ ¼ 0.7), and a bubble-wall speed in
the cPT of vw;cPT ¼ 0.05.

5The exponential nucleation regime is the norm in most of our
parameter space, for both hPTs and cPTs. Nevertheless, there is
another. Because Γ=V vanishes at both tc [since SðTcÞ ¼ ∞] and
t0 or t1 [since SðT0Þ ¼ SðT1Þ ¼ 0], Rolle’s theorem guarantees
that the function Γ=V has a maximum as a function of time. In the
region of parameter space for which this maximum is comparable
to the Hubble rate (i.e., Γ=V ≲H4), the so-called simultaneous
nucleation regime [81,82] takes place. In this regime most
bubbles of the new phase are nucleated at the time when Γ=V
is at its largest. This occurs more easily when Tmax is reached
during an hPT, which happens for large bounce actions. For more
details about this regime, we direct the reader to Appendix C 4.

6Reference [82] called this quantity βeff.
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β≡ ð8πÞ1=3 vw
R̄PT

: ð10Þ

It can be shown that in the exponential nucleation regime
[32,80–82]

β ≈
d lnΓ
dt

����
tPT

≈ −S0ðtPTÞ ¼ −S
d ln S
d lnT

d lnT
dt

����
tPT

; ð11Þ

which is the definition of β more commonly found in the
literature. However, Eq. (10) has a wider range of appli-
cability and it is more closely related to the peak frequency
of the GW spectrum [81,83]. Because of this, we use
Eq. (10) in our results, which are numerically calculated.
There is one last significant difference between cooling

and heating phase transitions, regarding the manner in
which their respective bubbles expand. Indeed, while
during a cPT bubbles generally reach a constant subluminal
velocity, in an hPT they instead typically enter a runaway
regime, in which their wall velocity quickly approaches the
speed of light (vw → 1). Below we justify this claim in a
more or less quantitative manner, leaving a more detailed
discussion and a description of the runaway parameter
space to Appendix C 2. Finally, we would like to caution
the reader that the growth of bubbles in the presence of a
plasma is governed by very complex dynamics, and it is the
subject of ongoing research [5,84–88].
Once nucleated, the bubbles of the new stable minimum

grow due to the free energy difference inside and outside of
their wall. We can determine whether these bubbles run
away by considering a relativistic bubble wall (where
friction is maximized and antifriction is minimized) and
asking if the net pressure acting on it is pushing outwards,
driving the wall ever faster. Mathematically, written in
terms of the total force per unit area Ptot acting on the
bubble wall, this runaway condition is given by

Ptot ¼ ΔV0 þ ΔPT > 0; ð12Þ

where ΔV0 ≡ V0;out − V0;in ¼ signðTc − TÞjV0j is the
zero-temperature potential difference between the outside
and the inside of the bubble [for cPTs (hPTs) the zero-
temperature broken minimum V0 < 0 is inside (outside) the
bubble], and ΔPT is the pressure difference produced by
the plasma, which is the same as the leading mean-field
contribution to the thermal potential [84]:

ΔPT ≈
T2

24

X
i

ciNiΔm2
i ¼−signðTc−TÞμ

2

2
T2hΦi2b: ð13Þ

Here Δm2
i ≡m2

i;out −m2
i;in is the ith particle’s mass differ-

ence between the outside and the inside of the bubbles, Ni
accounts for its degrees of freedom, and ci ¼ 1ð1=2Þ for
bosons (fermions). The second equality in Eq. (13) stems
from the definition of μ in terms of the particle interactions

[see Eq. (B6)] and from the fact that the masses of the
particles depend on their Yukawa couplings to Φ. The sign
takes into account that Φ ¼ hΦib inside cPT bubbles (for
which T < Tc), while the opposite is true for hPTs.
This sign of ΔPT can be readily interpreted in terms of

momentum conservation in the bubble rest frame [84,86]
with the help of Fig. 4. In this frame the bubble wall is
static, while an incoming flux of plasma particles is moving
towards it with velocity −vw. For cPTs (with T < Tc) the

FIG. 4. Dynamics of the bubble wall in its rest frame. The
plasma particles of the incoming flux (green arrows to the right of
the bubble wall) move with a velocity of −vw. Top: the case of a
cooling phase transition, where the plasma particles gain mass
upon entering the bubble (blue region), thereby slowing down
(short green arrows to the left of the bubble wall). Momentum
conservation means the plasma exerts a friction force on the wall
(blue arrows), which moves it to the left; in the plasma rest frame,
the bubble wall is slowed down. Bottom: the case of a heating
phase transition, where the particles lose mass inside the bubbles
(red region) and thus accelerate (long green arrows), thereby
accelerating the bubble wall (red arrows).
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massless plasma particles transmitted through the wall
gain a mass m2

i;in > 0, thus lowering their momentum.
Momentum conservation then implies that the bubble wall
needs to make up for the missing momentum by moving
along the direction of the incoming flux of plasma particles,
which corresponds to a slowing down of the bubble
expansion. For hPTs (with T > Tc) the process is the
opposite: the transmitted particles lose their outside mass
m2

i;out > 0 and thus gain momentum, which the bubble wall
needs to balance out by accelerating in the direction
opposite to the incoming particle flux.
As a result, this pressure difference acts as a plasma

friction on the bubbles of a cPT, or as a plasma antifriction
on the bubbles of an hPT. The former case has been much
discussed in the previous literature, while the latter is
presented in detail, to the best of our knowledge, for the
first time in this work.7 Intuitively, the massless plasma
particles outside the bubbles of a cPT experience a Φ
potential barrier at the wall. This means that these particles
can bounce off of the bubble walls or lose momentum upon
entering the bubble, thereby exerting a friction on the
bubbles and slowing down their growth. This friction
typically ends up balancing the force driving the bubble
expansion, and a constant vw, often subluminal, is reached
[84–86,88]. Heating phase transitions, on the other hand,
have almost exactly the opposite behavior. During an hPT
the plasma particles are massless in the interior of the
bubbles, where hΦis ¼ 0. As a result, it becomes ener-
getically favorable for these particles to get inside the
bubbles: the plasma is “sucked in” by them. As the plasma
particles pass through, they transfer their energy to the
bubble walls, accelerating them, and leading to a bubble
runaway regime.
Owing to the fact that TcPT ∼ Tc ∼ ThPT for generic

values of the potential parameters, we can see that the
bubble runaway conditions for cPTs and for hPTs
described in Eq. (12) are reflections of each other: when
the condition is satisfied in one case, it will typically not be
satisfied in the other. This makes sense because for run-
aways to take place in cPTs, the friction of the plasma
acting on the bubble has to be small, whereas in hPTs the
antifriction has to be large; ultimately, it is μ, which
parametrizes the strength of the interaction between the
plasma particles and the Φ field, that determines the size of
both friction and antifriction. Therefore, if a given μ
produces enough plasma friction to cause the bubbles of
a cPT to expand at a constant wall speed, it will also cause
that very same plasma to exert instead an antifriction on the
bubbles of the hPT, accelerating them into a runaway.
Because the plasma is transferring its energy into the
bubble walls in order to accelerate them, this means that

the energy available in an hPT for GW production in bubble
collisions can be very large.

IV. GRAVITATIONAL WAVES DURING
REHEATING

The frequency spectrum of a SGWB is typically
described in terms of the fraction of the total energy
density of the Universe found in GWs, per frequency e-
fold: ðdρgw=d ln fÞ=ρtot. Denoting with an asterisk all those
quantities evaluated at the time t� at which the GWs are
produced, we can find the SGWB spectrum today by
accounting for the difference in ρtot and the redshift as
follows [5,33,37]:

ΩðfÞ ¼ F�
1

ρtot;�

dρgw;�
d ln f

≈ F�

�
H�
β

�
2
�
κρs;�
ρtot;�

�
2

NSðfÞ; ð14Þ

with F� ≡ a4�

�
H�
H0

�
2

: ð15Þ

In the first equality the prefactor F� accounts for the
radiation-like redshifting of the GWs with the scale factor
a� and for the ratio of the total energy densities at t� and
today,8 ρtot;�=ρcrit ¼ H2�=H2

0. In the last equality we have
written the energy density in GWs in terms of the energy
density ρs;� of their source: ρgw;� ∼Gτ2ðκρs;�Þ2. Here G ∼
H2=ρtot is Newton’s constant, τ ∼ β−1 is the typical time
scale of GW production during a PT, and κ is an efficiency
factor that quantifies how much of the energy ρs;� in the
source goes into GWs. The factors N and SðfÞ account for
an overall normalization and spectrum, respectively, and
they may depend on other phase transition parameters, such
as the bubble-wall velocity vw.
The sources of GWs during a PT are typically of three

kinds: bubble collisions, sound waves, and magnetohydro-
dynamic turbulence. The first one involves the energy
stored in the Φ bubble walls, while the last two come from
the response of the plasma to the nucleation and percolation
of the bubbles of the new phase. Each of them has different
frequency spectra and dependences on the PT parameters.
Their precise form and relative contribution to the overall
GW signal is the subject of ongoing research (see
Refs. [4,5,37] for reviews). In cPTs, the case most
commonly studied in the literature, runaway bubbles are
not typically expected and the contribution from sound
waves tends to be the largest [37,89].9 On the other hand, as

7Phase transitions during reheating were briefly mentioned in
Refs. [69,70] in the contexts of both the Standard Model and
inflaton models with dynamical decay rates, respectively.

8ρcrit here denotes the critical energy density of the Universe
today, and is not to be confused with ρr;c, the energy density of
radiation at Tc.9When runaway bubbles do occur in cPTs, however, their
resulting GW spectrum can be very prominent; see Ref. [90].

GRAVITATIONAL WAVE SIGNATURES FROM REHEATING PHYS. REV. D 108, 036006 (2023)

036006-7



discussed in the previous section, the same plasma exerting
a friction on cPT bubbles will instead exert an antifriction
on hPT bubbles, accelerating them. Because of this, most of
the energy is stored in the bubble walls, and we expect that
in hPTs the dominant GW contribution comes from the
collisions of runaway bubbles. Since we are interested in
the detectability of GWs from reheating as a proof of
concept, and since the contribution from turbulence is the
most uncertain [4,5,37], we will not consider it throughout
the rest of this paper, and focus instead on GWs coming
from bubble collisions for hPTs and from plasma sound
waves for cPTs.

A. Bubble-wall collisions

In this subsection we briefly discuss the gravitational
waves generated by bubble-wall collisions. We study this
signature in the context of hPTs, where it is the dominant
source of GWs, whereas they are typically subdominant in
cPTs [37,89]. The GW spectrum of a bubble-wall collision
is typically calculated numerically with the addition of the
envelope approximation [30,31,36,81,90–94], which
approximates the bubbles as an expanding set of infinitely
thin shells that disappear when the transition completes. In
these numerical calculations, the Hubble expansion is
typically neglected as the PTs being studied are assumed
to complete very quickly. In the hPTs that we consider, we
make a similar assumption. However, as the injection of
energy is dictated by Γχ, we instead assume that the phase
transition completes quickly relative to both Γχ and HhPT.
Under this assumption, the numerical results apply equally
well to cPTs and hPTs.
The GW spectrum is found numerically to be10

ΩbcðfÞ ¼ F�

�
κΦα

1þ αþ Rχ

�
2
�
H�
β

�
2

× NbcðvwÞSbcðfÞ; ð16Þ

NbcðvwÞ ¼
0.11v3w

0.42þ v2w
; ð17Þ

SbcðfÞ ¼
3.8ðf=fbcÞ2.8

1þ 2.8ðf=fbcÞ3.8
; ð18Þ

fbc ¼ a�β
�

0.62
1.8 − 0.1vw þ v2w

�
: ð19Þ

Below we briefly explain the various parameters describ-
ing the GW spectrum from bubble collisions, with the aid
of Eqs. (A30)–(A34). For illustrative purposes we focus

on the case of a short era of reheaton domination
(Δtχ ∼ Γ−1

χ ≲H−1
i ), for which these parameters take simple

forms. For more details, as well as the case of an arbitrary
duration of reheaton domination, we refer the reader to
Appendix A 3.11

t�: The time at which the GWs are generated. It
corresponds roughly to when the bubble collisions take
place, which in turn is very close to the percolation time
thPT. We therefore take t� ≈ thPT.
T�: The temperature of the plasma at the time when the

GWs are generated. From the previous paragraph,
T� ≈ ThPT > Tc. Except for very fine-tuned Φ-potential
parameters, the hPT and critical temperatures are similar in
scale, ThPT ∼ Tc.
H�: The hPT typically finishes at a time thPT during the

reheaton-dominated era, so H� ≈HhPT ≈Hi.
Rχ : The energy density of the reheaton over the radiation

density, at t�: Rχ ≡ρχ;�=ρr;�≈ρχ;i=ρr;hPT¼ 3H2
i m

2
Pl=ρr;hPT.

a�: The scale factor at which the hPT takes place. If the
reheaton-domination era is shorter than one Hubble time, it
is given roughly by a� ∼ 8 × 10−17ð1 TeV=TmaxÞ. A longer
reheaton domination corrects this expression with a factor
that depends on Γχ=Hi. There is also a mild dependence on
the degrees of freedom of the dark and visible sectors.
F�: This redshift factor depends on the photon and total

energy densities today, as well as the duration of the
reheaton-dominated era. It is approximately given by F� ∼
4 × 10−5 for short reheaton domination.
α, κΦ: The vacuum energy in the scalar Φ compared to

the energy in the radiation, and the corresponding effi-
ciency factor that quantifies how much of it goes into the
bubble walls (essentially gradient energy of the Φ field),
determined by Eq. (12) in the runaway bubble regime:

α≡ jV0j
ρr

; ð20Þ

κΦ ≡ Ptot

jV0j
¼ α∞ − α

α
; ð21Þ

where α∞ ≡ ΔPT

ρr
: ð22Þ

In our work we never consider vacuum domination but only
reheaton domination and radiation domination, i.e.,
α < 1; Rχ . Note that, up to a minus sign, Eq. (21) is the
same expression quantifying how much energy goes into
the bubble wall for runaway cPTs [4,5,84–86,95,96]. The
sign difference, seen in Eq. (12), stems from the fact that

10In some more recent numerical studies [81], the scalar field
oscillates after the bubble collision, giving a typical time scale
longer than 1=β. If these results hold, then the frequency
dependence SðfÞ may change.

11Note that in the typical case of cPTs occurring within the
visible sector during radiation domination, Rχ ¼ 0, H2� ¼
π2gSM;�T4

SM=ð90m2
PlÞ, and a� ¼ ðgSM;0=gSM;�Þ1=3ðTγ0=TSM;�Þ,

and thus Eqs. (16)–(19) reduce to those found in the literature.
The same is true of Eqs. (25)–(28) below.

BUEN-ABAD, CHANG, and HOOK PHYS. REV. D 108, 036006 (2023)

036006-8



the direction of the PT is the opposite in hPTs than in cPTs.
As discussed in the previous section, this sign means that,
while in most of their parameter space cPT bubbles do not
run away (reaching a subluminal terminal bubble wall
velocity) and κΦ is consequently a number much smaller
than 1, for hPTs we have instead α∞ > α for most of their
parameter space, because the plasma antifriction makes the
hPT bubbles run away, greatly increasing the energy stored
in their walls. Note that our definition of α here is directly
borrowed from previous literature, which has only dealt
with cPTs. It is therefore not the most natural way to
parametrize the energy density available in an hPT, which is
not jV0j. As a result of this definition, α∞ > α in runaway
hPTs means that κΦ can be much larger than 1. See Eq. (C6)
and Fig. 10 as well as Appendix C 2 for a more detailed
discussion on the runaway condition.
vw: As discussed in the previous section, for most of the

region of parameter space in which a strongly first-order
phase transition takes place, the plasma exerts an anti-
friction on the bubble walls during an hPT, leading to a
runaway regime and therefore vw → 1. The parameter
space leading to a runaway hPT can be found in Fig. 10
in Appendix C 2.
β: The inverse of the characteristic time scale τ of the PT,

given by Eq. (11) in the exponential regime. Up to Oð1Þ
factors, SðthPTÞ≲ SðtnÞ, while d lnT=dt≲ Γχρχ;i=ð4ρr;hPTÞ
from the equations governing RH [Eq. (A2)]. From this and
our discussions in Appendices B 4 and C 4, we find

βhPT ∼ 4 ln ðTc=HiÞ
���� d ln Sd lnT

����
hPT

Γχ

4

ρχ;i
ρr;hPT

; ð23Þ

where

���� d ln Sd lnT

����
hPT

∼ 91ðΔ−1 − 1.08Þ: ð24Þ

B. Plasma sound waves

For the cPTs that we consider, the main source of GWs
are the sound waves. The SGWB created by sound waves is
found to be

ΩswðfÞ ¼ F�

�
κswα

1þ αþ Rχ

�
2
�
H�
β

�

× NswðvwÞSswðfÞ; ð25Þ

NswðvwÞ ¼ 0.159vw; ð26Þ

SswðfÞ ¼
�

f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�

7=2
; ð27Þ

fsw ¼ a�
2ffiffiffi
3

p β

vw
: ð28Þ

Note that, unlike the GWs sourced by bubble collisions, the
spectrum from sound waves scales like one power of H�=β
rather than two. This is because the fluid bulk motion
sourcing the GWs lasts for about a Hubble time, longer than
the PT duration 1=β [4,5].12 We continue focusing on the
simple case of a short reheaton-dominated era, in which
case the cPT typically occurs during radiation domination.
t�, T�, H�, Rχ , a�, F�: The GWs are generated at a time t�

shortly after the cPT is completed at tcPT; we therefore simply
assume t� ≈ tcPT. For typical potential parameters,
T� ≈ TcPT ≲ Tc. The values of H� and Rχ at this time will
be smaller than their hPT counterparts due to both the
expansion of the Universe and the reheaton decays. If the
cPT completes firmly during the post-reheating radiation-
dominated era, then Rχ ≈ 0, while H� ¼ Hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρr;cPT=ρχ;i

p ¼
π2g�T2

cPT=ð90mPlÞ, a� ≈ 8 × 10−17ð1 TeV=TcPTÞ, and
F� ≈ 4 × 10−5. However, the cPTmay also take place during
reheaton domination. Estimates of these quantities for both
cases are listed in Eqs. (A30)–(A34) in Appendix A 3.
vw: In a typical cPT, the plasma exerts a friction that

balances out the expansion force of the new phase, which
leads to the bubble walls moving at a constant, typically
subluminal speed. Complex model-dependent dynamics
govern the expansion of bubbles in a thermal plasma, and
their terminal velocity can in principle be derived from
these; in this work we simply bypass the issue by taking vw
in a cPT to be a free parameter.
α, κsw: These quantify the energy released during a cPT

and how much of it goes into the bulk motion of the fluid.
There are several ways to compute these quantities in the
literature. The simplest one relies on the bag model, where
the vacuum energy is used, and thus α ¼ jV0j=ρr [85].
Recent theoretical and numerical developments advocate
instead for the use of the trace of the stress-energy-
momentum tensor [5,99–101]. However, in this latter
model a more thorough knowledge of the plasma fluid
is necessary in order to compute κsw, (e.g., the plasma
sound speeds of both the symmetric and broken phases),
knowledge that we do not have. We simply use the bag
model and the corresponding fits to κswðα; vwÞ, conven-
iently provided in Ref. [85]. For the subluminal cPT bubble
wall velocities we consider in this work, κsw ≈ 5αv6=5w .
β: Also given by Eq. (11) in the exponential regime.

Since the temperature is cooling due to the Hubble
expansion of the Universe, d lnT=dt ¼ −H�. It can then
be shown that during radiation domination

βcPT ∼ 4 ln ðTc=HiÞ
���� d ln Sd lnT

����
cPT

H�; ð29Þ

12Although recently Refs. [97,98] have shown that this is not a
generic feature of all models.
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where

���� d ln Sd lnT

����
cPT

∼ 9.8ðΔ−1 − 0.52Þ; ð30Þ

the estimate for the general case is shown in Eq. (C17) (see
Appendices B 4 and C 4 for more details).
Finally, we say a few words about GWs from sound

waves in hPTs. Since the runaway regime is common in
hPTs, the plasma puts energy into accelerating the bubble
walls and therefore bubble collisions dominate GW pro-
duction, with sound waves most likely playing a subdomi-
nant role. It is difficult to tell, without dedicated numerical
simulations, whether the GWs from sound waves in hPTs
have a different frequency spectrum or amplitude than their
cPT counterparts. This certainly seems possible: a first
difference between both scenarios is that while in cPTs the
bubble walls inject energy into the plasma, leading to
radially outward fluid bulk motion and subsequently sound
waves, in hPTs energy is removed from the bath and put
into the bubble walls, with the sound waves moving in the

opposite direction to the walls. Yet another difference is the
duration of the sound waves sourcing the GWs. For a cPT,
the Hubble expansion eventually damps the sound waves.
For an hPT, the reheaton deposits its energy in the thermal
bath at a rate ∼Γχρχ=ρr, thereby increasing the radiation
energy density and damping the sound waves. The duration
of the sound waves in hPTs is then ∼ρr;hPT=ðΓχρχÞ As a
result, we expect that the amplitude of the GWs from sound
waves in an hPTwill differ from that in a cPT by a factor of
∼ðHcPT=ΓχÞðρr;hPT=ρχÞ, accounting for their shorter rela-
tive duration.

C. Comparison between the GW spectra
from cooling and heating phase transitions

The above discussion allows us to compare the GW
spectra for hPTs and cPTs, which are dominated by
collisions and sound waves, respectively. In the simplest
case of a short reheaton-dominated era the ratios of both
take their simplest forms:

ΩhPT

ΩcPT
∼ 0.5

FhPT

FcPT

�
κΦ
κsw

�
2 ð1þ RχÞ2cPT
ð1þ RχÞ2hPT

H2
hPTβcPT

HcPTβ
2
hPT

v−1w;cPT

∼
�
Hi

Γχ

�
2
�
ρr;c=ρχ;i
0.03

�
4
�
FhPT

FcPT

��
0.05
vw;cPT

��
κΦ
30

�
2
�
0.01
κsw

�
2
�

30

ln ðTc=HiÞ
�� j d ln Sd lnT jcPT=10

j d ln Sd lnT j2hPT=100
�
; ð31Þ

fhPT
fcPT

∼ 0.2vw;cPT
ahPT
acPT

βhPT
βcPT

∼ 0.5

�
Γχ

Hi

��
Tc

Tmax

��
0.03

ρr;c=ρχ;i

�
3=2

�
vw;cPT
0.05

��j d ln Sd lnT jhPT=10
j d ln Sd lnT jcPT=10

�
; ð32Þ

where we denote the cPT bubble-wall speed by vw;cPT, we
take TPT ≈ Tc, and the numerical benchmark values we
show are typical of our parameter space. We remind the
reader that these expressions were derived only for a shortly
lived reheaton-domination era, that they are to be taken
only as heuristic, and are to be trusted only as order-of-
magnitude estimates.
From the equations above it can be seen that, barring a

fine-tuning of the Φ potential parameters in order to get
vastly different κΦ and jd ln S=d lnTj, the amplitude of the
SGWB from both hPT and cPT can be of the same order of
magnitude for a modest coincidence between ρr;c and ρχ;i,
of about a couple of orders of magnitude (or equivalently a
coincidence between Tc and Tmax of a factor of a few). This
coincidence has to be more severe the larger the hierarchy
between Γχ andHi. The peak frequencies of the spectra can
also be close to each other, with fhPT slightly smaller than
fcPT for subluminal cPT bubble-wall velocities and the

aforementioned coincidence between ρr;c and ρχ;i (since of
course Tc ≲ Tmax). Increasing the Γχ=Hi ratio inverts the
order of the peaks, with fhPT eventually becoming bigger
than fcPT. Furthermore, in the limit of a long reheaton-
dominated era (Γχ ≪ Hi), the hGWs are typically quieter
than the cGWs. This is both because the ratio ρr;c=ρχ;i is
smaller (since ρr;c ≤ ρr;max ∼ ρχ;iΓχ=Hi in this limit) and
because more time has elapsed between thPT and tcPT, which
means that the relative redshift suppression (FhPT=FcPT)
between both spectra becomes more significant.
Example cPT and hPT SGWBs, for a benchmark

parameter space point, are shown in Fig. 5. The character-
istics described above are easily appreciated in this figure.
As this example illustrates, the same detector, in this case
the future BBO probe [6–8], can observe both spectra. In
the lucky case that both signals are loud and have
sufficiently separated peak frequencies, so as to not have
one of them buried under the other, one could then in
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principle distinguish between them, identifying which
belongs to the cPT and which to the hPT. Then, the
correlations between them, of which Eqs. (31) and (32)
are examples, would allow one to extract both the scale of
reheating and the reheaton decay rate.

V. PROSPECTS AT FUTURE GRAVITATIONAL-
WAVE DETECTORS

In this section we explore the visibility of GWs generated
by cooling and heating PTs in future detectors. We focus on
the upcoming BBO experiment [6–8], as it is the most
relevant detector for our parameter choice. We quantify
visibility in terms of the signal-to-noise ratio (SNR) of the
GW spectra.
To obtain the SNR of the PT GWs we employ the peak-

integrated sensitivity (PIS) curves ΩPISðfÞ introduced in
Ref. [102]. We compute the SNRs of GWs, originating
mostly from bubble collisions in hPTs and from plasma
sound waves in cPTs (abbreviated as hGWs and cGWs,
respectively), by simply comparing the amplitudes of the
GWs at their peak with ΩPISðfÞ:

SNR ¼
�

tobs
1 year

�
Ωbc=sw

GW ðfpeakÞ
Ωbc=sw

PIS ðfpeakÞ

�2�1=2
; ð33Þ

where tobs is the observation time, fpeak is the frequency at
which ΩGW is the peak, and “bc” (“sw”) corresponds to the
GWs from bubble collision (sound waves).

The results for hGWs and cGWs are shown in Fig. 6 in
terms of the Tc=Tmax − Δ parameter space (and the corre-
sponding values of Hi and A, respectively). The benchmark
point used in previous figures of this paper, such as in Fig. 5,
is marked with a star in Fig. 6. The SNR contours for tobs ¼
1 year for hGWs (cGWs) at BBO are shown in red (blue),
where the increasing opacity indicates larger SNR. We have
fixed Tc ¼ 1 TeV, Γχ ¼ Hi, g� ¼ 10, fμ; λg ¼ f1; 1g, and
vw;cPT ¼ 0.05. This specific choice of values has only a
modest impact on our results, and the GW features described
in this section are generic. We direct our reader to
AppendixD for amore detailed study of the parameter space.
Note that Δ, which controls the height of the potential

barrier separating the broken and symmetric minima of
the Φ potential and thus the action S, strongly determines
the strength of the GWs. For both hPTs and cPTs a larger
Δ makes d ln S=d lnT smaller, which increases the dura-
tion β−1 of the PT. Eventually, however, sufficiently large
values of Δ will kill the GW signature by making the PT
impossible, as clearly seen in the region above the dotted
line. Indeed, this region corresponds to those points with
ΓðtmaxÞ=V < HðtmaxÞ4. Since at tmax Γ=V is at its largest
(because the temperature is at its maximum and thus the
action S is at its minimum), no bubbles are produced
within a Hubble patch in this region. This means that the
Universe remains in the broken phase throughout all of
reheating, never transitioning to the symmetric phase (via
an hPT), and therefore never coming back to the broken
phase (via a cPT). Thus no PT takes place and therefore no
appreciable GWs are produced. We nevertheless show the
continuation of the cPT contours in this empty region for
illustrative purposes.
The parameter Tc=Tmax (which can be turned into

ρr;c=ρχ;i for a given Γχ=Hi ratio) also has a crucial impact
on the visibility of the hGWs. A large hierarchy between Tc
and Tmax means that the time elapsed between thPT and tcPT
(which are on opposite sides of the reheating curve of
Fig. 2) is also large. As such, the GWs associated with the
hPT are produced much earlier than those generated during
the cPT, and are therefore more redshifted and correspond-
ingly quieter. Thus, their signal falls outside of the BBO
sensitivity window. The combination of this effect and the
one controlled by Δ described in the previous paragraph
gives the BBO-visible hPT region its characteristic crescent
shape. The cGWs have a milder dependence on Tc=Tmax. A
strong coincidence between these two temperatures means
ρr represents a larger share of the total energy density,
which makes the GWs louder. On the other end, the more
different Tc and Tmax are, the later the cPT takes place. For
sufficiently large hierarchies the cPT occurs squarely
during radiation domination and its GWs become insensi-
tive to reheating. This is shown in Fig. 6 as the insensitivity
of the cPT contours to low values of Tc=Tmax.
The region enclosed by the green contour corresponds to

points where the peaks from both cGWs and hGWs can be

FIG. 5. Stochastic GW background from the phase transitions
occurring during reheating. The red curve represents the GW
spectrum arising from bubble collisions during the hPT (hGW)
and the blue curve represents the GW spectrum originating from
sound waves in the cPT (cGW). Both spectra are detectable by the
future GW probe BBO [6–8], as shown by the PIS curves [102]
(black lines; solid for GWs from bubble collisions, and dashed for
GWs from sound waves). For this plot we choose the parameters
corresponding to the starred benchmark point in Fig. 6, namely,
Tc ¼ 1 TeV, Hi ¼ 2 × 10−15 TeV ¼ Γχ (i.e., Tc ¼ 0.8Tmax),
and g� ¼ 10, the potential coefficients fμ; A; λg ¼ f1; 0.72; 1g
(Δ ¼ 0.7), and a bubble-wall speed in a cPT of vw;cPT ¼ 0.05.
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distinguished. This “double peaks region” is therefore
defined as the parameter space where the peak amplitude
of hGWs is larger than the amplitude of the cGWs at that
same frequency, and vice versa. These points are potentially
the best ones in terms of how much we could learn from
these GWs. Indeed, observing both GW peaks in a GW
detector could allow us to extract the most information
about reheating by studying the correlations between
cooling and heating PTs, as we have attempted to do in
this paper. The region located above the dashed line has

Tmax < T1, which means that the plasma never reaches T1

and therefore hΦib never disappears. The dark gray region
is the parameter space where the plasma antifriction during
the hPT is not strong enough to cause the bubble walls to
enter a runaway regime. Finally, the light gray region
corresponds to those points where the daisy contribution
becomes so large that the cubic term in Eq. (1) is severely
suppressed and there is no strongly first-order PT (SFOPT).
For more details on both grey areas, see Appendices C 2
and B 3, respectively.

0 1 2 3 4

0 0.1 0.2 0.3 0.4

FIG. 6. SNR contours for 1-year observation time of the SGWB spectra generated during reheating by hPT bubble collisions (red) and
cPT sound waves (blue), for the upcoming BBO detector [6–8], as a function of the ratio Tc=Tmax and the potential parameter Δ. The
corresponding values of Hi and A are also shown. The star corresponds to the benchmark point used in previous figures. Points within
the green contour have a total SGWB with double peaks (from both hPT and cPT). The hΦib minimum never disappears in the region
above the dashed line, since Tmax < T1. In the space above the dotted line Γ=V > H4 at tmax, which means that no PT takes place and no
GWs are generated. In the dark grey region there are no runaway hPT bubbles, whereas in the light grey region the daisy contributions to
the thermal potential prevent an SFOPT. For this plot we have chosen Tc ¼ 1 TeV, Γχ ¼ Hi, g� ¼ 10, fμ; λg ¼ f1; 1g, and a bubble-
wall speed in a cPT of vw;cPT ¼ 0.05.
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VI. CONCLUSIONS

In this article, we explored phase transitions that
occurred when the Universe was heating up, a process
called reheating. Reheating is a unique and interesting
cosmological event in the history of the Universe, about
which we currently know nothing. If a phase transition
occurred during reheating, then the resulting GW spectrum
would carry information about the reheating process to us
and teach us something about this exciting era of the early
Universe.
We discussed how the GW signature of heating phase

transitions depends on the phase transition and reheating
parameters. In some optimistic scenarios, such as the one
depicted in Fig. 5 and in the green region of Fig. 6, it would
be possible to see the same phase transition in both its
heating and cooling directions. If this came to pass, then, by
cross correlating the observed spectra and our knowledge
of the phase transition in both directions, one could learn
more about the process of reheating. For example, the time
scales β−1 of the two phase transitions, which appear in the
peak frequency of their respective GW spectra, are related
by Γχ=HcPT up to Oð1Þ numbers. Therefore, by comparing
the measured values of the peaks, one would be able to
obtain the decay width of the reheaton. Many other features
are correlated between heating and cooling phase transi-
tions. Finite bubble-wall velocities in the cooling case tend
to be correlated with runaway bubbles in the heating case,
and vice versa if the roles were switched. These correlations
offer an opportunity to extract information about reheating.
While not explored in our article, it would be extremely

interesting if the frequency spectrum of the GWs produced
during a heating phase transition were radically different
from what has been studied in the literature. In this paper
we argued that the main contribution to the GWs in this
case comes from bubble collisions, and assumed that the
envelope approximation can be used to describe its spec-
trum. This assumption, while justified (see Sec. IV), needs
to be corroborated by dedicated numerical simulations.
Furthermore, it is entirely possible that plasma sound waves
represent a non-negligible source of GWs during a heating
phase transition, and it is reasonable to expect that they
would be different at the Oð1Þ level from those in the
cooling case, since cooling phase transitions tend to inject
energy into the plasma while heating ones tend to remove
it. Additionally, the sound waves of cooling phase tran-
sitions are damped by the Hubble expansion, whereas those
from heating transitions are damped by the injection of
energy from reheaton decays. If differences of this sort
between both spectra were to be firmly established, it is
possible that the detection of GWs generated by a heating
phase transition would by itself be enough to infer detailed
information about reheating. Future research along this
direction is both necessary and of great interest to anyone
attempting to uncover the physics of reheating.
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APPENDIX A: REHEATING HISTORY

The following appendices contain a detailed description
of our model, including the reheating history of the
Universe and the phase transitions that it undergoes. We
describe the numerical methods employed to obtain the
dynamics of the cooling and heating phase transitions and
their subsequent GW spectra. The Mathematica code
companion to our paper, which we dubbed graphare,
computes the GW signatures arising from phase transitions
during reheating, and is available at [103]. All of the results
in this paper are obtained numerically with the aid of
graphare. It is nevertheless useful to find approximate
analytic expressions that can help understand our results.
We include such analytic expressions, which we utilize in
the main text of this paper to aid in our discussions, in these
appendices.
The portion of our numerical tools dealing with the

reheating history can be found in the DSReheating.wl
package of our graphare code, along with an explana-
tory Mathematica notebook titled 01_reheating.nb.

1. Reheating equations and radiation temperature

We begin by assuming that the Universe is dominated by
a matter-like reheaton field χ, which then reheats the
Universe by decaying into light particles, with a decay
rate Γχ . For simplicity we assume 1) that the decay products
are particles of a DS with g� relativistic degrees of freedom
in total, within which the PTs will take place, and 2) that the
particles in this DS have interactions which are significant
enough to reach thermodynamic equilibrium, thereby
forming a thermal bath or plasma. The DS temperature
is simply related to its energy density via ρr ¼ g�π2T4=30.
The DS will eventually reheat the VS above the TeV scale
through a portal interaction, the details of which are
irrelevant to our story. Note that thermal equilibrium in
the DS can be easily achieved even for very small couplings
among its particles, since the thermalization rate, heuris-
tically given by Γth ∼ g2T, can easily be larger than the
Hubble expansion rate H ≳ T2=mPl for the temperatures
T ∼OðTeVÞ we consider.
The equations governing the evolution of the energy

densities in the reheaton and DS radiation-like fluid are
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_ρχ þ 3Hρχ ¼ −Γχρχ ; ðA1Þ

_ρr þ 4Hρr ¼ Γχρχ ; ðA2Þ

where H2 ¼ ðρχ þ ρrÞ=ð3m2
PlÞ, the dot denotes derivatives

with respect to time, and we start the clock at a time ti ¼ 0
when the χ decays start. At this time the initial densities
are ρχ;i ≠ 0 and ρr;i ¼ 0. The duration of the reheaton-
dominated (χD) era is mainly determined by its lifetime,
Δtχ ∼ Γ−1

χ . An hPT takes place when the temperature is
increasing, which roughly speaking can only occur during
χD and before one Hubble time has elapsed, i.e.,
t≲min½Γ−1

χ ; H−1
i �. This is because once the reheaton

particles have decayed away the Universe is in an era
dominated by radiation (RD), which cools adiabatically
[see Eq. (A2)], and because after one Hubble time the
Universe, whether χD or RD, begins to cool down. During
this heating era the radiation energy density grows linearly
with time: ρr ≈ Γχtρχ;i.
It is convenient to work with dimensionless quantities,

which can then be appropriately rescaled. Throughout the
rest of this paper we will work in terms of x≡Hit (with

Hi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρχ;i=3m2

Pl

q
), r≡ ρ=ρχ;i, and γ ≡ Γχ=Hi. Different

thermal histories correspond then to different choices of the
dimensionless parameter γ and the only dimensionful
quantity, Hi. In Fig. 7 we show the reheating history
for γ ∈ f0.01; 0.1; 1; 10; 100g.

2. Redshift

Having solved for the thermal history of the Universe,
we can determine the redshift z� between some time t�

during reheating and today. This can be written in terms of
the scale factor aðtÞ as

1þ z� ¼
1

a�
¼ ard

a�

avs
ard

1

avs
; ðA3Þ

where we have used the shorthand aX ¼ aðtXÞ, trd denotes
an arbitrary time during the radiation-dominated era
(ρr ≫ ρχ), tvs denotes a time shortly after the VS has been
populated (due to portal interactions with the DS), and we
have taken aðtÞ ¼ 1 today. The decomposition into three
products is useful as some of these factors will be evaluated
numerically. The first factor is simply given by the number
of e-folds between those two times:

ard
a�

¼ exp

�Z
xrd

x�
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rχðxÞ þ rrðxÞ

q �
: ðA4Þ

The second term depends on the nature of the portal
interaction that allows the DS to reheat the VS. For
simplicity we simply assume that the VS is populated
by the DS while both baths are relativistic. From energy
conservation considerations, we can write

avs
ard

¼
�

g�
g� þ gvs

�
1=4 Trd

Tvs
; ðA5Þ

where T denotes the temperature of both baths,
TX ¼ TðtXÞ, and gvs is the VS degrees of freedom reheated
by the DS. Throughout this paper we assume that the entire
SM is reheated, and therefore take gvs ¼ 106.75. Note that
trd is indeed arbitrary: an earlier time (and consequently
hotter Trd) yields a smaller Eq. (A4) and a larger Eq. (A5) in
the same proportion, and consequently the same Eq. (A3).
Finally, the last factor can be derived from the usual entropy
considerations. Assuming no remaining DS light relics, this
factor is

1

avs
¼

�
g� þ gvs

gs0

�
1=3 Tvs

Tγ0
; ðA6Þ

where gs0 ¼ 3.94 and Tγ0 ¼ 2.7255 K ≈ 2 × 10−4 eV are
today’s entropy degrees of freedom and temperature,
respectively.
The final exact expression is then

a−1� ¼ 1þ z� ¼ exp

�Z
xrd

x�
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rχðxÞ þ rrðxÞ

q �

×

�ðg� þ gvsÞ1=12g1=4�
g1=3s0

�
Trd

Tγ0
: ðA7Þ

For an easier comparison to previous work, we can
multiply and divide by g1=3vs and use Eq. (A4) again to
rewrite a� as [5]

FIG. 7. Thermal history of our reheaton-radiation toy model, in
terms of the dimensionless quantities x≡Hit, r≡ ρ=ρχ;i, and
γ ≡ Γχ=Hi. We plot the solutions to Eqs. (A1) and (A2) for
γ ∈ f0.01; 0.1; 1; 10; 100g. One can easily appreciate that the
reheaton-dominated era lasts for Δtχ ∼ Γ−1

χ , and that the radiation
temperature only increases for a time t≲min½Γ−1

χ ; H−1
i �, during

which rr ≈ γx.
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a� ¼ ½a��Ga
a�T�
ardTrd

; ðA8Þ

with ½a��≡ Tγ0

T�

g1=3s0

g1=3vs

≈ 8 × 10−17
�
1 TeV
T�

��
106.75
gvs

�
1=3

;

ðA9Þ

and Ga ≡ g1=3vs

ðg� þ gvsÞ1=12g1=4�
; ðA10Þ

where ½a�� denotes the value of a� for cPTs taking place
during RD, the case commonly studied in the literature.
We can use our results to find F�, the prefactor

responsible for the redshift-related suppression of the
GW spectra [see Eq. (15)], and compare it to its value
½F�� for cPTs during RD [5]:

F� ¼ a4�
H2�
H2

0

¼ T4
γ0g

4=3
s0

T4
rd

1

ðg� þ gvsÞ1=3g�

�
a�
ard

�
4 ρtot;�
ρcrit

⇒ F� ¼ ½F��GF
a4�ρtot;�
a4rdρr;rd

; ðA11Þ

with ½F��≡ ργ;0=2

ρcrit

g4=3s0

g1=3vs

≈ 4 × 10−5
�
106.75
gvs

�
1=3

; ðA12Þ

and GF ≡
�

gvs
g� þ gvs

�
1=3

: ðA13Þ

3. Analytic expressions for reheating

Depending on the reheaton decay rate, one can classify
the reheating history into two relatively easy to study broad
classes: those with γ ≫ 1 or those with γ ≪ 1. For each of
these cases we can find analytic expressions for various
quantities of interest, such as the maximum temperature
reached during reheating or the scale factor at a given
temperature. We present these expressions here in a quick-
and-dirty fashion. A more thorough job can be done, and is
included in the explanatory notebook 01_reheating.nb of
graphare.

a. Fast reheaton decays: γ ≫ 1

Before discussing the consequences of extremely fast
reheaton decays, γ ≫ 1, it is worth mentioning under what
circumstances this can occur. The simplest example is
simply low-scale hybrid inflation [61]. In hybrid inflation,
the inflaton drives inflation and a separate waterfall field
abruptly ends inflation after the appropriate number of
e-foldings. Reheating at the end of hybrid inflation is
typically extremely efficient, e.g., tachyonic reheating

completes within a single oscillation [104]. Because the
mass of the waterfall field (which in this context is the
reheaton) is much larger than the Hubble rate, this results in
γ ∼mwaterfall=H ≫ 1 so that we are in the limit of a fast
reheaton decay. Alternatively, one can simply give the
waterfall field a Yukawa coupling to a fermion and have it
quickly decay in a more traditional manner.
If one finds low-scale inflation unappealing, an alternative

manner in which to arrive at the fast reheaton decay scenario
is to utilize either another phase transition or another slowly
rolling scalar that controls the mass of the decay products of
the reheaton. In the early Universe the mass of the decay
products is large compared to the reheaton mass kinemat-
ically forbidding the decays. Only later will the mass of the
decay products become small enough to allow for the
reheaton to decay quickly. Leaving aside any specific ways
to realize fast reheaton decays, we simply focus on its
phenomenological consequences.
In the γ ≫ 1 limit, Δtχ ∼ Γ−1

χ ≪ H−1
i and the χD era is

very short. ρχ;i is quickly and efficiently transformed into
radiation energy density, and the Universe enters into an
RD era. Therefore, the maximum amount of radiation is
ρr;max ≈ ρχ;i, and the time tmax at which this occurs is
solidly within RD and before one Hubble time has passed:
tmax ≪ H−1

i , amax ≈ ai ≡ aðti ¼ 0Þ (see Fig. 7).
Because an hPT can only take place while the temper-

ature is increasing, thPT < tmax and ahPT ≈ amax ≈ ai.
Without tuning ThPT (or Tc) to be too close to Tmax, the
hPT will occur during χD, and ρtot;hPT ≈ ρχ;hPT ≈ ρχ;i. On
the other hand, since TcPT < Tmax necessarily, the cPTwill
always occur during RD. Of course, as is typical during
RD, the energy density scales like

a4ρr ¼ a4maxρr;max ≈ a4i ρχ;i ⇒ aT ¼ amaxTmax for

a < amax ≈ aiðRDÞ: ðA14Þ

b. Slow reheaton decays: γ ≪ 1

Here Δtχ ∼ Γ−1
χ ≫ H−1

i and χD is long. During most of
this era the decay rate, but not the Hubble expansion rate,
can be approximated as negligible for the purposes of
estimating the evolution of the reheaton energy density.
Since the reheaton is matter-like, then ρχ ∼ a−3 and
a ∼ x2=3, which means that

aχR
ai

≈ ½1.3�γ−2=3ðχDÞ; ðA15Þ

a3ρχ ≈ a3i ρχ;i for ai < a < aχRðχDÞ; ðA16Þ

and thus ρχR ≈ ½0.16�γ2ρχ;i; ðA17Þ
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with aχR and ρχR denoting the scale factor and reheaton
energy density at the time of reheaton-radiation equality.13

The numerical coefficients inside the square brackets can
only be obtained by solving the differential equations (A1)
and (A2) analytically in the γ ≪ 1 limit.
The time of increasing temperature lasts for a little less

than one Hubble time (see Fig. 7); consequently, the hPT
occurs squarely during χD. As discussed before, the
radiation energy density grows linearly during this time
(ρr ≈ ρχ;iγx), which allows us to estimate the maximum
energy density in radiation as given roughly by

ρr;max ≈ ½0.14�γρχ;i; ðA18Þ

⇒ ρχR ≈ γρr;max; ðA19Þ

where once again the number in the brackets can only be
obtained by solving Eqs. (A1) and (A2) analytically and
making use of the fact that _ρrðtmaxÞ ¼ 0 by definition.
Because tmax ≲H−1

i , then amax ≈ ai as well.
After one Hubble time the expansion of the Universe is

felt and ρχ ∼ a−3, as stated in Eq. (A16). Because the
Universe is in χD (ρχ ≫ ρr) the reheaton decays are still
very much relevant to the evolution of ρr. However, the
Hubble expansion wins and the temperature no longer rises
with time, as clearly seen in Fig. 7. Equation (A2) can be
solved in this regime to find that ρr ∼ a−3=2:

a3=2ρr ≈ a3=2maxρr;max ≈ a3=2χR ρχR for

ai ≈ amax < a < aχRðχDÞ; ðA20Þ

where we have finally dropped the Oð0.1 − 1Þ numerical
coefficients, irrelevant to the level of precision with which
we are working. It is convenient to note that during χD
ρχ=ρr ∼ a−3=2:

ρχ
ρr

≈
�
amax

a

�
3=2 ρχ;i

ρr;max
≈

ρr
γρr;max

≈
ρr
ρχR

for

ai ≈ amax < a < aχRðχDÞ: ðA21Þ

Of course, once χD ends and the Universe becomes RD, we
have ρr ∼ a−4:

a4ρr ≈ a4χRρχR for a > aχRðRDÞ: ðA22Þ

c. Summary

The previous discussion allows us to find the important
quantities Rχ;�, H�, a�, F�, and d lnT=dt. The first

four appear in the formulas for the SGWB from PTs
[Eqs. (16)–(19) and Eqs. (25)–(28)], while the last deter-
mines the duration of the PT, β−1 [Eq. (11)], which
determines the peak frequency of the GW spectra. We can
estimate these quantities both for hPTs and cPTs, in both the
γ ≫ 1 and γ ≪ 1 limits.
This task is most easily accomplished by defining a

handful of useful parameters with a clear physical intuition.
The first is what we call the reheating efficiency parameter
εrh, which quantifies how much of the initial reheaton
energy density is transformed into radiation:

εrh ≡ ρr;max

ρχ;i
≈min ½1; γ�: ðA23Þ

It is clear that the first argument of min½X; Y� is picked
when γ ≫ 1, while the second is picked when γ ≪ 1, which
is as we found Eqs. (A14) and (A18).
Noting that in Eqs. (A8) and (A11) a� and F� are defined

relative to an arbitrarily chosen benchmark time during RD,
we now make this choice concrete. Since for γ ≫ 1 amax is
well within RD, we make this our benchmark for this limit.
For γ ≪ 1, assuming a sudden transition between χD and
RD, we can make aχR our choice. It is interesting to point
out that aχR < amax for γ ≫ 1, while the opposite is true for
γ ≪ 1. We thus choose

ard ≈max ½amax; aχR�; ðA24Þ

where once again the first argument of max½X; Y� occurs for
γ ≫ 1 and the second for γ ≪ 1. We can then define the
relative scale factor between tmax and trd,

Ard ≡ amax

ard
≈min ½1; γ2=3�; ðA25Þ

as well as the redshift dilution in the radiation energy
density between these two times,

Drd ≡ ρr;rd
ρr;max

≈min ½1; γ� ≈ A3=2
rd : ðA26Þ

Of course, εrh, ard, Ard, and Drd can all be written in terms
of γ and each other. But they represent quantities with
distinct physical meanings, and thus it is more expedient to
interpret them separately.
Based on these definitions, we can write the following

expressions for hPTs (which only occur during χD and thus
ahPT ≈ ai ≈ amax) and cPTs (which can occur during either
χD or RD):

13Not to be confused with the scale factor at matter-radiation
equality, aeq ≈ 1=3000.
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1þ Rχ;� ≡ ρtot;�
ρr;�

≈

8>>>>><
>>>>>:

ρχ;i
ρr;hPT

≈
�
Tmax
ThPT

	
4
ε−1rh ; hPT;8>><

>>:
1; γ ≫ 1;RD;
ρr;cPT
ρχR

≈
�
TcPT
Tmax

	
4
D−1

rd > 1; γ ≪ 1; χD;

1; γ ≪ 1;RD;

cPT;
ðA27Þ

a�T�
ardTrd

≈

8>>>>><
>>>>>:

ThPT
Tmax

ArdD
−1=4
rd ; hPT;8>><

>>:
1; γ ≫ 1;RD;�

ρχR
ρr;cPT

	
2=3

�
ρr;cPT
ρχR

	
1=4

≈
�
Tmax
TcPT

	
5=3

ArdD
−1=4
rd < 1; γ ≪ 1; χD;

1; γ ≪ 1;RD;

cPT;
ðA28Þ

a4�ρtot;�
a4rdρr;rd

≈

8>>>>><
>>>>>:

A4
rdε

−1
rh D

−1
rd ; hPT;8>><

>>:
1; γ ≫ 1;RD;�

ρχR
ρr;cPT

	
2=3

≈
�
Tmax
TcPT

	
8=3

A4
rdε

−1
rh D

−1
rd < 1; γ ≪ 1; χD;

1; γ ≪ 1;RD;

cPT:
ðA29Þ

Putting everything together, we list

1þ Rχ;� ≈

8<
:

ρχ;i
ρr;hPT

≈
�
Tmax
ThPT

	
4
ε−1rh ; hPT;

max
h
1; ρr;cPT

γ2ρχ;i

i
≈max

h
1;
�
TcPT
Tmax

	
4
D−1

rd

i
; cPT;

ðA30Þ

H� ≈

8<
:

Hi; hPT;

Hi

ffiffiffiffiffiffiffiffi
ρr;cPT
ρχ;i

q
max

h
1;

ffiffiffiffiffiffiffiffi
ρr;cPT
γ2ρχ;i

q i
≈HrðTcPTÞmax

h
1;
�
TcPT
Tmax

	
2
D−1=2

rd

i
; cPT;

ðA31Þ

a� ≈ ½a��Ga ×

8<
:

ThPT
Tmax

ArdD
−1=4
rd ; hPT;

min
h
1;
�
Tmax
TcPT

	
5=3

ArdD
−1=4
rd

i
; cPT;

ðA32Þ

F� ≈ ½F��GF ×

(
A4
rdε

−1
rh D

−1
rd ; hPT;

min
h
1;
�
γ2ρχ;i
ρr;cPT

	
2=3

i
≈min

h
1;
�
Tmax
TcPT

	
8=3

A4
rdε

−1
rh D

−1
rd

i
; cPT;

ðA33Þ

d lnT
dt

≈

8>><
>>:

Γχ

4

ρχ;i
ρr;hPT

≈ Γχ

4

�
Tmax
ThPT

	
4
ε−1rh ; hPT;

−HjcPT ≈ −HrðTcPTÞmax
h
1;
�
TcPT
Tmax

	
2
D−1=2

rd

i
≈Hiε

1=2
rh

�
TcPT
Tmax

	
2
max

h
1;
�
TcPT
Tmax

	
2
D−1=2

rd

i
; cPT:

ðA34Þ

where HrðTÞ2 ≡ ρr=ð3m2
PlÞ≡ π2g�T4=ð90m2

PlÞ ¼ H2
i ρr=ρχ;i is the usual Hubble expansion rate during RD. One can easily

convince oneself that the first argument in min½X; Y� and max½X; Y� in the above expressions is picked when the cPToccurs
during RD (both for γ ≫ 1 and γ ≪ 1), while the second argument is picked only for cPTs taking place during χD (which
can only happen for γ ≪ 1).
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APPENDIX B: FIRST-ORDER PHASE
TRANSITIONS AT FINITE TEMPERATURE

Our analytic and numerical results for cooling and heating
phase transitions have been implemented in our graphare
code as part of thePhaseTransition.wl package, alongwith an
explanatory notebook titled 02_phase_transition.nb.
Throughout this section we follow closely the notation of
Refs. [37,63,81,83].

1. Higgs model and parameters

The key ingredient in the toy model is the (dark sector)
Higgs Φ, whose potential is given by14

VðΦÞ ¼ MðTÞ2
2

Φ2 −
δðTÞ
3

Φ3 þ λ

4!
Φ4; ðB1Þ

where MðTÞ and δðTÞ are functions of the DS temperature
T.15 The two minima or vacua of the potential are located
at hΦis ¼ 0 (the “symmetric phase”) and hΦib ¼ ð3δþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9δ2 − 6M2λ

p
Þ=λ (the “broken phase”). They are degen-

erate if there exists a critical temperature Tc at which
MðTcÞ ¼ 2δðTcÞ=

ffiffiffiffiffi
3λ

p
, which motivates the crucial defi-

nitions [37,63,83]

McðTÞ2 ≡ 4δðTÞ2
3λ

; λ̄ðTÞ≡ MðTÞ2
McðTÞ2

: ðB2Þ

Clearly, MðTcÞ ¼ McðTcÞ and λ̄ðTcÞ ¼ 1. Another impor-
tant quantity is the mass of the Φ field in its broken phase:

MbðTÞ2 ≡ V 00ðhΦibÞ ¼ M2
c
9 − 8λ̄þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p

4
; ðB3Þ

with hΦib ¼
2

ffiffiffi
3

p
Mcffiffiffi
λ

p 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p

4
: ðB4Þ

Thus, the Higgs has the same mass McðTcÞ in the broken
and symmetric phases at the critical temperature. In
addition, it is clear that if there exists a temperature T0

such that λ̄ ¼ 0, then MðT0Þ ¼ 0 and the potential mini-
mum at the symmetric phase disappears. Analogously, if
there exists a temperature T1 such that λ̄ðT1Þ ¼ 9=8, then
MbðT1Þ ¼ 0 and the broken phase minimum disappears.
For subcritical temperatures T ∈ ðT0; TcÞ the broken phase
with hΦib ≠ 0 is the stable global minimum or “true
vacuum,” while the symmetric phase with hΦis ¼ 0 is
the metastable minimum or “false vacuum.” For supercriti-
cal temperatures T ∈ ðTc; T1Þ, the converse is true.

In our Φ model, inspired by the SM Higgs, the finite-
temperature potential has the coefficients [62–64]

MðTÞ2 ¼ μ2ðT2 − T2
0Þ; δðTÞ≡ AT; ðB5Þ

with μ2 ≡ 1

12

X
i

ciNiy2i ; A≡ 1

4π

X
B

NBy3B; ðB6Þ

where Ni is the number of degrees of freedom of the ith
particle, yi is its coupling to Φ, the index i runs over both
bosons and fermions, the index B only runs over bosons,
and ci¼boson ¼ 1 and ci¼fermion ¼ 1=2.
This allows us to write all expressions in terms of Tc, λ̄,

and the potential coefficients fμ; A; λg:

T ¼ Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ
1 − Δλ̄

r
⇔ λ̄ ¼ ðT=TcÞ2 − 1þ Δ

ðT=TcÞ2Δ
; ðB7Þ

Mc ¼ μ
ffiffiffiffi
Δ

p
T; M ¼

ffiffiffī
λ

p
Mc; δ ¼

ffiffiffiffiffi
3λ

p

2
Mc; ðB8Þ

hΦib ¼
2

ffiffiffi
3

p
Mcffiffiffi
λ

p 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p

4
; ðB9Þ

with Δ≡ 4A2

3λμ2
: ðB10Þ

Since λ̄ðT0Þ ¼ 0 and λ̄ðT1Þ ¼ 9=8, we find

T0 ¼ Tc

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
; T1 ¼ Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 8Δ
8 − 9Δ

r
: ðB11Þ

Since T0 must exist (because it corresponds to the negative
Higgs mass in the potential at zero temperature), the
condition for there to be a critical temperature is
Δ ∈ ð0; 1Þ. By contrast, for T1 to exist we need
Δ ∈ ð0; 8=9Þ. Beyond this range T1 does not exist and
the broken minimum never disappears, even at very large
temperatures. In this case the asymptotic value of λ̄ at large
temperatures is 1=Δ.
From the above discussion it is clear that a cPT (which

occurs for subcritical temperatures) and an hPT (occurring
only for supercritical temperatures) correspond to the
regimes

phase transitions∶

cPT regime∶ T∈ ðT0;TcÞ⇔ λ̄∈ ð0;1Þ;
hPT regime∶ T∈ ðTc;T1Þ⇔ λ̄∈

�
1;9

8

	
:

ðB12Þ

Finally, at T ¼ 0 (λ̄ → −∞) we have the usual zero-
temperature spontaneous symmetry breaking at the vacuum
expectation value

14Note that our definition of λ from the quartic term in Eq. (B1)
is a factor of 6 larger than those in Refs. [62,63,83].

15We are ignoring the subleading thermal corrections to λ.
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hΦi0 ≡ hΦib;T¼0 ¼
ffiffiffi
3

p
μ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

pffiffiffi
λ

p Tc;

V0 ≡ VðhΦi0Þ ¼ −
3μ4ð1 − ΔÞ2

8λ
T4
c: ðB13Þ

2. Critical bubbles and bounce action

A phase transition between the two minima of VðΦÞ can
be described by the nucleation and subsequent growth of
“bubbles” of the new, stable minimum inside a space filled
with the old, metastable minimum. These bubbles are
created by thermal fluctuations and they correspond to a
field configuration Φbub that interpolates between the new
minimum at the center of the bubble and the old minimum
far from it [62,78]. To determine the bubble configuration it
is necessary to solve the Euclidean equation of motion for
Φ that minimizes the Euclidean bounce action S½Φ� of the
system16:

S½Φ� ¼ hΦi2b
TM

4π

Z
dr̄r̄2

�
1

2

�
dΦ̄
dr̄

�
2

þ V̄ðΦ̄Þ
�
; ðB14Þ

d2Φ̄bub

dr̄2
þ 2

r̄
dΦ̄bub

dr̄
− V̄ 0ðΦ̄bubÞ ¼ 0; ðB15Þ

with
hΦi2b
TM

¼ 12μ
ffiffiffiffi
Δ

p

λ

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p �
2

16
ffiffiffī
λ

p ; ðB16Þ

where we have defined the dimensionless quantities
Φ̄≡Φ=hΦib, r̄≡Mr, and V̄ðΦ̄Þ≡VðhΦibΦ̄Þ=ðMhΦibÞ2,
and we have assumed spherical symmetry so that d3x ¼
4πr2dr and ΦðxÞ ¼ ΦðrÞ. The solutions to Eq. (B15) are

sometimes called critical bubbles, since these are the field
configurations that will not collapse upon formation due to
pressure.17

We have now achieved the main purpose of all of the
manipulations and definitions of this section: to show that
the equation of motion for Φ̄ depends only on λ̄ [37,83].
Indeed,

V̄ðΦ̄Þ ¼ 1

2
Φ̄2 −

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p

4λ̄
Φ̄3 þ ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p
Þ2

32λ̄
Φ̄4:

ðB17Þ

We find Φ̄bubðr̄Þ by numerically solving Eq. (B15) for
various values of λ̄ ∈ ð0; 9=8Þ, and subsequently compute
the corresponding action. Note that S, being an integral
over infinite space, is potentially infinite. However, only
action differences, taken relative to the initial metastable
false vacuum value hΦifv, ever enter the physical quantities
in which we are interested. Therefore, we only compute
S½Φbub� − S½hΦifv�, which is finite, and we denote this
difference simply by S. For cPTs hΦifv ¼ hΦis, whereas for
hPTs hΦifv ¼ hΦib.
Our results are shown in Figs. 8 and 9. In Fig. 8 we plot

the bubble configurations Φ̄ðr̄Þ for representative values of
λ̄; the solutions corresponding to cPTs and λ̄ ∈ ð0; 1Þ are
shown in the left plot, and those corresponding to hPTs and
λ̄ ∈ ð1; 9=8Þ are shown in the right plot. In Fig. 9 we plot
the corresponding values of the bubble action (difference) S
as a function of λ̄.
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FIG. 8. Solutions to Eq. (B15) for different values of λ̄: dimensionless bubble field configurations Φ̄bub ¼ Φbub=hΦib, as a function of
the dimensionless bubble radius r̄ ¼ Mr. Left: bubbles for subcritical temperatures T ∈ ðT0; TcÞ, i.e., λ̄ ∈ ð0; 1Þ. Right: bubbles for
supercritical temperatures T ∈ ðTc; T1Þ, i.e., λ̄ ∈ ð1; 9=8Þ.

16Sometimes reference is made in the literature to the energy of
the field configuration, which is simply E½Φ� ¼ TS½Φ�.

17Note the different meaning of the word critical here,
unrelated to the critical temperature Tc. As we have discussed
above, critical bubbles can be nucleated at both subcritical or
supercritical temperatures T. What is more, as seen in Fig. 9, the
energy E ¼ TS required to nucleate a critical bubble at critical
temperature is infinite!
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3. Daisy resummation

Finally, we comment about the cubic term of Eq. (B1)
defined in Eqs. (B5) and (B6). This term is of vital
importance to the order of the phase transition; were it
to go away, the phase transition would cease to be first
order. “Daisy” resummation of “ring” diagrams effectively
leads to a temperature-dependent correction to the bosonic
mass stemming from its self-energy [64–68]. This means
that the cubic term heuristically becomes

T
12π

X
B

NBy3BΦ3 →
T
12π

X
B

NBðy2BΦ2 þ g2BT
2Þ3=2; ðB18Þ

where gBT accounts for the model-dependent thermal mass
of the B boson. From now on wewill simply take gB ∼ yB, a
conservative choice, since the thermal mass contributions
are typically further suppressed by factors of Oð10Þ; see,
for example, Ref. [64].
Evidently, for very large temperatures the Φ3 depend-

ence vanishes. In order to ensure that the hPT is indeed
strongly first order, we exclude from our results the region
of parameter space that yields sizable daisy contributions.
To that purpose, we estimate the relative size of the self-
energy corrections to be

daisies ≈ ð1þ T2=hΦi2bÞ3=2 − 1

¼
�
1þ λ

12μ2Δ

�
4

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p
�

2
�

3=2
− 1; ðB19Þ

and then conservatively demand this to be no larger than
50%. This condition is satisfied for

Δ > Δdaisies ≡ λ

μ2
4.3

ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p
Þ2
: ðB20Þ

Note that Eq. (B19) is function of λ̄ and thus of the
temperature: larger temperatures yield larger daisy contri-
butions, and thus more values of Δ violate Eq. (B20) and
are thus excluded from our analysis. Since cooling and
heating PTs are sensitive to different temperatures, the
restrictions on the parameter Δ are different for each.
However, since our 50% threshold for the thermal correc-
tions is an arbitrary number, and since we are working with
approximate expressions (we have taken gB ∼ yB), we
simply evaluate this condition at Tc (i.e., λ̄ ¼ 1). This is
morally equivalent to the condition hΦib=Tc ≫ 1 used in
other parts of the literature (e.g., Refs. [79,105]). The final
constraint is

Δ > Δdaisies ≈ 0.27
λ

μ2
⇒ A≳ 0.45λ: ðB21Þ

In Fig. 10 we show the regions of λ̄ − Δ parameter space for
which the daisy contributions satisfy Eq. (B20).

FIG. 9. The action S ¼ S½Φbub� − S½hΦifv� as a function of λ̄.
Note that it has been rescaled by μ

ffiffiffiffi
Δ

p
=λ ¼ 2A=

ffiffiffiffiffiffiffi
3λ3

p
, since

hΦi2b=ðTMÞ in Eq. (B14) depends on just this parameter
combination, the rest of it being a function of λ̄. The thin grey
vertical line separates the cPT (left half) and hPT (right half)
regimes. The red dashed lines are the semianalytic expressions in
Eq. (B23), while the blue dashed lines show the estimates from
Eq. (B25). Note that the linear scale of the abscissa for λ̄ > 1 has
been increased for easier reading. FIG. 10. λ̄ − Δ parameter space. Shaded in grey are the regions

for which Eq. (B20) is not satisfied, for different values of λ=μ2.
In these regions the daisy resummation corrections to the
potential cubic term become relevant and the first-order phase
transition ceases to be strong. We evaluate Δdaisies at λ̄ ¼ 1 to
obtain the representative constraint (B21), which we use when
presenting the sensitivity of GW detectors in our results (e.g.,
Fig. 6). In green we show the region for which Eq. (C7) is
satisfied and the bubbles are in the runaway regime. The dotted
black lines correspond to contours of the runaway efficiency κΦ;
see Eq. (C7). Note that the linear scale of the abscissa for λ̄ > 1
has been increased for easier reading.
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4. Analytic expressions for the bounce action

It turns out that Eq. (B15) can be solved analytically for
the special cases where λ̄ ≈ 1 (T ≈ Tc) and λ̄ ≈ 0 (T ≈ T0)
or λ̄ ≈ 9=8 (T ≈ T1). In the first case the energy difference
between the stable and metastable minima of the potential
is very small and the thin-wall approximation can be
employed. On the other hand, in the second case the stable
minimum of the potential is very deep and the thick-wall
approximation can be used instead. Following Ref. [62] for
both cases, we find that the integral in Eq. (B14) for the
bounce action scales like18

S
hΦi2b=ðTMÞ ≈

8>>><
>>>:

8π
81ðλ̄−1Þ2 thin wall; λ̄ ≈ 1;

2.16λ̄2 thick wall; λ̄ ≈ 0;

113
�
9
8
− λ̄

	
3=4

thick wall; λ̄ ≈ 9
8
:

ðB22Þ

Using Eq. (B16) and the power-law behaviors listed above,
we are able to find a reasonable semianalytic fit to Sðλ̄Þ for
the cPT and hPT regimes [λ̄ ∈ ð0; 1Þ and λ̄ ∈ ð1; 9=8Þ,
respectively], which we show as dashed red lines in Fig. 9:

S ≈

8<
:

24μ
ffiffiffi
Δ

p
λ

�
3þ

ffiffiffiffiffiffiffiffi
9−8λ̄

p
4

	
2 ð1.13−λ̄Þ0.91λ̄3=2

ð1−λ̄Þ2 ; cPT regime;

20μ
ffiffiffi
Δ

p
λ

�
3þ

ffiffiffiffiffiffiffiffi
9−8λ̄

p
4

	
2 ð9

8
−λ̄Þ3=4

λ̄1=2ð1−λ̄Þ2 ; hPT regime:

ðB23Þ
These equations, although analytic, are still too compli-
cated to be useful for back-of-the-envelope estimates. We
can do better.
While λ̄ is a compact variable, S spans many orders of

magnitude. This means we can find a linear fit of λ̄ to ln S to
obtain an even simpler approximation that can be inverted [in
order to find λ̄ðSÞ analytically]. For this fit it is best to use the
slope d lnS=dλ̄ at the inflection point of lnS, since that is
where the slope is at its smallest, and thus a linear fit will have
the broadest range of applicability. The inflection points and
corresponding slopes for the cPT and hPT ranges are

8<
:

λ̄infl ≈ 0.52; d ln S
dλ̄

���
λ̄infl

≈ 4.9; cPT regime;

λ̄infl ≈ 1.08; d ln S
dλ̄

���
λ̄infl

≈ −45.6; hPT regime;
ðB24Þ

which lead to the following linear fits for Sðλ̄Þ and their
inversions:

Sðλ̄Þ ∼
(

μ
ffiffiffi
Δ

p
λ exp ð1.2þ 4.9λ̄Þ; cPT regime

μ
ffiffiffi
Δ

p
λ exp ð54.7 − 45.6λ̄Þ; hPT regime

⇔ λ̄ðSÞ ∼
8<
:

−0.25þ 0.21 ln
�

Sλ
μ
ffiffiffi
Δ

p
	
; cPT regime;

1.20 − 0.022 ln
�

Sλ
μ
ffiffiffi
Δ

p
	
; hPT regime:

ðB25Þ

These expressions correspond to the dashed blue lines in
Fig. 9. As an illustrative benchmark, for T ∼ 1 TeV and
H ∼ T2=mPl ∼ 10−15 TeV, S ∼ 4 lnðT=HÞ ∼ 138 and λ̄ ∼
0.74 for a cPT and λ̄ ∼ 1.09 for an hPT, taking
μ

ffiffiffiffi
Δ

p
=λ ¼ 1. Note that λ̄ in Eq. (B25) depends logarithmi-

cally on S, so varying H and T has little impact on the
resulting λ̄.
From the above approximations and Eq. (B7) we can

obtain the rate of change of S with respect to the temper-
ature:

d ln S
d lnT

¼ d ln S
dλ̄

dλ̄
d lnT

∼

 9.8

Δ ð1 − Δλ̄Þ; cPT regime;

− 91
Δ ð1 − Δλ̄Þ; hPT regime:

ðB26Þ

18For the detailed calculation see our explanatory notebook
02_phase_transition.nb.

FIG. 11. Plots of jd ln S=d lnTj as a function of λ̄ and Δ, for
both the cPT (blue) and the hPT (red) regimes. Also shown are
the curves corresponding to the approximate expressions listed in
Eq. (B26). Note that the linear scale of the abscissa for λ̄ > 1 has
been increased for easier reading.

GRAVITATIONAL WAVE SIGNATURES FROM REHEATING PHYS. REV. D 108, 036006 (2023)

036006-21



Contours of jd ln S=d lnTj as a function ofΔ and λ̄, for both
the cPT and hPT regimes, are shown in Fig. 11, as well as
their corresponding estimates from Eq. (B26).

APPENDIX C: BUBBLE NUCLEATION
AND PHASE TRANSITIONS

The Universe begins its life cold and with Φ in the
broken phase minimum of the potential in Eq. (B1),
hΦib ≠ 0. Eventually it reheats to supercritical temper-
atures T ∈ ðTc; T1Þ [i.e., λ̄ ∈ ð1; 9=8Þ] at which point the
stable, true vacuum is instead the symmetric phase
hΦis ¼ 0. Thermal fluctuations nucleate bubbles of the
true vacuum, which then expand and eventually fill the
entire Universe. Thus, the Universe now finds itself entirely
in the symmetric phase, and we say that a heating first-order
phase transition (hPT) has taken place. Once reheating ends
the Universe begins to cool down, eventually reaching
subcritical temperatures T ∈ ðT0; TcÞ [i.e., λ̄ ∈ ð0; 1Þ]. At
this point the stable, true vacuum of the system is once
again the broken phase hΦib and the Universe may be
brought to it via the nucleation and expansion of bubbles of
this true vacuum, in what we call a cooling first-order phase
transition (cPT).
Our treatment of bubble nucleation and expansion during

both cPTs and hPTs is implemented in our graphare
code as part of the PhaseTransition.wl package, along with
an explanatory notebook titled 02_phase_transition. nb.

1. Bubble nucleation rate

Having discussed the field configurations and bounce
action of critical bubbles of the true vacuum in the previous
section, we now focus on how they are nucleated, how they
grow, and how they bring the Universe from the metastable
to the stable phase.
The bubble nucleation rate per unit volume is given by

[37,62,78]

Γ
V
¼ M4

�
S
2π

�
3=2

e−S; ðC1Þ

where S is the finite-temperature bubble bounce action
difference S½Φbub� − S½hΦifv� found in Eq. (B14) and M is
a quantity with the dimensions of energy. Its precise form is
model dependent and can only be computed numerically.
Dimensional analysis, however, tells us that M ∼ T, and
we simply take the remaining dimensionless coefficient to
be Oð1Þ. Finally, the S3=2 prefactor comes from the three
translational zero modes that appear in the path-integral
computation of the partition function, and which must be
treated separately [37,62].
In Fig. 12 we plot Γðλ̄Þ=ðVT4Þ for various values of

μ
ffiffiffiffi
Δ

p
=λ which, as we saw above, is the parameter combi-

nation controlling the size of the action S. We can see that
the nucleation rate vanishes at λ̄ ¼ 1 and λ̄ ¼ 0 (λ̄ ¼ 9=8),

corresponding to T ¼ Tc and T ¼ T0 (T ¼ T1), respec-
tively. As long as μ

ffiffiffiffi
Δ

p
=λ is not too large, a significant

number of bubbles can be nucleated within a Hubble space-
time patch. Note that during reheating T1 (and thus
λ̄ ¼ 9=8) may never be reached, in which case Γ=ðVT4Þ
will reach a maximum value at λ̄ðTmaxÞ and then go back
down to 0 as T decreases back to Tc.

2. Bubble expansion

In this section we fill in the details of the bubble runaway
condition described in Sec. III of the main text. Recall that
to test if a runaway occurs, one needs to consider the net
pressure Ptot acting on the wall of a relativistic bubble,
which is a sum of pressure differences (between the inside
and the outside of the bubble) due to the zero-temperature
vacuum energy and the plasma interactions with Φ (equal
to the leading mean-field contribution to the thermal
potential) [84]:

Ptot ¼ ΔV0 þ ΔPT > 0; ðC2Þ

with ΔV0 ≡ V0;out − V0;in ¼ signð1 − λ̄ÞjV0j; ðC3Þ

ΔPT ≡X
i

Ni

Z
m2

i;out

m2
i;in

dm2
i

Z
d3p
ð2πÞ3

fouti

2E
≈
T2

24

X
i

ciNiΔm2
i

¼ −signð1 − λ̄Þ μ
2

2
T2hΦi2b; ðC4Þ

where in the last equality we have used Eq. (B6) and the
fact that

FIG. 12. Bubble nucleation rate ðΓ=VÞ=T4 as a function of λ̄,
for different values of μ

ffiffiffiffi
Δ

p
=λ. The blue (red) lines correspond to

the nucleation rate during a cPT (hPT). The dashed black line
shows ð10−15Þ4, a typical value of H4 for the OðTeVÞ temper-
ature scales we consider in this paper. The typical value of λ̄ at the
nucleation time tn can then be read at the intersection of these
lines. Note that the linear scale of the abscissa for λ̄ > 1 has been
increased for easier reading.
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Δm2
i ≡m2

i;out −m2
i;in ¼ y2i ðhΦi2fv − hΦi2tvÞ

¼ −signð1 − λ̄Þy2i hΦi2b; ðC5Þ

and where hΦifv and hΦitv denote the false and true vacuum
Higgs vacuum expectation values, outside and inside the
bubble, respectively. Note that, of course, signð1 − λ̄Þ used
here and signðTc − TÞ used in the main text are equivalent.
Putting this together allows us to write the runaway

condition as simply

Ptot ¼ signð1 − λ̄Þ
�
jV0j −

μ2

2
T2hΦi2b

�

¼ 3μ4ð1 − ΔÞ2T4
c

2λ
signð1 − λ̄Þ

×

�
1 −

Δ
4

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8λ̄

p

1 − Δλ̄

�2�
> 0 ðC6Þ

⇒ κΦ≡ Ptot

jV0j
¼ signð1− λ̄Þ

�
1−

Δ
4

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffi
9−8λ̄

p

1−Δλ̄

�2�
> 0:

ðC7Þ

where in the last line we defined the runaway efficiency κΦ,
which can be rewritten as κΦ ¼ signð1 − λ̄Þðα − α∞Þ=α;
see Eq. (21) in the main text. In Fig. 10 we show the regions
of λ̄ − Δ parameter space for which the runaway condition
in Eq. (C7) is satisfied. It can be seen that, up to the
different values of λ̄ explored by the transition, the runaway
conditions for cPTs and hPTs are almost mirror images of
each other, as described previously in the text. Indeed, since
the (anti)friction is ultimately described in terms of the
interaction strength yi of the particles with the Higgs, we
see that runaway for cPTs (hPTs) requires sufficiently small
(large) couplings.
Finally, aword about higher-order terms. Relatively recent

developments attempt to compute the next-to-leading-order
contributions to the friction coming from transition radiation
of gauge bosons, finding that these scale proportionally to the
Lorentz factor ∼γ [86,106–108].19
This could severely curtail the chances of a cPT entering

a runaway regime. Whether such higher-order terms are
present in hPTs, where the particles lose their mass upon
entering the bubbles of the true vacuum, or whether they
behave as a friction or antifriction is a question left to future
work. In any case, if the DS plasma does not contain such
massive gauge bosons this new friction term could very
well not be there [5].

3. Percolation, bubble number density,
and mean bubble separation

The bubble nucleation rate Γ=V and the bubble-wall
speed vw can be used to determine the phase in which the
Universe finds itself at any given time. Indeed, the
metastable volume fraction hðtÞ is given by [37,63,76,77]

hðtÞ¼ exp

�
−
Z

t

tc

dt0aðt0Þ3Γðt
0Þ

V
4π

3
v3w

�Z
t

t0

dt00

aðt00Þ
�

3
�
; ðC8Þ

where tc is the time at which TðtcÞ ¼ Tc, aðtÞ is the scale
factor at time t, and we have assumed vw to be constant.
The PT completes at the percolation time tPT when the
metastable volume fraction hðtPTÞ has been reduced to 1=e.
Since the bubbles can only nucleate with a probability

Γ=VðtÞ in the metastable phase volume, quantified by hðtÞ,
we can write the bubble number density and corresponding
mean bubble separation R̄bðtÞ as a function of time:

nbðtÞ≡ aðtÞ−3
Z

t

tc

dt0aðt0Þ3 Γðt
0Þ

V
hðt0Þ; ðC9Þ

R̄bðtÞ≡ nbðtÞ−1=3: ðC10Þ

We can then derive the mean bubble separation scale at
percolation, R̄PT≡R̄bðtPTÞ, and from thereβ¼ð8πÞ1=3vwR̄−1

PT.
As an interesting aside, we point out that one can use

R̄bðtÞ to create an alternative definition of the percolation
time. Indeed, the average bubble radius is

hRðtÞi≡ 1

aðtÞ3nbðtÞ
aðtÞ

×
Z

t

tc

dt0aðt0Þ3 Γðt
0Þ

V
hðt0Þvw

�Z
t

t0

dt00

aðt00Þ
�
: ðC11Þ

One can then define tPT to be the time at which
hRðtPTÞi ¼ R̄bðtPTÞ. This seems like a natural way to
determine when bubble collisions take place. We have
numerically corroborated that this alternative definition
yields similar results to the standard one of hðtPTÞ ¼ 1=e,
and thus we use the latter, more common one in our
computations.
Finally, we have also numerically made sure that the

impact of the expansion of the Universe is negligible, and
we therefore use aðtÞ ¼ 1 in Eqs. (C8)–(C10) throughout
this paper.

4. Analytic expressions for the phase transition

As discussed in the main text, PTs during reheating fall
into two main categories. In cPTs and most hPTs, the
transition occurs via exponential nucleation, where most
bubbles are produced close to the end of the PT. In hPTs for
which either T1 > Tmax or T1 simply does not exist
(Δ > 8=9), the PT can take place via simultaneous

19Reference [88] found that these contributions scale like ∼γ2,
which would further reduce the chances of a runaway regime
in a cPT. However, this result was contested in Refs. [106,107].
We thank Filippo Sala for pointing out that contributions to
the plasma friction should depend on the order parameter of
the PT, hΦib.
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nucleation, as long as tn ∼ tmax or Γ=V ≲H4 for all times.
In this regime most of the bubbles of the new phase are
produced at the time tmax, where the action S reaches its
minimum and the nucleation rate Γ=V reaches its maximum
(since T=Tc ¼ Tmax=Tc and therefore λ̄ is at its largest).
Ignoring the expansion of the Universe by setting aðtÞ ¼ 1
in Eqs. (C8) and (C9), we can find approximate expressions
for hðtÞ and nbðtÞ in each of these regimes [81,82].
Starting with the exponential nucleation regime, we can

expand SðtÞ around tPT in a Taylor series. To first order,

SðtÞ ≈ SPT − S1ðtPT − tÞ; ðC12Þ

with SPT ≡ SðtPTÞ, S1 ≡ S0ðtPTÞ < 0.
Plugging this into Γ=V, we can then use the method of

steepest descent to find analytic expressions for hðtÞ and for
nbðtPTÞ, which we approximate as the asymptotic value of
nbðt → ∞Þ since nbðtÞ changes little after that time:

hðtÞ ≈ exp

�
−e−S1ðt−tPTÞ

�
; ðC13Þ

nbðtPTÞ ≈
ð−S1Þ3
8πv3w

ðC14Þ

⇒ β ≈ −S1: ðC15Þ

In the exponential nucleation regime, the condition
hðtPTÞ ¼ 1=e marking the end of the PT is equivalent to

8πv3w
β4

ΓðtPTÞ
V

¼ 1: ðC16Þ

Using the chain rule for S0 and Eqs. (A34) and (B26), we
can estimate β. Taking advantage of the fact that in the
exponential nucleation regime tc ≲ tn ≲ tPT, we note that
SPT ≲ Sn, ρχ=ρr;hPT ≲ ρχ;i=ρr;c, HPT ≲Hn ≲Hc < Hi, and
that λ̄ðSPTÞ ≈ λ̄ðSnÞ ≈ λ̄infl. since λ̄ depends only logarithmi-
cally on S for a large range of values [see Eqs. (B24)
and (B25)]. Therefore,20

β ≈ −
�
S
d lnS
d lnT

d lnT
dt

	����
tPT

≲ −Sn
d lnS
d lnT

����
λ̄infl

d lnT
dt

����
tc

∼ 4 ln ðTc=HiÞ

×

8<
:

91ðΔ−1 − 1.08Þ Γχ

4

�
Tmax
Tc

	
4
ε−1rh ; hPT;

9.8ðΔ−1 − 0.52ÞHrðTcÞmax
h
1;
�

Tc
Tmax

	
2
D−1=2

rd

i
≈ 9.8ðΔ−1 − 0.52ÞHiε

1=2
rh

�
Tc
Tmax

	
2
max

h
1;
�

Tc
Tmax

	
2
D−1=2

rd

i
; cPT:

ðC17Þ

For those hPTs in the simultaneous nucleation regime,
the nucleation rate Γ=V is dominated by the minimum of
the action, which takes place at the temperature the farthest
from Tc, namely, Tmax. Since T 0ðtmaxÞ ¼ 0 by definition,
the expansion of SðtÞ around tmax looks like

SðtÞ ≈ Smin þ
1

2
S22ðt − tmaxÞ2; ðC18Þ

with Smin ≡ SðtmaxÞ and S22 ≡ S00ðtmaxÞ. Repeating the
exercise, we find

hðtÞ ≈ exp

�
−
4π

3
n0v3wðt − tmaxÞ2

�
; ðC19Þ

nbðtPTÞ ≈ n0 ≡
ffiffiffiffiffiffi
2π

p

S2

ΓðtmaxÞ
V

ðC20Þ

⇒ β ≈ ð8πn0Þ1=3vw: ðC21Þ

Since at tmax the first time derivative of TðtÞ vanishes,
then

S22 ¼
�

dS
d lnT

d2 lnT
dt2

þ d2S
d lnT2

�
d lnT
dt

�
2
�����

tmax

¼ S
d ln S
d lnT

d2 lnT
dt2

����
tmax

: ðC22Þ

We can then use Eqs. (B7) and (A23) to find λ̄max ≡
λ̄ðTmaxÞ and from there Smin ¼ Sðλ̄maxÞ, ΓðtmaxÞ=V, and

20These expressions are accurate toOð1Þ.More precise formulas
can be derived from Eq. (C16) by taking T ≈ Tn and S ≈ Sn ≈
4 lnðTn=HnÞ everywhere except in the exponential of Γ=V, where
we use instead e−SPT . From this one can obtain the logarithmic
corrections SPT ≈ Sn þ lnð8πv3wÞ − 4 lnðH−1

n Snd lnSd lnT
d lnT
dt jtnÞ. This

is roughly accurate to Oð10%Þ.
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dS=d lnTjtmax
[using Eqs. (B25) and (B26)]. An even simpler

estimate relies on noting that for simultaneous nucleation to
take place ΓðtmaxÞ=V cannot be too different from HðtmaxÞ4
(i.e., tn ≈ tmax); otherwise, Γ=V would be rising exponen-
tially and the system would be in the exponential nucleation
regime. Since Hmax ≈Hi, we simply have ΓðtmaxÞ=V ∼H4

i
andSmin ∼ 4 lnðTmax=HiÞ. It can be shown thatd2 lnT=dt2 ∼
−H2

i max½1; γ� at tmax, and therefore

S22 ∼ 360H2
i max ½1; γ� ln ðTmax=HiÞðΔ−1 − λ̄maxÞ; ðC23Þ

⇒ β ∼Hivwðmax ½1; γ� ln ðTmax=HiÞðΔ−1 − λ̄maxÞÞ−1=6:
ðC24Þ

As a final word on the topic, we would like to mention
that a recent study [81] showed that the GW spectrum
coming from PTs is essentially the same regardless of
whether the PT took place in a simultaneous or exponential
regime, although others [91,109] claim there are Oð1Þ
differences.

APPENDIX D: ADDITIONAL RESULTS

In this appendix, we show more plots of the BBO SNR
of the SGWB from cPTs (blue contours) and hPTs (red
contours) as a function of the Δ − Tc=Tmax parameter
space, for choices of γ ¼ Γχ=Hi and Tc different from
the one presented in the main text (namely, γ ¼ 1 and
Tc ¼ 1 TeV). We do this for γ ∈ f0.1; 10g in Fig. 13 and
for Tc ∈ f100 GeV; 10 TeVg in Fig. 14. The notations
and legends in these plots are the same as in Fig. 6, and their
qualitative features are the same and have been described in
detail in Sec. V. The characteristic crescent shape of the
hPT contours, determined by the BBO sensitivity at low
Tc=Tmax (and consequently more redshift) and by the
increasing difficulty in nucleating bubbles at large Δ, is
clearly seen in all of the figures. The crescent is thinner for
smaller values of γ, because the era of reheaton domination
becomes longer and thus the relative redshifting between
the hGWs and cGWs increases. The cPT contours depend
mostly on Δ. Their insensitivity to low values of Tc=Tmax,
caused by the cPT taking place well after reheating during
RD, is also evident, while the increasing SNR values as
Tc=Tmax approaches 1 can also be seen.
Furthermore, in Fig. 15 we show the γ − Tc=Tmax slice

of the parameter space for two example values of Δ

0 0.5 1.0 1.5 2.0

0 0.1 0.2 0.3 0.4

0 1 2 3 4

0 0.1 0.2 0.3 0.4

FIG. 13. SNR contours for 1-year observation time of the SGWB spectra generated during reheating by hPT bubble collisions (red)
and cPT sound waves (blue), for the upcoming BBO detector [6–8], as a function of Tc=Tmax and Δ, with γ ¼ 0.1 (left) and γ ¼ 10
(right). The corresponding values of Hi and A are also shown. The notation is the same as in Fig. 6, namely, the points inside the green
contour have double peaks (from both the hGWs and the cGWs), the region above the dashed line has Tmax < T1, the region above the
dotted line has Γ=V > H4 at tmax, the dark grey region has no runaway hPT bubbles, and the light grey region has daisy contributions to
the thermal potential that prevent a SFOPT. In the left panel, γ ¼ 0.1 and we have added a purple line separating the parameter regions in
which the cPT takes place during RD and during χD; for γ ¼ 10 in the right panel and γ ¼ 1 in Fig. 6, the cPT always takes place during
RD. For this plot we chose Tc ¼ 1 TeV, g� ¼ 10, fμ; λg ¼ f1; 1g, and vw;cPT ¼ 0.05.
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0 0.5 1.0 1.5 2.0

0 0.2 0.4 0.6 0.8

0 1 2 3 4

0 0.1 0.2 0.3 0.4

FIG. 14. SNR contours for 1-year observation time of the SGWB spectra generated during reheating by hPT bubble collisions (red)
and cPT sound waves (blue), for the upcoming BBO detector [6–8], as a function of Tc=Tmax and Δ, with Tc ¼ 100 GeV and
vw;cPT ¼ 0.03 (left), and Tc ¼ 10 TeV and vw;cPT ¼ 0.12 (right). Note that we tune vw;cPT so that the cGWs and hGWs have similar
amplitudes. The corresponding values of Hi and A are also shown. The notation is the same as in Fig. 6, namely, the points inside the
green contour have double peaks (from both the hGWs and the cGWs), the region above the dashed line has Tmax < T1, the region above
the dotted line has Γ=V > H4 at tmax, the dark grey region has no runaway hPT bubbles, and the light grey region has daisy contributions
to the thermal potential that prevent a SFOPT. For this plot we chose γ ¼ 1, g� ¼ 10, and fμ; λg ¼ f1; 1g.

0 0.5 1.0 1.5 2.0

0 0.05 0.10 0.15 0.20

0 1 2 3 4

0 0.1 0.2 0.3 0.4

FIG. 15. SNR contours for 1-year observation time of the SGWB spectra generated during reheating by hPT bubble collisions (red)
and by cPT plasma sound waves (blue), for the upcoming BBO detector [6–8], as a function of Tc=Tmax and γ, with Δ ¼ 0.5 (left), and
Δ ¼ 0.7 (right). The corresponding values of Hi are also shown. The regions between the green contour near the dotted line and above
the green contour at the left-upper corner have double peaks (from both the hGWs and the cGWs), as in Fig. 6. The region to the right of
the dotted line has Γ=V > H4 at tmax. For this plot we chose Tc ¼ 1 TeV, g� ¼ 10, fμ; λg ¼ f1; 1g, and vw;cPT ¼ 0.05.
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(0.5 and 0.7).We can see that there is a sharp drop in the GW
signature for a sufficiently large value of Tc=Tmax, which
corresponds to the PT never taking place because no bubbles
are nucleated within a Hubble patch (i.e., the intersection of
the dotted lines in Fig. 6 with the value of Δ under
consideration). At lower values of Tc=Tmax the hGW SNR
also drops because the hGWs become invisible to BBO due
to redshifting (the left-hand boundary of the crescent shape in
Figs. 6, 13, and 14). In addition, the hGW SNR contours
vanish for values of γ that are very small (due to the already

discussed large relative redshift between hPTand cPT caused
by a long χD era) or very large (due to the corresponding
increase in βhPT, whichmeans both that the hGWs are quieter
because the PT lasts for a shorter β−1hPT time and that the peak
frequency fhPT of the hGW spectrum can move outside the
BBO sensitivity). The shape of the SNR contours of the
cGWscan similarly be understood, in termsof thedurationof
the χD era and the duration β−1cPT of the PT, with the aid of
Figs. 6, 13, and 14 and the discussions of Sec. V and the
above paragraph.
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