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We study fermion zero-modes in magnetized T°/Z, orbifold models. In particular, we focus on
nonfactorizable orbifolds, i.e., T®/Z; and T®/Z, corresponding to SU(7) and E Lie lattices, respectively.
The number of degenerated zero-modes corresponds to the generation number of low-energy effective
theory in four-dimensional (4D) spacetime. We find that three-generation models preserving 4D A = 1

supersymmetry can be realized by magnetized 7°/Z,,, but not by T%/Z;. We use Sp(6,Z) modular

transformation for the analyses.
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I. INTRODUCTION

Higher dimensional theory such as superstring theory is
interesting as a candidate for unified theory of particle
physics. When we start with higher dimensional theory, we
need compactification of extra dimensions. In particular,
compactifications leading to four-dimensional (4D) chiral
theory are important, because the standard model is a chiral
theory.

Inspired by superstring theory, we start with six-dimen-
sional (6D) compact space. One of the simplest compacti-
fications is the toroidal compactification T°. However, that
leads to 4D nonchiral theory. One way to derive a 4D chiral
theory is orbifolding 7°/Zy [1,2]. The 4D supersymmetry
(SUSY) must be broken to AV = 1 or 0 to realize a 4D chiral
theory. The Z twists to preserve 4D N =1 SUSY were
classified [1,2]. In addition, six-dimensional lattices with
those Z, twist symmetries were studied in Refs. [3-8].

Another way to lead to a 4D chiral theory is the
introduction of magnetic fluxes in compact space [9-12].
The degeneracy number of zero-modes, which corresponds
to the generation number of 4D massless chiral fermions, is
determined by the size of magnetic fluxes. Yukawa
couplings in 4D low-energy effective field theory are
computed by overlap integrals of zero-mode wave func-
tions [13,14]. They can lead to suppressed Yukawa cou-
plings as well as O(1) of couplings depending on moduli
values.
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One can combine the above geometrical background and
gauge background and study the orbifold compactification
with a magnetic flux background [15,16]. Adjoint matter
fields can be projected out in magnetized orbifold models,
and that corresponds to stabilization of Wilson line moduli,
i.e., open string moduli in intersecting D-brane models on
orbifolds [17], which are T-dual to magnetized D-brane
models on orbifolds. Magnetized orbifold models have
richer flavor structure. Three-generation models can be
derived by various setups on the 72/Z, orbifold with
magnetic flux [18,19]. Furthermore, realization of quark
and lepton mass matrices were studied [20-26].

So far, the six-dimensional space, which can be factor-
izable to three two-dimensional spaces, was mainly stud-
ied, although some nonfactorizable 7#/Z orbifolds were
studied [27,28]. Our purpose is to study nonfactorizable
cases. Here, we study T°/Z, orbifold models with mag-
netic fluxes, whose T* or T parts are nonfactorizable. We
examine their zero-mode numbers. In particular, we show
three-generation models. Such studies were done in mag-
netized T?/Zy orbifold models by several methods
[15,16,29-31]. Among them, one way to analyze zero-
mode numbers in magnetized T?/Z, orbifold models is
to use the SL(2, Z) modular symmetry of wave functions
on T2 [32]. (See also Ref. [28].) We extend such analysis
to T®/Z, orbifolds as well as T*/Z, orbifolds. Higher
dimensional compact spaces such as 7° have several moduli
and have larger Sp(2g, Z) symplectic modular symmetries.
(See for mathematical reviews, e.g., Refs. [33,34].) These
large Sp(2g, Z) symplectic modular symmetries appear in
string compacitification. (See, e.g., Refs. [35-40].) Also,
they were used in flavor model building [41,42]. Here, we
construct the orbifold twists as elements of Sp(2g,Z)
and modular transformation behavior of wave functions.
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Then, we study zero-modes in 7%/Z, orbifolds as well as
T*/Zy orbifolds.

The rest of our paper is organized as follows. In Sec. II,
we review massless spinor modes on T7° and bosonic
spectra. In Sec. III, we give a brief review of 6D
lattices leading to 7°/Z, with 4D N =1 SUSY. We
study magnetized 7%/Z, and T®/Z,, models in Sec. IV. In
Sec. V, we discuss the tachyon-free condition in each
orbifold model. Section VI is our conclusion. In
Appendix A, we present results in magnetized T*/Zy
orbifold models with SO(8) Lie lattice. In Appendix B, we
derive the transformations of zero-mode wave functions
under Sp(6, Z2).

II. MAGNETIZED 7% MODEL

First we consider magnetized D-brane models with 7¢
compactification. We review the Dirac operator and the
Dirac equation to introduce fermion zero-modes on mag-
netized 7° [13,14].

A. The Dirac operator on magnetized 7

To find wave functions on magnetized T, we construct
the Dirac operator on the six-dimensional torus 7¢ ~ C3 /A,

where A is a lattice spanned by six basis vectors e} (i = 1,
2, 3,4, 5, 6) defined by

1 0

e\ =2nRé; =27R |0 |, ey =2nRé; =27R| 1|,
1 0 | 0
0

ey, =2nRé; =2zR |0 |,
. 1 -
_0)1 i Wy

ey, =2nRé, =2nR | wy |, €5 =2nReés=2aR|w, |,
| We s
e

eg = 2nRég = 2nR | ws | . (1)
| @3

Here, R(> 0) denotes the scale factor and w; € C charac-
terize the shape of A. By factoring out R, we defined
vectors ¢;. Here we focus on the six basis vectors
corresponding to simply laced root lattices.

Also, we define real coordinates x', y' (i = 1, 2, 3) along
the lattice vectors on T°. They are related to complex

coordinates Z = (Z',7%,7%) of C* by

VA x! W Wy W !
Z=|22|=2zR| |2 | + |0y @ s||)?
VA X3 ws ws ;| |y

= 27R(X + Qy) = 2zR7Z, (2)

where we identify 7 = X + QY as complex coordinates on
T® and

(] @y Wg
Q= |wy o, ws (3)

W @5 @3

is complex structure moduli. We are interested in sym-
metric moduli Q7 = Q; thus the actions of the Sp(6,Z)
modular group can be consistently seen. Then we will
discuss how to realize some models with generation
structure in magnetized T7°/Z; and T®/Z,, orbifold
models.

Here, Q is not necessarily an element of the Siegel upper-
half plane H* defined as [33]

Hy; ={QeGLB.0)QT =Q,ImQ > 0}.  (4)

We will see that zero-modes of all positive chirality
(+, +, +) are well-defined if NQ € H?, where N is a 3 x
3 integer matrix called flux and we will define later.

Then, we define the Dirac operator to write down the
Dirac equation on magnetized 7°. The Kihler metric on C3
is defined as

ds® = 2H;dz'dZ/, (5)

where H;; =16;5 and i, j =1, 2, 3.
The Gamma matrices on C3 are defined as

FZIZUZ®O'3®O'3, FZT:GZ®03®O'3,
in :12®0'2®63,

7 =1,81,Qd, (6)

= 1, ® 62 ® o,
=101 Qd,

where 1, is the 2 x 2 unit matrix and ¢’ are Pauli matrices,

1 0 0 1
12 = s 01 = 5
0 1 1 0

0 2 . 0 0
GZ:61+i62=[ } 02:01—1}72:[ }
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Then one can find the Kihler metric on 7°

ds® =2h;dz'dz’,  h; = (2zR)*H;. 9)

On the other hand, the Gamma matrices in, I on complex
coordinates of T° are as follows:

. 1 . 1 -
'=—_TZ, 7 =—r1<, 10
27R 27R ( )

I_‘Z

where i = 1, 2, 3. Then we obtain the following anti-
commutative relations called the Dirac algebra (or Clifford
algebra):

{re, 0} = {17, 17} =0,

(<, 19} = 244, (11)
We define the chirality operator I by
I’ =¢Q®c Qo =diag[+,—.—.+.— +.+.-]. (12)

We can write the Dirac operator on T° by the Gamma
matrices

ip=i(l’D, +T9D)

_L{Dz.s Dl:| (13)
7R | D; D2,3’

where D, and D; are covariant derivatives and fermions
are coupled to the U(1) gauge field with unit charge
(=1,

D, =0, —iAy,
Dz] = az] - iAz.?- (14)

Operators D, 3 and D are written by D and D,

-0 Ds D. 0 -
Ds 0 0 -D.
D23 = Dz 0 0 DZ ’
2 3
L O —DZZ _Zi 0
D, 0 0 0]
0 -D. 0 0
0 0 =-D. 0
0 0 0 D

B. Background magnetic flux and the F-term condition

In this subsection, we introduce background magnetic
flux F on T° [14],

1 . 1 . )
F= B (pxx)ijdx A dx! + E(pyy)ijdy A dy
+ (Pay)ijdx’ A dy’. (16)

In terms of complex coordinates z' we get

I o o
F = 5 (FZZ)ideI A dzj + 5 (Fzz)l]dz A de
+ (F.);(idz" A dZY), (17)

where

(Fzz)ij = (Q - Q)_I(prxg_z + pyy + p){yg_2 - pry)

x (Q-Q)71,
(Fzz);; = (Q-Q) ' (QpuQ+ Py + PHQ2—Qp,,)
x (Q-Q)7!,
(Fz);; = i(Q= Q) (QpuQ+ pyy + phQ - Qp,,)
x (Q-Q)7. (18)

We consider 10D A = 1 supersymmetric Yang-Mills
theory. The Hermitian Yang-Mills equation [13] to con-
serve SUSY imposes an F-flat condition. That is, the
magnetic flux has to be (1,I)-form, and thus
F,, = F:; = 0. We will call it the F-term condition, and
it is equivalent to

Qp,. Q-+ pyy + p){yQ -Qp,, =0. (19)
We can rewrite the magnetic flux as follows:

F= (FZZ)ij(idZi A dZ)
=i(pQ— p,)(Q—-Q)~!(idZ A dZ). (20)

For simplicity, we assume p,, = p,, = 0. Then we find
(Fz)ij = _i(pxy<Q_Q)_1)ij' (21)

From the F-term condition and the symmetry (Q7 = Q),
one obtains

PIyQ = pry = (p;VQ)T (22)

From the Dirac quantization condition, the flux is written
by an integer matrix N as

Pry = 2zNT. (23)

We just call N as flux. In summary, background magnetic
flux F is given by
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F = z(N"(ImQ)™"),;(idz" A dz/), (24)
and the F-term condition is given by (NQ)" = NQ.

1. Gauge potential

We find the gauge potential that corresponds to F' in
Eq. (24) as

1

+5 (N(Z+ {) (Imgz)—1> dz'
Audd + AsdZ, (25)

where E is the Wilson line. The boundary conditions of the
gauge potential on T° are

AG+5) = AR) + dés, (3),
AG+Q8) = AGR) + dégs, (7). (26)

where ¢, (k= 1, 2, 3) are three-dimensional standard
Euclidean unit vectors and

)i
)i (27)

In this paper, we assume that the Wilson line is vanish-
ing, { = 0.

& (2) = (N (ImQ)~"Im(Z + _')
0z, (2) = lm(NQ(ImQ) 1 (Z + E

C. The Dirac equation

We introduce fermion massless modes (zero-modes) on
magnetized T° which satisfy the following Dirac equation:

iPY(Z.Z) =0, (28)
where ¥(Z,Z) is an eight components spinor,

¥(zZ, ?) = [l//'|+,l//3_7ll/2—,W1+,W1—’W2+,‘//3+7W/1_]T-
(29)

v, and y;_ denote the positive and negative chirality
components, respectively. In particular, /|, denotes that all
chiralities on 2D spinors are positive. That is, when we
define a Majorana-Weyl spinor on each complex plane as

(+,-), W(Z.Z) is given by

P(E.7) = r] ® r} ® [j (30)

where (+, +, +), (—"_’_7_)’ (_7 +3_)7 (_7_’+) corre-

spond 0 ¥, Y14, Way, and y3,.
From the definition of the Dirac operator /), we obtain
the Dirac equation on each y; as follows:

Dsys_ + Doy, + Doy =0,
Dy, =Dy =Dy, =0,
Doy, +Dsyi . — Dy, =0,
—Days_ + Dy, + Doyl =0,
Dy, + Doy, + Doy, =0,
—D.iy3_ + Dy, — Doy =0,

—D.iys_ + Doy + Dy =0,

DZTV/]+ - Dzil//2+ + Dzill/:;Jr - 0, (31)
where
T -1
D=0, _E(NZ(ImQ‘) )j?
_ — T, _
Dzj = 52] + 5 (NZ(II’IIQ) 1); (32)

where k =1, 2, 3.

D. Zero-modes on magnetized T°

We concentrate on zero-modes when the chirality
(4. +.+), satisfying Dy}, =0, and hence Egs. (31)
are solved when other spinor components are vanishing.
We also require the boundary conditions Eq. (33). The
solution is given by [13]

-

. —1
1//{\,(2, Q) =N £ (ND)T (NImQ) = Im(N?) |, g [JA(; } (NZ, NQ)

- (NZ:NQ)a

Ta—1
— N . in(N)"(ImQ)~"Im(2) . g [JN ]
(34)

where the Riemann-theta function with characteristics
O'N"|(NZ, NQ) is defined by

a e o g
0|z = 7i(m+a)’ Q (m+a) 2m(m+a)T(z+b)’
W )= ‘
mez
O eH,  dbeR. (35)
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The indices of three components J € 73 label the degen-
eracy of zero-modes. One can check the periodicity in the

indices J,

J+NTZ, j
l//N+ = '/fifv (36)
where €, (n = 1, 2, 3) are three-dimensional standard unit
vectors. Thus, there are only | det N| of independent indices

J, and they lie inside the lattice Ay spanned by

NT, (n=1,2,3). (37)

Here, note that zero-modes in Eq. (34) are well-defined if
Q' = NQ is an element of Siegel upper-half plane Hj
defined in Eq. (4). We stress here that € is not necessarily
an element of H3. We take the following normalization
condition of wave functions:

/T6 P22y (wh)* = (2 det(ImQ)) /285 7. (38)

Then the constant A/ is given by

N = [Vol(T®)]~/?(det N)'/4,
Vol(T®)  det(ImQ), (39)

where Vol(T?®) represents the volume of 7% and is propor-
tional to det(ImQ).
Since Im€’ is positive-definite, we have

det(NImQ) = det N - det(ImQ) > 0. (40)

In the following, we will consider the case when det N > 0
and det(ImQ) > 0 are satisfied.

1. Laplace operator

Here, we confirm that the zero-mode wave functions in
Eq. (34) are eigenfunctions of the Laplace operator on
magnetized T°. The Laplace operator is defined as follows:

A:—ﬁ S {D.. D). (41)

j=123

We focus on the spinor components that have positive
chirality in the entire 6D compact space. When we use the
Laplace operator A on v/, we find the following eigen-
value equation:

Al///lJr = Z(lezi + Fzzzi + Fzszi)l//l“r, (42)

where we used the following commutation relations that are
valid under the F-term condition:

[Dz”sz] =F.;=0,
[DZ;,DZ;] = FZ;Z; =0,
Dy.Dy) = F.. (43)

Equation (42) shows that the eigenvalue is proportional to
the trace of F. One can check that the Laplacian A on a
compact manifold is positive semidefinite; that is, v/}, is
nonzero only if F_i.i + Fos + F 5 2 0.

E. Spectrum in the bosonic sector

In this subsection, we show the mass spectrum of the 4D
scalar fields which comes from dimensional reduction of
the 10D gauge boson. We will later use the obtained mass
formula to discuss the stability and D-term SUSY condition
of our magnetized orbifold models.

1. Dimensional reduction of 10D SYM

Here, we briefly review the dimensional reduction of
10D supersymmetric Yang-Mills theory (SYM). For sim-
plicity, we consider the U(2) gauge group. The extension to
U(N) is straightforward. Our discussion is based on
Ref. [43] and the appendix of Ref. [13]. We assume
compact space with no curvature such as T°.

The bosonic part of the action is

1
SYM = —4—gz/ leWTr{FMNFMN}, (44)

where M and N are the indices of ten-dimensional
spacetime, that is, M, N € {0, 1,...,9}. We take the real
orthogonal coordinate system w" with the following

metric:
nuy = diag(—, +, 4.+, +.+). (45)
Fyn is written as
Fyn = oyAy — OyAy — i[Ay, Ay (46)
Gauge boson A,, is written as
Ay =By + Wy = BjU, + Wifeu, (47)

where the elements of the Lie algebra of U(2) are taken as
(Ua)ij = 64i0aj and (eqp);; = 84i0p; (a # b). By noting
A, = Ay, we see that B, is real and (W47)* = W5, After
the expansion, we obtain

1
LYM = —2—92TI'(DMWNDMWN — DMWNDNWM
— iGyy[WM W)+ (48)

where we have only shown quadratic terms of W¢7
explicitly, because we focus on mass terms. Three- and
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four-point interactions are not relevant. Here, we denote the
field strength of the Abelian direction by

GMN - GMBN - GNBM (49)

We also defined the covariant derivative by
Dy Wy = 0oyWy — i[By, Wy]. (50)

Then we consider vacuum expectation values of Abelian
constant magnetic fluxes,

Bi(w) = (B{)(n) + C{(w),

Wb (w) = 0 + d (w). (51)

We consider (B!) # (B?), and then U(2) gauge symmetry
is broken to U(1) x U(1). We take w = (£,n7) where &
denotes the real orthogonal coordinates of 4D spacetime
and 5 denotes that of the compact space. Spacetime indices
are also decomposed as M = (u,i) where 4 =0,...,3
and i =4, ...,9.

By substituting Eq. (51) into Eq. (48), one obtains

i . . . .
‘CYM — 4_92 (Gla] _ G?j)(q)l,abq)],ba _ Q].abq,z,ba)

- 2;2 (D, @ DF &%) 4 (D; @b D' )
= 2(D;Wy) (D' @' P) — (D@ ) (DI V)] + - -
(52)
where
D;W4b = 0,W4> — i(B¢ — Bh)W4P. (53)

If one takes the gauge fixing condition D’ @ =0, Eq. (52)
can be rewritten as

2i 1 .
Ly = = ©/04(G)ebpiab %4 (D, DHPiab
YM 292 < > +55 292 [ i ( H )
ba (1. Didj.ab
+ @D D'DIP)] - -, (54)

2. 4D scalar mass

Now, we consider the Kaluza-Klein decomposition,

e (w Z(p ah(n). (55)

where the wave functions in the compact space satisfy

Ay (n) = Kb (). (56)

Here, k2 > 0 denotes the eigenvalue of the Laplace operator
A = —D;D'. The index n(= 0, 1, ...) denotes the excitation
number, and we set k2., > ka. Substituting Eq. (55) into
Eq. (54) and integrating with respect to the internal
coordinates # yield

S4D = Skinetic + Smass +ee (57)

where

S = [ 000 @> ). (58)

~ S0 (a>b).

Sts = [ @i

(59)

Note that we have used the normalization condition

/d6’7¢l ab( ) Efd(’/l) = 5mn5a05bd' (60)

Next, we consider the coordinate transformation to the
complex basis. We define complex coordinates 7 as 7/ =
(2zR)~'(?*2 + in¥*3) where j=1, 2, 3. Note that
complex coordinates defined here are identified as those
defined on the right-hand side of Eq. (2). Then we have

(pzi,ab (Z) — ZH_R ((p2j+2,ab (;7) + i(p2j+3.ab (m)’
B B s
97 (@) = 5 (@) —ig (). (61)

Rewriting Eq. (58) in the new basis, we obtain

S = 3 [ @i ,pg3
+ hij " (D, D) "]
271'R j 57
— 3 Z/dllg[goil’ba(DﬂDM)gozl,ab
+ 4 (D, D)), (62)

where we used a metric of the form Eq. (9). To get the
canonical kinetic term, we redefine the 4D scalar field as

ZJT_R ab ~7lab _ Z”_R

2t v A

Then we obtain the 4D scalar mass term as

~7/,ab —

b, (63)
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aipaf M B nFa
Smass = Z / d45 |:(p;l b <(277.’R)2 <G>Zif - K%)@ft’ b

~3) ba 4i a a7l a
] (e o) L A )

If we assume (G’=2) =0, scalar modes have only a
U(1),_, charge and we obtain a 4D scalar mass formula
in the U(1) gauge theory on which we have been focusing.
Equation (64) realizes the results presented in Ref. [13] in
the case of 72 compactification.

IIL. 7%/Z, ORBIFOLDS
A. 6D lattices

Here, we give a brief review on the 7°/Z,, orbifolds. The
Z, twists preserving 4D A =1 SUSY were studied in
Refs. [1,2], and they are also shown in the second column
of Table I, where eigenvalues of the orbifold twist are
written by e*”%/N (j =1, 2, 3). The SUSY condition
requires

ki+k, +k3; =0 (mod N). (65)
We divide the 6D flat space by a 6D lattice A4 to construct
the torus 7°. We divide T® by the Z,, twist so as to obtain
the 7%/ Z orbifold. Hence, the 6D lattice must have the Z
symmetry. We use Lie lattices with dimensions D < 6 and
combine them to construct the 6D lattice Ag. The Z, twist
corresponds to the Coxeter element C of the Lie root lattice
[3-8]. For example, the Coxeter element C of the SU(N)
root lattice has the Z, symmetry, i.e., CV = 1. In particu-
lar, we use Lie root lattices with even dimensions, where we
define complex coordinates and introduce magnetic fluxes.
We also use the SU(2)? lattice, but they are not always
orthogonal to each other. To represent 72/ Z,, we denote its
lattice by SU(2)?, because the product of their Coxeter

algebras, respectively. In addition, SO(8)P! denotes the use
of the generalized Coxeter element of SO(8) including Z;
outer automorphism.

The flavor structure originated from 72/Z, has been
studied already in Refs. [18,19]. Thus, here we study
nonfactorizable T%/Zy and T®/Z, orbifolds in Table I, in
particular the numbers of zero-modes on these orbifolds
with magnetic fluxes.

Nonfactorizable 7°/Z, orbifolds include the T°/Z,
orbifold with the SU(7) root lattice and the T°/Z,,_,
orbifold with the Eg4 root lattice. The zero-modes on such
magnetized orbifolds are studied in the next sections. We
reconstruct the orbifold twists as elements of Sp(6, Z). We
study zero-modes by analyzing Sp(6,Z) modular trans-
formation behaviors of wave functions. Similar analysis
was carried out in magnetized 72/ Z,, orbifold models [32].
Our analysis extends to 7°/Z,, orbifolds as well as T*/Z
orbifolds. (See also Ref. [28].)

Nonfactorizable 7*/Z, orbifolds include T%/Z4 in
T%/Z¢_yy, T*/Zg in T®/Zg_; and T/ Zg_;;, and T*/Z,,
in 7%/Z,_;;. All of them use the SO(8) root lattice.
However, we cannot introduce magnetic fluxes on 7%/Z
and T%/Z,,. Its reason is explained in Appendix A. Also
Appendix A shows zero-modes on a magnetized T%/Z;
orbifold model.

B. Zy twists for T®/Zy

The 6D lattices have the modular symmetry, that is,
the basis transformation of the basis vectors. We find
some of the aforementioned Coxeter and generalized
Coxeter elements can be expressed as Sp(6,Z) modular
transformation.

The symplectic modular group Sp(6, Z) is given by the
set of 6 x 6 integer matrices,

elements is the Z, twist in two dimensions. These root _ [A B } (66)
lattices are shown in Table L. In the table, SU(3)? and "“lc p)
SO(8)P! denote the use of generalized Coxeter elements
including Z, outer automorphisms of SU(3) and SO(8) Lie  satisfying
TABLE 1. T%/Z, orbifolds and torus lattices.
Orbifold Twists (ky, ky, k3)/N Lattice
T°/Z; (1,1,-2)/3 SU@3)
T6/Z, (1,1,-2)/4 (S0(4)2)? x SU(2)?
T9/Z¢_, (1,1,-2)/6 (SU(3))? x SU(3)
Ts/Zs-n1 (1.2,-3)/6 SU3)2 x SU3) x SU(2)%, SO(8) x SU(3)
T%/7, (1,2,-3)/7 SU(7)
T°/Zs (1,2,-3)/8 (SO(8)P)) x 50(4)P!
T%/Zs (1,3,-4)/8 (SO(8)2) x SU(2)>
T%/Z,, (1,4,-5)/12 Eg
T%/Zyy (1.5-6)/12 (SO(8)B)) x SU(2)?
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(67)

0 1
vy =1, J:[ 3}

-1; 0
A, B, C, and D are 3 x 3 integer matrices. The modular

transformation of the complex coordinates 7 and the
complex structure moduli  under y are given by

Q - (AQ + B)(CQ+ D)™, (68)
|

1 0 0] [0

Bi=10 0 of, B,=]0

0 0 0 K

0 1 0] [0

By=|1 0 0|, Bs=10

0 0 0 0

7— (CQ+ D)™z (69)
Generators S, T; (i =1,2,...,5,6) are given by
o 1 1; B;
S:[ 3}, Ti:|:3 }, (70)
-1, O 0 1,
where B; are symmetric matrices given by
0 0] [0 0 0]
0], B;=10 0 0], (71)
0 0] |10 0 1]
0 0] [0 0 17
0 , Bg=|0 0 O (72)
0 | |1 0 0]

We will consider modular S and T; transformations of zero-modes on magnetized T°.
As we will see in the next section, the Z; twist on the SU(7) lattice can be written by ST37,Ts satisfying
(ST3T4Ts)” = 14. The Z,, twist on the Eg lattice can be written by ST,T,T5'TsTg satisfying (ST,T,T5'T5Ts)'? = 1.
In the Sp(6, Z) modular group, we suppose symmetric moduli Q, and one can see that the lattice of 7°/Z, can be found

by Q.

In the following section, we represent lattice vectors €; as following Euclidean basis representation

Then we can find what lattices of 7°/Z,, correspond to root
lattices of Lie algebra.

IV. NONFACTORIZABLE ORBIFOLDS

Here we perform counting of the zero-modes in mag-
netized T°/Z; and T%/Z,, orbifold models.

A. Magnetized T°/Z, orbifold

First, we study zero-modes on the magnetized T°/Z,
orbifold. To realize the orbifold, we focus on the following
algebraic relation:

(ST3T4T5)7 = 16' (74)
This shows that ST37,T5 transformation can be identified
as the Z; twist. Thus, it is useful for constructing the
T%/Z, orbifold. Under the transformation ST;T,Ts, the

TRew; T rRew, T "Rewg T
Rea)4 Rea)2 ReCU5
Rew Rew Rew
L Es= Go=|,_ . (13
Imw, Imaw, Imawyg
Ima)4 Ima)2 Ima)5
L Ima)6 i L Ima)5 i L Ima)3 i

|
complex structure moduli Q and complex coordinates Z

transform as
Q— —(Q+ B3+ B, + Bs)™!

7> —(Q+ By +B,+ Bs)"'Z (75)

Then one can verify that ST;7 475 invariant moduli Q- are
given by

2 1 7 i
—2; 1447y i
W W4 Wg \/7 2+14 \/7
_ _ 1, V7 i 1,3V7;
Q= |wy wy 5| = —5+{7i -7 -1,
Wg W5 @3 i _1 37, _1_V7;
77 PR vl i e vl

where we take the case when det(Im€2;) > 0. This corre-
sponds to the SU(7) root lattice as shown in Fig. 1.
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€1 €s €3 €6 €y €4

FIG. 1. The lattice of T°/Z;.

We note that the shape of flux N is constrained as
follows. First, from the F-term condition (NQ;)T = NQ;,
N is symmetric and parametrized as

Ny — Ny
n3z —nyp |» (77)

N3z — Ny ns3

ny N33 — Ny

N = | n33—nyp ny»

Nnpy — Ny

where n1y, 11,5, and ns3 are integers and we can see them as
independent parameters.

Second, we consider the consistency with the T trans-
formation. As we study in Appendix B 2, the matrix NB
must be symmetric and all of its diagonal components are
even. From

N(B; + By + Bs)

N33 — Ny Ny N33 — Ny
= ny 2n33 — Ny — Ny N3zt ny —ny |,
N33 — Ny N33+ Ny — Ry 2n33 — ny,
(78)
it i1s immediate that
ny=ny=ni =0 (mod2) (79)

must be satisfied. As a result, we find that the background
magnetic flux F is invariant under the Z; twist, and det N is
always a multiple of eight.

We will analyze how many zero-modes with Z; charges
exist under the flux N.

1. The number of zero-modes

Here we analyze the number of zero-modes on magnet-
ized T%/Z; with modular transformation. Noting that
Q; satisfies Q; = —(Q; + B3 + B4 + Bs)~!, zero-modes
behave under the ST;7T,T5 transformation as

llfzjv(97z Q;)
. \/det[—i(§27 + B3 + B4 + B5)]
vdet N

T Ar—1 & 2T Ar— = 2N
% Z e2mil'N lKemK N 1(83+B4+85)KW§(Z’Q7)’ (80)

KeAy

where Ay is defined in Eq. (37). We take a branch \/z > 0
for ¢ > 0. Then, it is found that

\/det[=i(Q; + B3 + B, + Bs)| = e~"/4.  (81)

Then we find the trace of p(ST374T5) as follows:

—ni/4 e .
trp(ST3T4T5) = Z gmeTN 1(13+%(B3+B4+B5))K.

~ Jdet N *

KeAy

(82)

From numerical calculation in the region |n;;| < 400, we
obtained only three values of trp,

tp = —1,+1, —\/7i. (83)

On the other hand, trp can be expressed as

6
trp = Z nyk, y = 27/, (84)
k=0

where n; denotes the number of zero-modes which
corresponds to the Z, eigenvalue y*. Note that we also
have > % n, =det N =8¢. In the simple case, the
modes with y° correspond to the Z, invariant states.
However, we may embed the geometrical twist into the
gauge sector. Then, which state with y* can survive through
the Zy projection depends on such gauge embedding.
First, we discuss the case when trp = —/7i. One can
find that [ng, ny, ..., ns, ng] = [1,0,0,2,0,2,2] reproduces
trp = —/7i. Other possibilities are given by increasing
each n, by m € Z* because > ¢_;y* = 0 holds. That is,
[ng,ni,...,ns,ng| = [1+m,m,m,2+m,m,2+m,2+mj.
As a result, det N is increased by 7m and we also observe
that the minimal degeneracy number is given by n, n,, and
n4 which are equal to m. Now, recall the fact that det N is a
multiple of eight. We have the following equation:

8 =T7+Tm="Tm+1). (85)

Since 7 and 8 are coprime, m + 1 must be a multiple of
eight. Thus we obtain possible values of m as

m="7,15,.... (86)

One can see that there are at least seven generations
when trp = —/7i.

Next we discuss the case tr p = 1. The first candidate is
clearly [ng, ny, ...,ns,ng] = [1,0,0,0,0,0,0] and the next
one is [ng, ny,...,ns,ng| = [2,1,1,1,1, 1, 1]. By a similar
discussion as for the case trp = —/7i, we find

det N=8/=1+Tm=7(m—1)+8. (87

Then m — 1 must be a multiple of eight,
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m=19,.... (88)

We can see that the minimal generation numbers are 1, 9,
and so on. Therefore, we cannot obtain three-generation
models in the case of trp = +1.

Similarly, we cannot find three-generation models
when trp = —1.

In conclusion, there is no three-generation model on
magnetized T°/Z; in the absence of Wilson lines and
Scherk-Schwarz phases.

B. Magnetized T°/Z,, orbifold

In this subsection, we focus on magnetized T°/Z,,
orbifold, whose twist is constructed by the following
algebraic relation:

(ST1T2T§1T5T6)12 - 16’ (89)
In the following, we denote ST T, T3 ' TsT¢ as G. We adopt

the following complex structure moduli Q = Q;, which are
invariant under the G transformation

1_V3; V3 1, V3;
L 5 -5+ %1

Qu=| LBi 18 1150 (90)
1, V3 1, V3;: 1 3.
—2t%! —2t%6!l 27%!

One can verify that this 7°/Z, lattice corresponds to the
E¢ root lattice as shown in Fig. 2.

The shape of the flux N is constrained. First, the F-term
condition imposes a constraint, (NQ;,)7 = NQ,,. We also
require the invariance of the flux under G since the flux
should be invariant for the Z;, twist. Then the flux is
symmetric. Also this includes the consistency with 7 =
T\T,T5'TsTs which demands that N(B, + B, — B; +
Bs + Bg) is symmetric and all of its diagonal elements
are even. One can find that fluxes of the form

6
D (&)
i=1

-

€1 54 53 55 €,

FIG. 2. The lattice of T°/Z,,.

ny Ny ns3
N=|np ny n3 (91)
ni3 nyz Nyt np =203

satisfy all requirements provided n;; =n, =n;3 (mod 2).
It is obvious that G? can be regarded as a Z twist. Also
we have

G = ()0 = (") = (G') = (G =15, (92)

We will use this fact to count the number of zero-modes.

1. Representation of modular transformation
of zero-modes

Modular transformation of the wave function on mag-
netized 7°/Z,, is written as

V&I, + B)]
vdet N
« Z eZm'jTN’ll? enil?TN*IBI?W]I?(J(Z’ Q).

KeAy

i (QZ, Q) =

(93)
where B = B| + B, — B3 + Bs + Bg. Here the representa-
tion itself is written by indices K . and I_fz,

_z;

e 4

/)K]K2<G> = \/ﬁ

Thus, a trace of the representation p(G) is given by

27K INT'K, ,in(KIN'BK,) (94)

zi

e 4 2T a— =
L Z iK' N7 (1;+B/2)K (95)

KeAy

tp(G) =

Then we immediately see the following relation of tr
p(G") from the property of modular transformation:

_zi,

n e
trp(G ) = 7(det N)n/2

x>

KiK. . K,eNy

27 (KINT Ky + KN~ K+ + K N K )

. nRINBR -+ RIN1BR,) (%)

2. Zero-modes on magnetized T®/ 71,

We show how to count zero-modes with Z;, charges. We
denote the number of degenerated zero-modes correspond-
ing to the Z;, eigenvalues e (k=0,1,...,11 by n;. Note
that the summation of all the degeneracy numbers is equal
to det N,
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TABLE II. The number of zero-modes on magnetized T°/Z,,.

det N 4 8 12 16 20 24 24 28 32 32 36 36 40
trp(G) -1 1 V3 -l 1 YT B . 1 1 -3 -1 -
trp(G?) 1 -1 —V/3i 1 -1 —/3i 1 1 -1 -1 —\/3i 1 1
trp(G3) 2 4 6 8 10 12 2 14 16 4 18 2 20
trp(G*) 1 -1 J3i 1 -1 J3i -3 1 -1 -l 3 -3 1
trp(G®) 4 8 12 16 20 24 4 28 32 8 36 4 40

ng 1 2 4 5 6 2 7 8 4 9 10

n 0 0 0 0 0 0 2 0 0 2 0 0

ny 0 1 0 1 2 1 2 2 2

ns 0 0 0 0 0 0 1 0 0 2 0 2 0

ny 1 2 4 5 6 7 8 4 9 4 10

ns 0 0 0 0 0 0 2 0 0 2 0 0

ne 1 0 1 2 1 2 2 2 2 4

1y 0 0 0 0 0 0 2 0 0 2 0 0

ng 1 2 4 5 6 7 8 4 9 4 10

ngy 0 0 0 0 0 0 1 0 0 2 0 2 0

1o 0 1 2 1 2 2 2 4

ny 0 0 0 0 0 0 2 0 0 2 0 0

1 trp(G?) = Z ny + et Z g+ e Z ny
det N = Z M. (97) k=0(mod 6) k=1(mod 6) k=2(mod 6)
k=0
- Z nk—i—e%" Z nk—l—e%ﬂ" Z ny,

Next we consider relations between trp(G") and coeffi- k=3(mod 6) k=4(mod 6) k=5(mod 6)
cients n;. Since G'? = 14 and trp(G) is the summation of (99)

p(G)’s eigenvalues, we find

trp(G?) = Z n+i Z ny

1

trp(G) = Z nyesi. (98) k=0(mod 4) k=1(mod 4)

=0 - Y m-i Y me (100

We can represent trp(G") as linear combinations of n; as k=2(mod 4) k=3(mod 4)
TABLE III.  Continuation of Table II.
det N 44 48 52 52 56 60 64 64 68 72 72 72
trp(G) 1 —\/3i -1 -1 1 —\V/3i -1 -1 1 —V/3i 1 —/3i
trp(G?) -1 —/3i 1 1 -1 —/3i 1 -1 —V/3i -1 —\/3i
wp(GY) 22 24 26 2 28 30 32 34 36 4 6
trp(G*) -1 V3i 1 1 -1 3 1 1 -1 3i 3 —3/3i
wp(GS) 44 48 52 4 56 60 64 16 68 72 8 12
ng 11 12 13 5 14 15 16 8 17 18 8 8
n 0 0 0 4 0 0 0 4 0 0 5 4
n, 4 4 4 5 4 5 5 6 5 6 6
n3 0 0 0 4 0 0 0 4 0 0 6 5
ny 11 12 13 5 14 15 16 8 17 18 7 7
ns 0 0 0 4 0 0 0 4 0 0 5 6
g 4 5 5 4 5 6 6 5 6 6 6
ny 0 0 0 4 0 0 0 4 0 0 5 4
ng 11 12 13 5 14 15 16 8 17 18 7 9
ngy 0 0 0 4 0 0 0 4 0 0 6 5
Mo 4 5 4 4 5 6 5 5 6 7 6 6
ni 0 0 0 4 0 0 0 4 0 0 5 6
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trp(G*) = Z nk—l—e“ Z ny
k=0(mod 3) k=1(mod 3)
+ef Y oy (101)
k=2(mod 3)
trp(G®) = = > ome  (102)
k=0(mod 2) k=1(mod 2)

Then one can obtain the number of zero-modes on
magnetized 7°/Z,. Here we conduct numerical calcula-
tions in the region |n;| < 400, and Tables II and III show
the results with the F-term condition.

V. THE D-TERM CONDITION

In this section, we study the D-term condition by
computing 4D scalar mass spectrum. Three-generation
models satisfying the F-term condition were discussed
in Sec. IV. However, if tachyonic-modes appeared in the
models, we would treat the unstable vacuum. If the model
satisfies the D-term condition, it is stable and phenomeno-
logically attractive.

We have introduced 3 x 3 integer flux N satisfying the
F-term condition (NQ)” = NQ. Thus, we have the follow-
ing background flux F:

F = z[N"(ImQ)™"];;(idz" A d7/) = Fii(idZ' A dZ7),

(103)

where inzj = szzi.

We analyze the mass spectrum of 4D scalar modes
resulting from the magnetized T® compactification. When
NImQ > 0, we have confirmed that the wave functions in
Eq. (34) are eigenstates of the Laplacian on T°. Their
eigenvalue is equal to a trace of (2%)2 [NT(ImQ)~!] which
corresponds to the lowest energy, i.e., k3 in Eq. (56). Hence,
the lightest 4D scalar mode is given by their linear
combination. We have shown the mass squared matrix
of the 4D scalar modes in Eq. (64) where (G)®. =

7'
iFi (=

iF ). We find that the lightest scalar mode
corresponds to the eigenvector of the following mass

squared matrix M? with the smallest eigenvalue,
4z [-A O

M=A+—o 104

i (27R)? { o A} (104

Here, O is 3 x 3 zero matrix and A is 3 x 3 real-symmetric
matrix defined as

[INT(ImQ)~'],;; [NT(ImQ)~'];, [NT(ImQ)~'] 5
A= | [NT(ImQ)"];, [NT(ImQ)™'],, [NT(ImQ)™']5 |,
[INT(ImQ)~"];5 [NT(ImQ)~'],; [N (ImQ)~']55
(105)
and A = 2”R ez 2 [N (ImQ)~'] ;.

We therefore obtain the D-term condition from eigen-
values of the above matrix. Since real symmetric matrices
have real eigenvalues and are diagonalizable using orthogo-
nal matrices, one can diagonalize mass matrix M? as
follows:

M? = (272;;)2 (A + 4o+ 43)
- -
_12
n ¥, —A3
(27R)? A4
A
A3

(106)

We note that 4; > 0 (i = 1, 2, 3) is satisfied because of the
positive definite condition N7 (ImQ)~! > 0. The D-term
condition is that the smallest eigenvalue of M? is zero.
That is, if the largest eigenvalue 4; is equal to the
summation of the rest eigenvalues 4;, A, or 4; = 4; + Ay,
the lightest mode is identified as the superpartner of the
chiral fermion zero-modes. If the eigenvalue is negative
corresponding to a tachyonic-mode, the system is unstable
and there is no supersymmetry.

On the factorizable T® = T? x T3 x T3, the D-term
condition can be satisfied by tuning ratios of areas of T?
[20,44]. However, we have no such free parameter in
nonfactorizable T°. That leads to severe constraints in
models.

In the next subsection, we discuss three-generation
models in magnetized T°/Z; and T°/Z,, satisfying both
the F- and D-term conditions, hence phenomenologically
attractive.

A. 4D N =1 SUSY and magnetized T°/7,

We perform numerical calculations to check whether
there exists a model such that the D-term condition is
satisfied. In the region |n;;| < 400 and |det N| < 1.0 x 10'°,
we find there are no such models except for the uninterest-
ing case N = O, where O denotes the 3 X 3 zero matrix.
Therefore, the magnetized 7°/Z; model seems not suitable
for the realization of realistic models not only because it
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cannot reproduce three generations, but we do not find any
D-flat models.

B. 4D N =1 SUSY and magnetized T7°/7,,

We obtain three-generation models satisfying both the
F- and D-term conditions.
When flux N takes the following values:

-5 13 3
N=[13 -5 3|, (107)
33 2

the D-term condition is satisfied. We find that det N = 36,
trp(G) = trp(G?) = —V/3i, trp(G?) = 18, trp(G*) = V/3i,
trp(G®) =36, and the numbers of zero-modes are
[ng,ny,...,ny] =19,0,2,0,9,0,3,0,9,0,4,0].

Also when the flux is

(108)

the D-term condition is satisfied. We find that det N = 12,
tp(G) = p(G?) = =V/3i, up(G*) =6, up(G*) = V/3i,
trp(G®) = 12, and the numbers of zero-modes are
[ng,ny,...,ny;] =[3,0,0,0,3,0,1,0,3,0,2,0].

VI. CONCLUSION

We have studied the zero-modes of nonfactorizable
T%/Z, orbifold models with background magnetic flux.
We have classified zero-modes with Z charges in magnet-
ized T/Zy models by Sp(6,Z) modular transformation.

We have focused on degenerated fermion zero-modes
with the chirality (+,+,+). Corresponding zero-mode
wave functions are normalizable, if NImQ is positive-
definite where N and Q are symmetric fluxes and complex
structure moduli, respectively.

Our results are important to check whether three-gen-
eration models in the effective field theory exist or not
systematically. We have constructed magnetized 7°/Z,
twisted orbifolds by generators of Sp(6, Z) and symmetric
flux N. By modular transformation of zero-modes and its
representation, we can classify how many zero-modes with
Zy charges exist on each sector.

For T%/7Z,, we have not found any three-generation
models when tr p is equal to either one of +1, —1, or —v/7i.
This result can be proved by properties of number theory.
Therefore, if tr p could take no other values than the
above ones, it implies that the magnetized 7°/Z; model is
not suitable for realizing three-generation models in four-
dimensional effective field theory. In addition, we have
never found any solutions when the models have no
tachyonic-modes.

For T°/Z,,, on the other hand, we have found some
three-generation models. The F-term condition is satistied
in three-generation models when a determinant of flux N is
from 12 to 48. However, the D-term SUSY condition is
satisfied when det N is only 12 or 36 and N are particular
values. It means that there are three-generation models
without tachyonic-modes.

In conclusion, we have seen that a few three-generation
models can be realized on magnetized nonfactorizable
T®/Zy orbifolds. We have only used zero-modes with
the chirality (+, +, +), but there are zero-modes with other
chiralities such as (+, —, —). Zero-modes with other chir-
alities have different wave functions, and such analysis is
nontrivial. We need those wave functions to write Yukawa
couplings in 4D low-energy effective field theory. Such
studies on other chiralities are beyond our scope, and we
would study them elsewhere including realization of
fermion masses and mixing angles.
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APPENDIX A: T4/Zy

In this appendix, we study nonfactorizable T*/Z,
orbifolds with background magnetic flux.

1. Zy twists for T4/Z,,

The 4D lattices have the modular symmetry, Sp(4, Z).
Some of the Coxeter and generalized Coxeter elements can
be realized by Sp(4, Z) transformation.

Generators of Sp(4,Z) are given by

o I L B
S:[ 2], T,-:[2 ] (i=1,23), (Al
-, 0 0 I

where B; are 2 x 2 symmetric matrices defined by

RS

Referring to Table I, we may expect to realize the Z¢, Zs,
and Z,, orbifolds with the SO(8) Lie root lattice. However,
we succeed in describing only the Zg in terms of Sp(4, Z)
as discussed in the following subsections.

2. T*/Zg orbifold

We consider the number of zero-modes on magnetized
T*/Zg [28] by the following algebraic relation

(ST1T51T3_1>8 - 14. (A3)
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The invariant moduli €g under the transformation

ST\ T;'T3" satisfy

—(Qg + By =B, — B3)™' = Q. (A4)
One of the solutions Qg € H, is given by
1 i 1
R + — Y
2 2
Q5 = | " 1 i (AS)
2 LR

Flux N is constrained by the F-term condition to
the form

np—n,

N:{nl 2

no—n
2 na

], n=n, (mod2). (A6)
Therefore, N is ST\ T 1T3‘ I invariant. Furthermore, for the
consistent transformation of zero-mode wave functions
under 7,75'T3', additional constraints are imposed.
That is, N(B; — B, — B3) is symmetric, and its diagonal
elements are all even. This leads to

nl E}’leO or I’l] Eanz (mod 4) (A7)
Then, det N is always a multiple of 4. We obtain the
following ST, T5'T5! transformation of zero-modes:

Wi (Qs7.Q5) =

TN KIN-IBE. K/—
E e2mJ N KemK N BKWf](Zygg),

1
vVdet N 4

KeAy
(A8)

where B — B, — B; is denoted by B. We define Ay as a
lattice spanned by Né,. The representation of the algebraic
structure G = ST, T5'T3! is given by

1 2 Tar—1 g7 o Tar-1pr
27iK," N7'K, ,niK," N"'BK
plgl IZZ(G) :\/ie ! 2e ! I, (Ag)
det N
Trace of the representation p is
1 T ar—1 1 2T ar—1 p
trp = Z eZmK N Keml( N BK. (AIO)
Vdet NF(eAN

Thus, we can obtain the zero-modes on magnetized
T*/Zg that have Z, charges from p" = trp(G"), and
n =1, 2, 4. Table IV shows the zero-modes with det N,
trp(G"), the number of zero-modes in Z sector n;. We see
that there are three-generation models in the range
of 16 < det N < 32.

TABLE IV. The number of zero-modes on magnetized 7%/ Z;.

D p g B ng nm mp ny nyg ons ng m
4 0 0 4 1 0 1 0 1 0 1 0
8 V2i 2 4 2 1 1 1 2 0 1 0
16 3 2 4 2 2 2 o2
2 0 0 4 4 4 4 4
32 \/Ei 2 4 5 4 4 4 5 4
36 0 0 4 5 4 5 4 5 4 5 4

3. T%/7,, orbifold

The generalized Coxeter element Z;, on SO(8) has the
negative determinant. That is, such an element is not
included in Sp(4, Z). Any nonvanishing magnetic fluxes
are not consistent with the Z;, twist. Thus, one cannot
describe the Z, twist by the Sp(4, Z) transformation.

4. T*/Z¢ orbifold

Here we consider the 7%/Z orbifold defined by the
Coxeter element Z; on SO(8). We have not succeeded in
finding the corresponding Sp(4, Z) generator. We discuss
possible reasons behind this.

First, note that classifications of the fixed points of
Sp(4,7) were studied [45]. There are six independent
zero-dimensional fixed points €y € H, being invariant

under the actions of certain subgroups (stabilizer)
of Sp(4,2).
One of the fixed points is given by
1
s(n—1
o= " =0T o )
sn=1) n

where 7 :%(1 +24/2i). The corresponding stabilizer
group is generated by [40,41]

01 0 0 -1 1 1 0
1 00 O 1 0 0 1
h] = B h2 -
0 0 0 1 -1 0 0 0
0 0 1 0 1 -1 0 1
(A12)

They form a finite group of order 48 known as GL(2,3).
One can find that €, in Eq. (A11) is equivalent to €3 in
Eq. (A5) corresponding to the SO(8) lattice. They are
related by the following Sp(4, Z) transformation:

1 0 0 0
Y =Q, 7= 0 -1 00 € Sp(4.2).
1 0 1 0
0 0 -1
(A13)
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This shows that €, also corresponds to the same
SO(8) lattice, but with a different basis choice related
by Sp(4,2).

Then the stabilizer of Qg is also GL(2,3), and its
representation matrices are given by the matrix con-
jugation y~'h;y (i=1, 2). The Z, generator of the
Coxeter element should be included in this stabilizer group
if it is describable by Sp(4, Z) generators. However, by the
following argument we conclude that there is no such
element.

One can compute the values of trace of all 48 elements in
GL(2,3) generated by h; (i =1, 2) in Eq. (A12). One
obtains only even numbers.

On the other hand, the Zg Coxeter element of SO(8) is
given by [6]

0 ! ! 1 : (A14)
Tl -1 -1 0|
-1 -1 0 -1
and its trace is odd, trd;, = —1. Note that the above matrix

representation Eq. (A14) assumes a different basis choice
compared with Eq. (Al1l) although they span the same
SO(8) Lie lattice. If 6, has an expression in terms of
Sp(4,27), there exists L € GL(4, Z) such that

0z, > 07, = L™'6,.L, LeGL(4,2), (A15)
which corresponds to a possible change of basis vectors.
Since the trace is independent of the basis choice, we
suspect that the Z; Coxeter element of SO(8) cannot be
realized by the Sp(4, Z) transformation.

APPENDIX B: MODULAR TRANSFORMATION

We consider modular transformation y € Sp(6, Z). It is
defined as the basis transformation of the lattice A defining
TS ~C3/A. The symplectic modular group Sp(6,7Z) is
composed of 6 x 6 integer matrices y,

A
Y= { € Sp(6,2), (B1)
C
satisfying
0 1
JyT =1, J = . B2
rJy [_13 0} (B2)

We introduce the modular transformation y for the complex
coordinates 7 and the complex structure moduli Q under y
as follows:

Q - (AQ + B)(CQ + D)™,

75 (CQ+ D)7z, (B3)

where A, B, C, and D are 3 x 3 integer matrices and the
generators S, T; (i = 1,2,...,5,6) are given by

0O 1; 1; B;
S = [ } T, = [ } (B4)

-1, O 0 1;

The symmetric matrices B; are given by

[1 0 0] [0 0 0] [0 0 0]
B,=|0 0 0|, B,=|0 1 0f, B3=|0 0 O
|10 0 0 |10 0 0] 10 0 1]
[0 1 0] [0 0 0] [0 0 1]
By=|1 0 0|, Bs=|0 0 1|, Bg=1|0 0 0
10 0 0] 10 1 0] |1 0 0]
(BS)

We will consider modular S and T; transformations of zero-
modes on magnetized 7°.

1. The S transformation
Under the S transformation, 7 =X+ Qy and Q
behave as
St (2.Q) = (3.Qp) = (-Q1Z.-Q7).  (B6)
We see that the complex coordinates, the moduli after the S
transformation, are given by 7y = —Q7!7 = Xy — Q715
and Qg = —Q~!. Also we obtain the transformation of real
coordinates Xg and yg as

Ml
I
|
=1

1

(B7)

5]
|
=1

a. Magnetic flux and the F-term condition
in the S transformation

Magnetic flux on T° is defined by

1
F = Ep”dxl N dXJ

1 ) o1 . .
= E(pxx)ijdxl A dx! + 5 (pyy)ijdyl A dy!

+ (pxy)ijdxi A dyj’ (Bg)
where X! = (x,y'), i = 1, 2, 3 is the real coordinate along
the lattice. Therefore the magnetic flux F after the S
transformation is written by X¢ = —y and yg = X:
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1 . .
F == (p3,),dxi A ducly + ~ 5 (P3y)ydys A dy

h)lh*

+ (pxy)ijdxs A d}’s

1 ) 1
(Pfx)ijdyl Ady' + = 3 (pyy) dx' A dx/

2
+ (p3y)dx' A dy’. (B9)
We therefore find that
pix = pyy’
Piy = Pxxs
P = (py)". (B10)

When we impose the condition p,, = p,, =0, it is clear
that the magnetic flux is consistent with the S trans-

formation. Thus the flux N = 1s transformed under S as

S: N — NT, (B11)

and the F-term condition (NQ)" =
formation is given by

NQ in the S trans-

(NsQg)" = (NT(=@7"))"
= ((Q@")'Ne(-Q ™))"
— N,Qs. (B12)

where we use (NQ)T = NQ and the condition that Q is
symmetric. Therefore, we find that the F-term condition
as well as the magnetic flux is consistent with the S
transformation.

b. The S transformation of zero-modes

Zero-mode with the chirality (4, 4, +) is introduced by
the Riemann-theta function with characteristics

- -1
W (2.Q) = N - iV me)- ‘-Im<f>.e[JN ](NZ,NQ).
0

(B13)

Since fluxes N in our magnetized orbifold models are
constrained to be symmetric, we consider the S trans-
formation under the condition N = N7,

To come to the point, the S transformation of zero-modes

z//,jv (Z,Q) is written as

wl (-7, —Q7) = | /det(N1Q/i)

% Z eZniiTNfll?wg(Z’ Q)
f(eAN
det(—iQ)

2751] N-'K K Q)
vdet N Z
(B14)

where Ay is a lattice spanned by Né; and €; are unit
vectors.

In the following, we present a derivation of Eq. (B14).
From the literature in mathematics [34], it is known that
O(—Q "7, —Q71) = \/det(Q/i)e™ 2. 0(Z,Q)  (BI15)
holds where 7 € C*,Q € H;. Note that we must take a
branch of the square root which returns a positive number if
Q is purely imaginary.

When we replace Z with Z+ N~'J in Eq. (B15), we
obtain

{1y s

STz 0 -

= /det(Q/i) - e 7. 6{71\]—1 ] (zZ,Q). (Bl16)
The following relations were used:

- Ei - !
- |(Z,.Q) =06 i (Z+0.Q),
! - a
] (.Q) = i’ 0d 1201 (Zh) M (ZT+Qd. Q).

(B17)

where @', b € R3.

Now we replace Q € H; with N~'Q,; where N is to be
identified as the flux in magnetized D-brane models. Even
if Q; is not an element of Siegel upper-half plane H5, our
replacement is consistent if N~'Q; € H;. In the following,
since we denote ; by Q, we have

T 1
e[J lg }(—Q‘INZ,—Q‘IN)

e 0
_ -1 L izl (NT'Q)717 2 -1
= /det(N'Q/i) - e 7 < Q[jTN_] } (Z,N7'Q).

(B13)
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The right-hand side of Eq. (B18) can be rewritten as

0 =yt
H[FN—‘](Z’N @)

_ § : il NIQ2 ,2ri" (4+N71J)

‘ez’
_ Z Z o7i(Ni+K)'NT1Q(Na+K) ,2ri(Na+K)" (7+N~17)
KeAy aez?
_ Z e2m‘l_fTN"7Zeni(N5+f<)TN"Q(NEi+f() o2ri(Na+K)'Z
KeAy aez?
N-
— Z o2l N ‘Ke[ _ }(Nz NQ), (B19)
KeAy 0

where the summation variable / is decomposed into two

variables G € 7% and K € 73 as [ = Nd + K. Note that K
are integer points inside the lattice Ay.

Also since we know the F-term condition (NQ)T = NQ
as well as the symmetries N = N, Q7 = Q, we find the
relation [N, Q] = 0. From this relation, Q~'[N, Q]Q~! = 0,
and thus N and Q! are also commutative.

We therefore find that Eq. (B18) can be expressed as

T
o "% [we-ara.v-ary)
= y/det(N~'Q/i) - e/ W' Z 27l NTIK
KeAy
7N
‘9{ (i:’ ](NZ,NQ). (B20)

Next, when we focus on the S transformation on the
phase of zero-modes, we find

S: ein(NZV(ImQ)"Im(Z) _)em’(—NQ"Z)T(Im(—Q"))"Im(—Q"Z)‘

(B21)

Then, when this is multiplied by the exponential factor
¢ (N'Q7'Z i the right-hand side of Eq. (B20), we get
emi(=NQ'Z)! (Im(—Q71)) " Im(-Q7'2) ,inZ" (NT'Q)7'Z

— (in(ND) (Im@Q) ' ImZ_ (B22)

Finally, we find the S transformation of zero-modes as
follows:

oy (-Q7'Z, -

2. The T transformation of zero-modes

Under the T; (i = 1,2, ..., 5, 6) transformation, complex
coordinates 7 and complex structure moduli Q are trans-
formed as

T: (2.Q) =~ (Zr.Qr) = (Z.Q+ B;).  (B24)
Let Z; represent complex coordinates after the 7 trans-
formation, and we omit the index i in this subsection. We
obtain transformation of real coordinates,

-

= (B25)

<l
~

i, = - By,

Therefore, the magnetic flux F after the 7" transformation is

F =2 (pl)ydef A df+ 5 (1)) v A d}

(Pg))i dxy A dyjf

t\)|~ + l\)l'—

1
(i)' i +3 (o) + BpB - (BpLY)

(p/g)B)]ijdxi
(B26)

+ (Bp)(cy))T],;,-dy" A dy +[(p) -

From Eq. (B26), we can see the following transformation
of the components p,,, py,, and p,,:

T
pl(fx) = Pxx»

T T
pg’)’) = pyy + BpxxB + (Bpxy - (Bp/(\f)))T)’

T
Pj(cy) = Pxy — (pxxB) (B27)
Thus, we find that the following constraint is required for
the condition p,, = p,, =0 to be consistent with the T
transformation,

(Bp.y)" (B28)

=B Day-
Noting Dirac’s quantization condition p,, = 2zNT, and
the fact that matrices B in Sp(6, Z) are symmetric, we can

write Eq. (B28) as
(NB)T = NB. (B29)

Then it follows that the F-term condition is consistent with
the 7 transformation

036005-17



KIKUCHI, KOBAYASHI, NASU, TAKADA, and UCHIDA

PHYS. REV. D 108, 036005 (2023)

(N7Q7)" = (Q+ B)'N'
= (NQ)T + (NB)T

(B30)

Next we consider the T transformation of zero-modes. In
the following, we require that all diagonal components of
NB are even, and then we obtain

O(NZ,N(Q + B))

= Z exp(zim? N(Q + B)im + 2zim” N7)
mez?

_ Z enirﬁTNQaﬂanNzem,ﬁTNBrﬁ
mez?

_ Z emim NQin+2zim" Nz | |
mez?

— O(NZ,NQ). (B31)

Here, when we replace complex coordinates 7 with
7+ (Q+ B)N-'TJ, we obtain the following formula:

O(N(Z+ (Q+ B)N-'TJ),N(Q + B))

= O(N(Z + (Q+ B)N-'TJ), NQ). (B32)

Then, by the use of Eq. (B17), we can express it as

e{jrjg_l ] (NZ.N(Q + B))

JIN-

_ e-m’iTN-'Bfg[ 5 }(NZ—F BJ, NQ)

=T
ST T N
— o mI'N IBJQ[JjTB }(NZ,NQ)

(B33)

The phase factor e®(VI'(ImQ)™mZ of zero-modes is

clearly invariant under the 7 transformation. Therefore,
we find the T transformation of zero-modes as follows:

yh(Z.Q+B) =N Byl (Z.Q).  (B34)
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