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Weanalyze the leading andhigher-order quantumelectrodynamic corrections to the energy levels for a single
electron bound in a Penning trap, including the Bethe logarithm correction due to virtual excitations of the
reference quantum cyclotron state. The effective coupling parameter αc in the Penning trap is identified as the
square root of the ratio of the cyclotron frequency, converted to an energy via multiplication by the Planck
constant, to the electron rest mass energy.We find a large, state-independent, logarithmic one-loop self-energy
correction of order α α4cmc2 lnðα−2c Þ, wherem is the electron rest mass and c is the speed of light. Furthermore,
we find a state-independent “trapped” Bethe logarithm. We also obtain a state-dependent higher-order
logarithmic self-energy correction of order α α6cmc2 lnðα−2c Þ. In the high-energy part of the bound-state self-
energy, we need to consider terms with up to six magnetic interaction vertices inside the virtual photon loop.
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I. INTRODUCTION

Relativistic and quantum electrodynamic corrections to
the quantum cyclotron energy levels in a Penning trap are
of essential importance for the determination of funda-
mental physical constants [1–6]. In a recent article [7],
higher-order relativistic corrections for the energy levels
in a quantum cyclotron have been analyzed. Here, our
goal is to supplement the preceding analysis [7] by a
calculation of the intricate and notoriously problematic
quantum electrodynamic (QED) corrections to the quan-
tum cyclotron energy levels inside the Penning trap.
In our calculations, we use expansion parameters which
allow us to initiate a systematic classification of the
correction terms, in terms of a semianalytic expansion in
terms of a “trapped fine-structure constant αc,” and a
cyclotron scaling parameter ξc, as well as an axial scaling
parameter ξz. These parameters replace and supplement
the QED coupling parameter, which is the fine-structure
constant α.
As already anticipated, the effective coupling parameter

in a quantum cyclotron could be identified as the maximum
of the cyclotron (c) and the axial (z) coupling constants.
In particular, one may identify the coupling parameters (in a
unit system with ℏ ¼ c ¼ ϵ0 ¼ 1)

αc ¼
ffiffiffiffiffiffi
ωc

m

r
; αz ¼

ffiffiffiffiffi
ωz

m

r
; ωc ¼

jejBT

m
; ð1Þ

which depend on the cyclotron frequency ωc, and the
axial frequency ωz. The cyclotron frequency [3] is ωc ¼
jejBT=m, where e is the electron charge, jej ¼ −e is the
(positive) elementary charge, BT is the magnetic field in the
Penning trap, and m is the electron mass.
The hierarchy of typical frequencies in a Penning

trap [3,7] implies that the magnetron frequency ωm is
much smaller than the axial frequency ωz. Following the
conventions of Ref. [3], we define the corrected cyclotron
frequency as ωðþÞ and we define the corrected magnetron
frequency as ωm ¼ ωð−Þ, where

ωðþÞ ¼
1

2

�
ωc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q �
; ð2aÞ

ωð−Þ ¼ ωm ¼ 1

2

�
ωc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q �
≈

ω2
z

2ωc
: ð2bÞ

The magnetron frequency is, typically, much smaller than
the cyclotron frequency ωc. One defines the generalized
coupling parameter

αm ¼
ffiffiffiffiffiffiffi
ωm

m

r
ð3Þ

for the magnetron frequency. We assume the following
hierarchy to be fulfilled (see Ref. [3]):

αm ≪ αz ≪ αc: ð4Þ
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We also define scaling parameters ξz and ξm by

αz ¼ ξzαc; αm ¼ ξmαc; ð5Þ

ξm ¼ 1ffiffiffi
2

p
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ξ4z

q �
1=2

≈
ξ2zffiffiffi
2

p : ð6Þ

The hierarchy of the frequencies allows us to perform a
systematic expansion in terms of αc, ξz, and ξm, as well as
the coupling parameter of quantum electrodynamics, that
is, the fine-structure constant α. The expansion in ξm gives
rise to an expansion in ξ2z , and we can henceforth use the
parameter ξz in order to universally describe the parametri-
cally suppressed effects due to both the axial as well as
magnetron motions.
A remark is in order, concerning the anticipated results

of our studies. It is well known [8–10] that the leading
logarithmic quantum electrodynamic self-energy correction
to hydrogen energy levels is proportional to (in natural
units, ℏ ¼ c ¼ ϵ0 ¼ 1, which are used here)

ΔEQED ∼ αðZαÞ4m ln½ðZαÞ−2�; ð7Þ

where α is the fine-structure constant, and Z is the nuclear
charge number. We here anticipate that we shall find the
following, analogous scaling for the leading quantum
electrodynamic self-energy correction to quantum cyclo-
tron levels in a Penning trap,

ΔEQED ∼ α α4cm lnðα−2c Þ; ð8Þ

where the coefficient α is due to the absorption and
emission of the virtual photon, and the factors of αc
describe the binding to the trap fields, which is typically
smaller than the coupling parameter α for atoms. It is our
goal to calculate these energy shifts.
This paper is organized as follows. In Sec. II, we present

a brief review of the quantum cyclotron states which enter
our formalism. Vacuum-polarization corrections are negli-
gible for quantum cyclotron states, for reasons outlined in
Sec. III. Self-energy effects are discussed in Sec. IV; these
constitute the dominant radiative corrections for quantum
cyclotron states. Conclusions are reserved for Sec. V.

II. QUANTUM CYCLOTRON LEVELS

In order to understand the quantum cyclotron levels
inside a Penning trap, it is, first of all, necessary to
remember that the kinetic momentum is given by

π⃗T ¼ p⃗ − eA⃗T ¼ p⃗ −
e
2
ðB⃗T × r⃗Þ; ð9Þ

where A⃗T ¼ 1
2
ðB⃗T × r⃗Þ is the vector potential, B⃗T ¼ BT êz

is the magnetic field in the trap, and p⃗ ¼ −i∇! is the kinetic
momentum operator. The kinetic momentum π⃗T enters

the interaction Hamiltonian describing the coupling of the
bound electron (inside the Penning trap) to the quantized
electromagnetic field.
The quadrupole electric field in the trap is attractive

along the z axis and repulsive in the xy plane,

V ¼ Vz þ Vk; ∇!2
V ¼ 0; ð10aÞ

Vz ¼
1

2
mω2

zz2 Vk ¼ −
1

4
mω2

zρ
2: ð10bÞ

The unperturbed Hamiltonian is given as follows:

H0 ¼
ðσ⃗ · π⃗TÞ2

2m
þ V −

e
2m

κσ⃗ · B⃗T: ð11Þ

Eigenstates of the unperturbed Hamiltonian H0 are
described [3] by four quantum numbers: the axial quantum
number k, the magnetron quantum number l, the cyclotron
quantum number n, and the spin projection quantum
number s ¼ �1. These take on the following values:
k ¼ 0; 1; 2;… (axial), l ¼ 0; 1; 2;… (magnetron), n ¼
0; 1; 2;… (cyclotron), and s ¼ �1 (spin). We recall, from
Ref. [7], the energy eigenvalues of H0,

Eklns ¼ ωcð1þ κÞ s
2
þ ωðþÞ

�
nþ 1

2

�

þ ωz

�
kþ 1

2

�
− ωð−Þ

�
lþ 1

2

�
: ð12Þ

It is of note that, in view of the repulsive character of the
quadrupole potential, these eigenvalues are not bounded
from below. We use the conventions of Refs. [3,7], for
the cyclotron lowering and raising operators aðþÞ and a†ðþÞ,

the axial lowering and raising operators az and a†z , and the
magnetron lowering and raising operators að−Þ and a†ð−Þ.
The eigenstates of the unperturbed Hamiltonian are given
as follows:

ψklnsðr⃗Þ ¼
�
a†ðþÞ

�
n

ffiffiffiffiffi
n!

p ða†zÞkffiffiffiffi
k!

p
�
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�
q

ffiffiffiffiffi
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�
: ð13Þ

The orbital part of the ground-state wave function is

ψ0ðr⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð14Þ

The spin-up sublevel of the nth cyclotron ground state, and
the spin-down sublevel of the (nþ 1)st excited cyclotron
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state, are quasidegenerate and of interest for spectroscopy
and determination of the anomalous magnetic moment of
the electron [1,2,4–6].

III. VACUUM POLARIZATION

For atomic bound states, quantum electrodynamic energy
shifts are naturally separated into vacuum-polarization and
self-energy corrections. The vacuum-polarization shift of a
hydrogenic energy level is due to the screening of the
proton’s charge by virtual electron-positron pairs. The closer
the electron is to the nucleus, the less pronounced is the
screening of the bare proton charge, and the stronger is the
(corrected) Coulomb potential. The dominant contribution
to the one-loop effect is described by the Uehling potential
[11]. In a Penning trap, the potential is generated by the trap
electrodes in addition to the axial magnetic field. Hence, the
electron, on its quantum cyclotron orbit, is always suffi-
ciently far away from any other charged particle that the
vacuum-polarization energy shift can be safely neglected.
This statement can be quantified as follows.
The long-range tail of the Uehling potential is given as

follows [12]:

VUðrÞ ≈ −
αðZαÞm
4

ffiffiffi
π

p expð−mrÞ
ðmrÞ5=2 ; r → ∞; ð15Þ

where r is the distance from the nucleus. The one-loop
Uehling correction needs to be compared to the Coulomb
potential,

VCðrÞ ≈ −
Zαm
ðmrÞ ; ð16Þ

leading to the relative correction,

VUðrÞ
VCðrÞ

≈
α

4
ffiffiffi
π

p ðmrÞ3=2 expð−mrÞ; r → ∞: ð17Þ

A typical Penning trap dimension [3] is of the order of
about hri ∼ 1 cm, while the quantity mr is dimensionless
in natural units. When converted to Système International
mksA units, one realizes thatm takes the role of the inverse
of the reduced Compton wavelength of the electron,

mr ¼ r
ƛe

¼ 2.59 × 1012 × R; R ¼ r
1 m

; ð18Þ

where R is measured in meters. For R being on the order of
1 cm, one has mr on the order of 1010. The quantity

expð−mhriÞ ∼ expð−1010Þ ≈ 10−4.3×10
9 ð19Þ

is very small indeed. Its smallness illustrates that, because
of the exponential expression of the one-loop vacuum-
polarization correction to the quadrupole trap potential, the
vacuum-polarization corrections can be neglected. The same
exponential suppression factor expð−mrÞ enters themagnetic

photon exchange [13] which is the basis for the magnetic
field of the trap. Therefore, vacuum-polarization corrections
can be safely neglected for quantum cyclotron levels.

IV. SELF-ENERGY

A. Orientation

Inspired by the formalism pertinent to bound states in a
Coulomb field [10,14], we write the semianalytic expan-
sion of the one-loop bound-state energy shift of a quantum
cyclotron state as follows:

ESE ¼ α

π
m
X
rs

ArsðαcÞr lns ðα−2c ; Þ ð20Þ

where the first subscript of the A coefficients counts the
power of αc, and the second subscript indicates the power
of the logarithm lnðα−2c Þ.
TheArs coefficients are analogous to the coefficients Ars

used in Lamb shift calculations for hydrogenlike systems
(see Sec. 15.4 of Ref. [15]). For the electron in the Penning
trap, the role of the Coulombic coupling parameter Zα is
taken by the cyclotron coupling parameter αc. In Lamb
shift calculations for hydrogenic systems, one scales out a
factor 1=n3 from the coefficients, where n is the principal
quantum number. This reflects on the typical scaling of
quantum electrodynamic energy corrections in hydrogen-
like systems. In the Penning trap, the role of n is played by
the cyclotron quantum number. However, there is a decisive
difference: For the Penning trap, no 1=n3 dependence is
incurred, and in fact, some logarithmic coefficients are seen
to increase with n, not decrease as is typically the case in
Coulombic bound systems. We thus do not scale out 1=n3

in the definition of the Ars coefficients.
The leading self-energy coefficient is seen to beA20, and

is due to the leading Schwinger term [16] in the anomalous
magnetic moment of the electron. Here, we focus on the
coefficients A20, A41, A40, and A61, which constitute the
leading nonvanishing coefficients for a general quantum
cyclotron state. The higher-order nonlogarithmic coeffi-
cients possess an expansion in powers of ξz, e.g., A40 ¼
A40jξz¼0 þOðξzÞ. We here evaluate A20, A41 and A61, and
A40 in the leading order in ξz, and partial results for the
corrections proportional to ξm and ξz. The Bethe logarithm
inside the Penning trap is seen to contribute to A40, albeit
only at order ξz. Indeed, in the leading order in the
expansion in ξz, the Bethe logarithm in the Penning trap
will be seen to vanish. Our result for the Bethe logarithm is
numerically small and, somewhat surprisingly, state inde-
pendent. The contribution of the Bethe logarithm is thus not
visible in any transitions among quantum cyclotron states.
Let us anticipate some results which will be derived in the
following, in order to lay out the work program of our
article. Indeed, we obtain two contributions to the order-ξz
correction to A40, one from a higher-order anomalous
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magnetic moment term, and a second one from the Bethe
logarithm. There might be another contribution to the
order-ξz correction to A40, from the high-energy part,
which we evaluate only to leading order in ξz. The
evaluation of the complete order-ξz correction to A40 will
be left for a future investigation. The dominant state-
dependent correction, in the leading order in ξm and ξz,
is found to be given by the A61 coefficient.
The coefficients A20, A41, A40, and A61, determined

here, constitute the leading nonvanishing coefficients for
the self-energy effect. Coefficients of odd order in αc such
as A31 and A30, as well as A50, vanish. [By odd order, in
general, we refer to an odd integer r in Eq. (20).] A brief
discussion on this point, mostly based on the high-energy
part discussed in Sec. IV C, is in order. TheA20 coefficients
are a consequence of the Schwinger term [16] which enters
at lower order because the main binding potential involves
the magnetic trap field. Operators in the high-energy part
can be expanded in the (vector)potential Dirac operator ΓT
defined in Eq. (41) and in the momentum operators. For
quantum cyclotron states, momentum and potential oper-
ators (coordinates) can be expressed in terms of raising and
lowering operators of the cyclotron and magnetron quan-
tum numbers [7], and hence, all of these matrix elements
are convergent (in arbitrarily high orders in αc). Because of
symmetry reasons, matrix elements which would otherwise
lead to an odd power of αc vanish. An example would be
terms of third order in the momentum operators, whose
matrix element on the reference state vanishes due to parity.
[Odd orders in αc would otherwise correspond to half-
integer powers in ωc, in view of Eq. (1).]
The terms A41 and A40 are generated by a mechanism

much in analogy to those at work in Coulombic bound
systems (see Chapters 4 and 11 of Ref. [15]). Finally, one
might ask why the term A50 vanishes for quantum cyclo-
tron levels in a Penning trap, while the corresponding term
A50 for Coulombic systems is nonvanishing (see Chapter 15
of Ref. [15] and Ref. [17]). A closer inspection reveals that
the emergence of the A50 term (for radially symmetric S
states in Coulombic systems) is caused by the singularity
of the Coulomb potential and of the hydrogen eigenstates.
The singularity of the Coulomb potential eventually leads
to the divergence of matrix elements hp⃗6i when evaluated
on reference S states, which prevents the direct expansion
of the high-energy part of the self-energy (Sec. IV C) in
powers of momentum operators beyond fourth order. For
quantum cyclotron states, however, the potential has no
singularity at the origin, and hence, matrix elements of
arbitrarily high orders in the momenta are convergent. No
term of fifth order in αc is generated (A50 ¼ 0).

B. Form factor treatment

In typical cases, the self-energy shift of a bound
electronic state is the sum of a high-energy part (due to
virtual photons of high energy), and a low-energy part

(due to virtual photons whose energy is of the same order
as the quantum cyclotron binding energy). The matching
of the high- and low-energy parts is quite problematic
(see footnote 13 on page 777 of Ref. [18]). One may
complete the matching based on photon mass or photon
energy regulations, or in dimensional regularization (see
Chapters 4 and 11 of Ref. [15]). In many cases, the high-
energy part can be handled on the basis of a form-factor
approach [see, e.g., Eq. (3) of Ref. [19]], provided the
photon mass and photon energy cutoffs are properly
matched [see, e.g., Eqs. (32) and (33) of Ref. [19]].
In the case of a Penning trap, one needs to reformulate

the effective Dirac Hamiltonian obtained from a form-
factor treatment, because there is both a nonvanishing
vector potential, as well as an electric quadrupole potential,
present in the trap. Let us discuss in some detail. We start
with the structure of the electromagnetic field-strength
tensor, in a component-wise representation,

Fμν ¼

2
6664
0
BBB@

0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

1
CCCA
3
7775
μν

: ð21Þ

For the Dirac matrices, we use the Dirac representation,
where

γ0 ¼ β ¼
�
12×2 0

0 −12×2

�
; γi ¼

�
0 σi

−σi 0

�
: ð22Þ

The σi are the Pauli matrices, and Latin indices are spatial
(i ¼ 1, 2, 3). The spin matrices are defined as
σμν ¼ i

2
½γμ; γν�, and the Dirac α and Σ matrices are

αi ¼
�

0 σi

σi 0

�
; Σi ¼

�
σi 0

0 σi

�
: ð23Þ

One derives the relation

σμνFμν ¼ 2iα⃗ · E⃗ − 2Σ⃗ · B⃗: ð24Þ
The replacement for the γμ matrix at the vertex (Greek
indices are spatiotemporal, μ ¼ 0, 1, 2, 3) is (see
Chapter 10 of Ref. [15])

γμ → γμF1ðq2Þ þ i
σμν

2m
qνF2ðq2Þ: ð25Þ

Here, F1 is the Dirac form factor, while F2 is the Pauli form
factor. In coordinate space, the interaction Hamiltonian is

obtained from the replacement q2 → −q⃗2 → ∇!2
, qν → i∂ν,

and results in

eγμAμ → F1ð∇!2ÞeγμAμðr⃗Þ þ F2ð∇!2Þ e
2m

ðiα⃗ · E⃗ − Σ⃗ · B⃗Þ:
ð26Þ
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The interaction Hamiltonian of quantum electrodynamics
is jμAμ ¼ eψ†γ0γμAμψ . So, the contribution to the
Hamiltonian, in the space of the scalar product equipped
with ψ and ψ†, is obtained from the expression eγμAμ,
via multiplication by γ0. Hence, the modified Dirac
Hamiltonian reads as

HR ¼ α⃗ · p⃗þ βmþ F1ð∇!2ÞW
þ F2ð∇!2Þ e

2m
ðiγ⃗ · E⃗ − βσ⃗ · B⃗Þ;

W ¼ eγ0γμAμ ¼ eαμAμ; ð27Þ

We now consider a vector potential Aμ ¼ ðA0ðr⃗Þ; A⃗ðr⃗ÞÞ,
where A0ðr⃗Þ ¼ Φðr⃗Þ is the quadrupole potential of the
Penning trap and A⃗ðr⃗Þ ¼ A⃗Tðr⃗Þ ¼ 1

2
ðB⃗T × r⃗Þ is the vector

potential corresponding to the magnetic field of the trap.
One can rewrite the radiatively corrected Hamiltonian as

HR ¼ α⃗ ·
h
p⃗ − eF1ð∇!2ÞA⃗Tðr⃗Þ

i
þ βmþ F1ð∇!2ÞeA0

Tðr⃗Þ

þ F2ð∇!2Þ e
2m

h
iγ⃗ · E⃗ðr⃗Þ − βΣ⃗ · B⃗ðr⃗Þ

i
: ð28Þ

This expression can alternatively be written as the sum of
a covariantly coupled tree-level Hamiltonian HT and a
form-factor correction HFF,

HR ¼ HT þHFF;

HT ¼ α⃗ · π⃗ þ βmþ eA0
Tðr⃗Þ;

HFF ¼ ½F1ð∇!2Þ − 1�eA0
Tðr⃗Þ − ½F1ð∇!2Þ − 1�eα⃗ · A⃗Tðr⃗Þ

þ F2ð∇!2Þ e
2m

½iγ⃗ · E⃗ðr⃗Þ − βΣ⃗ · B⃗ðr⃗Þ�: ð29aÞ

For the nonrelativistic momenta typical of an electron in a

Penning trap, one can expand the Dirac form factor F1ð∇!2Þ
in terms of its argument. The quadrupole potential of the
trap is, according to Eq. (10),

V ¼ eA0
Tðr⃗Þ ¼

1

2
mω2

z

�
z2 −

1

2
ðx2 þ y2Þ

�
; ∇!2

V ¼ 0:

ð30Þ

So, we can replace

½F1ð∇!2Þ − 1�eA0
Tðr⃗Þ ¼ 0; ð31Þ

by expansion of the form factor in powers of its argument.
Also, one has

A⃗Tðr⃗Þ ¼
1

2
ðB⃗T × r⃗Þ; ∇!2

A⃗Tðr⃗Þ ¼ 0: ð32Þ

Hence, corrections induced by the Dirac form factor vanish
for a particle bound into a Penning trap.
The only contribution which can be evaluated based on

the form-factor treatment concerns the contribution of the
anomalous magnetic moment of the electron to the self-
energy. It can be evaluated based on a Foldy-Wouthuysen
transformation [7] of the radiatively corrected Dirac
Hamiltonian given in Eq. (11.40) of Ref. [15]. One starts
from Eq. (28), approximates [20]

F2ð0Þ ≈ κ ¼ α=ð2πÞ; ð33Þ

and performs a number of unitary transformations in order
to disentangle the particle degrees of freedom from the
antiparticle degrees of freedom. After the Foldy-Wouthuysen
transformation, one gets two contributions to the
Hamiltonian which are proportional to the electron anoma-
lous magnetic moment. The relevant terms from Eqs. (82)
and (87) of Ref. [7] can be summarized in the radiatively
corrected anomalous-magnetic moment Hamiltonian Hκ,

Hκ ¼ −
eκ
2m

σ⃗ · B⃗T þ
κ

2m2
σ⃗ · ð∇!V × π⃗TÞ

þ eκ
4m3

ðσ⃗ · π⃗TÞðB⃗T · π⃗TÞ: ð34Þ

In view of the occurrence of the scalar product B⃗T · π⃗T ¼
BTpz, the expectation value of the effective HamiltonianHκ

contains terms which are linear and quadratic in the axial
frequency ωz. The energy perturbation is obtained as

hψklnsjHκjψklnsi ¼ Eð0Þ
HEP þ Eð1Þ

HEP; ð35Þ

where

Eð0Þ
HEP ¼ 2κsωc ð36Þ

is the leading term due to the anomalous magnetic mo-
ment, and

Eð1Þ
HEP ¼ −

sκωcωz

4m

�
kþ 1

2

�

−
ω2
zsκ
2m

ωðþÞ
�
nþ 1

2

�
þ ωð−Þ

�
lþ 1

2

�
ωðþÞ − ωð−Þ

: ð37Þ

The two terms after the equal sign are proportional to ξ2z
and ξ4z , respectively.

C. High-energy part

From Lamb shift calculations for hydrogenic bound
states [10,14], we know that in typical self-energy calcu-
lations, the low-energy part, which involves the Bethe
logarithm, has an ultraviolet divergence. This ultraviolet
divergence is compensated by an infrared divergence of the
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high-energy part. Furthermore, for the one-loop self-energy
of a hydrogenic bound state, the infrared divergence of the
high-energy part can be obtained on the basis of an effective
potential proportional to the infrared slope of the Dirac
form factor (see Chapters 4 and 11 of Ref. [15]).
However, we have shown that the Dirac form-factor

induced one-loop correction to the energy of a quantum
cyclotron state vanishes. This leaves the question of the
correct treatment of the high-energy part of the bound-
electron self-energy in the quantum cyclotron state.
From bound-state calculations for an electron in a

Coulomb field [10], we know that an appropriate treatment
of the high-energy part consists in the expansion of the one-
loop self-energy operator in terms of the binding field.
In the Feynman gauge, the bound-electron self-energy

for a quantum cyclotron state can be written as [see
Eq. (15.17) of Ref. [15]]

ΔESE ¼ e2
Z
CF

d4k
ð2πÞ4i

e2gμν
k2

	
Ψ̄




γμ 1

=π − =k −m
γν




Ψ

�
− hΨ̄jδmjΨi: ð38Þ

Here, CF specifies the Feynman integration contour for
the photon energy integration. The metric is gμν ¼
diagð1;−1;−1;−1Þ. The Dirac matrices are used in the
Dirac representation given in Eq. (22). The kinetic-
momentum four-vector is

πμ ¼ ðE; π⃗Þ; π⃗ ¼ π⃗T ¼ p⃗ − eA⃗T; ð39Þ

where π⃗T is defined in Eq. (9). In the high-energy part,
one can expand the Feynman propagator in powers of the
binding vector potential,

1

=π − =k −m
¼ 1

=p − =k −m
þ 1

=p − =k −m
ΓT

1

=p − =k −m

þ 1

=p − =k −m
ΓT

1

=p − =k −m
ΓT

1

=p − =k −m

þ
X∞
n¼3

1

=p − =k −m

�
ΓT

1

=p − =k −m

�
n
; ð40Þ

where

pμ ¼ ðE; p⃗Þ; ΓT ¼ −eγ⃗ · A⃗T ð41Þ

is the Feynman slash of the vector potential of the trap.
The mass counterterm is δm, and the Dirac adjoint is

ψ̄ ¼ ψ†γ0. Alternatively, the use of the Feynman contour
can be enforced by the replacements,

gμν
k2

→
gμν

k2 þ iϵ
;

1

=π − =k −m
→

1

=π − =k −mþ iϵ
; ð42Þ

in the photon and electron propagators. We use the
noncovariant photon energy cutoff ϵ introduced in
Refs. [9,10,14] which cuts off the Feynman contour for
the photon energy integration at an infrared cutoff ϵ which
is of order of the binding energy of the bound state. The
dependence on ϵ disappears when the high- and low-energy
parts are added.
A further difficulty arises: For hydrogenic states, the

operator ΓT is replaced by ΓC ¼ þeγ0A⃗0 ¼ γ0ð−Zα=rÞ,
where Z is the nuclear charge number, α is the fine-
structure constant, and r is the electron-nucleus distance
[10,14]. One notes that ΓT is an odd operator (connecting
upper and lower components of the Dirac bispinor), while
ΓC is an even operator in the bispinor basis [see Eq. (22)].
We must now go into detail and reflect on the Zα
expansion. For hydrogenic bound states, the Coulomb
potential scales as ðZαÞ2m, because r∼a0=Z¼1=ðZαmÞ,
where a0 is the Bohr radius. Hence, every insertion of a
power of ΓC into the diagram adds two powers of Zα.
For the quantum cyclotron state, the expansion works
differently: The role of the coupling parameter Zα is taken
over by αc, defined in Eq. (1). One has the following order-
of-magnitude estimates: BT ∼ α2cm2, r ∼ 1=ðαcmÞ, and
jπ⃗Tj ∼ αcm. However, the matrix element hΨ̄jΓTjΨi is of
order α2cm and thus, of order of the bound-state energy in
the quantum cyclotron, because it connects upper and lower
components of the Dirac bispinor solution [21] (lower
components are suppressed by a factor of αc). Now, while
in one occurrence of the operator ΓT, one connects upper
and lower components, two such operators connect upper
to upper, and lower to lower components, eliminating two
powers of αc from the product. Hence, in order to evaluate
the self-energy of a bound-electron quantum cyclotron
state to order αα4cm, we need to expand the propagator
1=ð=π − =k −mÞ up to fourth order in ΓT, i.e., up to the
four-magnetic-vertex term [term with n ¼ 4 in Eq. (40),
see also Fig. 1].
A further difficulty arises. In Fig. 1, the outer lines

(outside of the self-energy loop) are still fully dressed by

FIG. 1. The figure illustrates the Feynman diagrams contrib-
uting to the high-energy part of the bound-electron self-energy of
a quantum cyclotron state in magnetic interaction vertices. These
correspond to ascending powers of the operator ΓT as delineated
in Eq. (40).
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the external field; for hydrogenic bound states, one therefore
uses the known solutions of the Dirac-Coulomb equation for
the bispinors jΨi and hΨ̄j that enter the diagram (see, e.g.,
Chapter 8 of Ref. [15]). For the quantum cyclotron problem,
the nonperturbative Dirac solutions have recently been
analyzed in Ref. [15]. They read as follows:

Ψðr⃗Þ ¼ N
� ψNRðr⃗Þ

σ⃗·π⃗T
EDþmψNRðr⃗Þ

�
≡ Ψlnsðr⃗Þ; ð43Þ

where ψNR is the nonrelativistic wave functions, and all
symbols will be explained in the following. For the high-
energy part, one notes, in particular, that the relativistic states
are needed for the untransformed Dirac equation, i.e., in the
form of four-component bispinors. Two-component solu-
tions obtained after a Foldy-Wouthuysen transformation (see
Ref. [22]) cannot be used as bra and ket vectors for the fully
relativistic self-energy matrix element in the integrand of
Eq. (38). We use the relativistic states in an approximation
where the axial motion is being neglected, i.e., in the leading
order in the expansion in powers of ξm and ξz. The Dirac
energy is

ED ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωc

m
ð2nþ sþ 1Þ

r
: ð44Þ

The nonrelativistic Landau level in the symmetric gauge can
be separated into a spinor component χs and a coordinate-
space wave function,

ψNRðr⃗Þ ¼ ψlnsðr⃗Þ ¼ ψnlðρ⃗Þχs; ð45aÞ
ρ⃗ ¼ xêx þ yêy; ð45bÞ

χþ1 ¼
�
1

0

�
; χ−1 ¼

�
0

1

�
: ð45cÞ

The nonrelativistic coordinate-space wave function is
given as (see Ref. [15])

ψnlðρ⃗Þ ¼
2−

1
2
ðjn−ljþ1Þffiffiffi
π

p
ã0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðn;lÞ!
maxðn;lÞ!

s �
ρ

ã0

�jn−lj

× ijn−ljLjn−lj
minðn;lÞ

�
1

2

�
ρ

ã0

�
2
�

× eiðn−lÞφ exp
�
−
1

4

�
ρ

ã0

�
2
�
: ð46Þ

Here, ρ ¼ jρ⃗j and φ ¼ arctanðy=xÞ, and we use the asso-
ciated Laguerre polynomials La

nðxÞ in the conventions of
Ref. [23]. The magnetic Bohr radius is

ã0 ¼
ffiffiffiffiffiffiffiffi
mc2

ℏωc

s
ℏ
mc

¼ ℏ
αcmc

¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

jejBT

s
: ð47Þ

The wave functions ψlnsðr⃗Þ fulfill the Dirac equation

HDΨlns ¼ EDΨlns; ð48aÞ

HD ¼ α⃗ · π⃗kT þ βm; π⃗kT ¼ p⃗k − eA⃗T; ð48bÞ

p⃗k ¼ pxêx þ pyêy: ð48cÞ

Finally, we can give the normalization factor as

N ¼
�
1þ 2mENR

ðEDþmÞ2
�
−1
2

; ENR¼
ωc

2
ð2nþsþ1Þ: ð49Þ

The relativistic wave function Ψ given in Eq. (43) is valid
for vanishing axial frequency, i.e., to leading order in the
expansion in the ratio ωz=ωc, and can thus be used in order
to evaluate the high-energy part of the quantum cyclotron
bound-state self-energy in the leading order in the expan-
sion in powers of ωz=ωc.
We employ analogous procedures as those that were

used for the high-energy part of the self-energy of bound
states in hydrogenlike systems [10], and map the algebra of
the quantum cyclotron states onto a computer algebra
system [24]. This enables us to evaluate the matrix elements
of the vertex terms for the high-energy part, where we
employ a noncovariant integration procedure for the virtual
photon integration contour outlined in Sec. 3 of Ref. [14].
The final result for the high-energy part is (almost) state
independent (except for the obvious spin-dependence of the
leading term) and reads

Eð2Þ
HEP ¼

α

π
sωc þ

2α

3π

�
ln

�
m
2ϵ

�
−
13

72

�
ω2
c

m
; ð50Þ

where ϵ is the (noncovariant) photon energy cutoff. The first

term in Eð2Þ
HEP reproduces the leading anomalous-magnetic-

moment correction Eð0Þ
HEP given in Eq. (36).

D. Low-energy part

The appropriate reference state for the low-energy part
is given by the nonrelativistic quantum cyclotron wave
function indicated in Eq. (13). Employing the formalism
outlined in Chapter 4 of Ref. [15], we obtain the expression

ELEP¼
2α

3π

Z
ϵ

0

dkk

	
ψklns





πiTm
�

1

E0−H0−k
þ1

k

�
πiT
m





ψklns

�
;

ð51Þ
where k ¼ ω is the angular frequency of the virtual photon,
ϵ is the photon energy cutoff, and jψi ¼ jψklnsi is the
reference state. The sum over i ¼ 1, 2, 3 is implied by the
Einstein summation convention. We use the relation	

ψ





 πiTm ðH0 − E0Þ
πiT
m





ψ
�

¼ ω2
c

m
; ð52Þ
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which can be shown after expressing the Cartesian com-
ponents of the kinetic-momentum operator in terms
of raising and lowering operators of the cyclotron and
magnetron motions [3,7,21,25,26]. Notably, the matrix
element given in Eq. (52) is state independent. After an
integration over the photon energy, the low-energy part is
obtained as

ELEP ¼
2α

3π

ω2
c

m
ln

�
ϵ

α2cm

�
−
2α

3π
M; ð53Þ

where the coefficient of the logarithmic term contains a
logarithmic sum (Bethe logarithm) over the virtual excita-
tions of the quantum cyclotron state,

M ¼
	
ϕr





 πiTm ðH0 − E0Þ ln
�jH0 − E0j

α2cm

�
πiT
m





ϕr

�

¼
ω3
ðþÞ ln

�
ωðþÞ
ωc

�
− ω3

ð−Þ ln
�
ωð−Þ
ωc

�
mðωðþÞ − ωð−ÞÞ

þ ω2
z

2m
ln
�ωz

ωc

�
. ð54Þ

In the simplification of the expressions, the following
identities prove to be extremely useful:

ωðþÞ − ωð−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q
; ð55Þ

2ωðþÞωð−Þ ¼ ω2
z : ð56Þ

Furthermore, it is very interesting to observe that, in the
limitωz → 0, which impliesωðþÞ → ωc andωð−Þ → ωc, the
Bethe-logarithm matrix element M vanishes. The first
nonvanishing contribution to M appears at order ξ4z.

E. Self-energy shift

After adding the high- and low-energy contributions,
the dependence on the photon energy cutoff ϵ cancels
[see Eqs. (37), (50), and (53)]. The total self-energy shift
ESE, up to order αα4cm, is obtained as follows:

ESE ¼ E½1�
HEP þ E½2�

HEP þ ELEP ¼
X6
i¼1

T i; ð57Þ

where the six individual contributions (together with their
respective expansion in powers of ξz) are

T 1 ¼
α

π
sωc ¼

α

π
α2cms; ð58aÞ

T 2 ¼
α

π
α4cm

�
2

3
lnðα−2c Þ − 2

3
lnð2Þ − 13

108

�
; ð58bÞ

T 3¼−
α

8π

sωcωz

m

�
kþ1

2

�
¼−

α

8π
α4cmsξ2z

�
kþ1

2

�
; ð58cÞ

T 4 ¼ −
α

4π

ω2
zs
m

ωðþÞ
�
nþ 1

2

�
þ ωð−Þ

�
lþ 1

2

�
ωðþÞ − ωð−Þ

¼ α

π
mα4c

�
−
1

8
ð2nþ 1Þsξ4z

�
þOðξ6zÞ; ð58dÞ

T 5 ¼ −
α

3π

ω2
z

m
ln

�
ωz

ωc

�

¼ α

π
mα4c

�
−
2

3
ξ4z lnðξzÞ

�
; ð58eÞ

T 6 ¼ −
2α

3π

ω3
ðþÞ ln

�
ωðþÞ
ωc

�
− ω3

ð−Þ ln
�
ωð−Þ
ωc

�
mðωðþÞ − ωð−ÞÞ

¼ α

π
α4cm

ξ4z
3
þOðξ6zÞ: ð58fÞ

The leading (state-independent) logarithmic contribution to
the Lamb shift of a quantum cyclotron state is

EL ¼ 2α

3π
m
ω2
c

m2
lnðα−2c Þ ¼ 2α

3π
α4cm lnðα−2c Þ: ð59Þ

It is reassuring to see that the only state-dependent
contributions to the QED energy shift of order αα4cm come
from the anomalous magnetic moment.
The final results of our investigations can be summarized

in the following, concise form, encapsulating the leading
coefficients in the self-energy shift given in Eq. (20),

ESE ¼ α

π
α2cmA20 þ

α

π
α4cm½A41 lnðα−2c Þ þA40�; ð60aÞ

where the coefficients are, except for A20, state indepen-
dent, and read as follows in the leading order of the
expansion in powers of ξz,

A20 ¼ s; A41 ¼
2

3
; ð60bÞ

A40 ¼ −
2

3
lnð2Þ − 13

108
þOðξ2zÞ: ð60cÞ

We also evaluate partial results for the dependence of the
A40 coefficient on the axial frequency. These results are
partial, because the treatment of the high-energy part of the
self-energy employed by us is valid only to leading order
in ξz. The corrections evaluated by us add up to the partial
higher-order (h.o.) result

A40jh:o: ¼ A40jξz¼0 −
1

8

�
kþ 1

2

�
sξ2z

þ
�
1

3
−
1

8
ð2nþ 1Þs − 2

3
lnðξzÞ

�
ξ4z þOðξ6zÞ:

ð61Þ
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F. Higher-order logarithmic term

It is somewhat surprising to see that the coefficients A41

and A40 are state independent in the leading order in the
expansion in ξz. Because the axial frequency is small
compared to the cyclotron frequency, this observation
raises the question at which order in the expansion in αc
(i.e., in the main cyclotron frequency expansion parameter)
any state dependence is actually incurred. With some effort,
one can obtain the leading logarithmic terms in the sixth
order in αc from the six-vertex correction (see Fig. 2). We
obtain, after algebraic simplification, the result

δESE ¼ α

π
α6cmA61 lnðα−2c Þ; A61 ¼ 2nþ 1 −

4s
3
: ð62Þ

This result depends on the spin orientation of the reference
state, just like A20, and also grows with the principal
quantum number n, which is the quantum number that
counts the cyclotron excitations. Further details of the
derivation will be presented elsewhere [27].
For hydrogenic bound states, the higher-order coeffi-

cients typically decrease with the principal quantum
number [28]; for quantum cyclotron states, the depend-
ence is reversed. The physical reason for this is that in
hydrogen, higher excited states have lesser expectation
values of the momentum square, and are, in that sense,
less relativistic and subjected to a lesser extent to
relativistic and quantum electrodynamic corrections.
Specifically, in a hydrogenic state with principal quantum
number n, the typical momentum scale is Zαm=n, where Z
is the nuclear charge number, α is the fine-structure
constant, and m is the electron mass. For a quantum
cyclotron state, the momentum scale is αcm

ffiffiffi
n

p
, where αc

is defined in Eq. (1). So, it is natural that A61 increases
with the quantum cyclotron quantum number n.

V. CONCLUSIONS

In this paper, we have discussed the QED energy shifts of
quantum cyclotron levels. We start from a very concise
recap of the main ingredients of quantum cyclotron levels
in Sec. II, with vacuum-polarization effects discussed in
Sec. III and the dominant self-energy shift discussed in
Sec. IV. In the Penning trap, the rotational symmetry of the
hydrogen and atomic bound-state problem is lost, and only

the axial symmetry of the magnetic trap field remains.
Hence, one formulates the bound states using spin-up and
spin-down fundamental spinors [see Eq. (13)], rather than
the spin-angular functions known from atomic bound-state
theory (see Chapter 6 of Ref. [15]).
The kinetic momentum operator π⃗T given in Eq. (9) can

easily be decomposed into raising and lowering operators
for the cyclotron, axial, and magnetron motions. Hence,
one can express the matrix elements of the radiatively
corrected relativistic Hamiltonian given in Eq. (34) in terms
of the quantum numbers k, l, n, and s (see also
Refs. [3,7,21,25,26]). One adds the high-energy contribu-
tion due to the anomalous magnetic moment from Eq. (37),
and the high-energy contribution from the terms with up to
four magnetic vertices, as given in Eq. (50), to the low-
energy term listed in Eq. (53). The complete self-energy
shift of order αα4cm is given in Eq. (57). By considering
diagrams with up to six magnetic vertices (see Fig. 2), as a
significant further result, one obtains a state-dependent,
higher-order logarithmic binding correction of order
α α6cm lnðα−2c Þ in Eq. (62).
A few words on the experimental and phenomenological

relevance of the higher-order binding corrections calculated
here are in order. Because of the scaling with higher powers
of the coupling parameter αc, the effects become more
pronounced in stronger magnetic fields. In current Penning
trap experiments [6], field strengths of the order of
BT ≈ 5.3 T are employed, resulting in ωc≈2π×148GHz
and cyclotron coupling parameter αc ≈ 3.5 × 10−5, which
implies ln½α−2c � ≈ 20.5. With an axial frequency of the order
of ωz ≈ 2π × 114 MHz, one has ξz ≈ 0.028.
The higher-order one-loop binding corrections to the

quantum cyclotron energy levels calculated here scale as
follows. We have in the fourth order in αc, from Eq. (60a),

δEð4Þ ¼ α

π
α4cm½A41 lnðα−2c Þ þA40�; ð63Þ

where the coefficientsA41 andA40 are state independent in
the leading order in the expansion in ξz [see Eqs. (60b)
and (60c)]. Quantum cyclotron levels are displaced from
each other by an energy ωc ¼ α2cm. Hence, the relative shift
of the cyclotron frequency due to the quantum electrody-
namic effects is

χð4Þ ∼
δEð4Þ

α2cm
; χð4Þ ¼ α

π
α2c lnðα−2c Þ: ð64Þ

The nonlogarithmic coefficient A40 receives corrections of
order ξ2z according to Eq. (61). Parametrically, these addi-
tional terms lead to a relative energy shift of the order
of χðzÞ, where

χðzÞ ¼ α

π
α2cξ

2
z ð65Þ

FIG. 2. The diagrams with five magnetic vertices (left), and six
magnetic vertices (right) contribute to the state-dependent,
logarithmic term of order α α6cm lnðα−2Þ, as discussed in Eq. (62).
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for quantum cyclotron levels. Finally, the higher-order
binding corrections given in Eq. (61) give rise to a relative
energy shift described by the parameter χð6Þ, where

χð6Þ ¼ α

π
α4c lnðα−2c Þ: ð66Þ

For BT ≈ 5.3 T and ωz ≈ 2π × 114 MHz, i.e., the param-
eters of Ref. [6], one has

χð4ÞjBT¼5.3 T ¼ 5.8 × 10−11; ð67Þ

χðzÞjBT¼5.3 T ¼ 2.1 × 10−15; ð68Þ

χð6ÞjBT¼5.3 T ¼ 6.9 × 10−20: ð69Þ

In view of these results, we can say that the absence of a
state dependence ofA41 andA40 (in the leading order in ξz)
is crucial for the validity of the evaluation of the recent
experiment [6], as any dependence on n could have
easily shifted the determination of the cyclotron frequency
(and of the electron g factor) on the level of 10−11, which
is larger than the experimental uncertainty reported in
Ref. [6] by roughly 2 orders of magnitude. The absence
of a state dependence of A41 and A40, in the leading order
in ξz, is one of the most important results of the current
investigation.
The corrections parametrized by χðzÞ and χð6Þ are not

relevant at current experimental conditions [6]. However,
according to Table 1 of Ref. [29], it is clear that magnetic
field strengths in excess of 30 T are current maintained in
continuous (dc) mode by a number of laboratories around
the world. One of the most impressive results available to
date is the 45.5 T field reported in Ref. [30]. It is thus
instructive to carry out calculations for a magnetic field of
BT ¼ 30 T, with the results

χð4ÞjBT¼30 T ¼ 3.0 × 10−10; ð70Þ

χðzÞjBT¼30 T ¼ 2.1 × 10−15; ð71Þ

χð6ÞjBT¼30 T ¼ 2.0 × 10−18: ð72Þ

For these conditions, the correction of order α α6c ln½α−2c �
could become relevant, when experimental techniques are

combined with modern spectroscopic techniques [31]. It is
also very important to realize that state-dependent coef-
ficients grow linearly with the cyclotron quantum number
n, and axial quantum number k [see Eqs. (61) and (62)].
The corrections thus become much more important for
higher excited cyclotron states. We also observe that the
mass m of the trapped particle cancels out in the relative
corrections denoted by the symbols χð4Þ, χðzÞ, and χð6Þ,
discussed above; in other words, the quantities χð4Þ, χðzÞ,
and χð6Þ are functions of the coupling parameter αc only.
For a given magnetic field, the coupling parameter αc is
inversely proportional to the trapped particle mass m [see
Eq. (1)], in view of the relation αc ¼

ffiffiffiffiffiffiffiffiffiffiffijejBT

p
=m. Hence,

for hydrogenlike and lithiumlike bound systems (ions) in a
Penning trap, the quantum electrodynamic effects scale
according to the dependence of αc on the mass of the
trapped ion.
Three final remarks are in order. (i) First, we reempha-

size that vacuum-polarization contributions can be safely
neglected, as already discussed near the beginning of
Sec. III. (ii) Second, we would like to remind the reader
that modifications of the QED shifts due to the cylinder
walls of the Penning trap [25,26] have not been considered
in the current work. We here work with the full photon
propagator that is unperturbed by the external conditions
due to the cylinder walls of the Penning trap. Because the
average spatial extent of a quantum cyclotron state is only a
tiny fraction of the trap dimension, this approximation
is well justified, with limitations being discussed in
Refs. [25,26]. (iii) Relativistic Bethe logarithm corrections
to the leading one-loop terms are of order self-energy shift
of order α α6cm while the correction obtained in Eq. (62) is
enhanced by the logarithm lnðα−2c Þ. The evaluation of
relativistic Bethe logarithms, for quantum cyclotron states
complementing work on hydrogenic levels [9,10], would
be an inspiration for future studies [27].
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