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We revisit the various measures of practical naturalness for models of weak-scale supersymmetry
(SUSY) including: 1. electroweak (EW) naturalness; 2. naturalness via sensitivity to high-scale (HS)
parameters [Ellis-Enquist-Nanopoulos-Zwirner/Barbieri-Giudice (EENZ/BG)]; 3. sensitivity of Higgs soft
terms due to high-scale radiative corrections; and 4. stringy naturalness (SN) from the landscape. The EW
measure is most conservative and seems unavoidable. We debut a new numerical routine for calculating the
EENZ/BG measure from any SUSY Les Houches Accord file. We implement a careful analysis and
comparison of these measures in the mSUGRA/CMSSM and NUHMi model parameter spaces and via
parameter-space scans. We demonstrate the reasoning behind why—and the extent to which—the EENZ/
BG and HS measures overestimate the degree of fine-tuning. We find the overestimation can range up to a
factor of over 1000. While EENZ/BG and HS have ambiguities when applied to models such as anomaly-
and mirage-mediation, the EW measure has no such ambiguity and so we display the natural parameter
space regions of these models. SN depends on the landscape distribution of soft terms, but is closely related
to EW naturalness via the atomic principle.
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I. INTRODUCTION

Weak-scale supersymmetry (SUSY) provides a solution
to the hierarchy of scales problem [1,2] of particle physics
and is supported by data from four different virtual
effects1:
(1) The successful running of gauge couplings to uni-

fied values within the minimal supersymmetric
Standard Model (MSSM) [3–6];

(2) The predicted large value of the top-quark mass
needed for radiatively-induced electroweak sym-
metry breaking (REWSB) [7–9];

(3) The match between the narrow theory-predicted
window of mh values within the MSSM and the
subsequent Higgs boson discovery [10];

(4) Precision electroweak corrections which, in the mt
vs mW plane, actually favor heavy SUSY over the
Standard Model (SM) [11].

In addition, some remnant SUSY is expected to survive
superstring compactification from 10=11 to four spacetime
dimensions on a Calabi-Yau manifold [12]. In fact, it is
conjectured that the landscape of all geometric, stable,
string/M theory compactifications to Minkowski spacetime
(at leading order) are supersymmetric [13]; manifolds
which do not respect these conditions typically lead to
Witten bubble-of-nothing instabilities. Also, in contrast to
the SM, SUSY leads to EW vacuum stability at ultrahigh
energies owing to gauge sector contributions (D-terms) to
Higgs quartic couplings [14]. Moreover, highly motivated
SM extensions which introduce a new high-energy scale—
such as the inclusion of see-saw neutrinos or a Peccei-
Quinn (PQ) sector to solve the strong CP problem—avoid
the Higgs mass blow-up due to the introduced new high-
mass scales [15–17] unless the underlying model is super-
symmetric. With respect to the axion solution to the strong
CP problem, intrinsically supersymmetric discrete R-sym-
metries [18], which are expected to emerge from string
compactifications [19], provide an avenue for emergence of
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1Radiative corrections have historically been a reliable guide to

new physics and (as just a few examples) indeed have presaged
the discovery of theW and Z vector bosons, the top quark and the
Higgs bosons.
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the required global Uð1ÞPQ symmetry with sufficient
precision as to solve the axion-quality problem [20,21].
In such models, the PQ scale fa is related to the hidden-
sector SUSY breaking scale

mhidden ∼ fa ∼ 1011 GeV;

so that fa lies within the appropriate cosmological window
for axion production via coherent oscillations in the early
Universe [20]. String instanton effects on the axion quality
are also ameliorated within the MSSM [22]. While there are
few compelling mechanisms for successful baryogenesis
left within the rubric of the SM, the introduction of SUSY
leads to several new and/or improved mechanisms to
address the matter-antimatter asymmetry [23,24].
In spite of this litany of successes, it is common at this time

to dismissweak-scale supersymmetry (WSS) [25] as a viable
beyond-the-Standard Model (BSM) theory due to the ap-
parent lack of new physics signals at the CERN Large
Hadron Collider (LHC) [26]. The data from LHC, which is
by-and-large in accord with SM expectations [27], is in
contrast to early theoretical expectations forWSSbased upon
naturalness arguments that superpartners would emergewith
mass values not far from the weak scale [28–36]

mweak ≃mW;Z;h ∼ 100 GeV:

At present, such arguments are being used to set policy and
guide future facilities for the high-energy physics (HEP)
frontier [37,38]. Given these crucial factors, it is essential to
go back and review the naturalness-based arguments to
assess when and where and if they present a reliable guide
to the search for new physics, as the original naturalness
arguments aremore than 30 years old, and numerous insights
have lead to greater clarity in the present time.
In this paper, we revisit several proposed naturalness

measures which have been applied to various supersym-
metric models. As opposed to ’t Hooft naturalness, these
measures determine the degree of what is defined in Sec. III
as practical naturalness; that all independent contributions to
some observable O are comparable to, or less than, O.
Historically, the first of these is the Ellis-Enquist-
Nanopoulos-Zwirner/Barbieri-Giudice (EENZ/BG) [28,29]
measure (labeled here as ΔBG) which determines the sensi-
tivity of the measured value of the weak scale to variation in
model parameters pi (i indexes the various parameters under
consideration). Conventionally the pi have been taken to be
the various soft SUSY breaking terms starting at a high
effective field theory (EFT) cutoff scale

Λ ¼ mGUT ≃ 2 × 1016 GeV:

ThisΔBG measure associates a numerical value to Susskind’s
definition of naturalness [39],

ΔBG ≡max
i

���� ∂ logm
2
Z

∂ logpi

���� ¼ max
i

���� pi

m2
Z

∂m2
Z

∂pi

����: ð1Þ

For smallΔBG ≲ 30, then sparticle masses are expected to lie
below the several hundred GeV range, although in some
special regions of model parameter space, such as the
focus point region [40,41] of the minimal supergravity
(mSUGRA) [42], or constrained MSSM (CMSSM) [43],
multi-TeV scale top squarks can be allowed. Despite its
popularity, this measure has been argued to overestimate
fine-tuning in SUSY models by large factors and to give
ambiguous answers depending on exactly which parameters
are chosen to be the fundamental pi [44,45].
A second measure, which we label here asΔHS (for high-

scale sensitivity of the up-Higgs soft massm2
Hu
), starts with

the approximate SUSY-Higgs mass relation

m2
h ∼ μ2 þm2

Hu
ðweakÞ;

where

m2
Hu
ðweakÞ ¼ m2

Hu
ðΛÞ þ δm2

Hu
:

One then requires

ΔHS ¼ δm2
Hu
=m2

h ð2Þ
to be small. This measure, which is inconsistent with ΔBG
in that it doesn’t allow for multi-TeV top squarks even in
the focus point (FP) region, has led to intense scrutiny of
LHC top-squark searches. This is because it is expected
that [46–52]

δm2
Hu

∼
6f2t
ð4πÞ2 m

2
t̃ log

Λ2

m2
t̃

:

ΔHS was found to lead to violations of the fine-tuning rule
[44]; it is not allowed to claim fine-tuning amongst
dependent terms which contribute to some observable
O. (As mentioned earlier, it is the large top-quark
Yukawa coupling ft which radiatively drives m2

Hu
from

its large SUGRA value at the high scale to negative values
at the weak scale so that the EW symmetry is sponta-
neously broken.) In this case, δm2

Hu
and m2

Hu
ðΛÞ are

dependent, leading to overestimates in fine-tuning.
A third measure is the electroweak measure ΔEW [53,54]

which is touted to be more conservative and model
independent than the others, and also unavoidable (within
the context of the MSSM). It is based on the SUSY-Higgs
potential-minimization condition

m2
Z=2 ¼ m2

Hd
þ Σd

d − ðm2
Hu

þ Σu
uÞ tan2 β

tan2 β − 1
− μ2

≃ −m2
Hu

− μ2 − Σu
uðt̃1;2Þ; ð3Þ

where all right-hand-side entries are taken as their weak-
scale values and

ΔEW ≡max
i
jentries on rhs of Eq: ð3Þj=ðm2

Z=2Þ: ð4Þ
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This measure was preceded by Chan et al. [55] who
suggested that the magnitude of the SUSY-conserving μ
parameter could serve as a fine-tuning measure all by itself.
This measure is sometimes criticized in that it apparently
lacks sensitivity to high-scale parameters, which we will
expand upon later.
A fourth entry is not at present a quantifiable measure,

but known nonetheless as stringy naturalness (SN), and
arises from Douglas’ consideration of the string landscape
picture [56]:

A. Stringy naturalness

An observable O1 is more (stringy) natural than an
observable O2 if more phenomenologically viable string
vacua lead to O1 than to O2.
To quantify stringy naturalness, at least two ingredients

are needed:
(1) The expected distribution of some quantity within

the landscape of vacua possibilities and
(2) An anthropic selection ansatz for which many

choices would lead to universes that are unable to
support observers.

For the case of SUSY models, the first of these is usually
how soft terms are distributed in the landscape while the
second of these is the magnitude of the weak scale itself; if
the predicted value of mweak within each pocket universe is
too far displaced from its measured value in our Universe,
then nuclear physics no longer can support atoms as we
know them, leading to no complex chemistry as seems to be
needed for observers [57]. This principle is known as the
atomic principle. An attempt to compute and display
stringy naturalness via density of dots in model parameter
space has been made in Ref. [58].
In the present work, we reexamine these several mea-

sures of naturalness, filling in some of the many gaps of
understanding that exist in the literature. Part of our work is
based on a new computation of ΔBG naturalness based on a
numerical evaluation of the derivatives in Eq. (1). This new
computation is embedded in the publicly available code
DEW4SLHA [54] so that the updated code can provide
values of each of the measuresΔBG,ΔHS, andΔEW given an
input SUSY Les Houches Accord (SLHA) file [59].2 Thus,
another reason to revisit the fine-tuning issue is that we
have developed a code which allows for detailed compari-
son of all three measures which goes beyond previous
semianalytic techniques that gave explicit results only for
certain fixed tan β values. Now we are able to compute
ratios of naturalness measures to determine the extent to
which some measures can overestimate fine-tuning in
SUSY models. For instance, in the SUSY theory review
contained in the Particle Data Book [60], it is suggested that
the overestimates may range up to a factor of 10; in

contrast, we find overestimates ranging up to factors of
over 1000.
The remainder of this paper is organized as follows. In

Sec. II, we review two paradigmatic models mSUGRA/
CMSSM and NUHMi which are typically associated with
gravity-mediated SUSY breaking. In Sec. III we definewhat
we mean by naturalness and practical naturalness. In Sec. IV
we show how the three naturalness measures arise from
practical naturalness andwe highlight themodel dependence
of the EENZ/BG measure; we also introduce our new
numerical routine to evaluate the EENZ/BG value from
any SUSY Les Houches Accord file. In Sec. V, we compare
and contrast the various measures in mSUGRA/CMSSM
and NUHMi model parameter space while in Sec. VI we
compute ratios of measures and show that ΔBG and ΔHS can
overestimate fine-tuning by up to three orders of magnitude
compared to ΔEW. In Sec. VII we emphasize ambiguities in
evaluatingΔBG andΔHS in anomaly-mediated SUSY break-
ing models and in Sec. VIII we illustrate the same for mirage
mediation. Since there is no ambiguity for ΔEW, we display
natural parameter space which satisfies present LHC Higgs
and sparticle mass bounds using the EWmeasure for natural
anomaly and mirage mediation. Our summary and conclu-
sions are contained in Sec. IX.

II. SOME MODELS OF WEAK-SCALE SUSY

Here, we make reference to several SUSY models which
we briefly review for the reader.

A. mSUGRA/CMSSM model

Some of our numerical work refers to the mSUGRA
[42,61–65] or CMSSM model [43] with parameter space3

m0;m1=2;A0; tanβ and signðμÞ ðmSUGRA=CMSSMÞ:
ð5Þ

In this model, m0 refers to a unified high-scale scalar soft
breaking mass, usually defined at the scale mGUT where the
three gauge couplings unify. While unified gaugino masses
can be achieved in many supersymmetric models with a
simple choice for gauge kinetic function, the scalar-mass
unification is an (unmotivated) simplifying assumption that
violates expectations from gravity-mediated SUSY break-
ing models where nonuniversal scalar masses are expected
unless imposed by some symmetry [66–68]. For instance,
scalar masses within a matter generation may be expected
to unify to m0ðiÞ (for generation index i ¼ 1–3) due to the
fact that all matter fills out a complete 16-dimensional

2The code DEW4SLHA, written by D. Martinez, is available at
https://www.dew4slha.com.

3We accept that the mSUGRA model and the CMSSM model
are two different names for the same model defined by the
parameter space in Eq. (5). Indeed, paragraph 2 of the original
Kane et al. paper [43] lays out the supergravity origins of the
CMSSM model.
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spinor representation of SOð10Þ. However, generational
universality m0ð1Þ ¼ m0ð2Þ ¼ m0ð3Þ is not expected and
leads to the famous SUSY flavor and CP problems [69].
Furthermore, the Higgs fields Hu and Hd live in different
SUð5Þ [or general SOð10Þ] representations from matter
scalars, and hence are also not expected to unify.

B. Nonuniversal Higgs models

This family of models meets the expectation that

mHu
≠ mHd

≠ m0ðiÞ:

The simplest case, nonuniversal Higgs models (NUHM1)
[70] assumes

mHu
¼ mHd

≠ m0ðiÞ;

as expected in simple SOð10Þ GUTs. Meanwhile, NUHM2
[71–73] satisfies

mHu
≠ mHd

≠ m0ð1Þ ¼ m0ð2Þ ¼ m0ð3Þ;

which occurs in SUð5Þ or general SOð10Þ GUTs. In all
cases, when we refer to SUSY-GUT models, we particu-
larly emphasize the importance of local grand unifica-
tion [74] wherein the geography of fields on a string

compactified manifold determines the GUT symmetry
properties [75,76]. Sometimes an NUHM3 model with

m0ð1Þ ¼ m0ð2Þ ≠ m0ð3Þ

is used [77], and sometimes NUHM4 with

m0ð1Þ ≠ m0ð2Þ ≠ m0ð3Þ

is used, especially for discussion of the SUSY-flavor and
CP problems [78]. For these NUHMi models (i ¼ 1–4),
frequently the GUT values of mHu

and mHd
are traded for

the weak-scale values of the superpotential μ parameter and
the pseudoscalar Higgs mass mA via the scalar potential
minimization conditions. Thus, the NUHMi parameter
space is given by

m0ðiÞ; m1=2; A0; tan β; μ; mA: ð6Þ

The NUHMi models are particularly convenient to explore
natural supersymmetry since one can directly restrict oneself
to natural values of the μ parameter; μ ∼ 100–350 GeV.
In Fig. 1, we plot in them0 vsm1=2 plane of the NUHM2

model the ratio of mHu
ðmGUTÞ=m0 which is needed to

ensure that the SUSY μ parameter is fixed at a natural
value of μ ¼ 200 GeV. We also adopt A0 ¼ −1.6m0 and
tan β ¼ 10 with mA ¼ 2 TeV. From the plot, we see that

FIG. 1. Ratio of mHu
ðmGUTÞ=m0 in the NUHM2 model which is needed to ensure that μ ¼ 200 GeV. We also take A0 ¼ −1.6m0 and

tan β ¼ 10 with mA ¼ 2 TeV. The blue shaded region is excluded, as these points lead to charge-or-color-breaking (CCB) minima. The
yellow shaded region near the bottom has the lightest chargino below LEP2 limits, mχ̃�

1
< 103.5 GeV. The mass spectra are calculated

using SOFTSUSY.

BAER, BARGER, MARTINEZ, and SALAM PHYS. REV. D 108, 035050 (2023)

035050-4



mHu
ðmGUTÞ ∼ 2m0 along the left-hand side of the plot, but

dips to a ratio of about 1.2–1.5 for the bulk of the plane
which respects the mh ∼ 123–127 GeV range (assuming
about a 2 GeVerror bar on themh theory calculation). Thus,
only modest deviations of order 20–50% are required in
order ensure one of the most fundamental requirements of
naturalness, namely jμj ∼mweak.

C. Natural anomaly and mirage-mediation models

Later in this paper we shall explore naturalness in
anomaly-mediated SUSY breaking (AMSB) [79–81] and
mixed modulus-AMSB SUSY models, also known as
mirage mediation (MM) [82,83].

III. NATURALNESS AND PRACTICAL
NATURALNESS

Supersymmetry offers a ’t Hooft technically natural
solution [84] to the hierarchy of scales problem in that, as
the hidden-sector SUSY-breaking scale mhidden (which
determines themagnitude of the soft termsviamsoft ∼m3=2 ∼
m2

hidden=mP in gravity mediation and hence of the weak scale
via the scalar-potential minimization conditions) tends to
zero, themodel becomesmore (super)symmetric. The SUSY
solution to this big hierarchy problem (BHP)—stabilizing
the weak scale so that it does not blow up to the Planck or
GUT scale—is not the naturalness issue which concerns
many contemporary SUSY theorists. Indeed, ’t Hooft natu-
ralness remains a valid solution to the BHP even for very
large gaps msoft ≫ mweak. Instead, it is the so-called little
hierarchy problem (LHP) which is of concern [85,86];

how can it be that mweak ∼mW;Z;h ∼ 100 GeV is
so much smaller than the soft SUSY breaking
terms, which, according to LHC data, are msoft ≳
1 TeV (owing to LHC bounds mg̃ ≳ 2.2 TeV,
mt̃1 ≳ 1.1 TeV, …) [87]?

In addressing the LHP, what is of concern is what we call
the notion of practical naturalness (PN) [88]4:

An observable

O ¼ o1 þ � � � þ on

is practically natural if all independent contribu-
tions oi to O are comparable to or less than O.

(Here, “comparable to” means within a factor of several
from the measured value.) Practical naturalness embodies
the notion of naturalness that is most often used in

successful applications of naturalness. For instance, by
requiring the charm-quark mass contribution

ΔmKðcÞ ≃
GFffiffiffi
2

p α

6π

f2KmK

sin2θW
cos2θCsin2θC

m2
c

m2
W

ð7Þ

to be comparable to or less than the measured KL − KS
mass difference ΔmK , Gaillard and Lee [90] were able to
predict mc ∼ 1.5 GeV several months before the charm
quark was discovered.5 An essential element of practical
naturalness is that the contributions oi should be indepen-
dent of one another in the sense that if one of the oi is
varied, then the others do not necessarily vary. For instance,
Dirac was bothered by various divergent contributions to
perturbative QED observables. However, these were de-
pendent contributions in that if the regulator was varied, the
different divergent terms would also vary. One should
always first combine dependent terms before evaluating
naturalness. Once dependent terms are combined then a
measure of naturalness emerges,

Δ≡max
i
joij=jOj: ð8Þ

Using PN, we see that QED perturbation theory is practi-
cally natural in that the leading terms are comparable to the
measured observables whilst higher-order terms (once
dependent terms are combined) are typically much smaller.

IV. SOME MEASURES OF NATURALNESS

A. Sensitivity to high-scale parameters:
EENZ/BG naturalness

Historically, the first measure of SUSY model natural-
ness was proposed by Ellis et al. in Ref. [28] (based on
Susskind [39]) and subsequently used by Barbieri and
Giudice [29] to compute sparticle-mass upper bounds in the
mSUGRA/CMSSM model; Eq. (1). The measure purports
to compute the sensitivity of the measured value of the
weak scale to variation in high-scale parameters pi. The
ΔBG measure is actually a measure of practical naturalness
of the weak scale in the case where

m2
Z ¼ a1p1 þ � � � þ anpn:

Let us suppose the jth contribution to m2
Z is largest. Then,

ΔBG ¼ max
i

���� pi

m2
Z

∂m2
Z

∂pi

���� ¼
���� ajpj

m2
Z

����;

in accord with Eq. (8). The various

4This is in accord with Veltman’s notion of naturalness as
presented in Ref. [89]. See also Susskind [39].

5It is still a breathtaking exercise to plug in the numbers and
see the charm-quark mass emerge.
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���� aipi

m2
Z

����≡ ci

terms are labeled sensitivity coefficients [91]. The ambi-
guity here is in which choice to take as to the free
parameters pi.

6

The starting point is to expressm2
Z in terms of weak-scale

SUSY parameters as in Eq. (3),

m2
Z ≃ −2m2

Hu
− 2μ2; ð9Þ

where the partial equality is obtained for moderate-to-large
tan β values and where we assume for now that the radiative
corrections are small. To evaluate ΔBG, one needs to know
the explicit dependence of m2

Hu
and μ2 on the chosen set of

fundamental parameters. Semianalytic solutions to the one-
loop renormalization group equations for m2

Hu
and μ2 can

be found for instance in Refs. [93,94]. For the case of
tan β ¼ 10, then [36,91,95]

m2
Z ≃ −2.18μ2 þ 3.84M2

3 þ 0.32M3M2 þ 0.047M1M3 − 0.42M2
2 þ 0.011M2M1 − 0.012M2

1 − 0.65M3At

− 0.15M2At − 0.025M1At þ 0.22A2
t þ 0.004M3Ab − 1.27m2

Hu
− 0.053m2

Hd
þ 0.73m2

Q3
þ 0.57m2

U3

þ 0.049m2
D3

− 0.052m2
L3

þ 0.053m2
E3

þ 0.051m2
Q2

− 0.11m2
U2

þ 0.051m2
D2

− 0.052m2
L2

þ 0.053m2
E2

þ 0.051m2
Q1

− 0.11m2
U1

þ 0.051m2
D1

− 0.052m2
L1

þ 0.053m2
E1
; ð10Þ

where all terms on the right-hand side are understood to be
GUT-scale parameters. As an example, if we adoptm2

Q3
as a

fundamental parameter, then the sensitivity coefficient

cm2
Q3

¼ 0.73
m2

Q3

m2
Z
;

and for mQ3
¼ 3 TeV, then one finds cm2

Q3

≃ 800 so that

ΔBG > 800 and the model is certainly fine-tuned. If instead
we declare all scalar masses unified to m0, then there are
large cancellations and instead one finds

cm2
0
¼ 0.013

m2
0

m2
Z
∼ 14.2;

a reduction in finetuning by over a factor of 50! Clearly,
whether or not soft terms are correlated greatly impacts the
evaluation of ΔBG.

1. Numerical routine to compute ΔBG

The evaluation of ΔBG can be done by approximating the
partial derivativeswith themethodof finite central-difference
quotients. That is, for finding the partial derivative with
respect to a parameterp1 ofm2

Zðp1; p2;…; pnÞ, wherepi are
the fundamental parameters of the model chosen for evalu-
ating ΔBG, then

∂m2
Zðp1; p2;…; pnÞ

∂p1

≈
m2

Zðp1 þ h1; p2;…; pnÞ −m2
Zðp1 − h1; p2;…; pnÞ

2h1
:

ð11Þ

Here, h1 is the size of the variation of the differentiation
parameter p1, which is then used to determine the resulting
change inm2

Z. Since this is a partial derivative, all other input
parameters are left fixed at their original values prior to
differentiation.
To compute this derivative, m2

Z must be evaluated in the
right-hand side of Eq. (11) as an output of the m2

Z Higgs
minimization condition, Eq. (3), at theweak-renormalization
scale

QSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mt̃1mt̃2

p

to minimize radiative corrections in the Higgs-minimization
condition. For the partial derivative

∂m2
Z

∂pi

the GUT-scale parameter pi is varied to pi þ hi, with
hi ≪ pi. Then the new set of GUT-scale parameters,

p1; p2;…; pi þ hi;…; pn−1; pn

are evolved from QGUT down to QSUSY using the full two-
loop MSSM renormalization group equations (RGEs).
Lastly, the varied value

6Giudice remarks in Ref. [92]; “It may well be that, in some
cases, Eq. (1) overestimates the amount of tuning. Indeed, Eq. (1)
measures the sensitivity of the prediction of mZ as we vary
parameters in theory space. However, we have no idea how this
theory space looks like, and the procedure of independently
varying all parameters may be too simple minded.” See also
discussion in Ref. [34].
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m2
Zðp1; p2;…; pi þ hi;…; pn−1; pnÞ

is computed from the tree-level Higgs minimization con-
dition for m2

Z, giving a value slightly deviated from 91.22.
This value is then used in Eq. (11) and the process is repeated
for the other direction of variation.
In this numerical derivative approach, two sources of

error can enter and alter the results if not controlled;
truncation error and roundoff error. Below are some
descriptions of these errors and how we minimize them:

(i) Truncation error is the error of approximating the
true, analytical derivative of m2

Z, with an approxi-
mating secant line to the m2

Z curve in the theory
space. For a given derivative variation size of h, the
truncation error for a two-point method is suppressed
by a termofOðh2Þ. This error remains relatively small
so long as the step size h < 1 and the higher-order
derivatives of m2

Z are reasonably bounded.
(ii) Roundoff error comes from representing the values

p1; p2;…; pn, and h1 in Eq. (11) as floating-point
numbers, where the computer must “round off”most
decimal values after a certain number of digits due to
storage limitations in binary. Because of this, there is
a nonzero spacing between two consecutive floating
point numbers x and y, and this spacing is called the
unit of least precision [denoted ULP(x)]. Careful
error analysis reveals that the roundoff error is
proportional to the step size used in the evaluation.
This roundoff error is then minimized when, for a
two-point central difference, the step size hi for the
derivative ∂m2

Z=∂pi is chosen as hi ≈ ½ULPðpiÞ�1=3.
In order for hi < 1 to occur, the ULPðpiÞ must then
also be less than unity.

Numerical error may also enter through the numerical
solution of the RGEs, though similar numerical consid-
erations can help control these errors as well. With these
sources of error in mind, the error in evaluating this
derivative will remain small, i.e., Oð<1Þ, so long as jpij ≲
1015 in magnitude for all i. This leads to hi < 1 for double-
precision floating point numbers. DEW4SLHA offers the
option of performing this calculation with even higher-
accuracy derivative approximations, such as a four-point or
eight-point central difference quotients to further minimize
truncation error.
The numerical evaluation of ΔBG has several advantages

over the semianalytic formulas using expansions such
as Eq. (10).

(i) The numeric routine uses full two-loop RGEs
including all third-generation Yukawa couplings
[96] and one-loop threshold effects while semi-
analytic expansions use one-loop RGEs without
threshold effects.

(ii) The semianalytic expansions were formulated to
compute the Higgs potential at a scale

Q ∼mZ;

whilst the numeric routine uses an optimized scale
choice

Q2 ¼ mt̃1mt̃2 :

This latter choice matches the higher scales for
MSSM/SM decoupling that are expected from
LHC data.

(iii) Usually the semianalytic expansions are computed
for a particular tan β value while the numeric
evaluation is valid for all tan β.

To illustrate the comparison between the two methods, in
Fig. 2(a) we compute the ratio

ΔBGðnumericalÞ=ΔBGðsemianalyticÞ

in them0 vsm1=2 plane of the mSUGRA/CMSSM plane for
A0 ¼ 0 and tan β ¼ 10 with μ > 0. The blue region
corresponds to a ratio ∼0.5 while for small m0 we find
a ratio ≲1. For large m0 then we find a ratio ≳1 with the
ratio reaching as high as ∼2 near the lower focus-point
region.
In Fig. 2(b) we again compute the ratio

ΔBGðnumericalÞ=ΔBGðsemianalyticÞ

in the m0 vs m1=2 plane of the mSUGRA/CMSSM, but
now for A0 ¼ −2m0 and tan β ¼ 10 with μ > 0. The large
value of A0 here permits the Higgs mass to be within the
allowed range of 125� 2 GeV. The broad orange and red
regions throughout the rhs of the plane correspond to
where the ratio is ∼1. The largest discrepancy between
the evaluation methods occurs on the lhs of the plane near
the stau lightest supersymmetric particle (LSP) region,
where

ΔBGðnumericalÞ ∼ 0.6ΔBGðsemianalyticÞ:

Figure 2(c) instead shows the ratio comparing the numeri-
cal method to the semianalytic method in the m0 vs m1=2

plane of the NUHM2 model with μ ¼ 200 GeV,
mA ¼ 2 TeV, and A0 ¼ −1.6m0. Again, the broad orange
and red region on the rhs of this plane shows very good
agreement between the two methods,

ΔBGðnumericalÞ ∼ ΔBGðsemianalyticÞ:

On the lhs above the CCB minima region, where
m1=2 > m0, the semianalytic method result becomes some-
what larger than the numerical method result, leading to a
minimal ratio

ΔBGðnumericalÞ ∼ 0.57ΔBGðsemianalyticÞ:
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2. Numerical results for ΔBG

In Fig. 3, we compute contours and color-coded regions
of ΔBG in the mSUGRA/CMSSM model using a numerical
routine to evaluate the sensitivity coefficients. This routine
is embedded in the publicly available computer code
DEW4SLHA. The results in Fig. 3 agree well with those
presented by Allanach et al. in Ref. [97].
In truth, the various supposedly independent high-scale

soft terms are introduced by hand in the mSUGRA/
CMSSM model as a parametrization of our ignorance as
to the SUSY-breaking mechanism. Indeed, in the case of
gravity mediation, if we specify a specific SUSY-breaking
mechanism, then all soft terms are calculable in terms of the
gravitino mass m3=2. An example is the famous dilaton-
dominated SUSY-breaking model [68]; in this case

m0 ¼ m3=2 with m1=2 ¼ −A0 ¼
ffiffiffi
3

p
m3=2: ð12Þ

In such a case, then it doesn’t make sense that the soft terms
are independent; invoking PN, we should combine depen-
dent terms in Eq. (10). Then,

m2
Z ≃ −2.18μ2 þ 14.494m2

3=2:

Adopting m3=2 ¼ 3 TeV as in the previous example, then
we find μ ¼ 7735 GeV and

FIG. 2. Plot of ΔBGðnumericalÞ=ΔBGðsemianalyticÞ in the m0

vs m1=2 plane of (a) the CMSSM/mSUGRA model with A0 ¼ 0,
tan β ¼ 10, and μ > 0, (b) the CMSSM/mSUGRA model with
A0 ¼ −2m0, and (c) the NUHM2 model with μ ¼ 200 GeV and
A0 ¼ −1.6m0 with mA ¼ 2 TeV. We use the code DEW4SLHA
to compute ΔBGðnumericalÞ using a numerical algorithm for
the sensitivity coefficients and SOFTSUSY v4.1.17 for the
spectra.

FIG. 3. Plot of naturalness contours ΔBG in the m0 vs m1=2
plane of the CMSSM/mSUGRA model with A0 ¼ 0, tan β ¼ 10,
and μ > 0. We use the code DEW4SLHA to compute ΔBG using
a numerical algorithm for the sensitivity coefficients and
SOFTSUSY for the spectra.
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ΔBG ¼ cm2
3=2

¼ 15683:

The SUSY μ parameter evolves very little from the GUT
scale to the weak scale, due to the supersymmetric non-
renormalization theorems [98]. The ratio of μðweakÞ=
μðGUTÞ is shown in Fig. 4 for the tan β vs μðweakÞ plane
in the mSUGRA/CMSSM model. The deviation between
μðweakÞ=μðGUTÞ is typically a few percent, climbing to
∼10% at very large tan β.
Now, in the case where all soft terms are determined in

terms of m3=2 (such as gravity mediation, anomaly media-
tion and mirage mediation), then we expect roughly that

m2
Z ≃ −2μ2 þ a ·m2

3=2 ð13Þ

and since μ hardly evolves, then

a ·m2
3=2 ≃ −2m2

Hu
ðweakÞ:

In this case—with all correlated soft terms (which we may
dub as the SUGRA1 model)—then

ΔBG ∼ cm2
3=2

¼ a
m2

3=2

m2
Z

≃
max ½2μ2; 2m2

Hu
ðweakÞ�

m2
Z

:

This latter case we will find is nearly the same asΔEW aside
from the inclusion of the radiative corrections to the weak-
scale scalar potential.
In Fig. 5, we plot naturalness contours in the same

parameter plane as in Fig. 3, but now assuming instead the
one-soft-parameter SUGRA1 model. For SUGRA1, we
have

m2
Z ¼ −2.18μ20 þ a ·m2

0 ðSUGRA1Þ; ð14Þ

where the constant a can be determined via

a ¼ ðm2
Z þ 2.18μ20Þ=m2

0:

In this case, the naturalness contours roughly follow the
contours of constant μ value. For the case of SUGRA1, the
naturalness contours are very different from the case of
independent high-scale soft terms assumed in the
mSUGRA/CMSSM model.
One may also define a SUGRA2 model. Here, we

assume that since gaugino masses arise from the gauge
kinetic function, this soft term is independent of the others
which are determined instead by the Kähler function, but
where A0 is determined in terms of m0 (such as
A0 ¼ −2m0) so that

m2
Z ¼ −2.18μ20 þ 3.786m2

1=2 − 0.427m2
0

þ 1.642m1=2m0 ðSUGRA2Þ: ð15Þ

Finally, SUGRA3 allows that A0 is somehow independent
from m0 (or m3=2) so that

m2
Z ¼ −2.18μ20 þ 3.786m2

1=2 þ 0.013m2
0

þ 1.642m1=2m0 þ 0.22A2
0 ðSUGRA3Þ: ð16Þ

For the three cases, we find that the ΔBG values are very
different in the SUGRA1, SUGRA2, or SUGRA3 models
just depending on which parameters are assumed to be truly
independent.
In Fig. 6, we show color-coded regions of ΔBG as

computed in the m0 vs m1=2 plane of the NUHM2 model
where tan β ¼ 10, A0 ¼ −1.6m0, with μ ¼ 200 GeV and
mA ¼ 2 TeV. In frame (a), we assume all soft terms are
correlated as in Eq. (14). In this case, since μ is fixed, there
is a constant value of ΔBG ¼ 21.2 throughout the plane.

FIG. 4. Ratio of μ=μ0 in the tan β vs μðweakÞ plane, where
μ0 ¼ μðGUTÞ is the GUT-scale value of the μ parameter. FIG. 5. Plot of naturalness contours ΔBG in the m0 vs m1=2

plane of the one-soft-parameter SUGRA1 model with A0 ¼ 0,
tan β ¼ 10 and μ > 0. We use SOFTSUSY to generate the spectra.
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In frame 6(b), we instead assume two independent soft
parameters m0 and m1=2 (but with A0 fixed in terms of m0)
so that we are in the SUGRA2 model; Eq. (15). Here, the
value of ΔBG is vastly different from frame 6(a), reaching
up to values of ∼3900 in the upper-right corner; a factor of
∼180 times greater than the frame 6(a) value. Here, theΔBG
fine-tuning is dominated by the m1=2 value but not so much
by m0. In frame 6(c), instead we show values of ΔBG
assuming three independent soft parameters as in Eq. (16).
In this case, with A0 fixed as A0 ¼ −1.6m0 but nonetheless
declared as independent, we see a greater dependence on
m0, so ΔBG increases as m0 increases, mainly because A0

increases with increasing m0. Here, ΔBG reaches maximal
values of ∼14500 in the upper-right corner, a factor ∼680
larger than the frame 6(a) value.
In summary, from the discussion of this section, we see

that the measure ΔBG could be a legitimate fine-tuning
measure if there could be consensus on what constitutes
independent parameters of the model. The plots also
illustrate the extreme model dependence of ΔBG, where
ΔBG can obtain values differing by several orders of
magnitude depending on which parameters pi are assumed
fundamental or independent.

B. High-scale fine-tuning

An alternative to EENZ/BG naturalness which we label
as HS fine-tuning emerged early on in the 21st century. It
may have been intended originally as a figurative bullet-
point indicator to argue for sparticle masses near the weak
scale [46], but later was regarded as a viable measure of
fine-tuning [47,50–52]. This measure seeks to apply PN to
the Higgs-boson mass relation [see, e.g., Eq. (10) of [99] ]

m2
h ≃ μ2 þm2

Hu
ðweakÞ þ EWþmixing ð17Þ

where the EW corrections and mixings are already ≲m2
h.

To apply high-scale fine-tuning, one must then break
m2

Hu
ðweakÞ into

m2
Hu
ðweakÞ ¼ m2

Hu
ðmGUTÞ þ δm2

Hu

and require δm2
Hu

≲m2
h. The full one-loop expression for

δm2
Hu

may be obtained by integrating its one-loop RGE
from mGUT to mweak,

dm2
Hu

dt
¼ 2

16π2

�
−
3

5
g21M

2
1 − 3g22M

2
2 þ

3

10
g21Sþ 3f2t Xt

�
;

ð18Þ

where t ¼ logQ,

FIG. 6. Plot of ΔBG values in the m0 vs m1=2 plane for the
NUHM2 model for A0 ¼ −1.6m0, tan β ¼ 10 with μ ¼ 200 GeV
and mA ¼ 2 TeV. In (a), we plot ΔBG assuming a single
independent soft parameter m3=2 while in (b) we plot ΔBG for
assumed two independent soft parameters m0 and m1=2 while in
(c) we plot assuming all three of m0, m1=2, and A0 are
independent. The spectra are calculated using SOFTSUSY and
the naturalness measures with DEW4SLHA.
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S ¼ m2
Hu

−m2
Hd

þ Tr

�
m2

Q −m2
L − 2m2

U þm2
D þm2

E

�
;

and

Xt ¼ m2
Q3

þm2
D3

þm2
Hu

þ A2
t :

In the literature [50–52], to gain a simple expression, the
terms with gauge couplings are ignored and Xt is approxi-
mated as

Xt ∼m2
Q3

þm2
D3

þ A2
t ;

where m2
Q3
; m2

D3
, and A2

t here are GUT-scale values. Then a
single step integration leads to

δm2
Hu

∼−
3

8π2
f2t ðm2

Q3
þm2

U3
þA2

t Þ logðΛ=mweakÞ; ð19Þ

where the high-scale Λ is usually assumed ∼mGUT. The
ΔHS measure famously promoted three light third-gener-
ation squarks below the 500 GeV scale [51], and motivated
intensive searches by the LHC Collaborations to root out
light top-squark signals.
In order to compare ΔHS more appropriately with ΔBG

and ΔEW, we slightly redefine ΔHS in terms of m2
Z=2 [100]

where in this case we take

m2
Z=2 ¼ ðm2

Hd
ðΛÞ þ δm2

Hd
þ Σd

dÞ − ðm2
Hu
ðΛÞ þ δm2

Hu
þ Σu

uÞ tan2 β
tan2 β − 1

− ðμ2ðΛÞ þ δμ2Þ ð20Þ

and Λ is some input high scale, perhaps mP or mGUT. Then

ΔHS ¼ max jlargest term on rhs of Eq: ð20Þj: ð21Þ

In this way, the three measures become equal in certain
limiting cases.
The ΔHS measure is problematic on several counts
(1) It violates the PN precept in that, in simplifying

δm2
Hu
, all dependence onm2

Hu
ðΛÞ is lost, which hides

the fact that δm2
Hu

is actually dependent on m2
Hu
ðΛÞ.

In fact, the bigger the assumed value for m2
Hu
ðΛÞ,

then the bigger is the canceling correction δm2
Hu

[101]. This is shown in Fig. 7 where we show the
exact two-loop value of δm2

Hu
vs m2

Hu
ðGUTÞ, where

the clear dependence of δm2
Hu

on m2
Hu
ðGUTÞ is

shown. The plot also shows that the bigger
mHu

ðGUTÞ becomes, then the more EW-natural

FIG. 7. Plot of signðδm2
Hu
Þ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jδm2

Hu
j

q
vs mHu

ðGUTÞ for the NUHM2 model with m0 ¼ 5 TeV, m1=2 ¼ 1.2 TeV, A0 ¼ −1.6m0,
tan β ¼ 10, and mHd

¼ 5 TeV.
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the model becomes in that m2
Hu
ðweakÞ becomes

comparable to m2
Z on the right-hand side shortly

before EWSB is no longer broken. The splitting up
of m2

Hu
ðweakÞ into m2

Hu
ðΛÞ þ δm2

Hu
turns ΔHS into

contradiction with ΔBG, where m2
Hu
ðweakÞ is ex-

panded into high-scale parameters in Eq. (10) but
not split into m2

Hu
ðΛÞ þ δm2

Hu
. This splitting of

m2
Hu
ðweakÞ into dependent parts destroys the cancel-

lations needed for focus point SUSY [40,41] which is
promoted as allowing for TeV-scale top squarks.

(2) Electroweak symmetry breaking in SUSY models is
accomplished by driving m2

Hu
to negative values

owing to the large top-quark Yukawa coupling ft.
Indeed, the REWSB mechanism is touted as one of
the triumphs of WSS since it required mt ∼
100–200 GeV [9] at a time when experiments
seemed to indicate mt ∼ 40 GeV. By requiring
δm2

Hu
to be small, then often m2

Hu
ðweakÞ will not

be large and negative enough to cause EWSB. In the
context of vacua selection in the string landscape,
such models without EWSB would likely not lead to
inhabitable universes and would be vetoed. This can
be viewed as a selection mechanism to favor models
with large enough δm2

Hu
such that EW symmetry is

properly broken (see, e.g., Fig. 3 of Ref. [102].)
(3) There is also substantial ambiguity in evaluating

ΔHS. In Fig. 8 we show the value of

δmHu
≡ sign

�
δm2

Hu

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���δm2
Hu

���
r

vsmHu
ðGUTÞ

for anNUHM2benchmark pointwithm0 ¼ 4.5 TeV,
m1=2 ¼ 1 TeV, and A0 ¼ −7.2 TeV with tan β ¼ 10

and mA ¼ 2 TeV. The approximate expression
Eq. (19) is shown as the flat red-dashed line which
of course does not depend on m2

Hu
ðGUTÞ. The solid

blue curve is the exact two-loop RG expression for
δmHu

and is shown to deviate from the approximate
result by well over a factor of 2 at lowmHu

ðGUTÞ and
only agrees with the approximation far into the
excluded region where the electroweak symmetry is
not properly broken. Alternatively, one may use the

m2
h ≃ μ2 þm2

Hu
þ δm2

Hu

equation for a particular set of input parameters
including m2

Hu
ðGUTÞ (e.g., in the NUHM2 model)

to compute the value of δm2
Hu

and then try to fine-tune
m2

Hu
ðGUTÞ to enforce mh ¼ 125 GeV. But as one

tunes the value ofm2
Hu
ðGUTÞ, then the value of δm2

Hu

changes accordingly (as indicated by the various
dotted lines for different input μ values), so that
instead of finetuning, one must adopt an iterative
procedure to try and find a solution. Sometimes the
solution will migrate into the no EWSB region while
other times the iterations can find a viable solution.

C. Electroweak naturalness

As mentioned before, the electroweak naturalness mea-
sure ΔEW measures the largest contribution on the right-
hand side of Eq. (3) and compares that to m2

Z=2. This is the
most conservative, unavoidable measure of naturalness
since it is independent of any high-scale model. Even
when high-scale parameters are correlated in some way,
those correlations are typically lost under RG running and
subsequent computation of the physical sparticle mass

FIG. 8. Plot of signðδm2
Hu
Þ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jδm2

Hu
j

q
vs mHu

ðGUTÞ for the NUHM2 model with m0 ¼ 4.5 TeV, m1=2 ¼ 1 TeV, A0 ¼ −7.2 TeV,

and tan β ¼ 10 with mA ¼ 2 TeV. We show the approximate expression Eq. (18) (red dashed curve) along with exact two-loop
expression (blue solid) along with the value gleaned from fine-tuning for various values of μ.
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eigenstates. The interpretation ofΔEW is clear; if any one of
the rhs contributions to Eq. (3) is far larger than m2

Z=2, then
it is highly implausible (but not impossible) that some other
contribution would accidentally be large and of the oppo-
site sign such that the two conspire to give an mZ value of
just 91.2 GeV. In this sense, natural models correspond to
plausible models; models with large ΔEW are logically
possible, but highly implausible. We will see later that this
manifests itself as a probability, or likelihood, to emerge
from scans over the string landscape.
The tree-level contributions to ΔEW are instructive:
(i) The SUSY conserving μ parameter, which sets the

mass scale for the W, Z, h, and higgsinos enters
the weak scale directly. We already know that
mW;Z;h ∼ 100 GeV; the higgsinos should lie within
a factor of several of the measured value of the weak
scale. In light of LHC constraints, the SUSY LSP is
likely a higgsinolike lightest neutralino, or at worst a
gaugino-higgsino admixture.7

(ii) The value of m2
Hu
, where Hu acts as the SM Higgs

doublet, should be driven to small, negative values
since it also sets the mass of theW, Z, and h bosons.

(iii) The value of mHd
, which sets the mass scale for the

heavier Higgs bosons A, H and H�, can be much
larger since its contribution to the weak scale is
suppressed by a factor of tan β.

The loop-level contributions Σu
u and Σd

d are proportional
to the individual particle/sparticle masses but since the Σd

d
terms are suppressed by tan β, the Σu

u terms are usually
dominant. Of the Σu

u terms, usually Σu
uðt̃1;2Þ are largest

owing to the large top-quark Yukawa coupling. Since these
terms are all suppressed by loop factors, the particle/
sparticle masses which enter the Σu

u terms can be at the
TeV or beyond scale before becoming comparable to the
weak scale. Explicit expressions for the Σu

u and Σd
d are given

in the Appendixes to Refs. [107] and [54]. The dominant
terms are given by

Σu
uðt̃1;2Þ ¼

3

16π2
Fðm2

t̃1;2
Þ

×

�
f2t − g2Z ∓ f2t A2

t − 8g2Zð14 − 2
3
xWÞΔt

m2
t̃2
−m2

t̃1

�
; ð22Þ

where

Fðm2Þ ¼ m2

�
log

m2

Q2
− 1

�

and the optimized scale choice is taken as

Q2 ¼ mt̃1mt̃2 :

Also,

Δt ¼
m2

t̃L
−m2

t̃R

2
þm2

Z cos ð2βÞ
�
1

4
−
2

3
xW

�

with

g2Z ¼ g2 þ g02

8
and xW ¼ sin2θW:

In the denominator of Eq. (22), the tree-level masses should
be used.
Some highlights of the Σu

u terms include the following:
(i) For ΔEW ≲ 30, the top-squark contributions Σu

uðt̃1;2Þ
allow for top-squarks up to mt̃1 ≲ 3 TeV and
mt̃2 ≲ 8 TeV. The explicit expressions contain large
cancellations for large At both for Σu

uðt̃1Þ and Σu
uðt̃2Þ.

The large At helps to lift mh into the 125 GeV range
since mh is maximal for xt ∼

ffiffiffi
6

p
mt̃ [10]. This is in

contrast to ΔBG and ΔHS which both prefer small
trilinear soft terms. In Fig. 9 we show color-coded
regions of ΔBG in the m1=2 vs A0 plane of the
mSUGRA/CMSSMmodel form0 ¼ 5 TeV, tan β ¼
10 and μ > 0. We also show contours of Higgs mass
mh ¼ 123 GeV and 127 GeV, and contours of ΔEW
and ΔHS. The gray region around A0 ∼ 0 is the focus
point region. From the plot, we see that ΔHS is
always large, ΔHS ≳ 6000, due to the large value of
m0. Meanwhile, ΔBG reaches as low as ∼1000, also
in the FP region. ΔEW can reach as low as 62 in

FIG. 9. Plot of color-coded values of ΔBG in the m1=2 vs A0

plane of the mSUGRA/CMSSM model for m0 ¼ 5 TeV,
tan β ¼ 10, and μ > 0. We also show contours of Higgs mass
mh ¼ 123 GeV and 127 GeV, and contours of ΔEW and ΔHS.

7We do not implement here constraints on SUSY models from
the thermally produced neutralino relic density. The reason is that
these bounds are easily superceded by nonthermal processes
[103] such as axion-axino-saxion production [104] and/or the
presence of moduli fields [105] in the early Universe. In such
cases, the bulk of dark matter in SUSY models may indeed be
axions [106].
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between the two ΔEW ¼ 125 contours. As expected
from the mSUGRA/CMSSMmodel, no points allow
for both low fine-tuning and mh ∼ 125 GeV.

(ii) Since first-/second-generation Yukawa couplings
are tiny, then these sparticle masses can be much
larger than the third generation, with first-/second-
generation squarks and sleptons ranging up to 30–
50 TeV. In the context of the string landscape, this
leads to a quasidegeneracy/decoupling solution to
the SUSY-flavor and CP problems [78].

(iii) Gluinos affect the Σu
u via RG running and directly at

the two-loop level [108]. They can range up to mg̃ ≲
6 TeV for ΔEW ≲ 30, well-beyond present LHC
bounds [109].

A positive feature of ΔEW is its model independence
(within the context of models for which the MSSM is the
weak-scale EFT). The amount of fine-tuning only depends
on the weak-scale spectrum which is generated, but not on
how it is obtained. Thus, if one generates a certain weak-
scale spectrum via some high-scale model, or just the
pMSSM,8 then one gets the same value of ΔEW. This of
course is not true for the measures ΔHS or ΔBG.
A common criticism of ΔEW is that it doesn’t account for

high-scale parameter choices and correlations. This is not
exactly true as discussed earlier. The μ parameter evolves
only slightly from mGUT to mweak, as shown in Fig. 4. With
μðmGUTÞ ≃ μðmweakÞ, and in the context of all soft terms
correlated (as should be the case in a well specified SUSY-
breaking model), then ΔBG ≃ ΔEW, sans the radiative
corrections Σu

u and Σd
d. Also, if the dependent terms

m2
Hu
ðΛÞ and δm2

Hu
are combined, as required by PN, then

ΔHS ≃ ΔEW, without radiative corrections. Furthermore, the
specific choices of high-scale parameters can lead to more
or less fine-tuning via Eq. (3). In fact, a string landscape
selection for larger soft terms often results in smaller values
of ΔEW as compared to any selection for small or weak-
scale soft terms [112].

D. Stringy naturalness:
Anthropic origin of the weak scale

A fourth entry into the naturalness debate comes from
Douglas [113] with regards to the string landscape; stringy
naturalness, as remarked above. An advantage of stringy
naturalness is that it actually provides an explanation for the
magnitude of the weak scale, and not just naturalness of the
weak scale. The distribution of vacua in the multiverse as a
function of msoft is expected to be

dNvac ∼ fSUSYðmsoftÞ · fEWSBðmsoftÞdmsoft: ð23Þ

Douglas [113] advocates for a power-law draw to large soft
terms based on the supposition that there is no favored
value for SUSY-breaking fields on the landscape; fSUSY ∼
m2nFþnD−1

soft where nF is the number of (complex-valued)
F-breaking fields and nD is the number of (real-valued)
D-breaking fields giving rise to the ultimate SUSY-break-
ing scale. The distribution fEWSB is suggested as fEWSB ¼
Θð30 − ΔEWÞ [114] such that the value of the weak scale in
each pocket universe lies within the Agrawal-Barr-
Donoghue-Seckel (ABDS) window [57], the so-called
atomic principle. At present, SN does not admit a clear
numerical measure [58].

V. COMPARISON OF MEASURES

From the previous discussion, it becomes clear that the
various naturalnessmeasures are defined very differently and
hence we expect them to favor different regions of model
parameter space. A figurative view of how the different
measures compare can be gleaned from Fig. 10, which plots
the evolution of the soft Higgs mass-squared parameter from
Q ¼ mGUT to Q ¼ mweak in the NUHM2 model for
m0 ¼ 4.5 TeV, m1=2 ¼ 1 TeV, A0 ¼ −1.6m0, tan β ¼ 10,
and mA ¼ 2 TeV. The right-side brackets correspond
roughly to the different naturalness measures. In NUHM2,
the BG measure contains a sensitivity coefficient

cm2
Hu

∼ 1.27jmHu
ðΛÞ=mZj2;

or

cmHu
∼ 2.54jmHu

ðΛÞ=mZj2

ifmHu
ðΛÞ is the fundamental parameter, instead ofm2

Hu
ðΛÞ.

Where this coefficient is the maximal contribution to ΔBG,
then this “distance” is the approximate measure. For
ΔHS ≃ δm2

Hu
=m2

Z, the relevant measure is instead the brack-
eted distance δm2

Hu
, and so ΔHS is usually (but not always)

larger than ΔBG, since in order for EW symmetry to break,
m2

Hu
must be driven to negative values. Notice then from the

plot that the onlyway for δm2
Hu

to be small is also ifm2
Hu
ðΛÞ is

small: this is why ΔHS favors only the low m0 region when
mSUGRA/CMSSMuniversalitywithmHu

¼ m0 is required.
In contrast, low values of ΔEW require low m2

Hu
ðweakÞ, and

so low ΔEW can be found for any value ofm2
Hu
ðΛÞ such that

m2
Hu

is barely driven to negative values. This is some times
called criticality [102,115], or barely broken electroweak
symmetry [116]. This latter quality is favored by the string
landscape where as large as possible values of m2

Hu
ðΛÞ are

statistically favored so long as m2
Hu is just barely driven to

negative values [114].
In Fig. 11(a), we plot naturalness favored and unfavored

regions of parameter space in the mSUGRA/CMSSM
model m0 vs m1=2 plane where tan β ¼ 10, μ > 0 and

8For scans of ΔEW within the pMSSM, see, e.g.,
Refs. [110,111].
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A0 ¼ 0 (spectra generated using SOFTSUSY [117]). The
latter choice for A0 is traditional in that it displays the FP
region, which otherwise disappears for large A0. However,
it should be remarked here that A0 ¼ 0 is probably the least
motivated value for A0 in that in generic SUGRAmodels all
soft terms are expected to occur of order m3=2 and
m3=2 ∼m0. On the phenomenological side, small At leads
to a near minimum in the Higgs mass mh (as shown in
Fig. 12) whilst At ∼

ffiffiffi
6

p
m0 leads to maximal mh values

[10]. Using high-scale parameters A0, the range of At
doesn’t extend to the mh maximal value before CCB
minima are encountered in the scalar potential (which

forms the endpoints of the plot). Currently, the mSUGRA/
CMSSM FP region seems excluded by
(1) Too low a value of mh [100] and
(2) The LSP DM candidate is of the well-tempered

[118,119] type which is now excluded [120–122] by
weakly interacting massive particles spin-independent
direct-detection experiments such as xenon [123] and
LZ [124].

From Fig. 11(a), we see the ΔBG contours of 30 and 100
roughly track lines of constant μ for lower m0 values and
lines of m0 for high values [41]. Meanwhile, the contour
ΔEW ¼ 30 (denoted as blue), follows the low μ values to

FIG. 10. Evolution of the m2
Hu

soft SUSY breaking up-Higgs mass from Q ¼ mGUT to Q ¼ mweak for the NUHM2 model with
m0 ¼ 4.5 TeV, m1=2 ¼ 1 TeV, A0 ¼ −1.6m0, tan β ¼ 10, and mA ¼ 2 TeV.

FIG. 11. Plot of various naturalness contours in (a) the mSUGRA/CMSSMm0 vsm1=2 plane for A0 ¼ 0 and tan β ¼ 10 and μ > 0. In
(b), we plot naturalness contours in the m0 vs m1=2 plane of the NUHM2 model with A0 ¼ −1.6m0, tan β ¼ 10, μ ¼ 200 GeV and
mA ¼ 2 TeV. The spectra are calculated using SOFTSUSY and the naturalness measures with DEW4SLHA.
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much largerm0 whereupon it cuts off due to increasing top-
squark contributions via the Σu

uðt̃1;2Þ terms. The conflict of
these measures with ΔHS is apparent since ΔHS favors light
third-generation squarks which occur only at low m0 and
low m1=2. All three measures favor the lower corner of m0

vs m1=2 parameter space, and, when compared to LHC
gluino mass limits (mg̃ ≳ 2.25 TeV as shown by the green
contour), might lead one to conclude this model is excluded
based on comparisons of naturalness with LHC constraints.
A very different picture emerges when one proceeds to

the NUHM2 model as shown in Fig. 11(b). In this case,
nonuniversality of the Higgs soft masses (as expected in
gravity- mediation) allows for low μ ¼ 200 GeV through-
out the parameter plane. Also, the large negative A0 ¼
−1.6m0 term allows for mh ∼ 125 GeV throughout much
of the plane (as shown between the gold contours of mass
mh ¼ 123 GeV and 127 GeV). The large, negative A0 term
helps crunch the ΔHS and ΔBG contours into the lower-left
region which actually yields charge-and-color breaking
scalar potential minima, which must be excluded.
Meanwhile, the ΔEW contours balloon out to very large
m0 andm1=2 values, with ΔEW ∼ 30 extending well-beyond
present LHC limits onmg̃. While the lowestΔEW values are
still found in the lower-left corner of m0 vs m1=2 parameter
space, we note that stringy naturalness, which favors a
power-law draw to large soft terms, actually favors the
region beyond the LHC mg̃ limit [58].

VI. RATIOS OF MEASURES FOR
CMSSM AND NUHM2 MODELS

In this section we compute the ratios of various natu-
ralness measures in the CMSSM/mSUGRA and NUHM2
models. Spectra are calculated with SOFTSUSY [117] while
naturalness measures are computed with DEW4SLHA

[54]. The goal here is to quantify potential overestimates
of finetuning in different SUSY models.

A. Ratios of measures for the mSUGRA/CMSSMmodel

1. Results in m0 vs m1=2 plane

In Fig. 13, we compute the various ratios of naturalness
in the mSUGRA/CMSSMmodel and display results in the
m0 vs m1=2 plane for A0 ¼ 0 and tan β ¼ 10, such as to
include the HB/FP region. Our first results are shown in
frame (a) where we plot ΔHS=ΔBG. The right-side gray
region has no EWSB while the left-side gray region has a
stau LSP. The lower-yellow region has the lightest
chargino below LEP2 limits of mþ

χ̃1
< 103.5 GeV. The

color-coded ratios are denoted by the scale on the right-
hand side of the plot and range from 0.5 (purple) to
∼15 (red).
Starting from the lhs of Fig. 13(a), we see that for lowm0

then ΔHS ∼ ΔBG=2. This is because ΔBG is typically
dominated by the gluino or M3 contribution which is then
canceled by μ2 to maintain mZ at 91.2 GeV. But ΔHS is
dominated instead by δm2

Hu
which is low at low m0. As m0

increases, then ultimately the two measures are comparable
in the color transition region while for higher m0 values,
where the FP-type cancellation kicks in, then ΔHS becomes
much larger than ΔBG and reaches nearly a factor of ∼5–15
at the edge of the “no EWSB” region. This plot illustrates
that the ΔBG and ΔHS measures are incompatible.
In Fig. 13(b), we plot the ratioΔBG=ΔEW. In this case, on

the left side at lowm0 the two measures are comparable, but
become as large as a factor ∼15 on the rhs near the edge of
the no EWSB excluded region. In this region, ΔBG is
dominated by the gluino=M3 contribution, but in ΔEW this
is two-loop suppressed and so ΔBG is much larger.

FIG. 12. Computed value of mh vs (a) At and (b) A0 in the mSUGRA/CMSSM model for m0 ¼ 5 TeV, m1=2 ¼ 1.2 TeV and
tan β ¼ 10, with μ > 0. We compare the results from SOFTSUSY [117], FeynHiggs [125] using SOFTSUSYor ISAJET inputs, and ISASUGRA

7.88 [126].
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In Fig. 13(c), where the ratioΔHS=ΔEW is plotted, we see
the measures are only comparable on the extreme LHS but
then differ by up to a factor of ∼80–100 on the rhs in the
orange/red region. In this region, top-squarks are in the
multi-TeV regime so ΔHS is very large while ΔEW allows
for multi-TeV top squarks owing to the loop factor in
Eq. (22).

FIG. 13. Plot of ratios of naturalness measures in them0 vsm1=2
plane for the CMSSM model for for A0 ¼ 0, tan β ¼ 10, and
μ > 0. In (a), we plot ΔHS=ΔBG while in (b) we plot ΔBG=ΔEW
and in (c) we plot ΔHS=ΔEW. The spectra are calculated using
SOFTSUSY and the naturalness measures with DEW4SLHA.

FIG. 14. Plot of ratios of naturalness measures vs m1=2 from a
scan over CMSSM model parameters. In (a), we plot ΔHS vs ΔBG
for a general plus a focused scan (at A0 ¼ 0 to pick up the FP
SUSY region) while in (b) we plot ΔBG=ΔEW and in (c) we plot
ΔHS=ΔEW. The spectra are calculated using SOFTSUSY and the
naturalness measures with DEW4SLHA.
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2. Results from scan over CMSSM parameters

Next, we attempt to pick out the maximal ratio of
naturalness measures in an attempt to quantify their
numerical differences. First, we scan over CMSSM param-
eter space:

(i) m0∶ 0.1–15 TeV,
(ii) m1=2∶ 0.1–2 TeV,
(iii) A0∶ − 2.5m0 to þ2.5m0,
(iv) tan β∶ 3–60

with μ > 0. In Fig. 14(a), we show the ratio ΔHS=ΔBG from
the above scan plus a focused scan over the same parameter
range but with A0 ¼ 0 so as to pick up the FP region where
the ratio is expected to be largest. The green points are
LHC-allowed from LHC Run 2. In this case, the ratio
ΔHS=ΔBG can be as high as 28 overall, but only as high as
∼10 in the LHC-allowed region. These values are some-
what higher than the maximal ratios obtained from the
plane plots.
Similarly, we show in Fig. 14(b) the ratio ΔBG=ΔEW

which ranges up to 50 (20) in the overall (LHC-allowed)
case. In frame (c), the ratioΔHS=ΔEW ranges up to ∼200 for
both LHC-allowed and forbidden cases.

B. Ratios of measures for the NUHM2 model

1. Results in m0 vs m1=2 plane

Next, we compute ratios of naturalness measures for the
NUHM2 model. In this case, we expect much bigger
differences between naturalness measures ΔBG and ΔEW

since for NUHMi models,m2
Hu

is now a free parameter, and
no longer available to cancel against other oppositely
signed sfermion contributions in Eq. (10). In particular,
the FP cancellation between Higgs and third-generation
sfermion terms in Eq. (10) is destroyed when one assumes
that m2

Hu
is a free parameter. Furthermore, by adopting

natural values of μ ∼mweak, then this contribution toΔEW is
suppressed and the dominant contribution instead fre-
quently comes from the (loop-suppressed) Σu

uðt̃1;2Þ terms.
In Fig. 15(a), we show color-coded ratiosΔHS=ΔBG in the

m0 vsm1=2 plane of the NUHM2model with A0 ¼ −1.6m0,
tan β ¼ 10, μ ¼ 200 GeV, andmA ¼ 2 TeV. The lower-left
blue-shaded region has CCB minima in the scalar potential
owing in part to the large A0 term. The mass spectra are
generated using SOFTSUSY. The gold contours denote Higgs
mass mh ¼ 123 GeV (left) and mh ¼ 127 GeV (right),
while the purple contour near m1=2 ∼ 1 TeV denotes the
LHC mg̃ ¼ 2.25 TeV limit. On the green-shaded extreme
left side of the plot,ΔBG becomes larger thanΔHS by a factor
∼2. For the bulk of the plot range (red- and orange- shaded
regions), then ΔHS ∼ ð0.75–0.85ÞΔBG.

FIG. 15. Plot of ratios of naturalness measures in them0 vsm1=2
plane for the NUHM2 model for A0 ¼ −1.6m0, tan β ¼ 10 and
μ ¼ 200 GeV, and mA ¼ 2 TeV. In (a), we plot ΔBG=ΔHS while
in (b) we plotΔBG=ΔEW and in (c) we plotΔHS=ΔEW. The spectra
are calculated using SOFTSUSY and the naturalness measures with
DEW4SLHA.
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In Fig. 15(b), we show the ratio ΔBG=ΔEW in the same
plane as frame (a). In the red-shaded region below the LHC
gluino mass limit, we see that ΔBG=ΔEW ∼ 900, a gross
disparity between measures. Here, we have utilized mHu

as
the fundamental parameter in place of m2

Hu
for numerical

stability purposes, as the difference is only a factor of two
in the derivative. In this region, ΔBG is dominated by the
term

j − 1.27 · 2m2
Hu
j

m2
Z=2

in Eq. (10) which can be ∼11000whilst theΔEW measure is
dominated by Σu

uðt̃1;2Þ which yields ΔEW ∼ 10–20 (very
natural). Throughout the NUHM2 plane, one can be brought
to very different conclusions regarding the naturalness of the
NUHM2 model parameter space depending on which
measure one adopts. For the bulk of parameter space above
the LHCgluino bound, then one findsΔBG ∼ ð50–400ÞΔEW.
In Fig. 15(c), we show the ratioΔHS=ΔEW. In this case, the

red-shaded region shows that ΔHS ∼ 700ΔEW. Again, one is
led to very different conclusions on the naturalness of the
model depending on which measure one chooses. In this
case, in the LHC-allowed region thenΔHS ∼ ð50–400ÞΔEW.

2. Results from scan over NUHM2 parameters

Here, we scan over NUHM2 parameter space:
(i) m0∶ 0.1–15 TeV,
(ii) m1=2∶ 0.1–2 TeV,
(iii) A0∶ − 2.5m0 to þ2.5m0,
(iv) tan β∶ 3–60,
(v) μ∶0.1–1 TeV and
(vi) mA∶ 0.3–8 TeV.

From Fig. 16(a), we see the ratio ΔHS=ΔBG ranges from
∼0.1–1.5 over the parameter space scanned: the two
measures are rather close much of the time in this case,
but sometimes ΔBG can become a factor of ∼10 larger than
ΔHS. In Fig. 16(b), instead we plot the ΔBG=ΔEW ratio.
While the bulk of parameter points have ratio between
∼1–250, some few points can range up to 500–1000.
Similar results are obtained for Fig. 16(c) where we plot
ΔHS=ΔEW and find ratios ranging again up to over 1000.

VII. NATURAL GENERALIZED ANOMALY
MEDIATION (nAMSB)

Anomaly-mediated SUSY-breaking (AMSB) models
[79,80] are good examples of models where the soft terms
are all correlated and determined by a single parameter, the
gravitino mass m3=2. AMSB models assume a sequestering
between the hidden and visible sector fields such that
gravity-mediated soft terms are suppressed; in such a case,
the loop-induced AMSB soft terms, which depend on the
beta functions and anomalous dimensions of the low
energy theory (assumed to be the MSSM) are dominant,
and independent of higher-energy physics. At first glance,
AMSB SUSY models would seem ruled out since the
AMSB soft terms give rise to tachyonic sleptons. In the
original Randall-Sundrum paper [79], it is conjectured that
additional bulk soft terms may also be present which can
solve the tachyonic slepton mass problem.
In the so-called minimal AMSB (mAMSB) model

[127,128], a universal bulk sfermionmassm0 is also assumed
so that the parameter space of mAMSB is given by

m0; m3=2; tan β; signðμÞ ðmAMSBÞ: ð24Þ

FIG. 16. Plot of ratios of naturalness measures vs m1=2 from a
scan over NUHM2 model parameters. In (a), we plot ΔHS=ΔBG
while in (b) we plot ΔBG=ΔEW, and in (c) we plot ΔHS=ΔEW. The
spectrum is calculated using SOFTSUSY and the naturalness
measures with DEW4SLHA.
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Here, the magnitude of a bilinear softB term is traded for the
parameter tan β and jμj is determined from the EW mini-
mization condition. Famously, the winolike neutralino turns
out to be the LSP. At present, in light of LHC sparticle and
Higgs mass constraints and direct/indirect wino dark matter
constraints, mAMSB seems ruled out [120,129,130]. The
small AMSB At terms lead to mh ≪ 125 GeV unless
sparticle masses ∼10–100 TeV (highly unnatural) sparticle
are assumed [131,132] and the DM constraints are evaded.
However, in Ref. [81] some minor fixes (already

proposed in the original RS paper) were proposed which
lead to generalized AMSB models (gAMSB) which allow
for naturalness (nAMSB with ΔEW ≲ 30) and with
mh ∼ 125 GeV. The fixes are:
(1) Nonuniversal scalar bulk masses mHu

≠ mHd
≠ m0;

(2) Bulk-induced A0 terms;
(3) A further option is independent bulk terms for each

sfermion generation m0ðiÞ with i ¼ 1–3.

As in NUHMi models, the nonuniversal bulk Higgs soft
terms can be traded for μ and mA via scalar potential
minimization conditions and the bulk A terms can be
chosen to dial up mh ∼ 125 GeV. Thus, the generalized
AMSB parameter space is given by

m0ðiÞ; m3=2; A0; tan β; μ and mA ðgAMSBÞ: ð25Þ

For natural values of μ ∼ 100–350 GeV, then in the nAMSB
model, the LSP is instead (usually) higgsinolike, although
the wino is still the lightest of the gauginos. The gAMSB
model is what one may expect in models of charged SUSY
breaking, where the hidden sector SUSY breaking field S
contains some hidden sector charge [133,134]. In this case,
then usual gravity-mediated gaugino masses are forbidden
since the gauge kinetic function is holomorphic. But sfer-
mion masses and A-terms, which depend instead on the
Kähler potential, are allowed to obtain gravity-mediated soft

FIG. 17. Plot of naturalness measure ΔEW in them0 vsm3=2 plane of (a) the mAMSB model and (b) the nAMSB model for tan β ¼ 10.
For nAMSB, we also require μ ¼ 200 GeV and mA ¼ 2 TeV. The spectra are calculated using Isasugra.
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terms. The naturalness measure ΔBG is harder to interpret in
the AMSB case since m3=2 plays a more fundamental role
than the ad hoc soft terms. Also, ΔHS is problematic in that
the purelyAMSB soft terms are famously scale independent,
so there is no prescription for which Λ should be used in
Eq. (19). Alternatively, there is no ambiguity in the ΔEW
measure, so we proceed to exhibit its value.
In Fig. 17, we plot color-coded regions of the naturalness

measure ΔEW in the m0 vs m3=2 plane for (a) the mAMSB
model and (b) for the nAMSB model. For both cases, we
take tan β ¼ 10 and μ > 0. For the nAMSB model, we also
take μ ¼ 200 GeV, mA ¼ 2 TeV and A0 ¼ m0. In the case
of frame (a) for the mAMSB model, the Higgs mass mh is
less then 123 GeV throughout the entire plane shown (and
we do show a contour of mh ¼ 120 GeV via the dotted
curve). The minimal value of ΔEW is ∼25 in the purple
focus point region of the LHC-excluded zone, but ΔEW can
range as high as over 2000 in the upper-left region.
In contrast, for frame (b), we see that a large portion of

the plane shown has mh ∼ 123–127 GeV. In addition, ΔEW
can range as low as ∼15 in the lower-left region, although
this is excluded by LHC. In the LHC-allowed region, above
the mg̃ ¼ 2.25 TeV contour, then ΔEW can be as low as
∼20. Note that the range of color-coded ΔEW values is
much smaller in frame (b) than in (a); in (b), ΔEW ranges as
high as ∼150 while in (a) it can range beyond 2000.

VIII. NATURAL GENERAL MIRAGE MEDIATION

While theAMSBmodelsmay seemcontrivedowing to the
requirement of sequestering and ad hoc bulk soft terms, a
perhaps more realistic alternative is mirage mediation (MM)
models where gravity-mediated and anomaly-mediated soft
terms are comparable. This class of models is expected to
arise from IIB string compactification on an orientifold with
moduli stabilization as in Kachru-Kallosh-Linde-Trivedi
(KKLT) [135]; the dilaton S and complex structure moduli
Uβ are stabilized by fluxes and the Kähler moduli Tα are
stabilized by nonperturbative effects such as gaugino con-
densation or instantons. While the S and Uβ moduli are
expected to gain Kaluza-Klein (KK) scale masses, the Tα

moduli can be much lighter. Moduli stabilization leads to
supersymmetric anti–de Sitter vacua, but uplifting of the
scalar potential via addition of, for instance, an anti-D3 brane
at the tip of aKlebanov-Strassler throat can lead tometastable
deSitter vacua. A scale of hierarchies [82,136]

mT ∼ 4π2m3=2 ∼ 4π2msoft

is expected to ensue, leading to comparable moduli and
AMSB contributions to soft masses.
The original KKLT picture assumed a single Kähler

modulus T and a simple uplift procedure. Within the MM
model, the soft supersymmetry breaking (SSB) gaugino-
mass parameters, trilinear SSB parameters and sfermion

mass parameters, all renormalized just below the unifica-
tion scale (taken to be Q ¼ mGUT), are found to be [82],

Ma ¼ Msðlaαþ bag2aÞ; ð26Þ

Aijk ¼ Msð−aijkαþ γi þ γj þ γkÞ; ð27Þ

m2
i ¼ M2

sðciα2 þ 4αξi − γ̇iÞ; ð28Þ

where

Ms ≡ m3=2

16π2
;

ba are the gauge β function coefficients for gauge group a
and ga are the corresponding gauge couplings. The coef-
ficients that appear in (26)–(28) are given by

ci ¼ 1 − ni;

aijk ¼ 3 − ni − nj − nk

and

ξi ¼
X
j;k

aijk
y2ijk
4

−
X
a

lag2aCa
2ðfiÞ:

Finally, yijk are the superpotential Yukawa couplings, Ca
2 is

the quadratic Casimir for the ath gauge group correspond-
ing to the representation to which the sfermion f̃i belongs,
γi is the anomalous dimension and

γ̇i ¼ 8π2
∂γi

∂ log μ
:

Expressions for the last two quantities involving the
anomalous dimensions can be found in the Appendixes
of Refs. [137,138]. The quantity la is the power of the
modulus field entering the gauge kinetic function. The ni
are modular weights which take on discrete values in the
original construction based on the brane locations of the
matter superfields [82].
The MM model is then specified by the parameters

m3=2;α; tan β; signðμÞ; ni; la: ð29Þ

The mass scale for the SSB parameters is dictated by the
gravitino mass m3=2. The phenomenological parameter α,
which could be of either sign, determines the relative
contributions of anomaly mediation and gravity mediation
to the soft terms, and is expected to be jαj ∼Oð1Þ. Grand
unification implies matter particles within the same GUT
multiplet have common modular weights, and that the la
are universal. We will assume here that all la ¼ 1 and, for
simplicity, there is a common modular weight for all matter
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scalars cm but we will allow for different modular weights
cHu

and cHd
for each of the two Higgs doublets of the

MSSM. Such choices for the scalar field modular weights
are motivated for instance by SOð10Þ SUSY GUT models
where the MSSM Higgs doublets may live in different ten-
dimensional Higgs reps.
For a variety of discrete parameter choices ni, the various

MM models have all been found to be unnatural when the
Higgs mass mh is restricted to be mh∶ 123–127 GeV [45].
However, inRef. [83], it was suggested that to allow formore
realistic compactification schemes (wherein the Kähler
moduli may number in the hundreds instead of just one)
and for more diverse uplifting mechanisms, then the discrete
valued parameter choices may be generalized to continuous
ones. This transition to generalizedMMmodels (GMM) then
allows for natural models with mh ∼ 125 GeV. The param-
eter space of GMM is given by

α; m3=2; cm; cm3; a3; cHu
; cHd

; tan β ðGMMÞ; ð30Þ

where a3 is short for aQ3HuU3
[appearing in Eq. (27)] and cm,

cm3, cHu
, and cHd

arise in Eq. (28). Here, we adopt an
independent value cm for the first two matter-scalar gen-
erations whilst the parameter cm3 applies to third-generation
matter scalars. The independent values of cHu

and cHd
, which

set the moduli-mediated contribution to the soft Higgs mass-
squared soft terms, may conveniently be traded for weak-
scale values of μ and mA as is done in the two-parameter
nonuniversal Higgs model (NUHM2) [73];

α; m3=2; cm; cm3; a3; tan β; μ; mA ðGMM0Þ: ð31Þ

This procedure allows for more direct exploration of stringy
natural SUSY parameter space where most landscape

solutions requireμ ∼ 100–300 GeV in anthropically allowed
pocket universes [139].
Thus, our final formulas for the soft terms are given by

Ma ¼ ðαþ bag2aÞm3=2=16π2; ð32Þ

Aτ ¼ ð−a3αþ γL3
þ γHd

þ γE3
Þm3=2=16π2; ð33Þ

Ab ¼ ð−a3αþ γQ3
þ γHd

þ γD3
Þm3=2=16π2; ð34Þ

At ¼ ð−a3αþ γQ3
þ γHu

þ γU3
Þm3=2=16π2; ð35Þ

m2
i ð1; 2Þ ¼ ðcmα2 þ 4αξi − γ̇iÞðm3=2=16π2Þ2; ð36Þ

m2
jð3Þ ¼ ðcm3α

2 þ 4αξj − γ̇jÞðm3=2=16π2Þ2; ð37Þ

m2
Hu

¼ ðcHu
α2 þ 4αξHu

− γ̇Hu
Þðm3=2=16π2Þ2; ð38Þ

m2
Hd

¼ ðcHd
α2 þ 4αξHd

− γ̇Hd
Þðm3=2=16π2Þ2; ð39Þ

where, for a given value of α andm3=2, the values of cHu
and

cHd
are adjusted so as to fulfill the input values ofμ andmA. In

the above expressions, the index i runs over first-/second-
generation MSSM scalars i ¼ Q1;2; U1;2; D1;2; L1;2, and
E1;2 while j runs overs third-generation scalars j ¼ Q3;
U3; D3; L3, and E3. The natural GMM model has been
incorporated into the event generator program Isajet 7.86
[126]. Here again, there is ambiguity in the evaluation ofΔBG
and ΔHS while evaluation of ΔEW is unambiguous.
In Fig. 18, we show color-coded regions of ΔEW for the

GMM0 model mMM
0 vs mMM

1=2 plane for a3 ¼ 1.6
ffiffiffiffiffiffi
cm

p
, cm ¼

cm3 and with μ ¼ 200 GeV and mA ¼ 2000 GeV. Here,
mMM

0 is defined as

FIG. 18. Plot of naturalness measure ΔEW in the mMM
0 vs mMM

1=2 plane of the generalized mirage-mediation model for tan β ¼ 10 with
cm ¼ cm3 and a3 ¼ 1.6

ffiffiffiffiffiffi
cm

p
. For GMM0, we also require μ ¼ 200 GeV and mA ¼ 2 TeV. The spectra are calculated using Isasugra.
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mMM
0 ¼ ffiffiffiffiffiffi

cm
p

αm3=2=16π2

and mMM
1=2 as

mMM
1=2 ¼ αm3=2=16π2:

We also show contours of mh ¼ 123 GeV and 127 GeV
and a contour of mg̃ ¼ 2.25 TeV. The lower-right region is
excluded due to CCB minima, while the yellow lower-left
region has mχ̃þ

1
< 103.5 GeV. From the plot, we see a vast

purple- and blue-colored region with ΔEW ∼ 10–20; highly
EW natural. Also, much of this region has a light Higgs
scalar with mass mh ∼ 125 GeV. The key signature of
GMM models is the fact that the gaugino masses should
unify at scales well below Q ¼ mGUT. Thus, if SUSY were
discovered, a high-priority issue would be to measure mg̃

(M3) and mχ̃þ
2
(M2) to determine the scale Q at which these

values unify. A measurement of the bino mass M1 would
also be useful, but this may be more difficult than
measuring M3 and M2.

IX. CONCLUSIONS

In this paper, we have reexamined three fine-tuning
measures which are widely used in the literature:ΔBG,ΔHS,
andΔEW. A fourth, stringy naturalness, does not yet admit a
quantitative measure although it may be possible in future
work. These measures have been quoted vaguely to bolster
opinions on future HE facilities and to set policy for future
experiments. Given these consequences, a critical evalu-
ation seems necessary. While naturalness definitions such
as ’t Hooft naturalness certainly apply to supersymmetry
and the big hierarchy problem, in that a low scale of SUSY
breaking is technically natural (in that the model becomes
more (super)symmetric as the SUSY breaking order
parameter tends to zero) this doesn’t apply to the little
hierarchy problem (LHP) which is instead concerned with
the increasing mass gap between the measured value of the
weak scale and the scale of soft-SUSY breaking terms
[which determine mweak via Eq. (3)]. For the LHP, we
invoke instead the notion of practical naturalness, where
all independent contributions to any observable should
be comparable to or less than the measured value of the
observable.
The three naturalness measures are all attempts to

measure practical naturalness. The ΔEW measure is most
conservative and unavoidable. It is model independent
within a fixed matter content (such as the MSSM). It is
also unambiguous. Its lessons can be immediately extracted
from Eq. (3); the only superparticles required at the weak
scale are the various higgsinos whose mass derives from the
SUSY conserving μ parameter. While the value of μ is
frequently tuned in Eq. (3) such as to give the measured
value of mZ, its physics origin is rather obscure and may or

may not be directly related to SUSY breaking.9 Of the
remaining superparticle contributions to the weak scale, all
are suppressed by loop factors times mass-squared factors
in Eq. (3) so that the sparticles can lie in the TeV to multi-
TeV range at little cost to naturalness. In the string
landscape picture, in fact, there is a statistical draw to
large soft terms so long as their contributions to the weak
scale are not too large. This then predicts mh ∼ 125 GeV
with sparticles typically beyond present reach of the
LHC [114,141].
The traditional ΔBG measure which instead famously

placed upper bounds on all sparticles of just a few hundred
GeV suffers from the ambiguity of what to take as free
parameters in the log-derivative measure. While the com-
monly used SUSY EFTs adopt a variety of “parameters of
ignorance”, it is noted that in more specific models the soft
terms are all correlated (in our universe). Taking multiple
soft parameters as the pi in ΔBG leads to overestimates of
finetuning by factors of up to 500–1000 as compared to
ΔEW. Also, the measure ΔBG is rather complicated to
compute, so we have embedded its numerical evaluation
into the publicly available code DEW4SLHA which com-
putes all three finetuning measures given an input SUSY
Les Houches Accord file. By combining dependent soft
terms, then ΔBG reduces to the tree-level value of ΔEW.
The measure ΔHS which evaluates to be approximately

∼δm2
Hu
=m2

weak is found to overestimate fine-tuning by
artificially splitting m2

Hu
ðweakÞ into m2

Hu
ðΛÞ þ δm2

Hu
.

These are not independent contributions to m2
h. In fact,

selection of appropriately broken EW symmetry requires
δm2

Hu
to be large or else EW symmetry is not broken. This

measure, which famously predicts three third-generation
squarks below 500 GeV, also overestimates fine-tuning by
up to three orders ofmagnitude.By combining the dependent
terms m2

Hu
ðΛÞ with δm2

Hu
, then ΔHS reduces to ΔEW

according to Eq. (20).
Our ultimate conclusion is that the so-called naturalness

crisis [142,143] which arose from non-observation of
SUSY particles at LHC is not a crisis at all, but is based
on faulty estimates of finetuning by the ΔBG and ΔHS
measures (which are actually inconsistent with each other).
The more conservative measure ΔEW rules out old favorites
such as the CMSSM/mSUGRA, mAMSB, mGMSB, and
MM models based on naturalness, but allows for plenty of
natural parameter space in models like NUHMi, nAMSB,
and nGMM (and of course less theoretically constrained
exploratory constructs like pMSSM). In fact, the natural-
ness-allowed and LHC-allowed parameter space regions
are precisely those which seem most prevalent from rather
general considerations of the string landscape. In this light,
the above natural SUSY models maintain a high degree of

9Twenty solutions to the SUSY μ problem are reviewed in
Ref. [140].
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motivation, and are perhaps even more highly motivated
than pre-LHC times due to the emergence of the string
landscape. Thus, policy decisions for future HEP facilities,
especially future accelerators, should bear this resolution in
mind in that it may be that we just need a much more
energetic collider for the discovery of superpartners.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Basic
Energy Sciences Energy Frontier Research Centers program
under Award No. DE-SC-0009956 and U.S. Department of
Energy Grant No. DE-SC-0017647.

[1] E. Witten, Dynamical breaking of supersymmetry, Nucl.
Phys. B188, 513 (1981).

[2] R. K. Kaul, Gauge hierarchy in a supersymmetric model,
Phys. Lett. 109B, 19 (1982).

[3] S. Dimopoulos, S. Raby, and F. Wilczek, Supersymmetry
and the scale of unification, Phys. Rev. D 24, 1681 (1981).

[4] U. Amaldi, W. de Boer, and H. Furstenau, Comparison of
grand unified theories with electroweak and strong cou-
pling constants measured at LEP, Phys. Lett. B 260, 447
(1991).

[5] J. R. Ellis, S. Kelley, and D. V. Nanopoulos, Probing the
desert using gauge coupling unification, Phys. Lett. B 260,
131 (1991).

[6] P. Langacker and M. Luo, Implications of precision
electroweak experiments for Mt, ρ0, sin2 θW and grand
unification, Phys. Rev. D 44, 817 (1991).

[7] L. E. Ibanez and G. G. Ross, SU(2)-L x U(1) symmetry
breaking as a radiative effect of supersymmetry breaking in
guts, Phys. Lett. 110B, 215 (1982).

[8] L. E. Ibanez and C. Lopez, N ¼ 1 supergravity, the break-
ing of SUð2Þ × Uð1Þ and the top quark mass, Phys. Lett.
126B, 54 (1983).

[9] L. Alvarez-Gaume, J. Polchinski, and M. B. Wise,
Minimal low-energy supergravity, Nucl. Phys. B221,
495 (1983).

[10] P. Slavich et al., Higgs-mass predictions in the MSSM and
beyond, Eur. Phys. J. C 81, 450 (2021).

[11] S. Heinemeyer, W. Hollik, G. Weiglein, and L. Zeune,
Implications of LHC search results on the W boson mass
prediction in the MSSM, J. High Energy Phys. 12 (2013)
084.

[12] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten,
Vacuum configurations for superstrings, Nucl. Phys. B258,
46 (1985).

[13] B. S. Acharya, Supersymmetry, Ricci flat manifolds and
the string landscape, J. High Energy Phys. 08 (2020) 128.

[14] J. R. Ellis and D. Ross, A light Higgs boson would invite
supersymmetry, Phys. Lett. B 506, 331 (2001).

[15] F. Vissani, Do experiments suggest a hierarchy problem?,
Phys. Rev. D 57, 7027 (1998).

[16] M. Farina, D. Pappadopulo, and A. Strumia, A modified
naturalness principle and its experimental tests, J. High
Energy Phys. 08 (2013) 022.

[17] C. K. M. Klein, Minimal radiative neutrino mass -A
systematic study-, Master’s thesis, Heidelberg, Max Planck
institute, 2019.

[18] H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Schieren, K.
Schmidt-Hoberg, and P. K. S. Vaudrevange, Discrete R
symmetries for the MSSM and its singlet extensions, Nucl.
Phys. B850, 1 (2011).

[19] H. P. Nilles, Stringy origin of discrete R-symmetries, Proc.
Sci. CORFU2016 (2017) 017.

[20] H. Baer, V. Barger, and D. Sengupta, Gravity safe,
electroweak natural axionic solution to strong CP and
SUSY μ problems, Phys. Lett. B 790, 58 (2019).

[21] P. N. Bhattiprolu and S. P. Martin, High-quality axions in
solutions to the μ problem, Phys. Rev. D 104, 055014
(2021).

[22] M. Demirtas, N. Gendler, C. Long, L. McAllister, and J.
Moritz, PQ axiverse, J. High Energy Phys. 06 (2023) 092.

[23] M. Dine and A. Kusenko, The origin of the matter—
antimatter asymmetry, Rev. Mod. Phys. 76, 1 (2003).

[24] K. J. Bae, H. Baer, H. Serce, and Y.-F. Zhang, Lepto-
genesis scenarios for natural SUSY with mixed axion-
higgsino dark matter, J. Cosmol. Astropart. Phys. 01
(2016) 012.

[25] H. Baer and X. Tata, Weak Scale Supersymmetry: From
Superfields to Scattering Events (Cambridge University
Press, Cambridge, England, 2006).

[26] N. Craig et al., Snowmass theory frontier report, arXiv:
2211.05772.

[27] M. Narain et al., The future of US particle physics—the
snowmass 2021 energy frontier report, arXiv:2211.11084.

[28] J. R. Ellis, K. Enqvist, D. V. Nanopoulos, and F. Zwirner,
Observables in low-energy superstring models, Mod. Phys.
Lett. A 01, 57 (1986).

[29] R. Barbieri and G. F. Giudice, Upper bounds on super-
symmetric particle masses, Nucl. Phys. B306, 63 (1988).

[30] B. de Carlos and J. A. Casas, One loop analysis of the
electroweak breaking in supersymmetric models and the
fine tuning problem, Phys. Lett. B 309, 320 (1993).

[31] G. W. Anderson and D. J. Castano, Naturalness and super-
partner masses or when to give up on weak scale
supersymmetry, Phys. Rev. D 52, 1693 (1995).

[32] S. Dimopoulos and G. F. Giudice, Naturalness constraints
in supersymmetric theories with nonuniversal soft terms,
Phys. Lett. B 357, 573 (1995).

[33] P. H. Chankowski, J. R. Ellis, and S. Pokorski, The fine
tuning price of LEP, Phys. Lett. B 423, 327 (1998).

[34] P. H. Chankowski, J. R. Ellis, M. Olechowski, and S.
Pokorski, Haggling over the fine tuning price of LEP,
Nucl. Phys. B544, 39 (1999).

BAER, BARGER, MARTINEZ, and SALAM PHYS. REV. D 108, 035050 (2023)

035050-24

https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0370-2693(82)90453-1
https://doi.org/10.1103/PhysRevD.24.1681
https://doi.org/10.1016/0370-2693(91)91641-8
https://doi.org/10.1016/0370-2693(91)91641-8
https://doi.org/10.1016/0370-2693(91)90980-5
https://doi.org/10.1016/0370-2693(91)90980-5
https://doi.org/10.1103/PhysRevD.44.817
https://doi.org/10.1016/0370-2693(82)91239-4
https://doi.org/10.1016/0370-2693(83)90015-1
https://doi.org/10.1016/0370-2693(83)90015-1
https://doi.org/10.1016/0550-3213(83)90591-6
https://doi.org/10.1016/0550-3213(83)90591-6
https://doi.org/10.1140/epjc/s10052-021-09198-2
https://doi.org/10.1007/JHEP12(2013)084
https://doi.org/10.1007/JHEP12(2013)084
https://doi.org/10.1016/0550-3213(85)90602-9
https://doi.org/10.1016/0550-3213(85)90602-9
https://doi.org/10.1007/JHEP08(2020)128
https://doi.org/10.1016/S0370-2693(01)00156-3
https://doi.org/10.1103/PhysRevD.57.7027
https://doi.org/10.1007/JHEP08(2013)022
https://doi.org/10.1007/JHEP08(2013)022
https://doi.org/10.1016/j.nuclphysb.2011.04.009
https://doi.org/10.1016/j.nuclphysb.2011.04.009
https://doi.org/10.22323/1.292.0017
https://doi.org/10.22323/1.292.0017
https://doi.org/10.1016/j.physletb.2019.01.007
https://doi.org/10.1103/PhysRevD.104.055014
https://doi.org/10.1103/PhysRevD.104.055014
https://doi.org/10.1007/JHEP06(2023)092
https://doi.org/10.1103/RevModPhys.76.1
https://doi.org/10.1088/1475-7516/2016/01/012
https://doi.org/10.1088/1475-7516/2016/01/012
https://arXiv.org/abs/2211.05772
https://arXiv.org/abs/2211.05772
https://arXiv.org/abs/2211.11084
https://doi.org/10.1142/S0217732386000105
https://doi.org/10.1142/S0217732386000105
https://doi.org/10.1016/0550-3213(88)90171-X
https://doi.org/10.1016/0370-2693(93)90940-J
https://doi.org/10.1103/PhysRevD.52.1693
https://doi.org/10.1016/0370-2693(95)00961-J
https://doi.org/10.1016/S0370-2693(98)00060-4
https://doi.org/10.1016/S0550-3213(99)00025-5


[35] M. Bastero-Gil, G. L. Kane, and S. F. King, Fine tuning
constraints on supergravity models, Phys. Lett. B 474, 103
(2000).

[36] H. Abe, T. Kobayashi, and Y. Omura, Relaxed fine-tuning
in models with non-universal gaugino masses, Phys. Rev.
D 76, 015002 (2007).

[37] R. K. Ellis et al., Physics briefing book: Input for the
european strategy for particle physics update 2020,
arXiv:1910.11775.

[38] J. N. Butler et al., Report of the 2021 U.S. Community
Study on the Future of Particle Physics (Snowmass 2021)
(2023), 10.2172/1922503.

[39] L. Susskind, Dynamics of spontaneous symmetry breaking
in the Weinberg-Salam theory, Phys. Rev. D 20, 2619
(1979).

[40] J. L. Feng, K. T. Matchev, and T. Moroi, Multi—TeV
Scalars are Natural in Minimal Supergravity, Phys. Rev.
Lett. 84, 2322 (2000).

[41] J. L. Feng, K. T. Matchev, and T. Moroi, Focus points and
naturalness in supersymmetry, Phys. Rev. D 61, 075005
(2000).

[42] R. L. Arnowitt and P. Nath, Supersymmetry and super-
gravity: Phenomenology and grand unification, in Pro-
ceedings of the 6th Summer School Jorge Andre Swieca on
Nuclear Physics (1993), arXiv:hep-ph/9309277.

[43] G. L. Kane, C. F. Kolda, L. Roszkowski, and J. D. Wells,
Study of constrained minimal supersymmetry, Phys. Rev.
D 49, 6173 (1994).

[44] H. Baer, V. Barger, and D. Mickelson, How conventional
measures overestimate electroweak fine-tuning in super-
symmetric theory, Phys. Rev. D 88, 095013 (2013).

[45] H. Baer, V. Barger, D. Mickelson, and M. Padeffke-
Kirkland, SUSY models under siege: LHC constraints
and electroweak fine-tuning, Phys. Rev. D 89, 115019
(2014).

[46] H. Murayama, Supersymmetry phenomenology, in ICTP
Summer School in Particle Physics (2000), pp. 296–335,
arXiv:hep-ph/0002232.

[47] R. Harnik, G. D. Kribs, D. T. Larson, and H. Murayama,
The minimal supersymmetric fat Higgs model, Phys. Rev.
D 70, 015002 (2004).

[48] Z. Chacko, Y. Nomura, and D. Tucker-Smith, A minimally
fine-tuned supersymmetric standard model, Nucl. Phys.
B725, 207 (2005).

[49] R. Kitano and Y. Nomura, A solution to the supersym-
metric fine-tuning problem within the MSSM, Phys. Lett.
B 631, 58 (2005).

[50] R. Kitano and Y. Nomura, Supersymmetry, naturalness, and
signatures at the LHC, Phys. Rev. D 73, 095004 (2006).

[51] M. Papucci, J. T. Ruderman, and A. Weiler, Natural SUSY
endures, J. High Energy Phys. 09 (2012) 035.

[52] C. Brust, A. Katz, S. Lawrence, and R. Sundrum, SUSY,
the third generation and the LHC, J. High Energy Phys. 03
(2012) 103.

[53] H. Baer, V. Barger, P. Huang, A. Mustafayev, and X. Tata,
Radiative Natural SUSY with a 125 GeV Higgs Boson,
Phys. Rev. Lett. 109, 161802 (2012).

[54] H. Baer, V. Barger, and D. Martinez, Comparison of SUSY
spectra generators for natural SUSY and string landscape
predictions, Eur. Phys. J. C 82, 172 (2022).

[55] K. L. Chan, U. Chattopadhyay, and P. Nath, Naturalness,
weak scale supersymmetry and the prospect for the
observation of supersymmetry at the Tevatron and at the
CERN LHC, Phys. Rev. D 58, 096004 (1998).

[56] M. R. Douglas, Basic results in vacuum statistics, C.R.
Phys. 5, 965 (2004).

[57] V. Agrawal, S. M. Barr, J. F. Donoghue, and D. Seckel,
Viable range of the mass scale of the Standard Model,
Phys. Rev. D 57, 5480 (1998).

[58] H. Baer, V. Barger, and S. Salam, Naturalness versus
stringy naturalness (with implications for collider and dark
matter searches), Phys. Rev. Res. 1, 023001 (2019).

[59] P. Z. Skands et al., SUSY Les Houches accord: Interfacing
SUSY spectrum calculators, decay packages, and event
generators, J. High Energy Phys. 07 (2004) 036.

[60] R. L. Workman et al., Review of particle physics, Prog.
Theor. Exp. Phys. 2022, 083C01 (2022).

[61] M. Drees and M.M. Nojiri, Radiative symmetry breaking
in minimal N ¼ 1 supergravity with large Yukawa cou-
plings, Nucl. Phys. B369, 54 (1992).

[62] S. Kelley, J. L. Lopez, D. V. Nanopoulos, H. Pois, and K.-j.
Yuan, No scale supergravity confronts experiment, Phys.
Lett. B 273, 423 (1991).

[63] S. Kelley, J. L. Lopez, D. V. Nanopoulos, H. Pois, and K.-j.
Yuan, Aspects of radiative electroweak breaking in super-
gravity models, Nucl. Phys. B398, 3 (1993).

[64] P. Nath and R. L. Arnowitt, Predictions in SU(5) Super-
gravity Grand Unification with Proton Stability and Relic
Density Constraints, Phys. Rev. Lett. 70, 3696 (1993).

[65] V. D. Barger, M. S. Berger, and P. Ohmann, The super-
symmetric particle spectrum, Phys. Rev. D 49, 4908 (1994).

[66] S. K. Soni and H. A. Weldon, Analysis of the supersym-
metry breaking induced by N ¼ 1 supergravity theories,
Phys. Lett. 126B, 215 (1983).

[67] V. S. Kaplunovsky and J. Louis, Model independent
analysis of soft terms in effective supergravity and in
string theory, Phys. Lett. B 306, 269 (1993).

[68] A. Brignole, L. E. Ibanez, and C. Munoz, Towards a theory
of soft terms for the supersymmetric standard model, Nucl.
Phys. B422, 125 (1994); Nucl. Phys. B436, 747(E) (1995).

[69] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini, A
complete analysis of FCNC and CP constraints in general
SUSYextensions of the standard model, Nucl. Phys. B477,
321 (1996).

[70] H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, and X.
Tata, Neutralino cold dark matter in a one parameter
extension of the minimal supergravity model, Phys. Rev.
D 71, 095008 (2005).

[71] J. R. Ellis, K. A. Olive, and Y. Santoso, The MSSM
parameter space with nonuniversal Higgs masses, Phys.
Lett. B 539, 107 (2002).

[72] J. R. Ellis, T. Falk, K. A. Olive, and Y. Santoso, Explora-
tion of the MSSM with nonuniversal Higgs masses, Nucl.
Phys. B652, 259 (2003).

[73] H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, and X.
Tata, Direct, indirect and collider detection of neutralino
dark matter in SUSY models with non-universal Higgs
masses, J. High Energy Phys. 07 (2005) 065.

[74] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M.
Ratz, Local grand unification, in Proceedings of the

PRACTICAL NATURALNESS AND ITS IMPLICATIONS FOR … PHYS. REV. D 108, 035050 (2023)

035050-25

https://doi.org/10.1016/S0370-2693(00)00002-2
https://doi.org/10.1016/S0370-2693(00)00002-2
https://doi.org/10.1103/PhysRevD.76.015002
https://doi.org/10.1103/PhysRevD.76.015002
https://arXiv.org/abs/1910.11775
https://doi.org/10.2172/1922503
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1103/PhysRevLett.84.2322
https://doi.org/10.1103/PhysRevLett.84.2322
https://doi.org/10.1103/PhysRevD.61.075005
https://doi.org/10.1103/PhysRevD.61.075005
https://arXiv.org/abs/hep-ph/9309277
https://doi.org/10.1103/PhysRevD.49.6173
https://doi.org/10.1103/PhysRevD.49.6173
https://doi.org/10.1103/PhysRevD.88.095013
https://doi.org/10.1103/PhysRevD.89.115019
https://doi.org/10.1103/PhysRevD.89.115019
https://arXiv.org/abs/hep-ph/0002232
https://doi.org/10.1103/PhysRevD.70.015002
https://doi.org/10.1103/PhysRevD.70.015002
https://doi.org/10.1016/j.nuclphysb.2005.07.019
https://doi.org/10.1016/j.nuclphysb.2005.07.019
https://doi.org/10.1016/j.physletb.2005.10.003
https://doi.org/10.1016/j.physletb.2005.10.003
https://doi.org/10.1103/PhysRevD.73.095004
https://doi.org/10.1007/JHEP09(2012)035
https://doi.org/10.1007/JHEP03(2012)103
https://doi.org/10.1007/JHEP03(2012)103
https://doi.org/10.1103/PhysRevLett.109.161802
https://doi.org/10.1140/epjc/s10052-022-10141-2
https://doi.org/10.1103/PhysRevD.58.096004
https://doi.org/10.1016/j.crhy.2004.09.008
https://doi.org/10.1016/j.crhy.2004.09.008
https://doi.org/10.1103/PhysRevD.57.5480
https://doi.org/10.1103/PhysRevResearch.1.023001
https://doi.org/10.1088/1126-6708/2004/07/036
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/0550-3213(92)90378-O
https://doi.org/10.1016/0370-2693(91)90293-Y
https://doi.org/10.1016/0370-2693(91)90293-Y
https://doi.org/10.1016/0550-3213(93)90626-Z
https://doi.org/10.1103/PhysRevLett.70.3696
https://doi.org/10.1103/PhysRevD.49.4908
https://doi.org/10.1016/0370-2693(83)90593-2
https://doi.org/10.1016/0370-2693(93)90078-V
https://doi.org/10.1016/0550-3213(94)00068-9
https://doi.org/10.1016/0550-3213(94)00068-9
https://doi.org/10.1016/0550-3213(96)00390-2
https://doi.org/10.1016/0550-3213(96)00390-2
https://doi.org/10.1103/PhysRevD.71.095008
https://doi.org/10.1103/PhysRevD.71.095008
https://doi.org/10.1016/S0370-2693(02)02071-3
https://doi.org/10.1016/S0370-2693(02)02071-3
https://doi.org/10.1016/S0550-3213(02)01144-6
https://doi.org/10.1016/S0550-3213(02)01144-6
https://doi.org/10.1088/1126-6708/2005/07/065


GUSTAVOFEST: Symposium in Honor of Gustavo C.
Branco: CP Violation and the Flavor Puzzle (2005),
pp. 143–156, arXiv:hep-ph/0512326.

[75] H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange,
Local grand unification and string theory, AIP Conf. Proc.
1200, 226 (2010).

[76] H. P. Nilles and P. K. S. Vaudrevange, Geography of fields
in extra dimensions: String theory lessons for particle
physics, Mod. Phys. Lett. A 30, 1530008 (2015).

[77] A. Pomarol and D. Tommasini, Horizontal symmetries for
the supersymmetric flavor problem, Nucl. Phys. B466, 3
(1996).

[78] H. Baer, V. Barger, and D. Sengupta, Landscape solution to
the SUSY flavor and CP problems, Phys. Rev. Res. 1,
033179 (2019).

[79] L. Randall and R. Sundrum, Out of this world supersym-
metry breaking, Nucl. Phys. B557, 79 (1999).

[80] G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi,
Gaugino mass without singlets, J. High Energy Phys. 12
(1998) 027.

[81] H. Baer, V. Barger, and D. Sengupta, Anomaly mediated
SUSY breaking model retrofitted for naturalness, Phys.
Rev. D 98, 015039 (2018).

[82] K. Choi, A. Falkowski, H. P. Nilles, and M. Olechowski,
Soft supersymmetry breaking in KKLT flux compactifi-
cation, Nucl. Phys. B718, 113 (2005).

[83] H. Baer, V. Barger, H. Serce, and X. Tata, Natural gener-
alized mirage mediation, Phys. Rev. D 94, 115017 (2016).

[84] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous
chiral symmetry breaking, NATOSci. Ser. B 59, 135 (1980).

[85] R. Barbieri and A. Strumia, The ’LEP paradox’, in
Proceedings of the 4th Rencontres du Vietnam: Physics
at Extreme Energies (Particle Physics and Astrophysics)
(2000), arXiv:hep-ph/0007265.

[86] A. Birkedal, Z. Chacko, and M. K. Gaillard, Little super-
symmetry and the supersymmetric little hierarchy prob-
lem, J. High Energy Phys. 10 (2004) 036.

[87] A. Canepa, Searches for supersymmetry at the large
hadron collider, Rev. Phys. 4, 100033 (2019).

[88] H. Baer, V. Barger, and M. Savoy, Upper bounds on
sparticle masses from naturalness or how to disprove weak
scale supersymmetry, Phys. Rev. D 93, 035016 (2016).

[89] M. J. G. Veltman, The infrared—ultraviolet connection,
Acta Phys. Pol. B 12, 437 (1981).

[90] M. K. Gaillard and B.W. Lee, Rare decay modes of the
K-mesons in gauge theories, Phys. Rev. D 10, 897 (1974).

[91] J. L. Feng, Naturalness and the status of supersymmetry,
Annu. Rev. Nucl. Part. Sci. 63, 351 (2013).

[92] G. F. Giudice, Naturally speaking: The naturalness cri-
terion and physics at the LHC (2008), pp. 155–178, arXiv:
0801.2562.

[93] L. E. Ibanez, C. Lopez, and C. Munoz, The low-energy
supersymmetric spectrum according to N ¼ 1 supergravity
guts, Nucl. Phys. B256, 218 (1985).

[94] A. Lleyda and C. Munoz, Nonuniversal soft scalar masses
in supersymmetric theories, Phys. Lett. B 317, 82 (1993).

[95] S. P. Martin, Compressed supersymmetry and natural
neutralino dark matter from top squark-mediated annihi-
lation to top quarks, Phys. Rev. D 75, 115005 (2007).

[96] S. P. Martin and M. T. Vaughn, Two loop renormalization
group equations for soft supersymmetry breaking cou-
plings, Phys. Rev. D 50, 2282 (1994); Phys. Rev. D 78,
039903(E) (2008).

[97] B. C. Allanach, J. P. J. Hetherington, M. A. Parker, and
B. R. Webber, Naturalness reach of the large hadron col-
lider in minimal supergravity, J. High Energy Phys. 08
(2000) 017.

[98] M. T. Grisaru, W. Siegel, and M. Roček, Improved
methods for supergraphs, Nucl. Phys. B159, 429 (1979).

[99] K. J. Bae, H. Baer, N. Nagata, and H. Serce, Prospects for
Higgs coupling measurements in SUSY with radiatively-
driven naturalness, Phys. Rev. D 92, 035006 (2015).

[100] H. Baer, V. Barger, P. Huang, D. Mickelson, A.
Mustafayev, and X. Tata, Post-LHC7 fine-tuning in the
minimal supergravity/CMSSM model with a 125 GeV
Higgs boson, Phys. Rev. D 87, 035017 (2013).

[101] H. Baer, V. Barger, and M. Savoy, Supergravity gauge
theories strike back: There is no crisis for SUSY but a new
collider may be required for discovery, Phys. Scr. 90,
068003 (2015).

[102] H. Baer, V. Barger, M. Savoy, and H. Serce, The Higgs
mass and natural supersymmetric spectrum from the
landscape, Phys. Lett. B 758, 113 (2016).

[103] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, Dark
matter production in the early Universe: Beyond the
thermal WIMP paradigm, Phys. Rep. 555, 1 (2015).

[104] K. J. Bae, H. Baer, and E. J. Chun, Mixed axion/neutralino
dark matter in the SUSY DFSZ axion model, J. Cosmol.
Astropart. Phys. 12 (2013) 028.

[105] H. Baer, V. Barger, and R.Wiley Deal, Dark matter and dark
radiation from the early universe with a modulus coupled to
the PQMSSM, J. High Energy Phys. 06 (2023) 083.

[106] K. J. Bae, H. Baer, and E. J. Chun, Mainly axion cold dark
matter from natural supersymmetry, Phys. Rev. D 89,
031701 (2014).

[107] H. Baer, V. Barger, P. Huang, D. Mickelson, A.
Mustafayev, and X. Tata, Radiative natural supersym-
metry: Reconciling electroweak fine-tuning and the Higgs
boson mass, Phys. Rev. D 87, 115028 (2013).

[108] A. Dedes and P. Slavich, Two loop corrections to radiative
electroweak symmetry breaking in the MSSM, Nucl. Phys.
B657, 333 (2003).

[109] H. Baer, V. Barger, J. S. Gainer, H. Serce, and X. Tata,
Reach of the high-energy LHC for gluinos and top squarks
in SUSY models with light Higgsinos, Phys. Rev. D 96,
115008 (2017).

[110] M. van Beekveld, W. Beenakker, S. Caron, R. Peeters, and
R. Ruiz de Austri, Supersymmetry with dark matter is still
natural, Phys. Rev. D 96, 035015 (2017).

[111] M. van Beekveld, S. Caron, and R. Ruiz de Austri, The
current status of fine-tuning in supersymmetry, J. High
Energy Phys. 01 (2020) 147.

[112] H. Baer, V. Barger, S. Salam, and H. Serce, Supersym-
metric particle and Higgs boson masses from the land-
scape: Dynamical versus spontaneous supersymmetry
breaking, Phys. Rev. D 104, 115025 (2021).

[113] M. R. Douglas, Statistical analysis of the supersymmetry
breaking scale, arXiv:hep-th/0405279.

BAER, BARGER, MARTINEZ, and SALAM PHYS. REV. D 108, 035050 (2023)

035050-26

https://arXiv.org/abs/hep-ph/0512326
https://doi.org/10.1063/1.3327561
https://doi.org/10.1063/1.3327561
https://doi.org/10.1142/S0217732315300086
https://doi.org/10.1016/0550-3213(96)00074-0
https://doi.org/10.1016/0550-3213(96)00074-0
https://doi.org/10.1103/PhysRevResearch.1.033179
https://doi.org/10.1103/PhysRevResearch.1.033179
https://doi.org/10.1016/S0550-3213(99)00359-4
https://doi.org/10.1088/1126-6708/1998/12/027
https://doi.org/10.1088/1126-6708/1998/12/027
https://doi.org/10.1103/PhysRevD.98.015039
https://doi.org/10.1103/PhysRevD.98.015039
https://doi.org/10.1016/j.nuclphysb.2005.04.032
https://doi.org/10.1103/PhysRevD.94.115017
https://doi.org/10.1007/978-1-4684-7571-5_9
https://arXiv.org/abs/hep-ph/0007265
https://doi.org/10.1088/1126-6708/2004/10/036
https://doi.org/10.1016/j.revip.2019.100033
https://doi.org/10.1103/PhysRevD.93.035016
https://doi.org/10.1103/PhysRevD.10.897
https://doi.org/10.1146/annurev-nucl-102010-130447
https://arXiv.org/abs/0801.2562
https://arXiv.org/abs/0801.2562
https://doi.org/10.1016/0550-3213(85)90393-1
https://doi.org/10.1016/0370-2693(93)91574-7
https://doi.org/10.1103/PhysRevD.75.115005
https://doi.org/10.1103/PhysRevD.50.2282
https://doi.org/10.1103/PhysRevD.78.039903
https://doi.org/10.1103/PhysRevD.78.039903
https://doi.org/10.1088/1126-6708/2000/08/017
https://doi.org/10.1088/1126-6708/2000/08/017
https://doi.org/10.1016/0550-3213(79)90344-4
https://doi.org/10.1103/PhysRevD.92.035006
https://doi.org/10.1103/PhysRevD.87.035017
https://doi.org/10.1088/0031-8949/90/6/068003
https://doi.org/10.1088/0031-8949/90/6/068003
https://doi.org/10.1016/j.physletb.2016.05.010
https://doi.org/10.1016/j.physrep.2014.10.002
https://doi.org/10.1088/1475-7516/2013/12/028
https://doi.org/10.1088/1475-7516/2013/12/028
https://doi.org/10.1007/JHEP06(2023)083
https://doi.org/10.1103/PhysRevD.89.031701
https://doi.org/10.1103/PhysRevD.89.031701
https://doi.org/10.1103/PhysRevD.87.115028
https://doi.org/10.1016/S0550-3213(03)00173-1
https://doi.org/10.1016/S0550-3213(03)00173-1
https://doi.org/10.1103/PhysRevD.96.115008
https://doi.org/10.1103/PhysRevD.96.115008
https://doi.org/10.1103/PhysRevD.96.035015
https://doi.org/10.1007/JHEP01(2020)147
https://doi.org/10.1007/JHEP01(2020)147
https://doi.org/10.1103/PhysRevD.104.115025
https://arXiv.org/abs/hep-th/0405279


[114] H. Baer, V. Barger, H. Serce, and K. Sinha, Higgs and
superparticle mass predictions from the landscape, J. High
Energy Phys. 03 (2018) 002.

[115] G. F. Giudice and R. Rattazzi, Living dangerously with
low-energy supersymmetry, Nucl. Phys. B757, 19 (2006).

[116] N. Arkani-Hamed, S. Dimopoulos, and S. Kachru, Pre-
dictive landscapes and new physics at a TeV, arXiv:hep-th/
0501082.

[117] B. C. Allanach, SOFTSUSY: A program for calculating
supersymmetric spectra, Comput. Phys. Commun. 143,
305 (2002).

[118] N. Arkani-Hamed, A. Delgado, and G. F. Giudice, The
well-tempered neutralino, Nucl. Phys. B741, 108 (2006).

[119] H. Baer, A. Mustafayev, E.-K. Park, and X. Tata, Target
dark matter detection rates in models with a well-tempered
neutralino, J. Cosmol. Astropart. Phys. 01 (2007) 017.

[120] H. Baer, V. Barger, and H. Serce, SUSY under siege from
direct and indirect WIMP detection experiments, Phys.
Rev. D 94, 115019 (2016).

[121] M. Badziak, M. Olechowski, and P. Szczerbiak, Is well-
tempered neutralino in MSSM still alive after 2016 LUX
results?, Phys. Lett. B 770, 226 (2017).

[122] S. Profumo, T. Stefaniak, and L. Stephenson Haskins, The
not-so-well tempered neutralino, Phys. Rev. D 96, 055018
(2017).

[123] E. Aprile et al., Dark Matter Search Results from a One
Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121,
111302 (2018).

[124] J. Aalbers et al., First Dark Matter Search Results from the
LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131,
041002 (2023).

[125] H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, S. Paßehr, H.
Rzehak, and G. Weiglein, Precision calculations in the
MSSM Higgs-boson sector with FeynHiggs 2.14, Comput.
Phys. Commun. 249, 107099 (2020).

[126] F. E. Paige, S. D. Protopopescu, H. Baer, and X. Tata,
ISAJET 7.69: A Monte Carlo event generator for pp, p̄p,
and eþe− reactions, arXiv:hep-ph/0312045.

[127] T. Gherghetta, G. F. Giudice, and J. D. Wells, Phenom-
enological consequences of supersymmetry with anomaly
induced masses, Nucl. Phys. B559, 27 (1999).

[128] J. L. Feng and T. Moroi, Supernatural supersymmetry:
Phenomenological implications of anomaly mediated
supersymmetry breaking, Phys. Rev. D 61, 095004 (2000).

[129] T. Cohen, M. Lisanti, A. Pierce, and T. R. Slatyer, Wino
dark matter under siege, J. Cosmol. Astropart. Phys. 10
(2013) 061.

[130] J. Fan and M. Reece, In wino veritas? Indirect searches
shed light on neutralino dark matter, J. High Energy Phys.
10 (2013) 124.

[131] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, and J.
Quevillon, Implications of a 125 GeV Higgs for super-
symmetric models, Phys. Lett. B 708, 162 (2012).

[132] H. Baer, V. Barger, and A. Mustafayev, Neutralino dark
matter in mSUGRA/CMSSM with a 125 GeV light Higgs
scalar, J. High Energy Phys. 05 (2012) 091.

[133] J. D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71,
015013 (2005).

[134] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A.
Romanino, Aspects of split supersymmetry, Nucl. Phys.
B709, 3 (2005).

[135] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005
(2003).

[136] K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski, and S.
Pokorski, Stability of flux compactifications and the
pattern of supersymmetry breaking, J. High Energy Phys.
11 (2004) 076.

[137] A. Falkowski, O. Lebedev, and Y. Mambrini, SUSY
phenomenology of KKLT flux compactifications, J. High
Energy Phys. 11 (2005) 034.

[138] K. Choi, K. S. Jeong, T. Kobayashi, and K.-i. Okumura,
TeV scale mirage mediation and natural little SUSY
hierarchy, Phys. Rev. D 75, 095012 (2007).

[139] H. Baer, V. Barger, and D. Sengupta, Mirage mediation
from the landscape, Phys. Rev. Res. 2, 013346 (2020).

[140] K. J. Bae, H. Baer, V. Barger, and D. Sengupta, Revisiting
the SUSY μ problem and its solutions in the LHC era,
Phys. Rev. D 99, 115027 (2019).

[141] H. Baer, V. Barger, S. Salam, D. Sengupta, and K. Sinha,
Status of weak scale supersymmetry after LHC Run 2 and
ton-scale noble liquid WIMP searches, Eur. Phys. J. Spec.
Top. 229, 3085 (2020).

[142] J. Lykken and M. Spiropulu, Supersymmetry and the crisis
in physics, Sci. Am. 310, No. 5, 36 (2014).

[143] M. Dine, Naturalness under stress, Annu. Rev. Nucl. Part.
Sci. 65, 43 (2015).

PRACTICAL NATURALNESS AND ITS IMPLICATIONS FOR … PHYS. REV. D 108, 035050 (2023)

035050-27

https://doi.org/10.1007/JHEP03(2018)002
https://doi.org/10.1007/JHEP03(2018)002
https://doi.org/10.1016/j.nuclphysb.2006.07.031
https://arXiv.org/abs/hep-th/0501082
https://arXiv.org/abs/hep-th/0501082
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1016/j.nuclphysb.2006.02.010
https://doi.org/10.1088/1475-7516/2007/01/017
https://doi.org/10.1103/PhysRevD.94.115019
https://doi.org/10.1103/PhysRevD.94.115019
https://doi.org/10.1016/j.physletb.2017.04.059
https://doi.org/10.1103/PhysRevD.96.055018
https://doi.org/10.1103/PhysRevD.96.055018
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1016/j.cpc.2019.107099
https://doi.org/10.1016/j.cpc.2019.107099
https://arXiv.org/abs/hep-ph/0312045
https://doi.org/10.1016/S0550-3213(99)00429-0
https://doi.org/10.1103/PhysRevD.61.095004
https://doi.org/10.1088/1475-7516/2013/10/061
https://doi.org/10.1088/1475-7516/2013/10/061
https://doi.org/10.1007/JHEP10(2013)124
https://doi.org/10.1007/JHEP10(2013)124
https://doi.org/10.1016/j.physletb.2012.01.053
https://doi.org/10.1007/JHEP05(2012)091
https://doi.org/10.1103/PhysRevD.71.015013
https://doi.org/10.1103/PhysRevD.71.015013
https://doi.org/10.1016/j.nuclphysb.2004.12.026
https://doi.org/10.1016/j.nuclphysb.2004.12.026
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1088/1126-6708/2004/11/076
https://doi.org/10.1088/1126-6708/2004/11/076
https://doi.org/10.1088/1126-6708/2005/11/034
https://doi.org/10.1088/1126-6708/2005/11/034
https://doi.org/10.1103/PhysRevD.75.095012
https://doi.org/10.1103/PhysRevResearch.2.013346
https://doi.org/10.1103/PhysRevD.99.115027
https://doi.org/10.1140/epjst/e2020-000020-x
https://doi.org/10.1140/epjst/e2020-000020-x
https://doi.org/10.1038/scientificamerican0514-34
https://doi.org/10.1146/annurev-nucl-102014-022053
https://doi.org/10.1146/annurev-nucl-102014-022053

