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The Higgs mass is not protected by any symmetry in the Standard Model. Hence, the self-energy
corrections to the Higgs mass become large due to the quadratic divergence terms. The Veltman condition
(V.C.) ensures that the coefficient of the quadratic divergent term either vanishes or becomes negligible.
The nonobservation of new physics has pushed the new physics scale to be larger than 1 TeV, making it
impossible to satisfy the Veltman condition in the Standard Model without a very large fine-tuning. Many
attempts are made to satisfy the V.C. in beyond the Standard Model theories, but the V.C. is hard to achieve
at a very large scale (Λ). Alternatively, it is possible that the new physics appears much above the
electroweak scale, and the effect of the new physics is observed in terms of the Wilson coefficients of the
Standard Model effective field theory (SMEFT) operators. The V.C. can be addressed in the SMEFT
framework. In this paper, some specific new physics scenarios are considered at a very large scale. Below
that scale, the effect of the new physics is observed as beyond the SMEFT. We particularly study the type-II
seesaw model with the complex scalar triplet (Y ¼ 1) in the context of V.C. We found that this particular
model is the minimal model to generate all SMEFToperators that appear in V.C. and satisfies V.C. We also
examine the model parameter dependence of the Wilson coefficients in detail and show how the
cancellation of the Wilson coefficients is highly dependent on some specific values of the model
parameters.
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I. INTRODUCTION

The smallness of the observed Higgs mass is confirmed
by the experiments [1,2] at the Large Hadron Collider
(LHC). However, in the Standard Model (SM) of particle
physics, the scalar mass (mass of Higgs boson) is not
protected by any symmetry. Hence, if the SM is valid up to
a large scale, such as the Planck scale, then the Higgs mass
suffers from quadratic divergence (∼Λ2). To ensure that the
mass of the Higgs boson is small, one has to consider a very
large fine-tuning in the SM. Away to ensure that the Higgs
mass does not get large correction at a higher scale is
coined as the “Veltman condition” (V.C.) [3]. The V.C.
checks if the sum of all quadratically divergent terms
coming from the self-energy diagrams of the Higgs boson
is either zero or very small. However, experiments such as

the LHC is pushing the new physics (NP) scale towards
>1 TeV, thus the Veltman condition is not possible to
satisfy in the SM, as it demands Λ to be less than
760 GeV [4].
Simple extensions of SM have been studied in the

literature [4–12], where the V.C. is valid but only in some
regions of parameter space. Overall, there are two main
concerns in these models: (1) These theories encounter
different problems at a large scale, such as the potential
becoming unstable, leading to the invalidity of the theory
beyond that scale. (2) The nonobservation of the beyond
the Standard Model (BSM) particles has pushed their
masses above TeV scale [13].
One may assume that the SM is valid up to a certain scale

(Λ) and above that scale, some unknown symmetry appears
to protect the Higgs mass, then the Higgs mass can be
stabilized and the fine-tuning problem can be addressed.
For example, in the composite Higgs scenario [14],
where the Higgs is dissolved in higher degrees of freedom
above the symmetry breaking scale or in supersymmetric
theories [15], where the bosonic and fermionic degrees of
freedom cancel out exactly—the Higgs mass is maintained
to be finite and small. These theories also cannot avoid a
certain amount of fine-tuning [16,17] coming from several
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sources. However, experiments are yet to confirm the
existence of these theories.
These observations raise the question that what if the

new physics lies at a very large scale. In such a scenario,
SM can emerge as an effective field theory (SMEFT) [18]
by integrating out the dynamics of the larger theory. The
information of the heavy particles appearing in the loop is
absorbed in the higher dimensional operators in the
effective field theory (EFT) and the theory is invariant
under SM symmetries. Reference [19] has shown that the
V.C. can be satisfied in the SMEFT framework by includ-
ing the higher dimensional operators and their Wilson
coefficients. Only a few of the operators are relevant to the
V.C. and they play a major role in satisfying the V.C.
In this paper, we take one step forward and ask these

questions: What if the theory at a very high scale (Λ)
includes specific type of BSM scenarios? How do these
affect the V.C.? We adopt the beyond Standard Model
effective field theory (BSM-EFT) [20] approach, which has
been studied previously in Refs. [20–27]. In BSM-EFT the
Lagrangian becomes invariant under the particular BSM
model in consideration. The motivation to study the V.C. in
the BSM-EFT framework is twofold. (1) We can specifi-
cally check how many SMEFToperators are allowed by the
model. (2) As the Wilson coefficients can be expressed in
terms of the model parameters, the sign of the W.C., which
is crucial to obtain the V.C., comes naturally. For calcu-
lation of the SMEFT operators we choose WARSAW
basis [28,29].
We begin with simple BSM scenarios (in BSM-SMEFT)

such as scalar singlets, doublets, and triplets (real or
complex) and found that the V.C. can be satisfied in all
these models. We also found that the complex scalar triplet
model with Y ¼ 1 is the minimal model (with only of one
type of BSM particle) where it is possible to generate all the
SMEFToperators that contributes to the V.C. In Sec. IV we
discuss more on this.1 Moreover, this particular model is
well motivated in literature from other aspects as well:
(1) Neutrino mass generation through the seesaw mecha-
nism [30], (2) type-II Leptogenesis scenario [31], and
(3) enhancement of the h → γγ branching ratio [32] etc.,
among many others [33–35].
In Sec. II, we show how the V.C. depends on the SMEFT

operators in the WARSAW basis [28]. In Sec. III, we
discuss some specific models in the BSM-EFT scenarios,
and express the Wilson coefficients of Y ¼ 1 complex
scalar triplet model in terms of the model parameters. In
Sec. IV, we show how the V.C. is achieved by the exact
cancellation of the Wilson coefficients at different scale.

We also interpret the result in terms of the model parameter
space. Then in Sec. V, we conclude.

II. SMEFT OPERATORS AND VELTMAN
CONDITION

The physical mass of the Higgs in the Standard Model
can be written in terms of the bare mass termmhð0Þ and the
higher-order self-energy corrections:

m2
h ¼ m2

hð0Þ þ δm2
h

¼ m2
hð0Þ þ Log Div Term

þ Quadratic Div Termþ Finite terms; ð1Þ

where the assumption is that the SM is valid up to the scale
Λ and the correction terms are coming from the loop
diagrams involving scalars, fermions, and bosons in the
loop. The d ¼ 4 potential in the and the Standard Model in
terms of Higgs doublet (H) is

VðHÞ ¼ −m2
HH

†H þ λðH†HÞ2: ð2Þ

This leads to the correction to the Higgs mass and the
quadratic divergent contribution can be expressed as

ðδm2
hÞSM ¼ Λ2

16π2

�
6λþ 9

4
g2W þ 3

4
g2Y − 6y2t

�
; ð3Þ

where, gY and gW are the Uð1ÞY and SUð2ÞL gauge
couplings, respectively, and yt ¼

ffiffiffi
2

p
mt=vH is the top quark

Yukawa coupling with hHi ¼ vH=
ffiffiffi
2

p
. Here we neglect the

couplings of the lighter quarks and Λ is the cutoff scale.
The V.C. demands that δm2

h ∼ 0 or at least controllably
small. With the observed Higgs mass at 125 GeV, the
condition to make δmh ∼ 0 demands Λ < 760 GeV, which
is already ruled out by LHC. One way to solve this problem
is to introduce new particles, which can contribute in the
loops and soften the fine-tuning by ensuring exact can-
cellation or partial as we have already discussed in the
introduction.
A popular way to address this problem is to consider

the effects of the higher dimensional operators in the
EFT framework. Let us assume that the NP exists at a
very high scale Λ. The effect of NP can be integrated out at
Λ and this will effectively give us SM, plus some effective
operators involving only the SM fields. This is known as
the SMEFT [18]. The Lagrangian, which incorporates
dimension six SMEFT operators in addition to the
Standard Model dimension four operators, can be
expressed as

L ¼
X
i

C4iQ4i þ
1

Λ2

X
i

C6iQ6i: ð4Þ

1Types I and II seesaw models do not generate all SMEFT
operators to satisfy the V.C. Moreover a recent study [24] has also
shown that these models are also not favored from the fact that the
radiative electroweak symmetry breaking cannot be triggered
even at the Planck scale.
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In contrast to C4i, which is the only function of the parameters linked to the degrees of freedom in the Standard Model, C6i
are the Wilson coefficients, which are functions of the integrated out dynamics atΛ. These operators can be expanded at any
choice of basis, for example, HISZ basis [36,37], Warsaw basis [28,29], SILH basis [38] etc. The set of dimension six
operators that involves Higgs in the Warsaw basis are

QH ¼ ðH†HÞ3; QHD ¼ ðH†DμHÞ�ðH†DμHÞ; QH□ ¼ ðH†HÞ□ðH†HÞ
QHB ¼ ðH†HÞBμνBμν; QHW ¼ ðH†HÞWa

μνWa;μν; QGG ¼ ðH†HÞGA
μνGA;μν

QHWB ¼ ðH†τaHÞBμνWa
μν: ð5Þ

It can be shown that the last operator, QHWB does not
contribute Higgs self-energy correction [19]. The first
operator, QH will also not contribute at the one-loop level
as the Higgs does not develop a vacuum expectation value at
Λ. There can be the appearance of the operators involving the
gluons of the formQGG ¼ ðH†HÞGA

μνGA;μν. However, while
considering BSM-EFT framework with heavy scalars, this
operator does not contribute as scalars do not carry any color
charge. Note that these operators can be written in any basis,
for example Ref. [19] chose the HISZ basis. We choose
the Warsaw basis because it is self-consistent at one
loop [29,39] and easier to check the running of the Wilson
coefficients in the Warsaw basis.
The correction to the Higgs mass from the higher order

terms in the Lagrangian is given by

ðδm2
hÞtotal ¼

Λ2

16π2
X
i

fiðC4i; C6iÞ þ
Λ2

ð16π2Þ2
X
i

giðC4i; C6iÞ:

ð6Þ

Here fi and gi are one-loop and two-loop corrections to the
Higgs mass. The V.C., δm2

h ∼ 0 translates into

fðC4i; C6iÞ; gðC4i; C6iÞ ∼ 0 ð7Þ

if loop contributions are considered separately. The coef-
ficients, C4i and C6i are functions of Λ and the BSM model
parameters. Hence Eq. (6) can be written in terms of the SM
and higher dimension operators contribution as

ðδm2
hÞtotal ≡ ðδm2

hÞSMðfiðC4iÞ; giðC4iÞÞ
þ ðδm2

hÞHOðfiðC6iÞ; giðC6iÞÞ: ð8Þ

Also, it has been shown in Ref. [19] that, at d ≥ 8, the
SMEFT operators are not able to produce any Λ6 diver-
gence, which will produce any effective Λ2 divergence
while calculating the self-energy correction of Higgs mass.
There are studies in the literature, where the V.C. in terms
of the EFT has been studied in detail [19,40,41]. In
particular it has been shown in Ref. [19] that it is possible
to satisfy the V.C. for appropriate values and sign of the
Wilson coefficients at large Λ.

III. BSM-EFTWITH COMPLEX SCALAR TRIPLET

In the above section, we saw that only four operators in
the WARSAW basis are involved in the V.C. Now, we
assume that the new physics at a large scale follow certain
symmetries of a BSMmodel which effectively produces the
SM as an EFT. It has been already shown in literature how
some BSM extensions [4–12] address the V.C. In this paper
we consider them to appear at a large scale and dictate the
underlying symmetry of the EFT.
In this BSM-EFT framework, these four operators may

or may not be possible to generate at one loop, depending
on the underlying symmetry of the model at scale Λ. In
Table I, we present if these four operators can be generated
at one loop in some simple BSM-EFT cases with additional
scalar(s) or not.2 For the calculation, we have implemented
the Lagrangian of each model in CoDEx [42,43] and
generated the Wilson coefficients.3

Among all popular models, we have found that BSM-
EFT with a complex scalar triplet is the minimal model
where all four Wilson coefficients are generated at one
loop. In other models, the number of operators is less than
four except for the model with a complex scalar triplet and
the additional doublet. In two Higgs doublet model
(2HDM) scenario and real scalar singletþ triplet model,
only three operators can be generated, whereas, in the
complex scalar singlet model, only two operators are
generated. The real scalar singlet model generates only
one operator. All this models, with four or less number of
operators, satisfy the V.C. But, it is intuitive to see that the
parameter space of the W.C.s is more constrained in a
model that generates less than four of the EFT operators.
Hence, we chose to study the complex scalar triplet model
in detail as the minimal model (with only one type of BSM
particle) along with other motivations as mentioned in the
Introduction.

2Note that we are not checking nonscalar extensions of SM
because the sign of the top-loop contribution (dominant con-
tribution) or rather fermionic contribution is opposite to the other
diagrams with a gauge boson or a scalar in the loop. Therefore,
V.C. is hard to solve by adding nonscalar particles such as
vectorlike quarks or fermions, additional gauge bosons etc.

3We have also cross checked our result withMatchmakereft [44].
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Let us consider that, beyond the scale Λ, there exists a
heavy complex triplet, Δ, with weak hypercharge Y ¼ 1.
The most general renormalizable tree-level scalar potential
of such a model is given by

VðH;ΔÞ ¼ −m2
HðH†HÞ þM2Tr½Δ†Δ�

þ ðμΔHTiσ2ΔþH þ H:c:Þ þ λðH†HÞ2
þ λ1ðH†HÞTr½Δ†Δ� þ λ2ðTr½Δ†Δ�Þ2
þ λ3Tr½ðΔ†ΔÞ2� þ λ4ðH†ΔΔ†HÞ: ð9Þ

The extra Yukawa term for neutrino mass generation is

LY ¼ yΔlTiCiσ2Δlþ H:c: ð10Þ

Here the trilinear coupling μΔ can be taken as positive by
absorbing its phase into H and Δ. The total Lagrangian is

L ¼ LY − VðH;ΔÞ: ð11Þ

The details of this model is summarized in the “model
description” section of the Appendix.
We explicitly show the expansion of the dimension six

operators [as listed in Eq. (5)], in the “calculation” section
of the Appendix. The Higgs mass correction in terms of
W.C.s is the WARSAW basis4 given by

ðδm2
hÞBSM ¼ Λ2

16π2
ð−3CHD þ 12CH□ þ 9CHW þ 3CHBÞ

þ Λ2

ð16π2Þ2
�
54CH −

9

2
ðg2Y þ 3g2WÞCHD

þ 108g2WCHW

�
: ð12Þ

The total correction to the Higgs mass is

δm2
h ¼ ðδm2

hÞSM þ ðδm2
hÞBSM: ð13Þ

The Wilson coefficients appearing in one-loop contri-
bution in ðδm2

hÞBSM can be expressed in terms of the model
parameters as

CHD ¼ −
g4Y

320π2
þ 4μ2Δ

M2
−

λ24
24π2

þ 11g2Yμ
2
Δ

24π2M2
−

8μ4Δ
3π2M4

þ λ4μ
2
Δ

6π2M2
þ 3λμ2Δ
8π2M2

; ð14Þ

CH□¼−
g4W

1920π2
þ2μ2Δ

M2
−

λ21
16π2

−
λ1λ4
16π2

−
λ24

192π2
−

g2Wμ
2
Δ

96π2M2

þ 11g2Yμ
2
Δ

96π2M2
−

49μ4Δ
12π2M4

þ λ1μ
2
Δ

8π2M2
þ λ4μ

2
Δ

48π2M2
þ 3λμ2Δ
4π2M2

;

ð15Þ

CHB ¼ g2Yλ1
32π2

þ g2Yλ4
64π2

þ 11g2Yμ
2
Δ

64π2M2
; ð16Þ

CHW ¼ g2Wλ1
48π2

þ g2Wλ4
96π2

þ 25g2Wμ
2
Δ

192π2M2
: ð17Þ

Here,M is the mass of the heavy triplet. For the theory to be
valid, it is sufficient to assume thatM is greater than Λ. We
assume the order of magnitude to be the same for M and Λ
in our calculation as a limiting scenario. For M ≫ Λ, the
W.C.s will obtain smaller values.

IV. RESULT

In order to satisfy the Veltman condition, we consider the
one-loop correction to the Higgs mass (δm2

h) and fix two
benchmark scenarios at Λ ¼ 100 TeV and Λ ¼ 106 TeV.
Following that, we figure out the model parameter space of
λ1 and λ4, for which the quadratic divergence in δm2

h
cancels out exactly. The SM input parameters, gW , yt, gY ,
and λ, are determined at Λ by solving the two-loop
renormalized group equations. λ1 and λ4 are varied in such
a way that the Wilson coefficients obey the perturbative
limit and the running of the Wilson coefficients from Λ to
the electroweak scale are smooth. The values of the tree
level couplings (λ and μH) also shift due to the higher-
dimensional operators. The parameter λ cannot be more

TABLE I. SMEFT operators in WARSAW basis in different BSM-EFT scenarios.

Model Quantum No QHD QHB QHW QH□

Real scalar singlet (1,1,0) ✓ ✗ ✗ ✗
Real scalar triplet (1,3,0) ✗ ✗ ✓ ✓
Complex scalar triplet (1,3,1) ✓ ✓ ✓ ✓
Complex scalar doublets (2HDM) (1; 2;�1=2) ✓ ✗ ✓ ✓
Real scalar singlet þ (1,1,0) ✓ ✗ ✓ ✓
Real scalar triplet (1,3,0)
Complex scalar triplet þ (1,3,1) ✓ ✓ ✓ ✓
Complex scalar doublet (1,2,1/2)

4Please check to the Appendix for the result in a different basis.
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than Oð1Þ and this puts an upper limit on the quantity
μ2Δ
2M2 < Oð1Þ, where μΔ ¼

ffiffi
2

p
vΔM2

v2H
in the limit of large scalar

triplet mass. Also, precision measurements have set the
value of the ρ parameter to be in the range 1.00038�
0.00020 [45,46]. This constrains the vacuum expectation
value of the triplet (Δ) to be less than 2.56 GeV [47].
In Fig. 1 we show the parameter space of λ1 and λ4 that

satisfies the V.C. We have found that both positive and
negative values of λ1 and λ4 satisfy the V.C. The green line
represents the highest possible value of μΔ, which comes

from the constraint μ2Δ
2M2 ∼Oð1Þ. The nature of these plots is

highly dependent on the values of μΔ, because the Wilson
coefficients have ðμΔ=MÞ2 and ðμΔ=MÞ4 dependence with
additional suppression of 1=16π2. The sign of the W.C.s
come naturally from the fact that they are determined in
terms of the model parameters λ1, λ4, and μΔ, which we
allow to vary freely with the above mentioned constraints.
We have found that the V.C. is satisfied even if Λ is very
large (106 TeV). It is also essential to check whether the
full theory with the triplet scalar is well behaved above Λ.
For that we have considered the vacuum stability, bounded
from below and unitarity conditions [48,49] and the blue
points in Fig. 1 satisfy these conditions. We have found
that the positive values of λ1 and λ4 are largely preferred
for the full theory with the triplet to be well behaved.
Hence the V.C. can be satisfied in a constrained region
where the full theory with the triplet obeys stability and
unitarity condition. The λ1 and λ4 parameter space remains
mostly unchanged at large Λ because the Wilson coef-
ficients do not change much with Λ (shown later).
Although, a slight variation in the parameter space is
present due to the running of SM parameters. The
cancellation in the V.C. is dependent on the precision
of the input parameters, which is also the source of a
negligible amount of fine-tuning.

In Fig. 2, we show the variation of the Wilson coef-
ficients with the model parameter λ4 at 100 TeV. The
corresponding value(s) of λ1 can be inferred form Fig. 1.
The Wilson coefficients show similar behavior at the other
benchmark scenario. For Wilson coefficients CHD and CH□,
negative values are more preferred, whereas, for CHW and
CHB, both positive and negative values are allowed.5

However, when λ4 is negative, almost all coefficients are
negative, except for some values of the CHD and CH□.
Again, when λ4 is positive, CHW and CHB are always
positive but CHD and CH□ are mostly negative except for
some values as shown in Fig. 2. Thus, it is visible that the
cancellation among the Wilson coefficients is not ad hoc,
but is controlled by the model parameters. We have
checked the V.C. by considering the two-loop contributions
to the Higgs mass correction as well but due to the extra
suppression by (1=16π2), the effect is not visible.
We have also checked the running of the Wilson

coefficients from the effective scale Λ to the electroweak
scale. We show the running of the Wilson coefficients in
Fig. 3 for a particular choice of the model parameters, λ1 ¼
4.0 and λ4 ¼ 40. This particular choice of parameter
represents the maximum possible value of these parame-
ters. We found that the values of these W.C.s do not change
much and also the sign of the W.C.s do not change in the
running. The conclusion remains the same for other
allowed values of λ1 and λ4 that satisfy the V.C.
The values of W.C.s (Cið1 TeVÞ2=Λ2) are highly con-
strained at the EW scale [50] from various low energy
experiments. The values of the W.C.s that satisfy the V.C.,
as shown in Figs. 2 and 3, lie within the current exper-
imental bounds.

FIG. 1. Variation of λ1 and λ4 with μΔ at two benchmark values of Λ. The V.C. is satisfied over the lines. The blue points show the
allowed region when the full theory with the triplet is bounded from below and satisfies perturbative unitarity conditions.

5The sign of the W.C. is different in different SMEFT basis.
We list the transformation rules of the W.C.s in the Appendix.
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V. CONCLUSION

The Veltman condition cannot be satisfied within the
framework of the Standard Model because of significant
quadratic divergences to the Higgs self-energy correction if
the cutoff scale Λ is ∼1 TeV or higher. In addition to the
dimension four operators from the StandardModel, we have
also included dimension six operators whose contributions

to the Higgs mass correction results from integrating out the
heavy triplet scalar with hypercharge one.We show how the
quadratic divergence of the Higgs self-energy vanishes in
this particular model due to the cancellation among the SM
parameters and the Wilson coefficients.
We have shown the relevant SMEFT operators that

contribute to the V.C. and found agreement with

FIG. 3. Running of the Wilson coefficients from Λ ¼ 106 TeV to the cutoff scale for one set of model parameters. We have kept the
value of μΔ to be fixed at 1 TeV.

FIG. 2. Variation of the Wilson coefficients with model parameter λ4 when the V.C. is satisfied.
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Ref. [19]. The W.C. of the operators are expressed in terms
of the model parameters of the complex scalar triplet
model. Hence, in this study the sign of the Wilson
coefficients are not ad hoc, it is driven by the larger theory,
which is a heavy triplet scalar in our case. We found that
this model generates all four operators that appear in the
V.C., allowing more parameter space to the W.C.s com-
pared to the other models, where the number of operators is
less than four. However, the values of the Wilson coef-
ficients will be different in every model, as it is controlled
by the specific model parameters.
To achieve the Veltman condition, it should be noted that

the contributions from two particular dimension six oper-
atorsQHD andQH□ play a dominating role in canceling out
the quadratic divergences. We show the parameter space
where the V.C. is satisfied for both positive and negative
values of the model parameters. We found that the V.C. can
be satisfied in a constrained region where the full theory
with the triplet obeys stability and unitarity condition as
well. We have observed that for energy scales Λ ¼ 100 and
106 TeV, the cancellation is almost similar. This is because
the value of theW.C.s does not change much withΛ and the
insignificant amount of change appears due to the running
of the SM parameters. If we introduce some relaxation in
the V.C. by allowing some amount of fine-tuning, then the
model parameter space will surely enlarge, but it will get
narrower with the increasing values of Λ. Thus, the
Veltman condition can be easily satisfied in the framework
of effective field theory, when a complex scalar triplet
exists at a very large scale.
The study of this model as an effective field theory can

also be useful to revisit the type II leptogenesis scenario,
where it will be possible to generate specific dimension six
terms that are dictated by the model.
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APPENDIX

1. Model description

In the type-II seesaw model, the scalar sector is extended
by a complex scalar triplet(Δ) with hypercharge 1, in
addition to the Higgs doublet (H). Explicitly the fields can
be written as

Hð1; 2;þ1=2Þ ¼
�
ϕþ

ϕ0

�
;

Δð1; 3;þ1Þ ¼
�
Δþ=

ffiffiffi
2

p
Δþþ

Δ0 −Δþ=
ffiffiffi
2

p
�
: ðA1Þ

The numbers in the parentheses represent the charges of
SUð3ÞC × SUð2ÞL ×Uð1ÞY gauge group of the SM. The
neutral components are

ϕ0 ¼ vH þ hþ iϕ3ffiffiffi
2

p ; Δ0 ¼ vΔ þ δþ iξffiffiffi
2

p : ðA2Þ

The kinetic terms corresponding to the scalar fields are
given as

Lkin ⊃ ðDμHÞ†DμH þ Tr½ðDμΔÞ†ðDμΔÞ�; ðA3Þ

with the covariant derivatives

DμH ¼ ∂μH − i
gY
2
Wa

μσ
aH − i

gW
2
BμH;

DμΔ ¼ ∂μΔ − i
gY
2
Tr½Wa

μσ
a;Δ� − i

gW
2
BμΔ: ðA4Þ

Here σa (a ¼ 1, 2, 3) are the Pauli spin matrices and gW and
gY are the gauge couplings associated with SUð2ÞL and
Uð1ÞY gauge group, respectively.

2. Calculation

The dimension six SMEFT operators that contribute
Higgs mass correction either at the one-loop or the two-
loop level can be written up to a total derivative as

QHD ¼ ðHþDμHÞ�ðHþDμHÞ ⊃ ð∂μH†ÞHH†ð∂μH†Þ þ
�
g2W
4
σaσbH†Wa

μHH†WμbH þ g2Y
4
H†BμHH†BμH

�
;

QH□ ¼ ðHþHÞ□ðHþHÞ ¼ −∂μðH†HÞ∂μðH†HÞ;
QHW ¼ ðHþHÞWa

μνWa;μν ⊃ 2H†½σað∂μWa
νÞσbð∂μWνbÞ − σað∂μWa

νÞσbð∂νWμbÞ�H
þ g2Wσ

afabcσpfpqrH†Wb
μWc

νWμqWνrH;
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QHB ¼ ðHþHÞBμνBμν ⊃ 2H†½∂μBν∂
μBν − ∂μBν∂

νBμ�H;

QH ¼ ðH†HÞ3: ðA5Þ

This result is given in the WARSAW basis. Note that only momentum dependent vertices can generate quartic divergence at
the one-loop level. Possible Feynman diagrams originating from these terms are similar to Ref. [19].
The authors in Ref. [19] has performed the calculation in the HISZ basis. The transformations between the HISZ and

WARSAW bases are given by

QHD ¼ Oϕ;1; QH□ ¼ −2Oϕ;2; QH ¼ 3Oϕ;3; QGG ¼ OGG;

QHW ¼ −4
g2W

OWW; QHB ¼ −4
g2Y

OBB; QHWB ¼ −4
gWgY

OBW: ðA6Þ

A complete list of transformations can be obtained from
Ref. [37]. The relevant operators in the HISZ basis,
fOϕ;1;Oϕ;2;Oϕ;3;OGG;OWW;OBB;OBWg are given in
Refs. [19,37]. It isworthnoting that the signof the coefficients
of these SMEFT operators is not the same in both bases.
We would also like to mention that the result obtained in

Eqs. (12) and (13) of Ref. [19] can be mapped exactly to

our result of δm2
h, subject to the fact that no operator in the

WARSAW basis transforms to the operator Oϕ;4 [51]
in the HISZ basis and there is no contribution of the
gluonic operator in our model. Due to the above mentioned
reasons the parameter space of Wilson coefficients found
in [19] (HISZ basis) and this paper (WARSAW basis) are
different.

[1] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the standard model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[3] M. J. G. Veltman, The infrared—ultraviolet connection,
Acta Phys. Pol. B 12, 437 (1981).

[4] I. Chakraborty and A. Kundu, Triplet-extended scalar sector
and the naturalness problem, Phys. Rev. D 89, 095032 (2014).

[5] A. Kundu and S. Raychaudhuri, Taming the scalar mass
problem with a singlet Higgs boson, Phys. Rev. D 53, 4042
(1996).

[6] A. Drozd, B. Grzadkowski, and J. Wudka, Multi-scalar-
singlet extension of the standard model—the case for dark
matter and an invisible Higgs boson, J. High Energy Phys.
04 (2012) 006.

[7] A. Drozd, RGE and the fine-tuning problem, arXiv:1202.
0195.

[8] I. Chakraborty and A. Kundu, Controlling the fine-tuning
problem with singlet scalar dark matter, Phys. Rev. D 87,
055015 (2013).

[9] I. Chakraborty and A. Kundu, Two-Higgs doublet models
confront the naturalness problem, Phys. Rev. D 90, 115017
(2014).

[10] I. Chakraborty and A. Kundu, Naturalness problem: Off the
beaten track, Pramana 87, 38 (2016).

[11] Z. Habibolahi, K. Ghorbani, and P. Ghorbani, Hierarchy
problem and the vacuum stability in two-scalar dark matter
model, Phys. Rev. D 106, 055030 (2022).

[12] R. Decker and J. Pestieau, Lepton self-mass, Higgs scalar
and heavy quark masses, arXiv:hep-ph/0512126.

[13] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[14] R. Contino, The Higgs as a composite Nambu-Goldstone
boson, Physics of the Large and the Small (World Scientific,
Singapore, 2011).

[15] P. Fayet, Supersymmetry and weak, electromagnetic and
strong interactions, Phys. Lett. 64B, 159 (1976).

[16] J. Barnard, D. Murnane, M. White, and A. G. Williams,
Constraining fine tuning in composite Higgs models
with partially composite leptons, J. High Energy Phys.
09 (2017) 049.

[17] M. van Beekveld, S. Caron, and R. Ruiz de Austri, The
current status of fine-tuning in supersymmetry, J. High
Energy Phys. 01 (2020) 147.

[18] I. Brivio and M. Trott, The standard model as an effective
field theory, Phys. Rep. 793, 1 (2019).

[19] A. Biswas, A. Kundu, and P. Mondal, Hierarchy problem
and dimension-six effective operators, Phys. Rev. D 102,
075022 (2020).

[20] S. Adhikari, I. M. Lewis, and M. Sullivan, Beyond the
standard model effective field theory: The singlet extended
standard model, Phys. Rev. D 103, 075027 (2021).

JAYDEB DAS and NILANJANA KUMAR PHYS. REV. D 108, 035048 (2023)

035048-8

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1103/PhysRevD.89.095032
https://doi.org/10.1103/PhysRevD.53.4042
https://doi.org/10.1103/PhysRevD.53.4042
https://doi.org/10.1007/JHEP04(2012)006
https://doi.org/10.1007/JHEP04(2012)006
https://arXiv.org/abs/1202.0195
https://arXiv.org/abs/1202.0195
https://doi.org/10.1103/PhysRevD.87.055015
https://doi.org/10.1103/PhysRevD.87.055015
https://doi.org/10.1103/PhysRevD.90.115017
https://doi.org/10.1103/PhysRevD.90.115017
https://doi.org/10.1007/s12043-016-1250-6
https://doi.org/10.1103/PhysRevD.106.055030
https://arXiv.org/abs/hep-ph/0512126
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/0370-2693(76)90319-1
https://doi.org/10.1007/JHEP09(2017)049
https://doi.org/10.1007/JHEP09(2017)049
https://doi.org/10.1007/JHEP01(2020)147
https://doi.org/10.1007/JHEP01(2020)147
https://doi.org/10.1016/j.physrep.2018.11.002
https://doi.org/10.1103/PhysRevD.102.075022
https://doi.org/10.1103/PhysRevD.102.075022
https://doi.org/10.1103/PhysRevD.103.075027


[21] S. Karmakar and S. Rakshit, Relaxed constraints on the
heavy scalar masses in 2HDM, Phys. Rev. D 100, 055016
(2019).

[22] T. Alanne and F. Goertz, Extended dark matter EFT,
Eur. Phys. J. C 80, 446 (2020).

[23] S. Bar-Shalom, J. Cohen, A. Soni, and J. Wudka, Pheno-
menology of TeV-scale scalar leptoquarks in the EFT,
Phys. Rev. D 100, 055020 (2019).

[24] Y. Du, X. X. Li, and J. H. Yu, Neutrino seesaw models at
one-loop matching: Discrimination by effective operators,
J. High Energy Phys. 09 (2022) 207.

[25] X. Li, D. Zhang, and S. Zhou, One-loop matching of the
type-II seesaw model onto the Standard Model effective
field theory, J. High Energy Phys. 04 (2022) 038.

[26] D. Zhang and S. Zhou, Complete one-loop matching of the
type-I seesaw model onto the standard model effective field
theory, J. High Energy Phys. 09 (2021) 163.

[27] A. Crivellin, M. Ghezzi, and M. Procura, Effective field
theory with two Higgs doublets, J. High Energy Phys. 09
(2016) 160.

[28] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the standard model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[29] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormaliza-
tion group evolution of the standard model dimension six
operators I: Formalism and λ dependence, J. High Energy
Phys. 10 (2013) 087.

[30] J. Schechter and J. W. F. Valle, Neutrino masses in SUð2Þ ×
Uð1Þ theories, Phys. Rev. D 22, 2227 (1980); R. N.
Mohapatra and G. Senjanovic, Neutrino masses and mix-
ings in gauge models with spontaneous parity violation,
Phys. Rev. D 23, 165 (1981); C.-S. Chen and C.-M. Lin,
Type II seesaw Higgs triplet as the inflaton for chaotic
inflation and Leptogenesis, Phys. Lett. B 695, 9 (2011); A.
Chaudhuri, W. Grimus, and B. Mukhopadhyaya, Doubly
charged scalar decays in a type II seesaw scenario with two
Higgs triplets, J. High Energy Phys. 02 (2014) 060.

[31] See, e.g. E. Ma and U. Sarkar, Neutrino Masses and Lepto-
genesis with Heavy Higgs Triplets, Phys. Rev. Lett. 80, 5716
(1998); T. Hambye, E. Ma, and U. Sarkar, Supersymmetric
triplet Higgs model of neutrino masses and leptogenesis,
Nucl. Phys.B602, 23 (2001); D. Aristizabal Sierra,M. Dhen,
and T. Hambye, Scalar triplet flavored leptogenesis: A
systematic approach, arXiv:1401.4347.

[32] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka,
and L. Rahili, hγγ coupling in Higgs triplet model,
arXiv:1202.6621; A. G. Akeroyd and S. Moretti, Enhance-
ment of H to γγ from doubly charged scalars in the Higgs
triplet model, Phys. Rev. D 86, 035015 (2012).

[33] I. Gogoladze, N. Okada, and Q. Shafi, Higgs boson mass
bounds in a type II seesaw model with triplet scalars, Phys.
Rev. D 78, 085005 (2008); H. E. Logan and M.-A. Roy,
Higgs couplings in a model with triplets, Phys. Rev. D 82,
115011 (2010); F. Arbabifar, S. Bahrami, and M. Frank,
Neutral Higgs bosons in the Higgs triplet model with
nontrivial mixing, Phys. Rev. D 87, 015020 (2013); P. S.
Bhupal Dev, D. K. Ghosh, N. Okada, and I. Saha, 125 GeV
Higgs boson and the type-II seesaw model, J. High
Energy Phys. 03 (2013) 150; 05 (2013) 49; C. Englert,
E. Re, and M. Spannowsky, Triplet Higgs boson collider

phenomenology after the LHC, Phys. Rev. D 87, 095014
(2013); Pinning down Higgs triplets at the LHC, Phys. Rev.
D 88, 035024 (2013).

[34] S. Ashanujjaman, K. Ghosh, and R. Sahu, Low-mass doubly
charged Higgs bosons at the LHC, Phys. Rev. D 107,
015018 (2023).

[35] S. Ashanujjaman and K. Ghosh, Revisiting type-II see-saw:
Present limits and future prospects at LHC, J. High Energy
Phys. 03 (2022) 195.

[36] K. Hagiwara, T. Hatsukano, S. Ishihara, and R. Szalapski,
Probing nonstandard bosonic interactions via W boson
pair production at lepton colliders, Nucl. Phys. B496, 66
(1997).

[37] I. Brivio, S. Bruggisser, E. Geoffray, W. Killian, M. Krämer,
M. Luchmann, T. Plehn, and B. Summ, From models to
SMEFT and back?, SciPost Phys. 12, 036 (2022).

[38] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, The
strongly-interacting light Higgs, J. High Energy Phys. 06
(2007) 045.

[39] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
Renormalization group evolution of the standard model
dimension six operators III: Gauge coupling dependence
and phenomenology, J. High Energy Phys. 04 (2014) 159.

[40] G. Passarino, Veltman, renormalizability, calculability, Acta
Phys. Pol. B 52, 533 (2021).

[41] F. Abu-Ajamieh, Model-independent Veltman condition,
naturalness and the little hierarchy problem *, Chin. Phys. C
46, 013101 (2022).

[42] S. Das Bakshi, J. Chakrabortty, and S. K. Patra, CoDEx:
Wilson coefficient calculator connecting SMEFT to UV
theory, Eur. Phys. J. C 79, 21 (2019).

[43] Anisha, S. Das Bakshi, S. Banerjee, A. Biekötter, J.
Chakrabortty, S. Kumar Patra, and M. Spannowsky, Effec-
tive limits on single scalar extensions in the light of recent
LHC data, Phys. Rev. D 107, 055028 (2023).

[44] A. Carmona, A. Lazopoulos, P. Olgoso, and J. Santiago,
Matchmakereft: Automated tree-level and one-loop match-
ing, SciPost Phys. 12, 198 (2022).

[45] G. Aad et al. (ATLAS Collaboration), Measurement of the
total cross section and ρ-parameter from elastic scattering in
pp collisions at

ffiffiffi
s

p ¼ 13 TeV with the ATLAS detector,
Eur. Phys. J. C 83, 441 (2023).

[46] G. Antchev et al. (TOTEM Collaboration), First determi-
nation of the ρ parameter at

ffiffiffi
s

p ¼ 13 TeV: Probing the
existence of a colourless C-odd three-gluon compound state,
Eur. Phys. J. C 79, 785 (2019).

[47] R. Ghosh, B. Mukhopadhyaya, and U. Sarkar, The ρ
parameter and the CDF W-mass anomaly: Observations
on the role of scalar triplets, J. Phys. G 50, 075003 (2023).

[48] D. Das and A. Santamaria, Updated scalar sector constraints
in the Higgs triplet model, Phys. Rev. D 94, 015015 (2016).

[49] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. C.
Peyranere, L. Rahili, and J. Ramadan, The Higgs potential in
the type II seesaw model, Phys. Rev. D 84, 095005 (2011).

[50] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Top,
Higgs, diboson and electroweak fit to the Standard Model
effective field theory, J. High Energy Phys. 04 (2021) 279.

[51] S. Willenbrock and C. Zhang, Effective field theory beyond
the standard model, Annu. Rev. Nucl. Part. Sci. 64, 83
(2014).

VELTMAN CRITERIA IN THE BEYOND STANDARD MODEL … PHYS. REV. D 108, 035048 (2023)

035048-9

https://doi.org/10.1103/PhysRevD.100.055016
https://doi.org/10.1103/PhysRevD.100.055016
https://doi.org/10.1140/epjc/s10052-020-7999-2
https://doi.org/10.1103/PhysRevD.100.055020
https://doi.org/10.1007/JHEP09(2022)207
https://doi.org/10.1007/JHEP04(2022)038
https://doi.org/10.1007/JHEP09(2021)163
https://doi.org/10.1007/JHEP09(2016)160
https://doi.org/10.1007/JHEP09(2016)160
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1016/j.physletb.2010.11.016
https://doi.org/10.1007/JHEP02(2014)060
https://doi.org/10.1103/PhysRevLett.80.5716
https://doi.org/10.1103/PhysRevLett.80.5716
https://doi.org/10.1016/S0550-3213(01)00109-2
https://arXiv.org/abs/1401.4347
https://arXiv.org/abs/1202.6621
https://doi.org/10.1103/PhysRevD.86.035015
https://doi.org/10.1103/PhysRevD.78.085005
https://doi.org/10.1103/PhysRevD.78.085005
https://doi.org/10.1103/PhysRevD.82.115011
https://doi.org/10.1103/PhysRevD.82.115011
https://doi.org/10.1103/PhysRevD.87.015020
https://doi.org/10.1007/JHEP03(2013)150
https://doi.org/10.1007/JHEP03(2013)150
https://doi.org/10.1007/JHEP05(2013)049
https://doi.org/10.1103/PhysRevD.87.095014
https://doi.org/10.1103/PhysRevD.87.095014
https://doi.org/10.1103/PhysRevD.88.035024
https://doi.org/10.1103/PhysRevD.88.035024
https://doi.org/10.1103/PhysRevD.107.015018
https://doi.org/10.1103/PhysRevD.107.015018
https://doi.org/10.1007/JHEP03(2022)195
https://doi.org/10.1007/JHEP03(2022)195
https://doi.org/10.1016/S0550-3213(97)00208-3
https://doi.org/10.1016/S0550-3213(97)00208-3
https://doi.org/10.21468/SciPostPhys.12.1.036
https://doi.org/10.1088/1126-6708/2007/06/045
https://doi.org/10.1088/1126-6708/2007/06/045
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.5506/APhysPolB.52.533
https://doi.org/10.5506/APhysPolB.52.533
https://doi.org/10.1088/1674-1137/ac2ffa
https://doi.org/10.1088/1674-1137/ac2ffa
https://doi.org/10.1140/epjc/s10052-018-6444-2
https://doi.org/10.1103/PhysRevD.107.055028
https://doi.org/10.21468/SciPostPhys.12.6.198
https://doi.org/10.1140/epjc/s10052-023-11436-8
https://doi.org/10.1140/epjc/s10052-019-7223-4
https://doi.org/10.1088/1361-6471/acd0c8
https://doi.org/10.1103/PhysRevD.94.015015
https://doi.org/10.1103/PhysRevD.84.095005
https://doi.org/10.1007/JHEP04(2021)279
https://doi.org/10.1146/annurev-nucl-102313-025623
https://doi.org/10.1146/annurev-nucl-102313-025623

