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We consider a model of dark photon which appears as a result of the successive symmetry breaking
SUð2Þ → Uð1Þ → Z2, where various types of topological defects appear in the dark sector. In this paper,
we study the interactions between quantum electrodynamics (QED) charges and the dark topological
defects through mixing between QED photon and dark photon. In particular, we extend our previous
analysis by incorporating the magnetic mixing and θ-terms. We also consider the dyons and dyonic beads
in the dark sector. Notably, dark magnetic/dyonic beads are found to induce a QED Coulomb potential
through the magnetic mixing despite finite mass of the dark photon.
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I. INTRODUCTION

The dark photon [1], a massive vector boson which
slightly mixes with the QED photon, appears in various
extensions of the Standard Model (SM). Recently, appli-
cations of dark photons to cosmology have been actively
discussed. For instance, sub-GeV dark photons can mediate
dark matter self-interactions, possibly providing a better fit
to the small scale structure of the Universe [2–7]. The dark
photon may also play an essential role in sub-GeV dark
matter models, as it can transfer excess entropy in the
dark sector to the SM sector before the neutrino decoupling
(see, e.g., Refs. [8,9]). Following the attention, sub-GeV
dark photons have been an important search target for
various experiments (see, e.g., Refs. [10,11] for the current
experimental status).
More plausible dark photon scenarios require more

serious discussions of the origin of the dark photon mass.
One possibility is to identify the dark photon model with
the Stückelberg model (see Ref. [12] for a review). As the
model requires no new particles other than the massive
vector boson, it provides the simplest model of the dark
photon. However, such a model is shown to violate
unitarity [13].1 Thus, it seems more compelling to assume

that the dark photon mass originates from spontaneous
U(1) symmetry breaking.2

Once we assume spontaneous U(1) breaking in the dark
sector, its extension to non-Abelian gauge theory would be
of interest. Aside from purely theoretical interest, potential
high energy asymptotic freedom motivates such extensions
as a UV completion of the U(1) model. It is also attractive
as it can naturally explain tiny mixing parameters (see e.g.,
Refs. [16,17]). The smallness of the mixing parameters is
important to evade all the astrophysical, cosmological, and
experimental constraints.
In Ref. [18], it has been discussed how topological

defects in the dark sector affect the SM sector through the
kinetic mixing when the dark photon originates from an
SU(2) gauge symmetry. In this setup, various topological
defects appear, including magnetic monopoles, strings, and
magnetic beads. In particular, Ref. [18] showed that dark
magnetic beads induce a configuration that looks like a
QED magnetic monopole from a distance through kinetic
mixing, while retaining the QED Bianchi identity.
In this paper, we extend the analysis of Ref. [18] by

adding the magnetic mixing term [19] between the dark
photon and the QED photon. We also discuss how dyons
(and the dyonic beads) in the dark sector affect QED
configurations. Charge quantization in the presence of the
mixing terms and the θ-term is also considered.
In our analysis, (and the analysis in Ref. [18]), we

explicitly discuss SU(2) gauge theory behind the topologi-
cal defects such as monopoles and dyons, which clarifies
how and when the θ-terms as well as the magnetic mixing
become effective. This approach provides a complementary
understanding to the previous studies in Refs. [19–24] on
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1Although the interaction of Stückelberg vector boson and a
conserved current does not violate unitarity, other interactions
such as self-couplings do.

2In addition to the conventional Higgs mechanism, it is also
possible to break the U(1) gauge symmetry dynamically [14,15].
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how the dark monopoles/strings affect the QED sector
through the mixing within the effective U(1) theory.
The organization of the paper is as follows. In Sec. II, we

summarize our setup where the dark photon appears from a
successive symmetry breaking SUð2Þ → Uð1Þ → Z2. In
Sec. III and Sec. IV, we discuss the QED interactions of
dark charged objects through the kinetic and magnetic
mixing in the U(1) symmetric and broken phases, respec-
tively. The final section is devoted to our conclusions.

II. DARK PHOTON FROM NON-ABELIAN
GAUGE THEORY

In this paper, we discuss the effects of charged objects in
the dark sector including topological defects such as monop-
oles/dyons/strings/beads which are expected to appear in the
successive symmetry breaking, SUð2Þ → Uð1Þ → Z2.
Hereafter, we call these gauge groups SUð2ÞD and Uð1ÞD,
respectively.

A. Uð1ÞQED × SUð2ÞD model

We consider a Uð1ÞQED × SUð2ÞD gauge theory where
the two sectors are coupled through higher dimensional
operators3:

L ¼ −
1

4
FμνFμν −

1

4
Fa
DμνF

aμν
D −

1

2
Dμϕ

aDμϕa

−
1

2
Dμη

aDμηa − Vðϕ; ηÞ þ Lθ þ Lmix; ð1Þ

Lθ ¼ −
e2θ
32π2

FμνF̃μν −
e2DθD
32π2

Fa
DμνF̃

aμν
D ð2Þ

Lmix ¼ −
c1ϕa

2Λ
FD

a
μνFμν −

c2ϕa

16π2Λ
FD

a
μνF̃μν: ð3Þ

Here, Fμν and Fa
Dμν (a ¼ 1, 2, 3) are the field strengths

of the Uð1ÞQED and SUð2ÞD gauge fields, Aμ and Aa
Dμ,

respectively. Their hodge duals are given by F̃ðDÞμν ¼
ϵμνρσF

ρσ
ðDÞ=2.

4 We introduced two SUð2ÞD adjoint scalar

fields ϕa and ηa (a ¼ 1, 2, 3). We call the Uð1ÞQED and
SUð2ÞD gauge coupling constants e and eD. The covariant
derivatives of ϕ and η are given by,

Dμϕ
a ¼ ∂μϕ

a þ eDϵabcAb
Dμϕ

c; ð4Þ

Dμη
a ¼ ∂μη

a þ eDϵabcAb
Dμη

c: ð5Þ

The higher dimensional operators with coefficients c1;2
suppressed by the UV cutoff Λ result in effective mixing

parameters between QED photons and dark photons [19].
We take Λ ≫ v1, so that the effective mixing parameters
are small. Throughout this paper, we assume that no
SUð2ÞD charged fields have Uð1ÞQED charge, although
our discussion can be generalized.
The scalar potential of ϕa and ηa is assumed to be

Vðϕ; ηÞ ¼ λ1
4
ðϕ · ϕ − v21Þ2 þ

λ2
4
ðη · η − v22Þ2 þ

κ

2
ðϕ · ηÞ2;

ð6Þ
where ϕ · ϕ ¼ ϕaϕa etc. For simplicity, we omit terms such
as ðϕ · ϕÞðη · ηÞ. The dimensionless coupling constants λ1,
λ2 and κ are taken to be positive. We also take the mass
scales to be hierarchical, i.e., v1 ≫ v2. At the vacuum, ϕa

takes the trivial configuration, i.e. the vacuum expectation
value (VEV),

hϕai ¼ v1δa3; ð7Þ

with which SUð2ÞD is broken down to Uð1ÞD. The
remaining Uð1ÞD symmetry corresponds to the SO(2)
symmetry around the a ¼ 3 axis of SOð3Þ ≃ SUð2ÞD
vectors ϕa and ηa.
Below the SUð2ÞD breaking scale, a Uð1ÞD charged field

χ can be formed out of ηa as

χ ¼ 1ffiffiffi
2

p ðη1 − iη2Þ: ð8Þ

For κ > 0, the last term of the potential (6) lifts the a ¼ 3
component of η and the VEV of ηa is required to be
orthogonal to hϕai. As a result, hηai takes a value in the
ðη1; η2Þ plane, i.e.,

hηai ¼ v2δa1; ð9Þ

or

hχi ¼ 1ffiffiffi
2

p v2; ð10Þ

which breaks Uð1ÞD spontaneously. In this way, successive
symmetry breaking SUð2ÞD → Uð1ÞD → Z2 is achieved.
The Z2 symmetry is the center of SUð2ÞD.

B. Effective Uð1ÞQED × Uð1ÞD theory

For later use, we describe the effective Uð1ÞQED × Uð1ÞD
theory for hϕi ≠ 0. The effective Lagrangian is given by

L ¼ −
1

4
FμνFμν −

1

4
FDμνF

μν
D þ ϵ

2
FμνF

μν
D −

θmix

16π2
FμνF̃D

μν

−
e2θ
32π2

FμνF̃μν −
e2DθD
32π2

FDμνF̃
μν
D þ eAμJ

μ
QED

þ eDADμJ
μ
D −DμχDμχ� − VðχÞ; ð11Þ

3We take the spacetime metric as ðgμνÞ ¼ ð−1; 1; 1; 1Þ.
4We adopt the convention ϵ0123 ¼ 1. The three dimensional

antisymmetric tensor is ϵijk ¼ ϵijk ¼ ϵ0ijk ¼ ϵ0
ijk. We also define

electromagnetic fields as Ei ¼ F0i ¼ Fi0 and Bi ¼ ϵijkFjk=2.

AKIFUMI CHITOSE and MASAHIRO IBE PHYS. REV. D 108, 035044 (2023)

035044-2



where FDμν ¼ ϕaFa
Dμν=v1 represents the Uð1ÞD gauge field

strength and ADμ the corresponding gauge field. We call the
gauge field ADμ as the dark photon. Note that in the
presence of monopoles/dyons, the effective theory is well
defined only far enough from them (so that jϕj ¼ v1) and
ADμ can be defined only locally. We also explicitly
displayed the currents JμQED and JμD coupled to the gauge
fields, which were omitted in Eq. (1).
We refer to the interactions with the couplings ϵ and θmix

as the kinetic and magnetic mixing. They arise from the
higher dimensional operators (3), where the couplings are
related to the underlying model parameters by

ϵ ¼ c1v1
Λ

; θmix ¼
c2v1
Λ

: ð12Þ

As we assume Λ ≫ v1, these parameters are tiny.5

In the effective Uð1ÞD theory, only χ is relevant as the
other components become heavy for κ > 0. The covariant
derivative of χ is given by

Dμχ ¼ ð∂μ − ieDADμÞχ: ð13Þ

The scalar potential VðχÞ is obtained by substituting
Eqs. (7)–(9) into Eq. (6):

VðχÞ ¼ λ

4
ðjχ2j − v2Þ2; ð14Þ

where λ ¼ λ2=2 and v ¼ v2=
ffiffiffi
2

p
. At the vacuum, χ obtains

a VEV hχi ¼ v, which spontaneously breaks the Uð1ÞD
symmetry, as in the previous subsection.

III. Uð1ÞD SYMMETRIC PHASE

In this section, we discuss the effects of electrically and
magnetically charged objects in the dark sector in the
Uð1ÞD symmetric phase by ignoring η.

A. Dark elementary charged particles

Let us consider the effective Uð1ÞQED × Uð1ÞD theory
(11) assuming the trivial vacuum (7) with charged particles
in JμQED and JμD. The equations of motion for the field
strengths can be written as

K∂μF μν ¼ −J ν; ð15Þ
where

Aμ ≔
�
Aμ

Aμ
D

�
; F μν ≔ ∂

μAν − ∂
νAμ;

K ≔
�

1 −ϵ
−ϵ 1

�
; J μ ≔

�
eJμQED
eDJ

μ
D

�
: ð16Þ

Note that θmix does not appear here, as the magnetic mixing
is a total derivative in the effective theory. For a point
charge, J μðxÞ ¼ Qδμ0δ

3ðxÞ where Q ¼ ðeneQED; eDneDÞ⊤.6
The static solution in the Coulomb gauge, ∇ · A⃗ ¼ 0, is

A0 ¼ 1

4πr
K−1Q; A⃗ ¼ 0; ð17Þ

where r denotes the distance from the point charge.
Therefore, the electric potential energy between two point
charges Q and Q0 is given by

Eint ≔ Q0⊤
Z

∞

r
dxiF 0i ¼ Q0⊤A0 ¼ 1

4πr
Q0⊤K−1Q; ð18Þ

where r is the distance between the charges. Here, the
electric field is defined by Ei ¼ F 0i ¼ −F 0i.
To see the effect of the kinetic mixing on the electric

potential energy, let us first consider the case of two
QED electric charges. Plugging in Q ¼ ðeneQED; 0Þ⊤ and
Q0 ¼ ðene0QED; 0Þ⊤, Eq. (18) leads to

Eint ¼
e2

1 − ϵ2
×
neQEDn

e0
QED

4πr
: ð19Þ

This is the familiar Coulomb’s law, except that e2 is
replaced with e2=ð1 − ϵ2Þ. This deviation is due to the
interaction between QED charges via dark photon
exchange.
For a dark electric charge and a QED test particle, i.e.,

Q ¼ ð0; eDneDÞ⊤ and Q0 ¼ ðeneQED; 0Þ⊤, we have

Eint ¼
ϵeeD
1 − ϵ2

×
neQEDn

e
D

4πr
: ð20Þ

Physically, this indicates that the QED test charged particle
feels Coulomb force from the dark electric charged particle
as if it has QED electric charge ϵneDeD=e.
Note that the definition of the charges depends on the

basis of the U(1) gauge fields. That is, the redefinitionA →
SA with a 2 × 2 regular matrix S transforms Q to S−1⊤Q.
The interaction energy Eint is, on the other hand, indepen-
dent of the basis, since it is a physical observable. Indeed,
the field redefinition also changes K to S−1⊤KS−1, and
hence, the interaction energy (18) is intact.

B. Dark monopoles

Next, we move on to the case with dark magnetic
monopoles. At the phase transition, SUð2ÞD → Uð1ÞD,

5The parameter θmix is related to θ12 in Ref. [19] via
θ12 ¼ eeDθmix.

6In the dark photon model in Sec. II A, we assume no SUð2ÞD
charged fields have Uð1ÞQED charge, and hence, neQED ¼ 0 or
neD ¼ 0 in the basis of Eq. (11). However, the interaction energy
can be defined for more general cases.
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the ’t Hooft-Polyakov monopole can appear [25,26]. In the
absence of the kinetic and magnetic mixing terms, the static
configuration of the monopole at the origin is given by

ϕa ¼ v1HðrÞ x
a

r
; Aa

D0 ¼ 0; Aa
Di ¼

1

eD

ϵaijxj

r2
FðrÞ;

ði; j ¼ 1; 2; 3Þ; ð21Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The profile functions HðrÞ and

FðrÞ satisfy the boundary conditions

HðrÞ → const × r; ðr → 0Þ; HðrÞ → 1; ðr → ∞Þ;
ð22Þ

FðrÞ → const × r2; ðr → 0Þ; FðrÞ → 1; ðr → ∞Þ;
ð23Þ

where they approach their asymptotic values exponentially
at r → ∞.
To see the magnetic field, it is convenient to define the

effective Uð1ÞD field strength as

FDμν ≔
1

v1
ϕaFa

Dμν ð24Þ

(see, e.g., Ref. [27]). The only nonvanishing components of
Fμν
D are

Fij
D ¼ −

1

eD

ϵijkxk

r3
ð2F − F2ÞH; ði; j ¼ 1; 2; 3Þ: ð25Þ

Hence, the dark magnetic charge of the monopole solution
is given by

Qm
D ≔

Z
r→∞

d2SiBi
D ¼ −

4π

eD
; ð26Þ

where d2Si is the surface element of a two dimensional
sphere surrounding the monopole.
Now, let us consider the effect of the kinetic and

magnetic mixings. As we assume those parameters to be
tiny, their effects on the configuration (21) can be safely
neglected. (For the stability of the topological defects in
the presence of the mixing terms, see the Appendix B.)
The equation of motion for Aμ in the Uð1ÞQED × SUð2ÞD
theory is

∂μFμν − ϵ∂μF
μν
D þ θmix

8π2
∂μF̃

μν
D ¼ 0: ð27Þ

The third term vanishes at r ≫ ðeDv1Þ−1 due to the Bianchi
identity of the effective Uð1ÞD theory. In the vicinity of the
monopole r ∼OððeDv1Þ−1Þ, on the other hand, it does not
vanish where

∂μF̃
μν
D ¼ 1

v1
∂μðϕaF̃aμν

D Þ ¼ 1

v1
ðDμϕÞaF̃aμν

D ≠ 0: ð28Þ

In the last equality, we used the Bianchi identity of SUð2ÞD,
i.e., DμF̃

aμν
D ¼ 0. Besides, the effective field strength Fμν

D

satisfies ∂μF
μν
D ¼ 0 even at r → 0, and hence, the second

term in Eq. (27) vanishes.
As a result, the equation of motion for the QED electric

field is given by

∂iEi ¼ θmix

8π2
∂iBi

D: ð29Þ

Thus, we find the solution of Eq. (27) in the Coulomb
gauge to be

A0 ≃ −
θmixQm

D

8π2
×

1

4πr
¼ θmix

8π2eD
×
1

r
; A⃗ ¼ 0; ð30Þ

for r ≫ ðeDv1Þ−1 to the leading order of the mixing
parameters.
Accordingly, the interaction energy between a QED

test particle with Q ¼ ðneQED; 0Þ⊤ and a dark monopole
is given by,

Eint ¼ −
eθmixQm

Dn
e
QED

8π2
×

1

4πr
; ð31Þ

for r ≫ ðeDv1Þ−1 to the leading order of the mixing
parameters. This shows that the dark magnetic monopole
exerts Coulomb force to QED particles through the
magnetic mixing, whereas the kinetic mixing induces no
interactions between them [19].

C. Dark dyons

The SUð2ÞD sector admits dyons, magnetic monopoles
that also have electric charge [28]. The dyon solution is
described by Eq. (21) but with Aa

D0 replaced by

Aa
D0 ¼

1

eD

xa

r2
JðrÞ: ð32Þ

The boundary conditions for JðrÞ are

JðrÞ → const × r2; ðr → 0Þ; JðrÞ → Mrþ b; ðr → ∞Þ;
ð33Þ

where M and b are the parameters with mass dimensions
one and zero, respectively.
The dark magnetic field FDij is not modified by Eq. (32).

On the other hand, the dark electric field no longer
vanishes:

F0i
D ¼ 1

eD

xi

r
d
dr

JðrÞ
r

→ −
b
eD

xi

r3
: ð34Þ
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Hence, the dark electric charge of the dyon is found to be

Qe
D ¼ −

4πb
eD

¼ bQm
D ð35Þ

in the absence of the mixing to the QED sector.
By remembering how the dark electric charges and dark

magnetic charges induce the Coulomb force on QED
charged particles [see Eq. (27)], we find the interaction
energy to be

Eint ¼ eneQED

�
−
θmix

8π2
Qm

D þ ϵQe
D

�
×

1

4πr
; ð36Þ

to the leading order in the mixing parameters.
This concludes our analysis on the interactions between

dark charge objects and QED charges in the Uð1ÞD
symmetric phase. Figure 1 summarizes the results in this
section.

D. Charge quantization

The dark magnetic charge is quantized as it corresponds
to the topological number nmD ∈Z of the configuration, with
which Qm

D ¼ −4πnmD=eD. Its quantization is not affected by
the mixings to the QED sector.
The dark electric charge is arbitrary at the classical level,

as in Eq. (35). In a quantum theory, however, the dyon

electric charge has to be quantized [29,30]. To see this in
our setup, let us consider the residual global Uð1ÞD
symmetry around ϕ,

δAa
Dμ ¼ −

1

eDv1
Dμϕ

a; δAμ ¼ 0; δϕa ¼ 0: ð37Þ

As shown in Appendix A, the corresponding Noether
charge is given by

NUð1ÞD ¼ 1

eD
Qe

D −
ϵ

eD
Qe

QED −
θDeD
8π2

Qm
D : ð38Þ

The electric and magnetic charges are measured by electric
flux,

�
Qe

QED

Qe
D

�
≔
Z

d2Si Ei; ð39Þ

and the magnetic flux [see Eq. (26)]. Since NUð1ÞD is one of
the generators of global SOð3ÞD ≃ SUð2ÞD transformation,
we find NUð1ÞD ∈Z, which constrains Qe

D of dyons [31,32]
(see also Ref. [33]). Note that this is the usual Witten effect
in the absence of the mixings.
Let us also comment on the effects of the θ-terms Lθ to

the equations of motion. In our formulation, the Uð1ÞQED ×
SUð2ÞD gauge potentials Aμ and Aa

Dμ are globally defined,

FIG. 1. Summary of the appearance of dark charges as QED charges. The yellow lines indicate dark/QED electric field and blue lines
indicate dark magnetic field. The leftmost column shows objects in the dark sector and the other columns describe QED electric fields
induced by the mixing terms.
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and hence, Lθ does not affect the equations of motion. In
the Uð1ÞQED × Uð1ÞD formulation, on the other hand, it is
also possible to introduce monopoles as a singularity [19].
In this treatment, Lθ classically induces an electric field
around a dark monopole (see also Ref. [34]).7

IV. Uð1ÞD BROKEN PHASE

A. Dark elementary charged particles

Let us consider the case without monopoles, where the
effective theory (11) is valid. At the trivial vacuum (10), the
Uð1ÞD × Uð1ÞQED model is reduced to

L ¼ −
1

4
FμνFμν −

1

4
FDμνF

μν
D −

1

2
m2

DADμA
μ
D þ ϵ

2
FμνF

μν
D

−
θmix

16π2
FμνF̃D

μν −
e2θ
32π2

FμνF̃μν −
e2DθD
32π2

FDμνF̃
μν
D

þ eAμJ
μ
QED þ eDADμJ

μ
D; ð40Þ

where m2
D ¼ 2e2Dv

2.
In this case, it is most convenient to introduce a new

basis

�
Aμ

Aμ
D

�
≕

 
1 ϵffiffiffiffiffiffiffi

1−ϵ2
p

0 1ffiffiffiffiffiffiffi
1−ϵ2

p

!�
A0μ

A0μ
D

�
; ð41Þ

with which the equations of motion are given by

∂μF0μν ¼ eJνQED; ð42Þ

∂μF
0μν
D −m02

DA
0ν
D ¼ eDffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2
p JνD þ ϵeffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2
p JνQED; ð43Þ

where m02
D ¼ m2

D=ð1 − ϵ2Þ. We refer to the bases ðAμ; AD;μÞ
and ðA0

μ; A0
DμÞ the original and decoupled bases,

respectively.
Then the interaction energy between a dark electric

charge and a QED test particle, i.e., Q ¼ ð0; eDneDÞ⊤ and
Q0 ¼ ðeneQED; 0Þ⊤ in the original basis, is suppressed

by e−m
0
Dr:

Eint ¼
ϵeeD
1 − ϵ2

×
neQEDn

e
D

4πr
e−m

0
Dr: ð44Þ

Note that the θ-terms in Eq. (11) has no observable effect in
this case.

B. Dark strings

Let us continue to assume the absence of monopoles.
However, we now consider the vacuum configuration of
Uð1ÞD breaking associated with a string as discussed in
Ref. [18]. We continue to use the decoupled basis. The
static string solution along the z-axis is given by the form
(see, e.g., Ref. [35])

χ ¼ vhðρÞeinφA ; ð45Þ

A0
Di ¼ −

n
e0D

ϵijxj

ρ2
fðρÞ; ði; j ¼ 1; 2Þ; ð46Þ

A0
D0 ¼ A0

D3 ¼ 0; ð47Þ

where n∈Z is the winding number of the string
configuration, hðρÞ, fðρÞ the profile functions, and
e0D ¼ eD=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
. The cylindrical coordinate is given

by φA ¼ arctanðy=xÞ and ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The two-

dimensional antisymmetric tensor is defined by ϵ12 ¼ 1.8

The boundary conditions for the profile functions are

hðρÞ → 0; ðρ → 0Þ; hðρÞ → 1; ðρ → ∞Þ; ð48Þ

fðρÞ → 0; ðρ → 0Þ; fðρÞ → 1; ðρ → ∞Þ: ð49Þ

They approach unity for ρ ≫ ðe0DvÞ−1 exponentially. The
winding number is related to the dark magnetic flux along
the string core by

Z
d2xB0

D3 ¼
I
ρ→∞

A0
Didx

i ¼ 2πn
e0D

: ð50Þ

In the decoupled basis, the absence of the kinetic mixing
implies A0

μ ¼ 0. Nevertheless, QED test charges defined in
the original basis feel the Aharonov-Bohm (AB) effect
through Aμ ≠ 0. The corresponding AB phase around the
string is given by [18]

neQEDWQED ¼ neQEDϵeffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
I

A0
Dμdx

μ ¼ 2πnneQEDqϵe

eD
: ð51Þ

As in the case of elementary dark charges, the θ-terms do
not affect the equations of motion because of the Uð1ÞQED
and Uð1ÞD Bianchi identities. Thus, they do not modify the
field configurations, and hence, the AB phases.
It is also instructive to see the dark string in the original

basis. Substituting Eq. (46) into Eq. (41), we find
7Strictly speaking, singularities in the dark sector obscure the

boundary condition of the QED gauge potential. Our treatment
based on the Uð1ÞQED × SUð2ÞD theory does not have such
subtleties.

8Noting that dφA ¼ −dxiϵijxj=ρ2, Eq. (46) can be rewritten by
A0
Didx

i ¼ n=e0D × fðρÞdφA.
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Ai ¼ −
ϵn
eD

ϵijxj

ρ2
fðρÞ; ð52Þ

ADi ¼ −
n
eD

ϵijxj

ρ2
fðρÞ ð53Þ

for i, j ¼ 1, 2. In this picture, Ai is induced by the Uð1ÞD
current of χ,

Jiχ ¼ iχDiχ† − iχ†Diχ ¼ 2v2n
ϵijxj

ρ2
h2ðf − 1Þ; ð54Þ

through the kinetic mixing. This expression allows us to
interpret the AB effect on QED charges as a result of a
solenoid around the string.

C. Dark beads

1. Dark beads configuration

In this section, we consider the effects of the so-called
bead solution which appears in the Uð1ÞD broken phase
around a dark magnetic monopole without electric charge.9

Here, we begin with a review of the bead solution without
mixing to the QED sector (see Ref. [36] for a review).
As we have seen in Sec. II A, η prefers to be orthogonal

to ϕ because of the κ term in the potential (6). However,
such a configuration of η with a constant amplitude,
jηj ¼ v2, is impossible due to the Poincaré–Hopf (hairy
ball) theorem around the monopole solution (21). Rather,
jηj should vanish at some points at r → ∞ and strings must
extend in those directions. Such a configuration is called a
beads solution [36–39]. A network of connected bead
solutions is also called a necklace [40].10

To see the formation of beads, it is helpful to consider a
monopole in a gauge defined in two slightly overlapping
charts covering the northern and southern hemispheres,

UN ¼ fðr; θZ;φAÞj0 ≤ θZ ≤ π=2þ ε; r > Rg ð55Þ

US ¼ fðr; θZ;φAÞjπ=2 − ε ≤ θZ ≤ π; r > Rg: ð56Þ

Here, θZ is the zenith angle, ε is a small positive parameter,
and R≳ ðeDv1Þ−1. In each chart, we transform the monop-
ole solution (21) by

gN ¼
�

cθZ=2 e−iφAsθZ=2

−eiφAsθZ=2 cθZ=2

�
;

gS ¼
�
eiφAcθZ=2 sθZ=2

−sθZ=2 e−iφAcθZ=2

�
; ð57Þ

that is,

ϕata → ϕa
N;St

a ¼ gN;Sϕ
atag†N;S; ð58Þ

Aa
Dit

a → Aa
DN;Sit

a ¼ gN;SAa
Dit

ag†N;S þ
i
eD

gN;S∂ig
†
N;S; ð59Þ

with ta (a ¼ 1, 2, 3) being the halves of the Pauli matrices.
We call this gauge choice the combed gauge.
In this gauge, the asymptotic behavior of the monopole

at r ≫ ðeDv1Þ−1 is given by11

ϕa
N → v1δa3; ð60Þ

Aa
DN →

1

eD
δa3ðcos θZ − 1ÞdφA ð61Þ

in the UN chart and

ϕa
S → v1δa3; ð62Þ

Aa
DS →

1

eD
δa3ðcos θZ þ 1ÞdφA; ð63Þ

in the US chart, while Aa
DN;S vanish asymptotically.

In the combed gauge, A3
DN;S in each chart are connected

with each other at around the equator θZ ∼ π=2 by

A3
DS ¼ A3

DN þ 2

eD
dφA: ð64Þ

That is, the gauge transition function connecting the two
charts is

tNS ¼ e2iφA : ð65Þ

Now we discuss the winding of χ. First, let us suppose
that χ takes a constant expectation value v in the northern
hemisphere for r ≫ ðeDv1Þ−1. Then the Uð1ÞD magnetic
flux is expelled from the northern hemisphere by the
Meissner effect, and hence, the gauge potential in the
northern hemisphere is trivial:

A3
DNi ¼ 0 ð66Þ

for r ≫ ðeDv1Þ−1. In the overlapping region, the scalar and
gauge fields in the US chart take the form

χS ¼ e2iφAχN; ð67Þ

A3
DS ¼ A3

DN þ 2

eD
dφA ð68Þ

9This assumption requires θD ¼ 0.
10Necklace solutions in SO(10) and E6 are discussed in, e.g.,

Ref. [41].

11Here, we denote the gauge potentials as one-form gauge
fields.
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for r ≫ ðeDvÞ−1 due to the nontrivial transition function
(65). This shows that the trivial configuration in the
northern hemisphere requires a nontrivial winding of χS.
Note that the minimum energy solution of Uð1ÞD with a
nontrivial winding is a string with a radius of OððeDvÞ−1Þ.
Thus, Eq. (67) shows that a string with n ¼ 2 is formed in
the southern hemisphere. The dark magnetic flux for the
n ¼ 2 string is

I
A3
DSidx

i ¼ 4π

eD
; ð69Þ

which coincides with the total magnetic flux of the
monopole. As a result, we find that the magnetic flux of
the magnetic monopole escapes through the string (see the
left panel of Fig. 2). This configuration is consistent with
the Poincaré–Hopf theorem since ηa ¼ 0 at the center of the
string.12

Next, let us consider an n ¼ −1 string in the northern
hemisphere extending from the monopole toward z → þ∞.
The asymptotic behavior of the string for ρ ≫ ðeDvÞ−1 is
given by

χN → ve−iφA ; ð70Þ

ADN → −
1

eD
dφA: ð71Þ

The corresponding asymptotic behavior in the southern
hemisphere is

χS ¼ e2iφAχN → veiφA ; ð72Þ

ADS ¼ ADN þ 1

eD
dφA →

1

eD
dφA; ð73Þ

namely the string solution with n ¼ 1. Thus, in this
configuration, a string and an antistring are attached to a
magnetic monopole (see the right panel of Fig. 2). The
magnetic flux confined in the string and the antistring is
given by

−
I

A3
DNidx

i þ
I

A3
DSidx

i ¼ 4π

eD
; ð74Þ

which coincides with the magnetic flux of the monopole.
This configuration is called the bead solution [37].

2. Kinetic mixing

So far in this subsection, we have ignored the mixing
terms. As discussed in Ref. [18], the kinetic mixing induces
a nontrivial QED magnetic field called pseudomonopoles.
As we saw in Sec. IV B, the strings attached to the

monopole induces QED magnetic field along them. Thus,
we find that the QED magnetic flux (in the original basis)
flows into the magnetic monopole:

�
−
I

A3
Nidx

i þ
I

A3
Sidx

i

�
string

¼ ϵ4π

eD
: ð75Þ

In the original basis, however, the QED Bianchi identity
prohibits sources and sinks of the QED magnetic field.
Since the QED magnetic flux (75) is confined within the
strings at jzj ≫ ðeDv1Þ−1, the incoming flux Eq. (75) must
leak at the ends, i.e., in the vicinity of the monopole:

Z
d2SiBijleak ¼

ϵ4π

eD
: ð76Þ

Since the leakage occurs from the tiny region
r ¼ OððeDv1Þ−1Þ, the magnetic flux should be spherical
for large r, and hence,

Bijleak ¼
ϵ

eD

xi
r3
; ð77Þ

which looks like a QED monopole (see Fig. 3). We call this
pseudomonopole.
So far, no analytic expressions for the bead nor the

pseudomonopole have been known. However, their for-
mation is confirmed by classical lattice simulation [18,42].

FIG. 2. Schematic pictures of the bead solutions. The ball
denotes the dark magnetic monopole, and the arrows denote the
dark magnetic field. Left: the attached string with n ¼ 2 extends
in the negative z direction. Right: the attached string with n ¼ −1
extends in the positive z direction while the one with n ¼ 1
extends in the negative z direction.

12This configuration is not static, and the dark monopole is
pulled in the negative z direction.
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3. Magnetic mixing

Next, let us discuss the effect of the magnetic mixing
θmix while we set ϵ ¼ 0. In this case, the equation of motion
for Aμ is given by

∂iEi ¼ θmix

8π2
× ∂iBi

D; ð78Þ

[see Eq. (27)]. Since the contribution of θmix is proportional
to ∂iBi

D, only dark monopoles contribute to the QED
electric field even in the case of the dark bead solution.
Therefore, we have again the QED electric potential (30)
and the interaction energy (31). Notice that this interaction
energy is not suppressed by e−m

0
Dr even in the Uð1ÞD broken

phase, unlike the case of dark elementary charges [see
Eq. (44)]. As a result, we find that the dark magnetic mixing
induces a spherical Coulomb potential around the dark
monopole even though the dark magnetic flux is confined
into the strings.
When both the kinetic and magnetic mixing exist, the

dark bead configuration induces the QED pseudomonopole
and spherical QED Coulomb force simultaneously at the
leading order of the mixing parameters.

D. Dark dyonic beads

1. Dark dyonic beads configuration

In this section, we qualitatively describe the case where
the original dark monopole also has dark electric charge.
The dark magnetic flux of the dyon demands the formation

of the bead solution in the Uð1ÞD broken phase, as in the
case of dark monopoles.
The dark electric field, on the other hand, decays as

∼e−m0
Dr due to the mass term in Eq. (42). Note however that

since Uð1ÞD is restored at the string core, the dark electric
field is no longer spherical and takes a rugby ball-like
configuration along the dark strings. For detailed structure
of the solution, we need numerical simulation which will be
discussed elsewhere.

2. Interactions through the mixing terms

Finally, let us discuss the effects of the mixing terms. To
the linear order of the mixing parameters, the effects of the
dark dyonic beads can be described by the superposition of
those of dark beads and a dark electric charge.
As we have seen in the previous section, the beads part

induces a pseudomonopole through the kinetic mixing and
induces a QED Coulomb potential through the magnetic
mixing. On the other hand, the electric charge part induces
a nonspherical decaying potential for QED charges through
the kinetic mixing, while the magnetic mixing does
nothing. The resultant interaction energy is given by

Eint ¼
�
−
θmix

8π2
Qm

D þ ϵQe
De

−m̃0
Dr

�
×
eneQED
4πr

; ð79Þ

where r and θZ dependent mass m̃0
D accounts for the

distortion of the decaying potential.
This concludes our analysis on Uð1ÞD broken phase. We

show the summary of the QED field strengths that the QED
charged particle feel in Fig. 4.

E. QED electric charge conservation

One may wonder whether the QED electric charge is
conserved when a dark monopole forms. To clarify this
point, two definitions of the electric charge must be
carefully distinguished: neQED, the Uð1ÞQED quantum num-
ber, and Qe

QED, the charge measured by the field strength.
neQED is conserved by Noether’s theorem. By definition,

monopoles have no contribution (see also Appendix A).
On the other hand, Eq. (29) shows that Qe

QED induced by
magnetic mixing is proportional to Qm

D even in the SUð2ÞD
symmetric phase. The magnetic charge has an associated
current conserved throughout the evolution:

Qm
D ¼

Z
d3xJ0M;D ð80Þ

JμM;D ≔ −
1

2
ϵμνρσ∂ν

�
ϕa

v1
Fa
Dρσ

�
: ð81Þ

Thus, monopole formation does not create any extra QED
electric charge. Rather, the monopole electric charge is just
a concentration of already existing charge.

FIG. 3. Schematic picture of a QED pseudomonopole. The ball
denotes a dark magnetic monopole, and the blue arrows denote
the dark magnetic field. The green arrows denote the QED
magenetic field of the pseudo-monopole, which satisfies the
Bianchi identity.
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V. CONCLUSIONS

In this paper, we studied the effects of the dark objects on
the QED sector through the mixing between the dark
photon and the QED photon, where the dark photon
appears as a result of the successive symmetry breaking
SUð2ÞD → Uð1ÞD → Z2. We extended the previous analy-
sis in Ref. [18] by newly considering the effects of the
magnetic mixing and the θ-terms. We also considered the
effects of dyon and dyonic beads in the dark sector.
By considering SUð2ÞD behind the topological defects

explicitly, we clarified that the θD-term affects the argu-
ments only through the Witten effect. We also found that
the θ-term of the QED sector plays no role in the absence of
QED magnetic monopoles.
Magnetic and dyonic beads in the dark sector were found

to have particularly interesting effects on QED co-
ordination. As found in Ref. [18], the kinetic mixing turns
dark beads into pseudomonopoles in the QED sector. This
result also applies to dark dyonic beads. Besides, they
induce Coulomb potential for QED charges through the
magnetic mixing, which is not suppressed by e−m

0
Dr even in

the Uð1ÞD broken phase. The dark electric charge of a dark

dyon, on the other hand, only induces exponentially
decaying electric potential for QED charges.
In this paper, we have focused on the ground states of a

given topological charge in the dark sector. The phenom-
enological and cosmological implications are left for
future work.
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APPENDIX A: DERIVATION OF THE
NOETHER CHARGE

In this appendix, we present the calculation of the
Noether charge for the Uð1ÞD global transformation (37).
The Noether charge is, in the temporal gauge,

FIG. 4. Summary of the appearance of dark objects as QED objects in the Uð1ÞD broken phase. The yellow lines indicate dark/QED
electric field and blue lines indicate dark/QED magnetic field. The leftmost column shows objects in the dark sector and the other
columns describe QED electromagnetic fields induced by the mixing terms. Dashed lines indicates exponential decay of the field. Notice
that the QED electric field induced by the dark elementary charged particles is absent in the decoupled basis in Eq. (41).
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NUð1ÞD ≔
Z

d3x
∂L

∂ð∂0Aa
DiÞ

δAa
Di; ðA1Þ

¼
Z

d3x

�
−Fa0i

D þ ϵ
ϕa

v1
F0i −

e2DθD
8π2

F̃a0i
D −

θmix

8π2
ϕa

v1
F̃0i

�

×

�
−

1

eDv1
Diϕ

a

�
: ðA2Þ

The contribution from the kinetic term is

1

eDv1

Z
d3xFa0i

D Diϕ
a ¼ 1

eD

Z
d2Si

�
ϕa

v1
Fa0i
D

�

−
1

eDv1

Z
d3xϕaDiFa0i

D : ðA3Þ

The surface integral reduces to Qe
D=eD. The integrand of

the other term can be written as

ϕaDiFa0i
D ¼ ϕaDμF

a0μ
D ðA4Þ

¼ ϕa

�
ϵDμ

�
ϕa

v1
F0μ

�
−
θmix

8π2
Dμ

�
ϕa

v1
F̃0μ

��
; ðA5Þ

where we used the equation of motion for Aa
Dμ

DμF
aμν
D − ϵDμ

�
ϕa

v1
Fμν

�
þ θmix

8π2
Dμ

�
ϕa

v1
F̃μν

�
¼ eDϵabcϕbDνϕc: ðA6Þ

The contribution from the kinetic mixing term is

−
ϵ

eDv1

Z
d3x

ϕa

v1
F0iDiϕ

a

¼−
ϵ

eD

Z
d2Si

�
ϕaϕa

v21
F0i

�
þ ϵ

eDv1

Z
d3xDi

�
ϕa

v1
F0i

�
ϕa:

ðA7Þ

The surface integral becomes −ϵQe
QED=eD. The second

term cancels the first term of Eq. (A5).
The contribution from the θD-term is

eDθD
8π2v1

Z
d3xF̃a0i

D Diϕ
a ¼ eDθD

8π2

Z
d2Si

�
ϕa

v1
F̃a0i
D

�

−
eDθD
8π2v1

Z
d3xϕaDiF̃a0i

D ðA8Þ

¼ −
eDθD
8π2

Qm
D ; ðA9Þ

where we used the Bianchi identity at the second equality.
Similarly, the contribution from the magnetic mixing

term is

1

eDv1

θmix

8π2

Z
d3x

ϕa

v1
F̃0iDiϕ

a

¼ 1

eD

θmix

8π2

Z
d2Si

�
ϕaϕa

v21
F̃0i

�

−
1

eDv1

θmix

8π2

Z
d3xϕaDi

�
ϕa

v1
F̃0i

�
: ðA10Þ

This time, the charge term vanishes as there is no QED
magnetic monopole. The second term cancels the second
term of Eq. (A5).
Putting all together, the Noether charge is found to be

NUð1ÞD ¼ 1

eD
Qe

D −
ϵ

eD
Qe

QED −
θDeD
8π2

Qm
D: ðA11Þ

In the presence of dark or QED elementary charges, the
Noether charge has additional contributions from them
through F0i

D and F0i.13 Thus, in the case of an elementary
dark charge, neD, we find

Qe
D ¼ eDneD

1 − ϵ2
; Qe

QED ¼ ϵeDneD
1 − ϵ2

; ðA12Þ

and hence,

NUð1ÞD ¼ neD; ðA13Þ

which is a half integer as we are considering SUð2ÞD. For a
QED charge, neQED, on the other hand,

Qe
D ¼ ϵeneQED

1 − ϵ2
; Qe

QED ¼ eneQED
1 − ϵ2

; ðA14Þ

and hence, NUð1ÞD ¼ 0.
The Noether charge of QED is given by

NQED ≔
Z

d3xJ0QED ðA15Þ

¼ 1

e
Qe

QED −
ϵ

e
Qe

D þ θmix

8π2
Qm

D : ðA16Þ

Here, we have used the equation of motion,

∂μFμν − ϵ∂μ

�
ϕa

v1
Faμν
D

�
þ θmix

8π2
∂μ

�
ϕa

v1
F̃aμν
D

�
¼ eJνQED;

ðA17Þ

to replace the Noether current JμQED with the field strengths.
Thus, QED electric charges satisfy NQED ¼ neQED, while

13In this work, we only consider massive test particles. In the
case of Dirac fermions, we take the phase convention so that the
Dirac mass term is real valued. For a discussion on the phase of
the fermion mass term see Ref. [43].

INTERACTIONS OF ELECTRICAL AND MAGNETIC CHARGES … PHYS. REV. D 108, 035044 (2023)

035044-11



dark elementary charges satisfy NQED ¼ 0. Dark monop-
oles and dark dyons also satisfy NQED ¼ 0. Thus, the
minicharges induced to the QED sector do not spoil the
compactness of Uð1ÞQED.

APPENDIX B: DEFECTS STABILITY

In this appendix, we argue that the topological defects
are stable even in the presence of the mixing terms. In
general, the nonzero energy ground state of a topologically
nontrivial sector is stable.
The darkmonopole and the dark string are associated with

the topological numbers π2ðS3=S1Þ ¼ Z, π1ðS3=Z2Þ ¼ Z2,
respectively. Thus, to ensure their stability, it suffices to show
that they cannot reach energy zero.
Let us first consider the dark monopole/dyon solutions.

For the energy not to diverge, we need

Faμν
D ¼ Oðr−2Þ; ðB1Þ

Dμϕ
a ¼ Oðr−2Þ; ðB2Þ

Fμν ¼ Oðr−2Þ; ðB3Þ

at r → ∞. Then, from Eq. (B2), we find that the magnetic
charge is proportional to the topological number nmD,

Qm
D ¼

Z
r→∞

d2SiBi
D

¼ −
1

2e2Dv
3
1

Z
r→∞

d2Siϵijkϵabcϕa
∂jϕ

b
∂kϕ

c: ðB4Þ

Thus, the solutions with nontrivial topological number are
associated with the nonvanishing magnetic field, and
hence, they have nonvanishing energy. Thus, such solutions
(i.e., the local minimum of the energy) with nontrivial
topological number are stable. The mixing terms do not
modify this argument.
In the case of the dark string, nondivergent tension

requiresDμχ ¼ 0 at ρ → ∞. In this case, the cosmic strings
with nontrivial winding number have nonvanishing mag-
netic flux along them. Thus, the tension of the cosmic
strings is nonvanishing. Again, the mixing terms are
irrelevant here.
Finally, let us discuss the stability of the bead solution.

As we assume hierarchical VEVs between ϕ and η, the
topological arguments of the monopole/dyon are not
affected by the cosmic strings attached to them. Since
the stability of the monopole/dyon are not affected by the
mixing terms, they do not spoil the stability of the bead
solution either.

[1] B. Holdom, Phys. Lett. 166B, 196 (1986).
[2] D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760

(2000).
[3] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. Lett. 116,

041302 (2016).
[4] A. Kamada, M. Kaplinghat, A. B. Pace, and H.-B. Yu, Phys.

Rev. Lett. 119, 111102 (2017).
[5] S. Tulin and H.-B. Yu, Phys. Rep. 730, 1 (2018).
[6] X. Chu, C. Garcia-Cely, and H. Murayama, Phys. Rev. Lett.

122, 071103 (2019).
[7] X. Chu, C. Garcia-Cely, and H. Murayama, J. Cosmol.

Astropart. Phys. 06 (2020) 043.
[8] M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo,

and P. Serra, J. Cosmol. Astropart. Phys. 07 (2012) 022.
[9] M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, J. High

Energy Phys. 04 (2020) 009.
[10] M. Raggi and V. Kozhuharov, Riv. Nuovo Cimento 38, 449

(2015).
[11] M. Bauer, P. Foldenauer, and J. Jaeckel, J. High Energy

Phys. 07 (2018) 094.
[12] H. Ruegg and M. Ruiz-Altaba, Int. J. Mod. Phys. A 19,

3265 (2004).
[13] G. D. Kribs, G. Lee, and A. Martin, Phys. Rev. D 106,

055020 (2022).
[14] R. T. Co, K. Harigaya, and Y. Nomura, Phys. Rev. Lett. 118,

101801 (2017).

[15] M. Ibe, S. Kobayashi, and K. Watanabe, J. High Energy
Phys. 07 (2021) 220.

[16] M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara, and W.
Nakano, J. High Energy Phys. 03 (2019) 173.

[17] M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara, and W.
Nakano, Phys. Rev. D 100, 075022 (2019).

[18] T. Hiramatsu, M. Ibe, M. Suzuki, and S. Yamaguchi, J. High
Energy Phys. 12 (2021) 122.

[19] F. Brummer, J. Jaeckel, and V. V. Khoze, J. High Energy
Phys. 06 (2009) 037.

[20] F. Brummer and J. Jaeckel, Phys. Lett. B 675, 360 (2009).
[21] A. J. Long, J. M. Hyde, and T. Vachaspati, J. Cosmol.

Astropart. Phys. 09 (2014) 030.
[22] J. Terning and C. B. Verhaaren, J. High Energy Phys. 12

(2018) 123.
[23] J. Terning and C. B. Verhaaren, J. High Energy Phys. 12

(2019) 152.
[24] A. Hook and J. Huang, Phys. Rev. D 96, 055010 (2017).
[25] G. ’t Hooft, Nucl. Phys. B79, 276 (1974).
[26] A. M. Polyakov, JETP Lett. 20, 194 (1974), http://jetpletters

.ru/ps/1789/article_27297.shtml.
[27] M. Shifman, Advanced Topics in Quantum Field Theory: A

Lecture Course (Cambridge University Press, Cambridge,
England, 2012).

[28] B. Julia and A. Zee, Phys. Rev. D 11, 2227 (1975).
[29] E. Tomboulis and G. Woo, Nucl. Phys. B107, 221 (1976).

AKIFUMI CHITOSE and MASAHIRO IBE PHYS. REV. D 108, 035044 (2023)

035044-12

https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.84.3760
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.119.111102
https://doi.org/10.1103/PhysRevLett.119.111102
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1103/PhysRevLett.122.071103
https://doi.org/10.1103/PhysRevLett.122.071103
https://doi.org/10.1088/1475-7516/2020/06/043
https://doi.org/10.1088/1475-7516/2020/06/043
https://doi.org/10.1088/1475-7516/2012/07/022
https://doi.org/10.1007/JHEP04(2020)009
https://doi.org/10.1007/JHEP04(2020)009
https://doi.org/10.1393/ncr/i2015-10117-9
https://doi.org/10.1393/ncr/i2015-10117-9
https://doi.org/10.1007/JHEP07(2018)094
https://doi.org/10.1007/JHEP07(2018)094
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1103/PhysRevD.106.055020
https://doi.org/10.1103/PhysRevD.106.055020
https://doi.org/10.1103/PhysRevLett.118.101801
https://doi.org/10.1103/PhysRevLett.118.101801
https://doi.org/10.1007/JHEP07(2021)220
https://doi.org/10.1007/JHEP07(2021)220
https://doi.org/10.1007/JHEP03(2019)173
https://doi.org/10.1103/PhysRevD.100.075022
https://doi.org/10.1007/JHEP12(2021)122
https://doi.org/10.1007/JHEP12(2021)122
https://doi.org/10.1088/1126-6708/2009/06/037
https://doi.org/10.1088/1126-6708/2009/06/037
https://doi.org/10.1016/j.physletb.2009.04.041
https://doi.org/10.1088/1475-7516/2014/09/030
https://doi.org/10.1088/1475-7516/2014/09/030
https://doi.org/10.1007/JHEP12(2018)123
https://doi.org/10.1007/JHEP12(2018)123
https://doi.org/10.1007/JHEP12(2019)152
https://doi.org/10.1007/JHEP12(2019)152
https://doi.org/10.1103/PhysRevD.96.055010
https://doi.org/10.1016/0550-3213(74)90486-6
http://jetpletters.ru/ps/1789/article_27297.shtml
http://jetpletters.ru/ps/1789/article_27297.shtml
http://jetpletters.ru/ps/1789/article_27297.shtml
https://doi.org/10.1103/PhysRevD.11.2227
https://doi.org/10.1016/0550-3213(76)90298-4


[30] J.-L. Gervais, B. Sakita, and S. Wadia, Phys. Lett. 63B, 55
(1976).

[31] E. Witten, Phys. Lett. 86B, 283 (1979).
[32] A. Salam and J. A. Strathdee, Lett. Math. Phys. 4, 505

(1980).
[33] A. P. Balachandran and A. F. Reyes-Lega, Springer Proc.

Phys. 229, 41 (2019).
[34] S. R. Coleman, The magnetic monopole fifty years later, in

The Unity of the Fundamental Interactions, edited by A.
Zichichi (Springer, Boston, MA, 1982), pp. 21–217, https://
link.springer.com/chapter/10.1007/978-1-4613-3655-6_2.

[35] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
Other Topological Defects (Cambridge University Press,
Cambridge, England, 2000).

[36] T. W. B. Kibble and T. Vachaspati, J. Phys. G 42, 094002
(2015).

[37] M. Hindmarsh and T.W. B. Kibble, Phys. Rev. Lett. 55,
2398 (1985).

[38] A. E. Everett and M. Aryal, Phys. Rev. Lett. 57, 646
(1986).

[39] M. Aryal and A. E. Everett, Phys. Rev. D 35, 3105 (1987).
[40] V. Berezinsky and A. Vilenkin, Phys. Rev. Lett. 79, 5202

(1997).
[41] G. Lazarides and Q. Shafi, J. High Energy Phys. 10 (2019)

193.
[42] M. Hindmarsh, K. Rummukainen, and D. J. Weir, Phys.

Rev. D 95, 063520 (2017).
[43] C. G. Callan, Jr., Phys. Rev. D 26, 2058 (1982).

INTERACTIONS OF ELECTRICAL AND MAGNETIC CHARGES … PHYS. REV. D 108, 035044 (2023)

035044-13

https://doi.org/10.1016/0370-2693(76)90467-6
https://doi.org/10.1016/0370-2693(76)90467-6
https://doi.org/10.1016/0370-2693(79)90838-4
https://doi.org/10.1007/BF00943437
https://doi.org/10.1007/BF00943437
https://doi.org/10.1007/978-3-030-24748-5
https://doi.org/10.1007/978-3-030-24748-5
https://link.springer.com/chapter/10.1007/978-1-4613-3655-6_2
https://link.springer.com/chapter/10.1007/978-1-4613-3655-6_2
https://link.springer.com/chapter/10.1007/978-1-4613-3655-6_2
https://link.springer.com/chapter/10.1007/978-1-4613-3655-6_2
https://link.springer.com/chapter/10.1007/978-1-4613-3655-6_2
https://doi.org/10.1088/0954-3899/42/9/094002
https://doi.org/10.1088/0954-3899/42/9/094002
https://doi.org/10.1103/PhysRevLett.55.2398
https://doi.org/10.1103/PhysRevLett.55.2398
https://doi.org/10.1103/PhysRevLett.57.646
https://doi.org/10.1103/PhysRevLett.57.646
https://doi.org/10.1103/PhysRevD.35.3105
https://doi.org/10.1103/PhysRevLett.79.5202
https://doi.org/10.1103/PhysRevLett.79.5202
https://doi.org/10.1007/JHEP10(2019)193
https://doi.org/10.1007/JHEP10(2019)193
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1103/PhysRevD.26.2058

