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We propose a novel experiment to search for dark matter, based on the application of an electric field
inside a microwave cavity and electrometry using Rydberg atoms. We show that this kind of experiment
could be extremely useful for detecting specific dark matter candidates, namely massive vector fields
coupled to the photon field, more commonly known as dark photons. Such a massive vector field is a good
candidate for dark matter. Using realistic experimental parameters we show that such an experiment could
improve the current constraint on the coupling constant of the dark photons to Standard Model photons in
the 1 μeV to 10 μeV mass range, with the possibility of tuning the maximum sensitivity via the cavity size.
The main limiting factors on the sensitivity of the experiment are the amplitude stability of the applied field
and the measurement uncertainty of the electric field by the atoms.
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I. INTRODUCTION

While required to explain several astrophysical and
cosmological observations, the microscopic nature of dark
matter (DM) is still to this day one of the biggest mysteries
in physics [1]. Among many other classes of DM, ultra-
light dark matter (ULDM) models have recently gained a
lot of attention in the scientific community, due to the
absence of signals from historically dominant models,
such as weakly interacting massive particles (WIMPs).
These models are characterized by particles with low mass,
from 10−22 eV to 0.1 eV, meaning that detection from
recoiling in particle accelerators is difficult or impossible.
Thus, other kind of experiments have to be considered for
their detection.
One particularly well-motivated model of ULDM is

called the dark photon (DP), a spin-1 field of mass m
which appears in many beyond the Standard Model
theories. Cosmologically speaking, the DP field is frozen
after inflation and starts to oscillate at its Compton
frequency when mc2=ℏ ≫ H. It can be shown that these
oscillations scale as a−3ðtÞ, at late cosmological times,
behaving as cold dark matter (CDM). The production of
CDM in this case is done through nonthermal processes,
such as the so-called misalignment mechanism.
This additional Uð1Þ field is also well motivated on the

particle physics side, as the DP model is a particular case of
the so-called U boson, which makes the minimal gauged
Standard Model extension, through its coupling with the
B-L current of the Standard Model [2].

For these reasons, DP is a very good light dark matter
candidate, with many new experiments being developed to
hunt for it. In the following, we will be interested in the
coupling of the DP field with the electromagnetic (EM)
field with strength χ. This coupling induces an electric
field filling all space, with amplitude directly proportional
to χ.
In this paper, we propose a new kind of experiment

aiming at detecting DP, through this additional electric
field. The experiment is based on the use of a microwave
cavity in which, an applied external electric field acts as
an amplifier for the weak DP induced electric field, with
the strength of amplification directly proportional to the
square root of the injected power. If these two different
electric fields have close frequencies the total field
power will oscillate at their frequency difference Δω
and become detectable by atoms located at the center
of the cavity through the Stark effect. We show that using
this setup, one could scan new regions of the m-χ
parameter space, in particular in the 1 μeV to 10 μeV
mass range, with the possibility of tuning the maximum
sensitivity regions via the cavity size and design. We use
some simplifying assumptions, in particular for the model
of the cavity. The main aim of our paper is to obtain a
rough estimate of the experimental sensitivity using
realistic parameters and taking into account the main
expected noise sources and systematic effects. Our results
and described methods will be useful for the design of a
real-life experiment, in which case more careful modeling
should be carried out. Nonetheless, we do not expect
that to change the orders of magnitude of the sensitivity
presented here.*jordan.gue@obspm.fr
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II. FIELD EQUATIONS

The Lagrangian describing the interaction between the
EM field Aμ and a DP field ϕμ of mass m is given by [3]1

L ¼ −
1

4μ0
FμνFμν þ jμAμ −

1

4μ0
ϕμνϕμν

−
m2c2

2μ0ℏ2
ϕμϕμ −

χ

2μ0
Fμνϕ

μν; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual electromagnetic field
strength tensor, ϕμν ¼ ∂μϕν − ∂νϕμ is the DP field-strength
tensor, χ is the dimensionless kinetic mixing coupling
parameter which characterizes the coupling between the DP
and the EM field, and jμ is the usual electromagnetic
4-current. A change in the EM 4-potential

Āμ ¼ Aμ þ χϕμ ð2Þ

allows one to redefine the fields in terms of mass eigen-
states called massless and massive photons (at the price of a
nonstandard interaction between the EM field and standard
matter), see the discussion in [4]. Using this change of
variable, Eq. (1) becomes, at first order in χ,

L ¼ −
1

4μ0
F̄μνF̄μν þ jμðĀμ − χϕμÞ −

1

4μ0
ϕμνϕμν

−
m2c2

2μ0ℏ2
ϕμϕμ; ð3Þ

with Fμν ¼ F̄μν − χϕμν. The field equations read

F̄βα
;α ¼ μ0jβ; ð4aÞ

ϕβα
;α ¼ −χμ0jβ −

m2c2

ℏ2
ϕβ: ð4bÞ

The antisymmetry of both strength tensors leads to the
conservation of the electromagnetic 4-current ∂μjμ ¼ 0,
and the continuity equation for the DP field ∂μϕ

μ ¼ 0.
Using the Lorenz gauge for EM, ∂

μĀμ ¼ 0, Eqs. (4)
become

□Āβ ¼ −μ0jβ; ð5aÞ

□ϕβ ¼ m2c2

ℏ2
ϕβ þ χμ0jβ; ð5bÞ

where □ ¼ ημν∂μ∂ν ≡ − 1
c2 ∂

2
t þ∇2. These equations admit

two classes of solutions in vacuum; a massless vector field

(standard EM) and a massive one, the latter being charac-
terized by solutions,

ϕβ ¼ Yβeikμx
μ
; ð6aÞ

Āα ¼ 0; ð6bÞ

where

kμkμ ¼ −
ω2

c2
þ jk⃗j2 ¼ −

�
mc
ℏ

�
2

: ð7Þ

As can be noticed from Eq. (2), this solution induces an
ordinary electromagnetic field in a vacuum (see also [5])

Aβ ¼ −χYβeikμx
μ
: ð8Þ

The stress-energy tensor from the DP field can be derived
from Eq. (1) and reads

Tμν ¼
1

μ0
ϕμαϕν

α −
1

4μ0
ημνϕ

αβϕαβ

−
m2c2

μ0ℏ2

�
1

2
ϕαϕαημν − ϕμϕν

�
: ð9Þ

For the plane-wave solution derived in Eq. (6a), the time-
averaged value of the stress-energy tensor is given by

hTμνi ¼
1

2μ0
kμkνYαYα; ð10Þ

which leads to an estimate of the energy density

ρ ¼ hT00i ¼
ω2jY⃗j2
2μ0c2

; ð11Þ

for k⃗ ¼ 0. Similarly, the averaged pressure vanishes. This
shows that the DP can indeed be interpreted as cold and
pressureless DM and, under this assumption, the amplitude
of oscillation of this vector field, i.e., Y⃗, depends directly
on the local DM energy density ρDM. Its experimental
value has been considered for a while to be ρDM ¼
0.4 GeV=cm3 [6], but has recently been readjusted such
that ρDM ∈ ½0.3; 0.55� GeV=cm3 [7].
In conclusion, in vacuum, a DP will behave as a plane

wave whose dispersion relation is given by Eq. (7). On
average, this DP will behave as cold DM and its local
energy density is directly related to the amplitude of the
oscillation and to its mass. Due to the coupling between the
DP and the EM field (coupling characterized by the mixing
parameter χ), the DP field will induce a small electro-
magnetic field, whose strength is proportional to χ and to
the DP field amplitude, see Eq. (8). In particular, if one
considers that k⃗ ¼ 0, (which is justified to leading order in

1In this manuscript, we use the metric signature ð−;þ;þ;þÞ
and the unit of the DP field ϕμ is Vs/m, as the usual EM vector
potential Aμ.
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vDM ∼ 10−3c, where vDM is the typical DM galactic
velocity, see Appendix A), then the induced electromag-
netic field consists mostly in an oscillating electric field the
magnetic field component is suppressed by a factor
vDM=c.) of the form [5]

Ej
DM ¼ −

∂Aj

∂t
¼ −iχωYje−iωt: ð12aÞ

The amplitude of this oscillating electric field is therefore
directly related to the local DM density through

jE⃗DMj ¼ χc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
: ð12bÞ

The idea of several experiments searching for DP is to
focus this small electromagnetic field in order to enhance it
and hopefully make it detectable [8–13].

III. THEORETICAL MODELING
OF THE EXPERIMENT

As mentioned in the previous section, an oscillating DP
coupled to the standard electromagnetic field will induce a
small oscillating electric field in a vacuum. One very
peculiar feature of this electric field is that it does not
propagate, i.e., its wave vector vanishes k⃗ ¼ 0 (to first
order in vDM=c). This is due to the fact that this electric
field is induced by a massive vector field and therefore its
dispersion relation is given by Eq. (7). In this section, we
will show how an electromagnetic cavity can be used to
search for the electric field induced by a DP. In addition,
we will show how to use atoms as a tool to detect this
electric field through the Stark effect, i.e., the displacement
of the energy levels of an atom under a perturbation by a
static electric field (or by an electric field whose frequency
is much lower than the transition frequency of the atom).
There are two main reasons to consider a cavity as an
experiment to search for DP.
First of all, as for other DP experiments using resonators,

the mirrors of the cavity will enhance the electric field
induced by the DP. Indeed, the electric field parallel to the
surface of a perfect conductor has to vanish. Therefore,
because of the presence of the oscillating DP-induced
electric field, the mirror will generate a standard electro-
magnetic field that will propagate perpendicularly to the
mirror and whose amplitude is such that it will cancel the
DP-induced field parallel to the surface. Physically, the DP-
induced electric field will induce an oscillation of the
electrons within the mirror which will create a standard
electromagnetic field. Since a cavity consists in two mirrors,
this boundary conditions can, under some conditions,
produce resonances that will significantly enhance the small
DP-induced electric field.
The second reason to consider a cavity is related to the

use of atoms to measure the electric field inside the cavity
through the Stark effect, which is sensitive to the square of

the electric field. If one applies a standard electromagnetic
wave inside the cavity (whose electric field will be denoted
by E⃗a) the DP contribution to the square of the electric field
inside the cavity is∼E⃗DM · E⃗a (to first order in χ), which can
also be enhanced by a resonant E⃗a. In addition to enhancing
the amplitude of the signal to be measured, applying an
external field is also important to produce a signal at low,
but nonzero, frequency, where the Stark effect can be
realistically measured. More precisely, for a cavity whose
length is of the order of a few cm, we will be interested in
searching for DP oscillating at a frequency f ¼ ω=2π of the
order of a few GHz. The difficulty is that such a rapid
oscillation of the atomic transition frequency will be very
hard to measure as the interrogation cycle of the atoms is
much longer. But, if one applies en external field at angular
frequency ωa which is close to ω, then the cross term
between the DP electric field and the applied electric field
will have a component oscillating at the low angular
frequency jω − ωaj, which can be measured by the atoms.

A. Expression of the total electric field inside the cavity

In this section, we derive the electric field induced by
both the DP and the applied field at the center of the cavity.
Here, we only summarize the methodology and discuss the
main results. The detailed derivation can be found in
Appendix B. We consider a cavity consisting of two flat
mirrors of reflectivity r separated by a distance L.2 The
reflectivity and the cavity quality factor Q are related
through (Q ≫ 1) [14]

r ¼ 1 −
π

2Q
; ð13Þ

where we considered only low resonance modes, such
that Q ∼ F, the finesse of the cavity. The principle of
calculation is similar for both the DP and the applied
electric fields and can be found in [15]. The idea is to
propagate the electric field an infinite number of round trips
inside the cavity and to sum these infinite number of
contributions at a given location. To perform cavity round
trips, the field is propagated along one direction and when it
reaches a mirror, its amplitude is multiplied by −r and its
wave vector is flipped. For r < 1, the infinite sum con-
verges and can be calculated explicitly.
First, let us apply this procedure to the applied external

field. We assume that the external electric field is applied on
the left edge of the cavity, see Fig. 1. After entering the
cavity, the wave will undergo an infinite number of round
trips inside the cavity and it will lead to the first contri-
bution to the total field, see Fig. 1. Ideally, the applied field

can be parametrized as E⃗a ¼ X⃗aℜ
h
e−iðωat−kaðxþL

2
ÞþϕÞ

i
, with

2For simplicity we assume that the transverse size of the
mirrors is ≫ L, λ, where λ is the wavelength of the fields
of interest.
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its amplitude Xa, angular frequency ωa and phase ϕ.
Applying the mathematical procedure described above
(see Appendix B 1), the expression of the total applied
field at the center of the cavity is given by

E⃗tot
a ¼ A⃗ðωaÞ cosðωatþ ϕÞ þ B⃗ðωaÞ sinðωatþ ϕÞ; ð14Þ

where A⃗ðωaÞ; B⃗ðωaÞ are functions [given by Eqs. (B4)]
depending on Xa, r and L, respectively the applied field
amplitude, the reflectivity and the length of the cavity.
Let us now focus on the contribution from the DP field.

From Eqs. (12), one can, without loss of generality, write
the expression of the electric field related to the DP as
E⃗DM ¼ X⃗DMℜ½e−iωt� ¼ XDMêDMℜ½e−iωt� where êDM is a
unit vector characterizing the polarization of the DP field
and XDM ¼ χc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
. Because of this electric field,

both mirrors will generate a propagating standard electro-
magnetic field such that the total component of the electric
field parallel of the mirrors’ surface vanishes. These two
electromagnetic waves will follow an infinite number of
round trips inside the cavity, loosing some energy at each
reflection with reflection coefficient r < 1. The calculation
regarding this contribution is detailed in Appendix B and
the resulting total electric field induced by the DP at the
center of the cavity reads

E⃗tot
DM ¼ C⃗ðωÞ cosðωtÞ þ D⃗ðωÞ sinðωtÞ; ð15Þ

where C⃗ðωÞ; D⃗ðωÞ are functions [given by Eqs. (B6)] of
X⃗DM, X⃗DM;k, r and L with the first two parameters being
respectively the full amplitude of the DP field and its
component parallel to the cavity plates, both linearly
dependent on the coupling χ.
The calculations presented in this section have been

carried out to leading order in OðχÞ. In particular, at each
interaction between the EM waves and the mirrors a small
quantity of EM energy will be transformed into DP. The
amplitude of such a process is proportional to χ and

therefore neglected as it contributes terms of order Oðχ2Þ.
Furthermore the corresponding energy loss is much
smaller than the one coming from the finite reflection
coefficient r.

B. Modeling of the Stark effect

As mentioned in the introduction of this section, the
main idea of the experiment proposed here is to detect the
hypothetical electric field induced by the DP field by using
atoms to measure it through the Stark effect. The Stark
effect consists in a shift in the energy levels of an atom
under the perturbation of a static (or slowly evolving)3

electric field, and is given by [16]

Δν ¼ −
Δα
2h

jE⃗j2; ð16Þ

where h is the Planck constant, Δν is the frequency shift
induced by the slowly evolving electric field E⃗ and Δα is
the differential polarizability of the atomic transition
considered.
Taking into account both contributions from the applied

electric field and the DP field computed in the previous
section, the total electric field power at the center of the
cavity is

jE⃗ðω;ωaÞj2¼jE⃗tot
a þ E⃗tot

DMj2

¼ðA⃗ðωaÞ · C⃗ðωÞþ B⃗ðωaÞ ·D⃗ðωÞÞcosðΔωtþϕÞ
þðB⃗ðωaÞ · C⃗ðωÞ− A⃗ðωaÞ ·D⃗ðωÞÞsinðΔωtþϕÞ
þconstant and fast oscillating terms; ð17Þ

with Δω ¼ ωa − ω. In the following, we will not consider
the constant terms. Indeed, in the experimental scheme
proposed here, we will be interested in the oscillatory
behavior of the atomic frequencies. Moreover, we dis-
carded the fast oscillating terms whose angular frequencies
are 2ωa, 2ω, or ωa þ ω, with periods much shorter than the
atom interrogation time, such that on average, their impact
vanishes.
Inserting the expressions of A, B, C, and D from

Eqs. (B4) and (B6) and using the Eq. (12b), the amplitude
of the oscillation can be simply written in the form (See
Appendix C 1)

χβc
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
Xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2r cosðωaL
c Þ þ r2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

1þ ð1þ rÞ cosðωL
2c Þ

1þ 2r cosðωLc Þ þ r2

s

≡ χSðω;ωa; ρDM; Xa;L; rÞ; ð18Þ

FIG. 1. An external field (in blue) is applied at the cavity edge.
The standing DP electric field (in yellow) generates a propagating
electric field inside the cavity (in orange). At the center of the
cavity, the transition frequency of Rydberg atoms is impacted by
jEj2 through the Stark effect (see text).

3As long as the angular frequency of oscillation is much
smaller than the atomic transition angular frequency from state k
to i, Δω ≪ ωik.
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where

β ¼ êDM ·
X⃗a

Xa
; ð19Þ

is the projection of the polarization of the DP field on the
polarization of the injected electric field. If the polarization
is fixed and does not change each coherence time,
β ¼ cos θ, with θ the angle between X⃗a and X⃗DM. If the
DP field is isotropically distributed β ¼ 1=

ffiffiffi
3

p
. To avoid any

orthogonality between the two polarizations, i.e., β ¼ 0, one
must run the experiment for a significant time, i.e., at least
several days (see discussion in [17]).4 In Fig. 2 3D plots of
the signal contribution Eq. (18) are shown as a function of
the angular frequencies of the DM field ω and the applied
field ωa. One can notice the various resonance peaks when
both frequencies correspond to an odd mode of the cavity.
In the experiment scheme presented here, we require the two
frequencies to be close, hence we are only interested in
regions where ω ∼ ωa. This corresponds to the diagonal of
the plot seen from the top. However, in other types of
experiment where both frequencies could be separated by
some hundreds of MHz or more, other regions of this plot
could be studied.
The amplitude of the signal is linear in χ and depends

nonlinearly on the local DM density, on the amplitude and
frequency of the applied external field and on the mass
(mc2 ¼ ℏω) of the DP field. It depends also on some
geometric factor of order unity that characterizes the DP
field polarization.
For DM and applied frequencies close to odd resonances

of the cavity, i.e., ωL=c ≈ ωaL=c ≈ π þ 2nπ, with n ∈ N,
the amplitude Eq. (18) becomes proportional to the quality
factorQ, as expected. Additionally, as it is also proportional

to the injected amplitude Xa, we directly see the interesting
feature of looking at the field-squared amplitude, the
applied field acting as an amplification for the DM field.
Finally, the signal we look for is a slow oscillation in the

transition frequency of Rydberg atoms with respect to an
unperturbed reference

νðtÞ ¼ ν0 þ Δν cos ðΔωtþ ϕÞ; ð20Þ

whose amplitude is given by

Δν ¼ −χ
ΔαSðω;ωa; ρDM; Xa;L; rÞ

2h
; ð21Þ

which depends on both the applied external field and the
DP field.

IV. EXPERIMENTAL CONSIDERATIONS

A. Rydberg atoms

The transition frequency measurement can be per-
formed using a regular atomic clock, which allows very
good uncertainty on the frequency measurement, but is not
very sensitive to the Stark effect e.g., for the 5s2 1S0 →
5s5p 3P0 clock transition in Sr the differential polariz-
ability Δα=2h ≈ 3.1 × 10−6 Hz=ðV=mÞ2 [18], thus requir-
ing a strong applied field.
To overcome this lack of sensitivity to E2, “regular”

atoms can be replaced by Rydberg atoms, which are in a
quantum state with high principal quantum number n [19].
The electrons are much further from the nucleus thus the
atom has much higher polarizability. For large n the
corresponding polarizabilities in Sr can reach Δα=2h ≈
105 Hz=ðV=mÞ2 (n > 60) [20].
In [21] the measurement of the transition probability for a

given frequency lasts about 300 μs. At least three such
measurements are necessary to fully determine the resonance
(amplitude, width and center frequency), which implies a

FIG. 2. 3D plots (left: side view; right: top view) of the signal contribution Eq. (18) (arbitrary units) as function of ω;ωa, in units of
c=L. Resonance peaks appear clearly when both frequencies correspond to odd modes of the cavity.

4Note that the signal Eq. (18) is the largest when Xa is
maximum at the center of the cavity, which favours TE01 or
TE10 modes.
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maximum sampling rate of about 1 kHz, which is the
maximum value we will assume. In principle the process
could be faster with higher laser power and/or nondestruc-
tive techniques.
Typically, Sr Rydberg measurements use laser cooled Sr

atoms that are excited to Rydberg states using two photon
transitions [20,21] and direct spectroscopy of e.g., the
5s5p 3P1 → 5sns 3S1 transition is performed, with n up to
81 [20,21]. In regular dispersive measurements, the photon
scattering rate per atom, i.e., the rate at which an atom
absorbs and reemits incident photons, is high implying that
after a single detection, the atom is too hot, and no longer
trapped for a second detection. In that situation, the
measurement is said to be destructive. An alternative
method is a nondestructive measurement, based on a
low-photon scattering rate, meaning that a single atom
can be used for multiple measurement. This nondestructive
process has already been experimentally tested, and is
based on a differential dispersive measurement [22]. As a
consequence, it is not necessary to produce new Rydberg
atoms for each frequency measurement, implying that the
1 kHz sampling frequency is feasible.

B. Bandwidth of detection

In order to see the oscillations at Δω in the total field
power Eq. (17), we require the DM and the applied fields to
have different frequencies. We also require the Nyquist
frequency of the apparatus to be higher than the angular
frequency of the signal Δω < πfs to be able to detect any
oscillatory behavior in the transition frequency of the atoms.
For a given applied angular frequency ωa, sampling

frequency fs, Rydberg atoms perform the measurements of
the electric field squared during Tobs at an angular
frequency Δω (more precisely, Tobs × fs measurements
will be taken for each ωa). The time Tobs is arbitrary; if it is
longer than the measurement process comprising excitation
and ionisation, one has to prepare again the atoms to their
Rydberg state after deexcitation accordingly. As detailed
above, the experiment is sensitive to any Δω such that
2π=Tobs ≤ jΔωj ≤ πfs, which, in terms of DM angular
frequency, is equivalent to

ω∈
�
ωa−πfs;ωa−

2π

Tobs

�
∪
�
ωaþ

2π

Tobs
;ωaþπfs

�
: ð22Þ

At the end of the individual measurement time Tobs, the
second step would be to shift the applied angular frequency
ωa by the sampling angular frequency, 2πfs and make a
second measurement of the electric field squared for DM
angular frequencies ω around this new ωa, during Tobs
again. This way, except at the exact angular frequencies of
the applied field ωa, all possible DM frequencies are
scanned.
This scheme can be repeated N times, as much as time

allows. At the end of this loop, the total experimental time is

simply T tot ¼ NTobs. The corresponding total DM frequen-
cies band scanned is ftot ¼ Nfs ¼ T totfs=Tobs. The larger
the total experimental time, the larger the band of scanned
DM frequencies. Additionally, the blind spots at exact ωa
can be avoided, and sensitivity can be optimized (see below)
by shifting ωa by a little less than 2πfs, at the expense of
increasing the overall experimental duration.
The coherence time of the DM field is inversely propor-

tional to its Compton frequency and follows [23]

τðωÞ ¼ c2

σ2vω
≈
106

ω
; ð23Þ

where we considered the usual DM velocity distribution
with dispersion σv ∼ 10−3c. For DM frequencies in the
GHz range, this coherence time is much smaller than Tobs,
which needs to be taken into account in the sensitivity
estimate [see Eq. (24)].

V. SENSITIVITY ESTIMATE

In this section, we will present the level to which a
realistic experiment can detect or constrain the coupling
parameter χ. First, we will focus on the measurement noise
and present some limits on χ reachable considering only
statistical noise. We will then discuss the main systematics
related to this experiment; the intensity variations of the
applied field. Finally, by using realistic values for the cavity,
laser, and various noise sources, we will estimate the
detection limit on χ reachable for a dedicated experiment.

A. Statistical measurement noise

The first source of noise limiting the sensitivity of the
experiment is the statistical noise related to the measurement
of the frequency shift experienced by Rydberg atoms under
the perturbation from an external electric field. In [21] the
reported resolution of the spectroscopy of n ¼ 56 Rydberg
states in Sr is of the order of a few kHz, at a maximum
possible sampling rate of 1 kHz (see Sec. IVA).
We will thus consider two scenarios for our order of

magnitude estimates of the experimental sensitivity. One
with a “modest” sampling rate of 100 Hz and a second,
more optimistic one, with higher sampling at fs ¼ 1 kHz.
In both cases we will assume a single shot spectroscopic
resolution of ∼1 kHz for differential polarizabilities of
Δα=2h ≈ 105 Hz=ðV=mÞ2, corresponding to Rydberg
states with principle quantum numbers n ∼ 60–70 [20].
We denote the power spectral density (PSD) measure-

ment noise of E2 as SE2 , which translates into a minimal
detectable power of the total field inside the cavity of

E2
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SE2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TobsτðωÞ

p
s

; ð24Þ
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where Tobs is the individual integration time and τðωÞ is the
coherence time of the field such that Tobs ≫ τðωÞ, as
discussed in the previous section.
This means, that for a signal-to-noise ratio (SNR) of 1,

the constraint on χ for a mass of the DPm corresponding to
an angular frequency ω can be computed by equating
Eqs. (18) and (24), which leads to

½χðωÞ�stat ¼
E2
min

Sðω;ωa; ρDM; Xa;L; rÞ

¼
ffiffiffiffiffiffiffiffiffi
2SE2

p

ðTobsτðωÞÞ14Sðω;ωa; ρDM; Xa;L; rÞ
: ð25Þ

B. Amplitude fluctuation of the applied field

The main systematic identified for this experiment
comes from fluctuations of the amplitude of the applied
electromagnetic field. Indeed, the principle of the experi-
ment consists in measuring oscillations of the electric field
intensity at the center of the cavity. Amplitude fluctuations
of the injected electromagnetic field will mimic such a
signal and can jeopardize the results of the experiment. In
this section we assume that the main source of fluctuations
of the field inside the cavity are fluctuations of the power of
the signal that is fed into the cavity, i.e., relative intensity
noise (RIN) of the signal generator.
We model the amplitude of the injected electric field by

including a stochastic component, i.e., replacing the pre-
viously considered constant X⃗a by

X⃗a → X⃗a

�
1þ

Z
dω0

ΔXaðω0Þ
Xa

cosðω0tþ ϕ0Þ
�
: ð26Þ

In this expression, ΔXaðω0Þ is a stochastic contribution
modeling the spectral amplitude of the noise characterized
by the RIN PSD denoted SRINðωÞ and defined by

ΔXaðω0Þ
Xa

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SRINðω0Þ
2Tobs

s
; ð27Þ

where the factor 2 in the denominator arises because the
RIN is a fluctuation of the laser power, not its amplitude.
Typically, the RIN of frequency generators in the micro-
wave domain (GHz frequencies of interest here) is char-
acterized by a flicker noise, see e.g., [24], such that we can
parametrize its PSD as

SRINðωÞ ¼
PRIN

ω
; ð28Þ

where PRIN is dimensionless.
Let us now show how the ΔXa fluctuations can produce

an harmonic signal in jE⃗j2 of angular frequency
Δω ¼ ωa − ω, i.e., mimick the searched signal of Eq. (20).
We will work to leading order in ΔXa=Xa and in

particular neglect terms that are OððΔXa
Xa

Þ2Þ and

OðΔXa
Xa

XDM
Xa

Þ. Considering the modification of applied field
amplitude Eq. (26), the fluctuation ΔXa will only be
considered at frequencies ω0 producing a noise in the
electric field squared at angular frequency Δω. These
angular frequencies are ω0 ≃ fΔω; 2ωag. Considering the
RIN as a flicker noise characterized by a PSD of the form
Eq. (28), the fluctuation amplitude at ω0 ¼ Δω will be
multiple order of magnitudes larger than its amplitude at
ω0 ¼ 2ωa. For this reason, in the following, we will only
consider the fluctuation at frequency jΔXaðω0 ¼ ΔωÞj
such that the amplitude of the applied field Eq. (26)
becomes

ðX⃗a þ ΔX⃗aðΔωÞ cosðΔωtþ ϕ0ÞÞ cosðωatþ ϕÞ: ð29Þ

We now use the same procedures as the one described in
Sec. III A to compute the RIN contribution to the total
electric field at the center of the cavity. This calculation is
presented in details in Appendix B 1 and leads to

½E⃗tot
a �RIN ¼ ΔXaðΔωÞ

2Xa
ðA⃗ð2ωa − ωÞ cosð½2ωa − ω�tþ ϕþÞ

þ B⃗ð2ωa − ωÞ sinð½2ωa − ω�tþ ϕþÞ
þ A⃗ðωÞ cosðωtþ ϕ−Þ þ B⃗ðωÞ sinðωtþ ϕ−ÞÞ;

ð30Þ

in addition to the contribution from Eq. (14) and
where ϕ� ¼ ϕ� ϕ0.
Then, the RIN contribution to the total field power at the

center of the cavity can be obtained by multiplying the last
equation with Eq. (14). Keeping only the terms oscillating
at angular frequency Δω, the RIN contribution to E2 is
given by

½E2ðω;ωaÞ�RIN ¼ ΔXaðΔωÞ
2Xa

ððAðωaÞ½Að2ωa − ωÞ þ AðωÞ� þ BðωaÞ½Bð2ωa − ωÞ þ BðωÞ�Þ cosðΔωtþ ϕ0Þ

þ ðAðωaÞ½Bð2ωa − ωÞ − BðωÞ� þ BðωaÞ½AðωÞ − Að2ωa − ωÞ�Þ sinðΔωtþ ϕ0ÞÞ ð31aÞ

¼ ΔXaðΔωÞ
2Xa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðω;ωaÞ

p
cosðΔωtþ φÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRINNðω;ωaÞ

8TobsΔω

s
cosðΔωtþ φÞ; ð31bÞ
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where we have used Eqs. (27) and (28). In this expression,
the functions A and B are the norm of A⃗ and B⃗ whose
complete expressions are given by Eqs. (B4). The functionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðω;ωaÞ

p
correspond to the noise amplification factor by

the cavity (see Appendix C), quadratic in Xa and whose
expression is given by Eq. (C4d) and φ is a phase.
The RIN contribution to E2 from Eq. (31b) will limit the

sensitivity of the experiment to values of χ that makes the
signal from Eq. (18) larger than the systematic (i.e., larger
than Eq. (31b). In other words, the RIN will limit the
sensitivity of the experiment to value of χ that are larger than

½χðωÞ�RIN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRINNðω;ωaÞ
8TobsΔω

q
Sðω;ωa; ρDM; Xa;L; rÞ

; ð32Þ

where the function S is defined in Eq. (18). Note that this
limit is linear in Xa, the amplitude of the applied elec-
tric field.
Note that vacuum fluctuations noise, i.e., shot noise, can

also be viewed as an amplitude fluctuation of the electric
field squared, as seen by Rydberg atoms, thus is analogous
to the RIN. However, it is negligible since its PSD
normalized by the number of photons N in the sourceffiffiffiffiffiffiffiffi
SSN

p
=N ∼ 10−11ð= ffiffiffiffiffiffi

Hz
p Þ ≪ ffiffiffiffiffiffiffiffiffi

SRIN
p

(using experimental
parameters considered in Sec. V D and a typical mode
radius of ∼0.01 m).

C. Optimum choice of experimental parameters

The sensitivity of the experiment at a given angular
frequency ω relies on the signal amplitude Eq. (18) but also
on the limiting noise. Combining Eqs. (25) and (32), this
is simply

½χðωÞ�limit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SE2ffiffiffiffiffiffiffi
τðωÞ

p þ PRINNðω;ωaÞ
8Δω

ffiffiffiffiffiffi
Tobs

p
r

T
1
4

obsSðω;ωa; ρDM; Xa;L; rÞ
; ð33Þ

where we used the usual quadratic sum of uncertainties
since the two contributions are uncorrelated.
The maximum angular frequency difference Δω

corresponds to, from Sec. IV B, half the sampling
frequency (¼ πfs). To better understand the sensitivity
of the experiment, we will simplify the expressions of
Sðω;ωa; ρDM; Xa;L; rÞ and Nðω;ωaÞ in Eqs. (18), (31b),
and (C4d), considering r ¼ 1 − ϵ, ϵ ≪ 1 and ω ∼ ωa.

5 In
that case,

NðωaÞ ≈
X4
aϵ

2

cos4ðωaL
2c Þ

; ð34aÞ

SðωaÞ ≈
βcXa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p ffiffiffi
ϵ

pffiffiffi
2

p
cos2ðωaL

2c Þ

�
1þ cos

�
ωaL
2c

��
; ð34bÞ

at lowest order in ϵ. We see from (34a) that the two
uncertainties in the numerator of (33) depend differently
on Xa (the statistical uncertainty is independent of Xa, the
RIN contribution is quadratic in Xa), while the signal
strength in the denominator is linear in Xa. This suggests
an ‘optimum’ value of Xa such that Eq. (33) is minimum,

dχðωaÞ
dXa

¼ 0 ð35aÞ

⇒ XaðωaÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16SE2Δω
ϵ2PRIN

ffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

τðωaÞ

s
4

vuut ���� cos
�
ωaL
2c

����� ð35bÞ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πfsSE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωaTobs

p
103ϵ2PRIN

4

s ���� cos
�
ωaL
2c

�����; ð35cÞ

where we used Eqs. (34a) and (34b). We considered the
maximum angular-frequency shift between the DM and
applied frequencies Δω ¼ πfs, in order to have the best
sensitivity on χðωÞ. Note that this equation to approximate
the optimum value of Xa is not valid for angular frequencies
ωaL=c ¼ 2π þ 4nπ; n ∈ N and ωaL=c ¼ π þ 2nπ; n ∈ N.
In the first case, the signal decreases significantly (see
Eq. (34b) and the experiment becomes insensitive to DM,
while in the second case, Eq. (35c) would indicate to apply
Xa ¼ 0, which would automatically set the signal to 0, at
first order in χ.
From Eq. (35c), and still considering ω ∼ ωa, we can

express the sensitivity of the experiment χðωÞ as

χðωÞ ≈
ffiffiffi
2

p j cosðωL
2c Þj

1þ cosðωL
2c Þ

�
PRINSE2

103πfs

�1
4 ðωT−3

obsÞ
1
8

βc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p ; ð36Þ

for ωL
c ≠ π þ 2πn, n ∈ N. This is a simplified expression

that provides an approximate evaluation of the optimal
sensitivity of the experiment.
In the following section, we will assume that the applied

field amplitude Xa is modified each time its angular
frequency ωa is shifted, so that the condition Eq. (35c)
is always fulfilled, but we use the full expressions of
Sðω;ωa; ρDM; Xa;L; rÞ and Nðω;ωaÞ in Eqs. (18) and
(31b) to evaluate the sensitivity.

D. Reachable sensitivity in a realistic experiment

We now estimate the sensitivity on χ of the experimental
method defined in Sec. IV by considering the two noise

5Even in the case where Δω ¼ πfs, we still consider ω ∼ ωa in
this approximation, as fs ⪅ ω

Q ≈ ωð1 − rÞ ≪ ω. For a sampling
frequency ∼kHz and Compton frequency in the GHz domain, and
r ¼ 1–10−6 ∼ 1.
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sources described in Sec. V. The measurement noise will
lead to a lower limit on χ given by Eq. (25) while the main
systematic effect, the RIN, will lead to a lower limit on χ
given by Eq. (32).
First, we consider the random polarized case for the

DP polarization direction, i.e., β ¼ 1=
ffiffiffi
3

p
. Some already

existing constraints come from experiments with this
assumption [8–10,13,25–28]. Other experiments [29–43]
considered the fixed polarization scenario, and we have
rescaled them accordingly (using [17]). Finally, some of
them assumed perfectly aligned polarizations between DP
and device, so they also have been rescaled [9,44].6

We consider the local DM energy density to be ρDM ¼
0.45 GeV=cm3 [17].
Let us remind that the observational scheme considered

here consists in electric signals of angular frequency ωa.
For each injected electric field we perform a measurement
of duration Tobs and then shift the angular frequency of
the applied field by πfs. Each measurement of duration
Tobs provides constraints in the frequency range fωa −
πfs;ωa þ πfsg in steps of 2π=Tobs.
Let us now consider some numbers for the experiment,

which are all summarized in Table I. First of all, we consider
an individual measurement duration of Tobs ¼ 60 s. This
duration is arbitrary, but we list two important consider-
ations for this choice. We require Tobs to be large for best
sensitivity [see Eq. (33)], but short enough to allow
scanning a large range of DM frequencies in a reasonable
amount of time [≤ OðmonthÞ].
As described in Sec. VA, we consider two different

sampling rates which lead to different measurement noise
PSD and directly affect the sensitivity of the experiment
[cf. Eq. (36)]. To put some numbers, assuming a single shot
spectroscopic resolution of ∼1 kHz [21] for differential
polarizabilities of Δα=2h ≈ 105 Hz=ðV=mÞ2, leads to a

noise PSD of the measured electric field power of
SE2 ≈ 10−6 ðV=mÞ4=Hz for fs ¼ 100 Hz and SE2 ≈
10−7 ðV=mÞ4=Hz for fs ¼ 1 kHz. Regarding the systematic
effect, the amplitude of the flicker noise can be considered to
be PRIN ¼ 10−13 (based on “off the shelf” components
studied in [24] more than a decade ago) in the modest case,
and we assume an improved RIN control for the optimistic
case, with an amplitude of PRIN ¼ 10−15. The level of the
systematic effect PSD is also impacted by the sampling rate,
following Eq. (31b). Moreover, as derived in Sec. V C, the
approximate sensitivity of the experiment Eq. (36) scales as
ðPRINSE2=fsÞ1=4, implying that the modest and optimistic
scenarios will differ in the sensitivity by a factor ∼10. The
optimum value of the amplitude of the applied field Xa is
then derived from Eqs. (33) (for the minimum value)7 and
(35c) and all other experimental parameters. Since it depends
on the DM Compton frequency, we provide the range of
optimal Xa, for the modest case

18.1 V=m≲ Xa ≲ 1.70 × 105 V=m: ð37Þ

It is independent of the sampling frequency since, from
Eq. (35c), XaðωaÞ ∝ ðfsSE2Þ1=4 and SE2 ∝ f−1s , but not of
the systematic effect level PRIN.
The sensitivity of the experiment obtained considering

all experimental parameters described in Table I and
respectively with ffs ¼ 1 kHz; PRIN ¼ 10−15g and ffs ¼
100 Hz; PRIN ¼ 10−13g is presented by the orange and
purple curves of Fig. 3. One can clearly see the sensitivity
peaks arising from the cavity’s odd resonances. This happens
when the applied field amplitude Xa is small, as shown in
Eq. (35c). This equation works well for frequencies far from
odd resonances. However, on those odd resonances, this
approximate equation cannot be used as discussed previ-
ously. Instead one should use the exact expressions of signal
and noise to optimize Eqs. (33). As an example, when the
applied field frequency corresponds exactly to the first odd
resonance of the cavity, i.e., ωaL ¼ πc and ω ¼ ωa þ πfs
the optimum amplitude of Xa is ∼12.8 V=m, whose
corresponding experimental sensitivity is χ ∼ 10−13 in the
modest scenario, as shown in Fig. 3. Additionally, one can
notice the presence of specific frequencies where this
sensitivity decreases significantly, the experiment is almost
insensitive to these DM frequencies. As discussed in the
previous section, from the approximate expression of the
signal contribution Eq. (34b), we have Sðω; XaÞ ≃ 0 for

TABLE I. Assumed experimental parameters.

Parameters Numerical values

Quality factor Q [46] 104

Mirrors reflectivity r ≈1–2 × 10−4

Cavity length L 7.5 cm
Injected field strength XaðωÞ ½18.1; 1.70 × 105� V=m
Sampling frequency fs 102; 103 Hz
Individual measurement time Tobs 60 s
Range of fa ¼ ωa=2π [0.5, 20.5] GHz
Range of Δω ½2π=Tobs; πfs� rad=s
Statistical noise PSD SE2 10−4=fs ðV=mÞ4=Hz
Systematic effect PSD SRINðωÞ 10−13=ω; 10−15=ω

6For ORGAN [45] and its OðmonthÞ of data taking, this
correction factor is of Oð1Þ, as for long time experiment, the
sensitivity in both scenarios is equal (Sec. VI.6 of [17]).

7The smallest value of Xa corresponds to DM/applied frequen-
cies close to odd modes, from Eq. (35c). In this regime, both
approximate amplitudes of noise Eq. (34a) and signal Eq. (34b)
reach infinity, implying we must consider the real expression of
χðωÞ derived in Eq. (33) and check for which value of Xa the
sensitivity on χ is the highest.
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ωL
c ¼ 4π þ 2πn, n ∈ N accounting for the loss of sensitivity.
In both scenarios presented here (modest and optimistic),
one can see from Fig. 3 that the experiment setup proposed
here would improve the current constraint on the coupling χ
compared to cosmological and astrophysical observations
and other already existing laboratory experiments.

VI. DISCUSSION AND CONCLUSION

If one decides to run this experiment aiming at uncon-
strained regions of the exclusion plot, it would take
approximately five days of data-taking to cover the mass
range from 7 μeV to 10 μeV, while around 35 days would
be needed to cover the mass range from 35 μeV to 60 μeV,
assuming no dead time between the Tobs ¼ 60 s observa-
tion runs. More realistically, reserving say 50% of the total
experimental time for manipulation of the atoms and
applied field, the total duration increases by a factor
two, which is still very reasonable.
With the appropriate set of parameters, in particular the

applied field amplitude Xa following Eq. (35c), both
sources of noise, systematic and statistical, are equal in
amplitude. This means that, in the search for high sensi-
tivity of the experiment, the optimum choice of Xa is not to
increase it as much as possible to maximize the signal.
Even though the signal is linear in Xa, the systematic
uncertainty is quadratic in Xa, as stated at the end of Sec. V
B, implying a loss of sensitivity if the experimenter decides
to apply too much power inside the cavity.
If the level of intensity fluctuations (RIN) of the applied

field could be reduced e.g., by stabilizing the power using
low noise intensity measurements [48], the applied field
and/or the quality factor of the cavity could be increased
leading to an increase of the signal whilst keeping the

contribution from the RIN below that of the measurement
noise in Eq. (33). This way, the optimistic curve presented
in Fig. 3 would be achievable.
Some experiments use curved mirrors ([8–10]) to focus

the DM induced electric field into a reduced region, to be
able to detect more power. This method is not considered
here, but with the appropriate curvature, it may improve the
sensitivity of the experiment.
In conclusion, we propose a novel experiment that

uses Rydberg atoms inside a microwave cavity to search
for DP through its mixing with standard electromagnet-
ism. Our proposal features an optimized applied electric
field inside the cavity and Rydberg atoms as highly
sensitive probes of E2. This latter feature allows searching
for the cross-term between the applied and DP-induced
fields, thus allowing best sensitivity with relatively low-
sampling frequencies.
Using realistic experimental parameters we show (see

Fig. 3) that such an experiment has the potential to
significantly improve on existing laboratory experiments
in terms of the sensitivity, and more importantly, in terms
of the explored DP-mass regions. The latter can be more
specifically targeted by tuning the cavity size such that
resonances match the least explored regions. Finally, we
note that around the resonances the experimental sensi-
tivity is also better than indirect bounds coming from
cosmological considerations (blue region in Fig. 3).
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FIG. 3. Current constraints on dark photons through their kinetic mixing coupling χ with photons (renormalized from [17,47], see
text). The expected sensitivity of this work, with “optimistic” parameters of the system described in Table I is shown in orange, denoted
“SYRTE (optimistic)“, while the sensitivity with the ”modest” parameters of Table I is shown in purple, denoted “SYRTE (modest)”
(see text). The bordering red line around the orange curve indicates the approximate sensitivity of the experiment in the optimistic case,
computed from Eq. (36).
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APPENDIX A: DOES THE DP FIELD
PROPAGATE OR NOT?

Let us assume the dark photon vector field is an
oscillating field which does not propagate. In this case,

E⃗DM ¼ X⃗DM cosðωtÞ: ðA1Þ

This statement is true in the rest frame of dark matter with
constant mode k ¼ 0. If we consider it moving with respect
to Earth at a velocity v ¼ 10−3 c, which is the typical mean
velocity of the dark matter halo, we have

E⃗DM ¼ X⃗DM cosðω0t − k⃗0:x⃗Þ; ðA2Þ

and from special relativity, we have

ω0 ¼ γðω − v⃗:k⃗Þ ≈ ω; ðA3aÞ

k⃗0 ¼ k⃗þ 1

v2
ðγ − 1Þðv⃗:k⃗Þv⃗ − 1

c2
γωv⃗ ≈ −

1

c2
ωv⃗; ðA3bÞ

since γ ¼ 1 − v2

2c2 ∼ 1. To neglect this propagation term, we
require 2π ≫ k0L, with L the length of the cavity, or
equivalently, the de Broglie wavelength of the field has to
be much bigger than the size of the cavity. Considering a
length Oð10 cmÞ, the corresponding constraint on k0 is

k0 ≪ 20π m−1: ðA4Þ

In this paper, we are interested in DP masses in microwave
domain, 10−6 < mc2 ðeVÞ < 10−4, or

k0 ∈ ½0.05; 5� × 10−1 m−1; ðA5Þ

implying we can safely neglect the propagation term. Note
that if we were to work in the optical frequency range, this
propagation term should be kept, as in this case,
k0 ∈ ½5; 25� × 106 m−1 ≫ 2π=L.

APPENDIX B: FULL CALCULATION OF FIELD
AMPLITUDE IN THE CAVITY

1. Applied field

The experimental setup (Fig. 1) gathers an applied field
Ea with amplitude Xa, angular frequency ωa and a time
varying amplitude fluctuation ΔXa with angular frequency
ω0, considered much smaller than ωa. This field has
random phase ϕwith respect to the DM induced oscillating
field E⃗DM. Considering application of this field at the left
edge of the cavity, and assuming a transmission coefficient
of the mirror being t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
, the first contribution at the

center of the cavity reads

E⃗0
aðx¼ 0; tÞ¼ℜ

�
t

�
X⃗ae−iðωat−kaL2þϕÞ þΔX⃗a

2
ðe−iðωþt−kþL

2
þϕþÞ

þe−iðω−t−k−L
2
þϕ−ÞÞ

��
; ðB1Þ

where k� ¼ ka � k0. This contribution propagates until the
other cavity boundaries, gets reflected once with coefficient
−r such that boundary conditions are respected, then comes
back to the center, implying that the second contribution
reads

E⃗1
aðx¼ 0; tÞ ¼ℜ

�
−treikaL

�
X⃗ae−iðωat−kaL2þϕÞ

þΔX⃗a

2
ðe−iðωþt−kþL

2
þϕþÞ þ e−iðω−t−k−L

2
þϕ−ÞÞ

��
;

ðB2Þ

the additional phase eikaL shows the time delay of E1

compared to E0 after half a round trip. This occurs several
times and after an infinite number of round trips N, the full
contribution of the external applied field inside the cavity is

E⃗tot
a ðx ¼ 0; tÞ ¼

XN¼þ∞

n¼0

E⃗n
aðx ¼ 0; tÞ ðB3aÞ

¼ tX⃗aℜ

�
e−iðωatþϕÞ ei

kaL
2

1þ reikaL

�

þ tΔX⃗aℜ

�
e−iðωþtþϕþÞ ei

kþL
2

1þ reikþL

�

þ tΔX⃗aℜ

�
e−iðω−tþϕ−Þ ei

k−L
2

1þ reik−L

�
ðB3bÞ

≡ A⃗ðωaÞ cosðωatþ ϕÞ þ B⃗ðωaÞ sinðωatþ ϕÞ

þ ΔXa

2Xa

X
i¼�

ðA⃗ðωiÞ cosðωitþ ϕiÞ

þ B⃗ðωiÞ sinðωitþ ϕiÞÞ; ðB3cÞ

where we used the fact that r < 1 such that rN → 0
and with

A⃗ðωaÞ ¼
tX⃗að1þ rÞ cosðωaL

2c Þ
1þ 2r cosðωaL

c Þ þ r2
; ðB4aÞ

B⃗ðωaÞ ¼
tX⃗að1 − rÞ sinðωaL

2c Þ
1þ 2r cosðωaL

c Þ þ r2
: ðB4bÞ

One can notice a constructive interference at the center of
the cavity for even modes of the cavity, as expected.
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2. DM field

Starting from the DM induced electric field with unknown
polarization direction X⃗DM and angular frequency ω, the
same procedure as above can be realized to know the DM
electric field amplitude at the center of the cavity. The
subtleties of this calculation are that: 1) the field is emitted
by the mirrors towards the center of the cavity, therefore the
transmission coefficient t factor is not present; 2) only the
DM polarization transverse to the mirror is reemitted, noted
X⃗DM;k; and 3) there are two different contributions, in phase,
each being emitted from one of the edges of the cavity. The
total DM contribution at the center is then

E⃗tot
DMðx¼ 0; tÞ ¼ℜ

�
X⃗DMe−iωtþ 2X⃗DM;ke−iðωt−

kL
2
Þ 1

1þ reikL

�
ðB5aÞ

≡C⃗ðωÞ cosðωtÞ þ D⃗ðωÞ sinðωtÞ; ðB5bÞ

with

C⃗ðωÞ ¼ X⃗DM þ 2X⃗DM;kð1þ rÞ cosðωL
2c Þ

1þ 2r cosðωLc Þ þ r2
; ðB6aÞ

D⃗ðωÞ ¼ 2X⃗DM;kð1 − rÞ sinðωL
2c Þ

1þ 2r cosðωLc Þ þ r2
: ðB6bÞ

The first term of Eq. (B5a) corresponds to the back-
ground oscillating DM field at the center, which is always
present, even without cavity. The second term is the DM
contribution from the cavity, which is almost equivalent, in
its form, to the total contribution of the applied field, with
an additional factor two, due to the emission of a field from
both edges of the cavity (instead of only one for the
applied field).

APPENDIX C: SIGNAL AND NOISE
AMPLITUDES

In this section, we wish to derive the expressions of the
signal contribution inside the cavity in Eq. (18) and of the
noise in Eq. (31b).

1. Signal contribution

From Eq. (17), and using Eqs. (B4) and (B6), we can
write the signal contribution as

Pðω;ωaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA⃗ðωaÞ · C⃗ðωÞ þ B⃗ðωaÞ · D⃗ðωÞÞ2 þ ðB⃗ðωaÞ · C⃗ðωÞ − A⃗ðωaÞ · D⃗ðωÞÞ2

q
ðC1aÞ

¼ XaXDMβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA0ðωaÞ2 þ B0ðωaÞ2Þ × ðC0ðωÞ2 þD0ðωÞ2Þ

q
; ðC1bÞ

where we used X⃗a · X⃗DM ¼ X⃗a · X⃗DM;k ¼ XaXDMβ and
where the prime quantities are defined as

A0ðωaÞ≡ tð1þ rÞ cosðωaL
2c Þ

1þ 2r cosðωaL
c Þ þ r2

; ðC2aÞ

B0ðωaÞ≡ tð1 − rÞ sinðωaL
2c Þ

1þ 2r cosðωaL
c Þ þ r2

; ðC2bÞ

C0ðωÞ≡ 1þ 2ð1þ rÞ cosðωL
2c Þ

1þ 2r cosðωLc Þ þ r2
; ðC2cÞ

D0ðωÞ≡ 2ð1 − rÞ sinðωL
2c Þ

1þ 2r cosðωLc Þ þ r2
; ðC2dÞ

i.e., the polarizations are factorized from the amplitude
functions fA⃗; B⃗; C⃗; D⃗g. The signal amplitude can be easily
simplified to

Pðω;ωaÞ ¼
tXaXDMβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2r cosðωaL
c Þ þ r2

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

1þ ð1þ rÞ cosðωL
2c Þ

1þ 2r cosðωLc Þ þ r2

s
; ðC3aÞ

and XDM ¼ χc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0ρDM

p
from Eq. (12b).

2. Noise contribution

Starting from the full expression of the systematic effect
Eq. (31a), we can derive the noise amplitude amplified by
the cavity as the sum of three different contributions, i.e.,

N1ðω;ωaÞ≡ AðωaÞ2ððAð2ωa − ωÞ þ AðωÞÞ2
þ ðBð2ωa − ωÞ − BðωÞÞ2Þ; ðC4aÞ

N2ðω;ωaÞ≡ BðωaÞ2ððAð2ωa − ωÞ − AðωÞÞ2
þ ðBð2ωa − ωÞ þ BðωÞÞ2Þ; ðC4bÞ
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N3ðω;ωaÞ≡ 4AðωaÞBðωaÞðAð2ωa − ωÞBðωÞ
þ Bð2ωa − ωÞAðωÞÞ; ðC4cÞ

Nðω;ωaÞ≡ N1ðω;ωaÞ þ N2ðω;ωaÞ þ N3ðω;ωaÞ: ðC4dÞ

One can notice NiðωÞ’s, and by extension NðωÞ, are of
order 4 in Xa, making

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðω;ωaÞ

p
∝ X2

a, as expected.
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