
Discovering QCD-coupled axion dark matter with polarization haloscopes

Asher Berlin 1,2,* and Kevin Zhou 3,†

1Theory Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2Superconducting Quantum Materials and Systems Center (SQMS),

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
3SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

(Received 3 October 2022; revised 24 March 2023; accepted 31 July 2023; published 25 August 2023)

In the presence of QCD axion dark matter, atoms acquire time-dependent electric dipole moments. This
effect gives rise to an oscillating current in a nuclear spin-polarized dielectric, which can resonantly excite
an electromagnetic mode of a microwave cavity. We show that with existing technology such a
“polarization haloscope” can explore orders of magnitude of new parameter space for QCD-coupled
axions. If any cavity haloscope detects a signal from the axion-photon coupling, an upgraded polarization
haloscope has the unique ability to test whether it arises from the QCD axion.
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I. INTRODUCTION

The QCD axion is a long-standing, well-motivated dark
matter candidate [1–7] that can also explain why the
neutron’s electric dipole moment (EDM) is at least 1010

times smaller than generically expected [8]. It is a pseu-
doscalar field a defined by its coupling to gluons,

L ⊃ θa
αs
8π

GμνG̃μν; ð1Þ

where θa ≡ a=fa and fa is the axion decay constant. At
temperatures below the QCD phase transition, this coupling
generates a potential and mass for the axion [9],

ma ¼ 5.7 μeV × ð1012 GeV=faÞ: ð2Þ

Over cosmological time, the axion field relaxes towards the
minimum of its potential at the parity (P) and time-reversal
(T ) conserving point θa ¼ 0 where the neutron EDM
vanishes. Assuming a standard cosmological history and
an Oð1Þ initial misalignment angle, the residual energy in
the axion field accounts for the present density of cold dark
matter for ma ∼ ð0.5–50Þ μeV [10]. In this case, the local
axion field has macroscopic mode occupancy and can thus
be described by a classical expectation value,

θa ≃
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mafa

cos mat ≃ 4.3 × 10−19 cos mat; ð3Þ

oscillating with frequency ma=2π ∼ ð0.1–10Þ GHz, where
ρDM ≃ 0.4 GeV=cm3 is the local dark matter density.
The direct signatures of QCD axion dark matter are

nuclear effects, such as the oscillating neutron EDM [11],

dn ≃ ð2.4 × 10−3 e fmÞ θa: ð4Þ

Detecting such a small signal is very difficult, but has been
addressed by several recent proposals. In some cases, static
EDM experiments may be repurposed to constrain slowly
oscillating EDMs [12–14]. Other potential detection ave-
nues involve nuclear magnetic resonance [15–17], spin
precession in storage rings [18–23], atomic and molecular
spectroscopy [24,25], and mechanical oscillations in piezo-
electric materials [26]. However, none of these probes are
sensitive at the GHz frequencies motivated by standard
misalignment production of axion dark matter.
Currently, the most stringent laboratory constraints on

axion dark matter at GHz frequencies come from cavity
haloscopes [27,28], which rely on the axion’s coupling to
photons, L ⊃ gaγγaFμνF̃μν=4. In these experiments, axion
dark matter produces an effective current Jaγγ ¼ gaγγB∂ta
inside a microwave cavity with background magnetic
field B, which can resonantly excite a mode of angular
frequency ma. While there are many other recent proposals
to search for the axion (see Refs. [29–31] for reviews), the
cavity haloscope concept is currently the most well
developed, with many collaborations reporting new results
[32–50] and some operating near or beyond the standard
quantum limit [34,36,37,42]. These experiments are well
motivated, as the axion-gluon coupling of Eq. (1) is known
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to induce an axion-photon coupling. However, their rela-
tion is indirect: the coefficient gaγγ can vary by orders of
magnitude within simple models [51–54], and an axion
with an electromagnetic coupling is not necessarily the
QCD axion. Definitively discovering or excluding the QCD
axion thus requires confronting the axion-gluon coupling
directly.
In this work, we present the first method to probe the

axion-gluon coupling at GHz frequencies. In the presence
of axion dark matter, atoms have oscillating EDMs of
magnitude dA directed along their nuclear spin [55],
analogous to the neutron EDM in Eq. (4). A dielectric
thus carries a polarization density PEDM ∼ nAdA, where nA
is the density of nuclear spin-polarized atoms. A time-
varying polarization induces a physical electromagnetic
current JEDM ¼ ∂tPEDM, which can be resonantly amplified
by placing the dielectric in a microwave cavity with a mode
of angular frequency ma. We call this system, depicted in
Fig. 1, a polarization haloscope.
To quickly estimate its potential, we may compare the

current in a polarization haloscope to that produced in a
typical cavity haloscope. For the benchmark DFSZ model,
where gaγγ ≃ 0.87 × 10−3=fa [56,57], the ratio is

JEDM
Jaγγ

≃ 10−3 ×
dA
dn

�
nA

5 × 1022 cm−3

��
8 T
B

�
; ð5Þ

which suggests that the signal in a cavity haloscope is
larger. Furthermore, JEDM is more difficult to calculate, as it
depends sensitively on nuclear, atomic, and material
properties. For these reasons, the polarization haloscope
idea was briefly raised and discarded 30 years ago [58].
However, the rapid recent progress in cavity haloscopes
motivates a thorough analysis of its potential. In Sec. II we
show that dA ∼ dn can be achieved for certain atoms. We
then consider the factors necessary to develop an effective
polarization haloscope, such as cavity design (Sec. III),
material choice (Sec. IV), and nuclear spin polarization
(Sec. V). We estimate experimental sensitivity in Sec. VI

and conclude in Sec. VII, laying out a path towards
reaching the QCD axion.

II. AXION-INDUCED EDMs

The dominant nuclear contribution to the EDM of an
atom with atomic number Z arises from the P, T -violating
piece of the effective nuclear electric potential [59–64],

ϕðeffÞ
N ðxÞ ¼

�
1þ 1

Ze
dN ·∇

�
ϕNðxÞ; ð6Þ

which includes the usual electric potential ϕN of the
nucleus and the response of the atomic electrons to the
nuclear EDM dN . The leading P, T -violating term in a

multipole expansion of ϕðeffÞ
N is the dipole, but it simply

vanishes, in accordance with Schiff’s theorem [65] which
states that the nuclear EDM is efficiently screened by the
atomic electrons. The next P, T -violating term is the
octupole. Its traceless part corresponds to an electric
octupole moment, whose effects are suppressed by the
centrifugal barrier near the nucleus [59]. The traceful part
yields the dominant contribution to the atomic EDM and is
described by the Schiff moment [60],

S ¼ 1

10

Z
d3x ρNðxÞr2

�
x −

5

3

dN

Ze

�
; ð7Þ

where ρN is the nuclear charge density; S sources a P, T -
violating electric field that polarizes the atomic electrons,
perturbing the electronic Hamiltonian by

VS ¼ −
XZ
i¼1

eS ·∇δ3ðxiÞ; ð8Þ

where the nucleus is at the origin. The interaction VS mixes
opposite parity states, which to first order in perturbation
theory gives rise to a nonvanishing atomic EDM, parallel to
the nuclear spin I, of the form

dA ≃
X
n

hnjVSj0ih0jDjni
En − E0

þ H:c:; ð9Þ

where jni are atomic states of energy En and D ¼
−
P

Z
i¼1 exi is the atomic EDM operator. The result scales

as dA ∝ Z2S, with a moderate relativistic enhancement for
the heaviest nuclei. Scaling numeric results for 225Ra from
Refs. [66–69] yields

dA ≃ −ð0.27 × 10−3 e fmÞ hSzi=ðe fm3Þ ð10Þ

for 161Dy, with values within 20% for the other nuclei we
will consider below. Here, hSzi is the lab-frame expectation
value of the Schiff moment directed along the nuclear spin
for a maximally polarized nucleus, M ¼ I [63].

FIG. 1. Atoms carry EDMs proportional to the axion field (left),
aligned with the nuclear spin I. The axion’s time variation thus
produces a current JEDM in a nuclear spin-polarized dielectric,
whose effect can be amplified in a resonant cavity. For higher
axion masses, the geometric overlap factor in Eq. (19) can be
maximized using layers of inert dielectric (top) or alternating spin
polarization (bottom).

ASHER BERLIN and KEVIN ZHOU PHYS. REV. D 108, 035038 (2023)

035038-2



In perturbation theory, the Schiff moment is

hSzi ≃
X
n

hnjVPT j0i h0jSzjni
En − E0

þ H:c:; ð11Þ

where jni are nuclear states of energy En and VPT ∝ θa is
the axion’sP,T -violatingmodification to the pion-mediated
internucleon interaction. For a typical spherical nucleus
with mass number A and radius R0 ≃ ð1.2 fmÞA1=3, we
expect [59,60]

hnjVPT j0i ∼ ð10−2θa=mnR0Þ ðA=m2
πR3

0Þ; ð12Þ

h0jSzjni ∼ eR3
0; ð13Þ

En − E0 ∼ A=m2
πR3

0; ð14Þ

which yields the parametric estimate

hSzi ∼ 10−2
eR2

0

mn
θa ∼ ð0.1 × e fm3Þ θa

�
A
102

�2
3

; ð15Þ

in agreement with detailed calculations [26,59,60,70–74].
This yields only a small atomic EDM, dA ≪ dn, but for

nonspherical nuclei there can be a large intrinsic Schiff
moment Sint in the body-fixed frame. Evaluating Eq. (7)
gives Sint ∝ β2β3ZeR3

0, where β2 and β3 parametrize the
quadrupole and octupole deformation of the nuclear radius.
The lab-frame Schiff moment is then determined by
averaging over nuclear orientations, hSzi ¼ Sinthn̂zi, where
n̂ is the nuclear axis. A nonzero hn̂zi requires P violation
and is thus proportional to θa. It can be calculated
perturbatively with an expression analogous to Eq. (11),
the main difference being that octupole deformations imply
states with small energy gaps, En − E0 ∼ 50 keV. For
significantly octupole-deformed nuclei, β2 ∼ β3 ∼Oð0.1Þ,
various numeric factors cancel, leaving [70–74]

hSzi ∼ 10−2
ZeR2

0

mn
θa; ð16Þ

which is crucially enhanced by Z relative to Eq. (15).
Applying Eq. (10), we find that for these nuclei,

jdAj ∼ ðfew × 10−3Þ e fm × θa

�
Z
102

�
3
�

A
102

�2
3

; ð17Þ

which, as anticipated above, is comparable to dn.
Most octupole-deformed nuclei are short lived and thus

infeasible to gather in the macroscopic quantities required.
Of the nuclei highlighted in Refs. [69,75,76], we identify
161Dy, 153Eu, and 155Gd as the most promising. They are
absolutely stable and, as indicated in Table I, are in-
expensive and expected to possess fairly large axion-
induced Schiff moments and atomic EDMs. However,

the existence of octupole deformation in these nuclei is
not completely settled [77]. This work motivates further
experimental study. Even if none of these nuclei are
octupole deformed, it may still be possible to achieve
comparable EDMs via magnetic quadrupole moments,
which are enhanced by well-established nuclear quadrupole
deformations [75].

III. CAVITY EXCITATION

The axion field oscillates with a phase offset and
amplitude varying over the coherence time τa ∼Qa=ma,
where Qa ∼ 106. For all axion masses we consider, spatial
gradients of the axion field are negligible. The cavity
response is therefore very similar to that of a conventional
haloscope, with Jaγγ replaced by JEDM ≃manAdA. In our
case, there is also an associated physical charge density
ρEDM ¼ −∇ · PEDM in the cavity, which produces small
electric fields, but it is not of interest because it cannot
excite resonant modes [81–83].
We suppose a portion Vp of the volume V of the cavity is

filled with dielectric of fractional nuclear spin polarization
fp along the p̂ direction, so that nA ¼ fpn0, where n0 is the
number density of relevant nuclei. Adapting a standard
result [84], the power deposited to the ith mode of the
cavity on resonance, ma ≃ ωi, is

Psig ≃maðfpn0dAÞ2 ðV=ϵ̄Þ η2i minðQa;QiÞ; ð18Þ

where dA is now the time-independent amplitude of the
atomic EDM, Qi is the quality factor of the mode, and the
last factor accounts for the spectral width of the axion.
The typical dielectric permittivity inside the cavity is ϵ̄, and
the geometric overlap factor is

ηi ¼
jRVp

d3xEi · p̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
R
V d

3x ðϵ=ϵ̄ÞE2
i

q : ð19Þ

This definition is chosen so that ηi ∼ 1 when the cavity is
completely filled with dielectric polarized along p̂ parallel

TABLE I. Stable nuclei with large axion-induced Schiff mo-
ments hSzi and atomic EDMs dA, and their natural abundance and
price. We use the last row [equal to jγjðI þ 1Þ=3 where γ is the
gyromagnetic ratio [78]] to determine the fractional nuclear spin
polarization fp at a temperature T in a magnetic field B.

161Dy 153Eu 155Gd

Estimated hSzi (e fm3 θa) [75] 4.3 1.0 1.2
Estimated jdAj (10−3 e fm θa) 1.2 0.25 0.3
Natural abundance [79] 19% 52% 15%
Metal price ($/ton) [80] 300 k 30 k 30 k
Tdfp=dBjB¼0 (mK/T) [79] 0.08 0.26 0.05
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to the electric field Ei of the cavity mode. Below, we
suppress mode subscripts to simplify notation.
To probe the lowest possible axion masses, a cylindrical

cavity can be completely filled with a dielectric with p̂
along the cylinder’s axis, which yields η ≃ 0.83 for the
TM010 mode. In Fig. 1, we show two concrete ways to
guarantee Oð1Þ geometric overlap for heavier axions
coupled to higher resonant modes of the cavity. First,
one can insert layers of another dielectric. For example,
rutile caries a negligible axion-induced current, and hence
does not contribute to Vp. Since it has a very high
permittivity at cryogenic temperatures, ϵ≳ 104 [85], thin
layers would suffice to preserve a large overlap factor.
Alternatively, the cavity can be filled with dielectric whose
spin polarization alternates in direction. In either case, the
mode frequency can be coarsely tuned by changing the
number of layers, and finely tuned by introducing gaps and
moving the dielectric layers or end caps along the cylin-
der’s axis.
Such layered structures have been proposed, prototyped,

operated, and tuned for haloscopes targeting the axion-
photon coupling [86–93]. Axions can also be effectively
coupled to higher-order modes by loading cavities with
dielectric wedges or cylindrical shells [84,94–98]. At
high axion masses, scanning can become impeded by
mode crowding. Many innovative approaches have been
considered to avoid this issue, such as open resonators
[91,92], phase-matched, coupled, or subdivided cavities
[39,47,99–108], rod or wire metamaterials [109–111], and

thin-shell geometries [112,113]. Most of these ideas can be
adapted to polarization haloscopes, though some tuning
mechanisms must be adjusted. For concreteness, we take
η ¼ 1, assume a cylindrical cavity with aspect ratio
L=R ¼ 5, and require the intermediate layers in Fig. 1
be at least 1 cm thick, so that there is a reasonable number
to tune. This determines the mass range probed in Fig. 2.

IV. MATERIAL PROPERTIES

To maximize the signal strength, we consider dielectric
materials with a high density of the nuclei in Table I. Unlike
other approaches that require the material to be ferroelectric
[15] or piezoelectric [26], we only require the material to be
insulating at low temperatures.
Some semiconducting or insulating candidate materials

are nitrides XN [117], oxides XO, and sesquioxides X2O3

for X ¼ Dy, Eu, Gd. Though many alternatives exist,
these materials are simple and well studied, and most
are commercially available. For a prototype setup, we
consider EuN where the abundance of 153Eu is 52% (see
Table I). Following other proposals [15,26], we assume
complete isotope separation for a full-scale experiment,
using DyN where the dysprosium is entirely 161Dy. In
both cases, the number density of rare earth atoms is
3 × 1022 cm−3 [118,119].
The structure of the material also directly affects the

strength of the signal. The most important effect, displayed
in Eq. (18), is that dielectrics shield electric fields, reducing
the signal power by a factor of the permittivity ϵ̄. For our
projections we take ϵ̄ ≃ 7, based on the static permittivity of
DyN [120]. This choice is conservative, as permittivity
decreases at higher frequencies.
In addition, the effective atomic EDM may be modified

within a crystal, where atomic orbitals are deformed. This
effect is quantified by the “electroaxionic” tensor defined in
Ref. [26], and calculating the tensor components requires a
dedicated relativistic many-body calculation for each
material. In PbTiO3, two groups found suppressions of
25% [121] and 50% [122], but with comparably large
uncertainties. Thus, for this initial study we simply take dA
to be the value for an isolated atom.
The other key material property is the dielectric loss

tangent tan δ. For a cavity entirely filled with dielectric, the
quality factor Q of a mode obeys 1=Q ¼ 1=Qc þ tan δ,
where Qc is the quality factor due to cavity wall losses.
Thus, to realize a desired Q, one must have tan δ≲ 1=Q.
At room temperature, dielectrics display high losses due

to thermal phonons. However, these “intrinsic” losses fall
steeply with temperature [123], and are negligible at the
cryogenic temperatures of polarization haloscopes. Instead,
extrinsic losses due to defects and impurities dominate
[124,125] and depend on crystal quality. Very low losses
have been measured [126–129], at the level of 10−9 for
sapphire and 10−8 for rutile and yttrium aluminum garnet.

FIG. 2. The projected sensitivity for three benchmark polari-
zation haloscopes (see text for details). The blue shaded regions
indicate the reach of scanning setups, while the dashed blue
line shows the reach for an experiment which targets a single
candidate QCD axion mass. We also show the ultimate projected
sensitivity of CASPEr-Electric [16] and storage ring [21] experi-
ments, as well as existing constraints from the cooling of
Supernova 1987A [114] and Solar fusion processes [115]. Note
that these existing constraints are strictly stronger than those
derived from Big Bang nucleosynthesis [116] (not shown).
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These are all centrosymmetric crystals, and thereby
avoid additional loss mechanisms that would appear in
more complex crystals, e.g., through acoustic phonons in
piezoelectrics [123] or domain wall motion in ferroelectrics
[130]. The candidate materials we have listed above are
also all simple centrosymmetric crystals. However, their
dielectric losses are unknown, and dedicated cryogenic
measurements in high-quality crystals are needed. These
should be carried out at low electric field amplitudes,
because high field amplitudes can mask losses due to two-
level systems [131–133].

V. NUCLEAR SPIN POLARIZATION

The current in a polarization haloscope is proportional to
the fractional nuclear spin polarization fp, which isOð1%Þ
in thermal equilibrium in typical cavity haloscope con-
ditions (see Table I). However, for both polarization
haloscopes and other approaches [15,26] an Oð1Þ polari-
zation is required for optimal sensitivity. Below we
describe two potential approaches to realize this.
First, one could simply subject the dielectric to a high

magnetic field B≳ 10 T and ultralow temperature. At
T ¼ 2 mK, as achieved by specialized dilution fridges
[134,135], 153Eu nuclei possess anOð1Þ equilibrium polari-
zation. For this technique, the key unknown is the time
needed to thermalize the spins. At such highB=T, theoretical
estimates suggest that it is prohibitively long [136,137], but
measured spin-lattice relaxation times are much shorter than
predicted [138,139], which could be explained by exotic
relaxation mechanisms [140–142]. Relaxation times might
be further reduced by the electric quadrupolemoments of the
nuclei we consider, which couple more strongly to the lattice
than magnetic dipole moments [143], or by the addition of
relaxation agents [144,145].
Another option is frozen spin dynamic nuclear polariza-

tion (DNP), in which electrons are polarized in a few-Tesla
field at T ∼ 1 K, and their polarization is transferred to the
nuclear spins by applying ∼1 W=kg of microwave power.
This method achieves almost complete proton spin polari-
zation and has been extended to heavier nuclei for nuclear
magnetic resonance studies [146–149]. It requires the sample
to contain a concentration ∼10−3 of paramagnetic centers,
produced by chemical doping or ionizing radiation. To
“freeze” the nuclear spins, the microwave field is removed
and the sample is further cooled to slow relaxation.
This approach has been used for decades to polarize

targets for particle physics experiments [150,151]; notably,
the Spin Muon Collaboration at CERN produced frozen
spin targets of liter scale [152]. Currently, frozen spin DNP
is primarily developed in nuclear physics experiments
[153–158]. The resulting spin polarization is robust, with
spin-lattice relaxation times of nearly a year observed in
practice [159]. For polarization haloscopes, the next step is
to see how this approach can be scaled to larger volumes,
while maintaining low dielectric losses.

VI. PROJECTED SENSITIVITY

The signal-to-noise ratio (SNR) is given by the Dicke
radiometer equation [160],

SNR ≃
Psig

Tn

ffiffiffiffiffiffiffiffi
tint
Δνs

r
; ð20Þ

where tint is the time spent probing each axion mass,
and Δνs ¼ ma=ð2π maxðQ;QaÞÞ is the signal bandwidth.
The noise temperature Tn ¼ T þ Tamp receives comparable
contributions from thermal noise, determined by the
physical temperature T, and amplifier noise. Following
Ref. [26], we find that noise due to external vibrations or
spin fluctuations is vastly subdominant at the GHz frequen-
cies of interest, even with the inclusion of paramagnetic
centers as required for DNP. Note that Q is the quality
factor of the cavity mode with dielectric losses included;
thus, thermal noise automatically includes both the noise
from electrons in the cavity walls and dielectric noise, by
the fluctuation-dissipation theorem.
In Fig. 2, we show the projected sensitivity (correspond-

ing to SNR ≥ 2) for three experimental setups. The two
blue shaded regions indicate scanning setups which take
frequency steps of size ma=minðQ;QaÞ with a uniform tint,
so that one e-fold in axion mass is scanned in one year.
Following existing haloscope experiments, we assume an
operating temperature of T ¼ 40 mK [40] and an amplifier
operating at the quantum limit, Tamp ≃ma. When thermal
noise dominates, we assume the cavity is optimally over-
coupled to the readout, which modestly improves the SNR
by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=Tamp

p
[161].

The “prototype” projection, shown in dark blue, is
modeled on the ADMX haloscope [34] and assumes a
volume V ¼ 100L, quality factor Q ¼ 105, and magnetic
field B ¼ 8 T, which produces a thermal spin polarization
fp ≃ 5% for 153Eu. This benchmark shows that new
parameter space can be explored with minimal investment.
(However, this parameter space may be in tension with the
stability of white dwarfs [162].)
The light blue projection considers a cubic meter cavity

with Q ¼ 106 and complete spin polarization, fp ¼ 1. Such
an experimentwould require a large dilution fridge, like those
developed for other precision experiments [163–167], and
several tons of dielectric material. In other words, it would
require investment comparable to ongoingweakly interacting
massive particle (WIMP) dark matter searches [168,169].
Though it does not reach the canonical QCD axion line
defined by Eq. (2), it could probe orders of magnitude of
unexplored parameter space, including nonminimal, mildly
tunedQCDaxionmodels which solve the strongCP problem
with exponentially smaller mafa [170,171].
If ADMX, CAPP, or any other GHz-frequency haloscope

[172–176] detects a signal consistent with axion dark
matter, a “post-discovery” setup, shown in dashed blue,
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can probe the same mass. Since it sits at a single frequency,
the SNR is enhanced by Q1=2

a ∼ 103 for tint ¼ 1 yr, as
compared to a scanning experiment. We assume noise is
reduced, relative to the cuber meter setup, by cooling to
10 mK and reducing amplifier noise by 3 dB using
demonstrated vacuum squeezing techniques [37]. We also
assume a quality factor of Q ¼ 108. To achieve this quality
factor, one needs a material with tan δ≲ 10−8, which has
been measured for a number of compounds. As for wall
losses, one can achieve Qc ≫ 108 with a superconducting
cavity, since polarization haloscopes do not require large
static magnetic fields. Alternatively, the mode profile can
be shaped with dielectrics, a technique which has achieved
Q ∼ 107 in a liter-scale copper cavity [97]. With these
enhancements, a polarization haloscope has the unique
ability to probe the minimal QCD axion.

VII. DISCUSSION

The QCD axion is an exceptional dark matter candidate,
which arises automatically in theories which solve other
problems of the Standard Model, with a simple and
predictive production mechanism. The minimal QCD axion
also has the unique advantage of possessing a defining
coupling to the Standard Model, which provides a sharp
target for laboratory searches.
A polarization haloscope naturally targets higher

frequencies than nuclear magnetic resonance experi-
ments [15]. Both approaches detect the electromagnetic
fields generated by spin polarized nuclei, but polarization

haloscopes do not involve changes in the spin direction and
hence do not require long spin coherence times. One could
also target kHz to MHz frequencies with our approach by
replacing the magnetic field in an LC circuit haloscope
[177–179] with a polarized dielectric.
We have laid out a path towards definitively probing the

QCD axion with polarization haloscopes. No fundamentally
new technologies are required, but many uncertainties
remain. Precisely computing the signal requires expertise
in theoretical nuclear, atomic, and solid state physics, while
the cavity design and the selection and polarization of the
material require experimental investigation. Together, such
efforts may enable the next definitive search for dark matter.
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