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If “dark quarks” from a confining hidden sector are produced at the LHC, they will shower and
hadronize to dark sector hadrons, which may decay back to Standard Model particles within the detector,
possibly resulting in a collimated spray of particles resembling a QCD jet. In this work we address
scenarios in which dark hadrons decay with a measurable small displacement, such that the relevant
background is dominated by heavy-flavor jets. Since dark sector parameters are largely unconstrained, and
the precise properties of a dark QCD-like theory are difficult to compute or simulate reliably in any case,
model-independent, data-based searches for such scenarios are desirable. We explore a search strategy
employing weakly supervised machine learning to search for anomalous jets with displaced vertices. The
method is tested on several toy signals, demonstrating the feasibility of such a search. Our approach has
potential to outperform simple cut-based methods in some cases and has the advantage of being more
model independent.
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I. INTRODUCTION

The diversity of particles and interactions in the Standard
Model (SM), along with the multiple questions that the SM
leaves unanswered, make it plausible for additional sectors
of particles to exist in nature. One simple possibility is an
exotic QCD-like sector [1]. The fermions and gauge bosons
of this sector can be charged under a new (“dark”) gauge
group and neutral under the SM. They are termed dark
quarks and dark gluons, in analogy with QCD. If the dark
gauge group confines at low energies, the spectrum of this
sector will contain composite states neutral under the new
gauge group—dark hadrons. One motivation for these
models is the possibility that dark hadron species that
are stable on cosmological scales may account for dark
matter [2–5]. However, such models are interesting also if
they do not play this role.
If some portal (for example, a heavy mediator) couples

the SM with the hidden sector, dark quarks can potentially
be produced at the LHC. If dark quarks are produced, they
will undergo parton showering and hadronization in the

dark sector, similar to QCD quarks. Species of dark
hadrons that are stable on detector scales will escape the
detector leaving a trail of missing energy. On the other
hand, some species may be unstable, decaying back to the
SM within the detector and forming a peculiar jet of SM
particles. In this work we aim to obtain better sensitivity to
such types of objects, known as dark jets.
The collider signature of dark jets (see Ref. [6] for a

review) is greatly influenced by dark sector specifics. Many
typical models would contain light dark pions π0, and dark
vector mesons ρ0 and other hadrons with masses of order of
the dark sector confinement scale ΛQCD0 . In such scenarios,
dark jets can be coarsely characterized by three parameters:
the average fraction of momentum carried by stable (invis-
ible) dark hadrons rinv, dark pion mass mπ0 , and dark pion
lifetime τπ0 .
In cases with sizable rinv, a key signature will be missing

energy =ET aligned with a jet. This scenario of semivisible
jetswas analyzed in Refs. [7,8], where a search program for
such models was proposed. References [9–11] suggested
also making use of jet substructure variables. A search for
resonant production of semivisible jet pairs was conducted
by CMS in Ref. [12]. It employed the cuts motivated by
Ref. [8] to probe for models with intermediate rinv and
promptly decaying visible dark hadrons. This search also
used a boosted decision tree with jet substructure inputs
motivated by Refs. [9,10]. ATLAS has performed a search
for nonresonant production of semivisible jets in Ref. [13].
Potential use of supervised deep neural networks (NN) for
the classification of prompt, semivisible jets was studied in
Refs. [14,15], weakly supervised learning was considered
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in Ref. [16], and the use of an unsupervised NN, an
autoencoder, was considered in Ref. [17].
Other types of dark jet scenarios, where missing energy

is no longer a dominant signature, are also possible. For
example, dark pions with macroscopic flight distances, cτπ0
of order 1–10 cm, will manifest as highly displaced objects
within the jet. A novel reconstruction object, Emerging Jet,
has been proposed for the classification of such jets in
Ref. [18]. A search for such objects, which are jets with few
or no tracks originating from the primary vertex, was later
conducted by CMS [19]. This search was sensitive to
scenarios with large dark pion flight distance, where QCD
background is scarce.
Overall, the large number of unknown dark sector param-

eters (gauge group, confinement scale, number of dark quark
flavors and their masses, additional interactions within the
dark sector, type of couplings to the SM and their strength),
combined with the difficulty of simulating dark sector
showering and hadronization reliably, call for model-
independent and simulation-independent searches for
anomalous jets. Machine learning (ML), and in particular
weakly supervised ML, is a natural tool for such a task.
In this work we propose to employ weakly supervised

ML for a largely model-independent, data-based search that
would be sensitive to anomalous jets (such as dark jets)
containing mildly displaced decays, so that the background
is dominated by heavy-flavor jets. We will not assume the
anomalous jets to contain missing energy since that case
has already been explored a lot in the literature, but will
instead rely on the presence of displaced objects. We will
assume the anomalous jets to be pair produced in a decay of
a heavy resonance.
The rest of the paper is organized as follows. In Sec. II

we review the relevant ideas of weakly supervised machine
learning. In Sec. III we describe the proposed search,
examine the most important backgrounds, and define the
features that will be made available to the NN. In Sec. IV
we define the datasets of signals and background that we
use to simulate the search. We present the search simulation
in Sec. V. We discuss the results and state our conclusions
in Sec. VI. Appendix A describes the event generation. The
details of the neural network classifier are provided in
Appendix B. Jet feature distributions of all benchmark
signals compared with the background distributions are
presented in Appendix C. The fit procedure used for
estimating bump significance is described in Appendix D.

II. WEAKLY SUPERVISED
MACHINE LEARNING

While the most traditional ML approach, that of fully
supervised learning, can provide very powerful classifiers,
using it to search for physics beyond the Standard Model
(BSM) requires specifying the exact BSM scenario that is
being searched for (and being able to simulate it reliably).
This makes fully supervised methods very model specific.
In recent years, methods have been developed which lessen

signal model dependence for selecting the test statistic.
These methods provide different amounts of model inde-
pendence, with the common trade-off of model independ-
ence vs signal sensitivity.
An example of a completely model-independent test

statistic is the output of an autoencoder trained on data
(e.g., Refs. [20–23]). This unsupervised learning method,
while being completely model agnostic, lacks sensitivity to
many signals [24,25].
A more moderate approach, in the realm of weakly

supervised learning, requires knowledge of class propor-
tions. In fully supervised training the true class of each
training example, e.g., signal/background, is known and
provided to the NN. Knowledge of class proportions means
only knowing what fraction of training examples belong to
each class. Using class proportions alone, a classifier can
learn to distinguish between classes, while training directly
on the mixed data. In ML literature this method goes by
the name Learning from Label Proportions [26,27]. It was
shown to be effective in quark/gluon discrimination, where
calculation of flavor proportions is possible [28,29].
This was extended to cases where label proportions are

unknown, with the sole requirement of two event groups that
have different signal proportions—this was termed
Classification Without Labels (CWoLa) [30,31]. To imple-
ment it in a search, one must separate the data to signal- and
background-rich groups, based on some property of the
signal model. In the case of a signal resonant in some
parameter, the signal-rich sample can be obtained from
selecting events near the resonance. This method goes by
the name Extended Bumphunt [32] and was implemented by
ATLAS in Ref. [33]. Using CWoLa in a monojet search to
enhance its sensitivity to semivisible jets was proposed
in Ref. [16].
Another approach, Tag N’ Train [34], suggests using

signal dijet topology to obtain the mixed samples. This
method uses cotraining, with the dataset of dijet events being
split into two views of each event, one containing first-jet
features and the other containing second-jet features. A
classifier is trained to discriminate signal-like first jets from
backgroundlike first jets. A second classifier is similarly
trained on second-jet features. Finally these classifier pre-
dictions are combined amounting to an event classifier. Each
of the jet classifiers is trained using CWoLa, where signal-
and background-rich labels are obtained from some criterion
on the other jet in the event. In Ref. [34] this criterion was
taken to be a cut on the output of an autoencoder trained on
the jet. It was shown in [34] that Tag N’ Train and Extended
Bumphunt can be effectively combined in searches for a dijet
resonant signal. In the current work, we adapt this last
approach to suggest a new search for dark jets.

III. PROPOSED SEARCH

We propose a largely model-independent, data-based
search that would be sensitive to resonantly pair-produced
anomalous jets containing mildly displaced decays.
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A. Strategy

We first select for dijet events with displaced objects, as
will be described in Sec. III B. Next we define signal and
background regions in dijet invariant mass based on a
mediator mass and resonance width hypothesis.
An event classifier is obtained according to the following

procedure. As in Tag N’ Train [34], each of the two leading
jets in each event may be assigned a signal- or background-
rich weak label according to some condition on the “other
jet” (among the two) in the event. In Tag N’ Train, the
“other jet” condition was based on an autoencoder output,
which is fully signal model independent. We propose to use
some model assumption, namely the fact that dark jets will
often have more constituents than SM jets.1 Therefore, we
choose jet constituent count,nobj, as ourweak classifier.

2 The
two jets are ordered by descending pT and labeled j1 and j2.
Signal-rich labels are assigned to jets within the signal region
for which the other jet constituent count is greater than some
chosen thresholdnSobj. Background-rich labels are assigned to
jets coming from the entire mass range (signal region and
sidebands) for which the other jet constituent count is smaller
than some chosen thresholdnBobj. Using these S/B-rich labels,
two classifiers are trained, one on j1s and the other on j2s.We
define our test statistic for the event as a whole to be the
product of the two jet classifier outputs. This quantity will
tend to have higher values for signals than for background
events. To avoid inference of events used for training, the data
should be split into k folds. The preceding steps should be
repeated k times, each time leaving a different fold out of
training. The event classifier not trained on a given fold is
used to classify the fold events.
The classifier is applied to both signal-region and side-

band events, and a cut with efficiency ϵD for the data in that
entire mass range is applied on the classifier output. The
optimal value of ϵD, i.e., most sensitive to signal, is model
dependent and therefore several values should be used.
After applying the cut, the invariant mass distribution in
the sidebands is interpolated into the signal region. The
expected event count in the signal region, based on the
interpolation, is compared to the measured number of
events in the signal region. The significance of the excess
is estimated based on Poisson statistics and systematic
uncertainties of the interpolation.

The search is to be conducted in the form of a bump hunt
in dijet invariant mass, i.e., each mediator mass hypothesis,
mZ0 , is considered separately. Resonance width can either
be determined from simulation or scanned over (e.g., as in
the BumpHunter [35]).
Once a significant excess is identified by the NN, the jets

from the events that pass the NN cut can be examined
manually to understand their nature.

B. Event selection

Event selection for the proposed analysis is performed in
two steps: a primary selection for dijet events adhering with
trigger limitations, and a more tailored selection for events
with displaced objects. Event selection requirements are
summarized in Table I.

1. Primary selection

The main motivation for the primary selection is to
adhere with trigger limitations. To ensure this, we follow
the cuts of an ATLAS dijet resonance search [36]. First, the
two jets are required to have pT > 150 GeV and jηj< 2.
Two more event level cuts are applied. The first is based
on half the rapidity separation of the leading jets, y� ¼
ðy1 − y2Þ=2. The absolute value of this observable tends to
be smaller for s-channel processes, such as our resonant
signal. To increase signal purity we therefore require
jy�j< 0.8. The second requirement is a minimal azimuthal
separation between leading jets, Δϕðj1;j2Þ¼ jϕ1−ϕ2j>1,
to prevent excessive overlap between the jets. Finally, a
lower bound of 1133 GeV on dijet invariant mass mjj is
required to ensure compliance with the trigger [36].

2. Displaced object selection

We wish to select for dijet events with displaced objects.
The criterion we chose for such events is that at least 20%
of the jet transverse momentum should be carried by tracks
that are associated with reconstructed displaced vertices. To
suppress contributions from long-lived SM hadrons, ver-
tices with two tracks and vertex mass close to the Λ or K0

S
masses (computed with the appropriate particle identity
assumptions for the products) are discarded. A summary of
event requirements is given in Table I.

TABLE I. Event selection summary. Both leading jets
(highest pT) must satisfy pT, η, and displaced vertex requirements.

pjet
T

>150 GeV

jηjjet <2

mjj >1133 GeV
jy�j <0.8
ΔϕðjjÞ >1P

disp:vert: p
vertex
T =pjet

T
>0.2

1One could also design an analogous search that would be
sensitive to scenarios in which BSM jets have fewer constituents
than SM jets.

2Other quantities, such as the number or the properties of the
displaced vertices in the jet, could serve as alternative weak
classifiers. Since our goal is to define a model-independent
search, we want the criterion defining the weak labels to be
simple and general and not optimized for any particular scenario.
The more detailed use of the various features that might
distinguish signal from background in each particular scenario
is left to the neural network.
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C. Standard Model background

Displaced vertices are primarily a signature of events
containing heavy flavor (b or c) quarks. We therefore
expect the leading SM background for our analysis to be
dijet events where both leading jets are of a heavy flavor. To
estimate the background magnitude and composition we
generated events in four groups:
(1) “bb events” contain a pair of b-flavored jets at the

parton level. These events are primarily bb̄, with
smaller contributions from bb and b̄ b̄.

(2) “cc events” contain a pair of c-flavored jets, analo-
gous to the above.

(3) “bc events” contain one b-flavored jet and one
c-flavored jet.

(4) The fourth group consists of the remaining dijet
events (which we will call “other”), which are events
that contain only one or no heavy-flavor jets at the
parton level.

Event generation, including details about detector sim-
ulation and vertexing, is described in Appendix A.
The total background cross section after the selection

described in Sec. III B is∼0.13 pb.3 The leading contribution
(∼50%) comes from bb events. The next dominant back-
ground (∼37%) comes from light or semilight QCD events,
i.e., with less than two final state heavy quarks at
the parton level (the “other” category above). This group
is dominated by events with gluons splitting to heavy quarks,
a process that is significant in the hard events under consid-
eration [37]. The remaining groups, bc and cc, account for

10% and 3% of the events, respectively. The selection
efficiencies of thedifferent groups are summarized inTable II.

D. Jet features used for classification

The cotraining step of the search requires a choice of jet
classification model and jet representation. We chose to
represent each jet as a list of high-level features as input
to a dense NN model. A complete description of the NN
model we used is provided in Appendix B. More complex
representations and architectures, such as a long short-term
memory (LSTM) network on lists of vertex features, were
also considered. In our testing, these were outperformed by
the simple dense architecture and therefore abandoned.
This could change as the amount of analysis data grows
since more data often favor more complex networks.
Jet features include vertex features chosen to represent

the properties of displaced objects within a jet and general
jet features that encode complementary jet information. We
consider the following vertex features: vertex mass, vertex
transverse displacementD0 divided by the boost factor γβT,
fraction of jet’s transverse momentum carried by the vertex
tracks, and vertex track count. For the features above, in the
case of more than one reconstructed vertex, the median
value across reconstructed vertices is used. The boost
factor, γβT , is computed according to

γβT ¼ pvertex
T

mvertex
; ð3:1Þ

where pvertex
T is the magnitude of the vector sum of pTs of

tracks associated to the vertex. Vertex mass is calculated
according to

m2
vertex ¼

�X
tracks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
track þm2

π�

q �
2

−
�X

tracks
ptrack

�
2

;

ð3:2Þ
i.e., the tracks are assigned the charged pion mass for
estimation of their energy, and the sum is over all tracks
associatedwith thevertex.We also supply the total number of
reconstructed vertices in the jet, excluding the primary vertex
and the number of particle-flow objects in the jet—nobj.
In our toy dark sector models that will be described in the

next section, the discrimination power of each of these
features varies with dark sector parameters. The dark pion
mass mπ0 directly affects mvertex. Increasing dark pion mass
also decreases the number of vertices per jet and increases the
number of tracks per vertex. The dark pion lifetime τπ0
directly affects ðD0=γβTÞvertex and also indirectly affects the
number of vertices. For larger dark pion lifetime, more
displaced vertices are distinguished from the primary vertex,
and therefore the number of displaced vertices increases.

IV. BENCHMARK DATASETS

While the search is intended to be largely model
independent, it is useful to test the strategy on some

TABLE II. Selection efficiencies and magnitudes of different
SM channels. The cross section after the primary selection, σprim,
is derived from the generation level cross section of group events
obtained from MadGraph at leading order times the efficiency of
the primary selection. Displaced object efficiency is presented

with respect to events after primary selection, namely ϵDO ¼ Npass

Nprim

(where Nprim and Npass refer to the numbers of our MC events).
The final available cross section is determined according to
σ ¼ ϵDOσprim.

Group Nprim Npass ϵDO σprim (pb) σ (pb)

bb 1066652 100551 0.094 0.71 0.067

jj (“other”) 671729 62 9.2 × 10−5 530 0.049

cc 2059665 27069 0.013 0.98 0.013

bc 577405 9163 0.016 0.24 0.0038

3To reduce the computational burden, our simulation used
leading-order matrix elements, followed by parton showering.
However, higher-order QCD corrections, including hard jet
radiation, can have some effect on the production cross section,
the selection efficiency, and the properties of the two leading jets.
While our data-based search methodology is not directly depen-
dent on the simulation details, quantitative claims about the range
of scenarios that can be discovered or excluded may be affected.
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examples. Since the detailed physics of confining hidden
sectors is not known well and is very model dependent, and
the simulation tools are limited too, we consider a set of
simplistic toy models, defined as follows.

A. Benchmark hidden sectors

We base our toy models on the scenario that is obtained
in the PYTHIA8 Hidden Valley module [38] for an SUð3Þ
gauge group with a single quark flavor. We consider fully
visible jets, i.e., rinv ¼ 0, which manifests as no excessive
missing transverse energy. We consider six combinations of
the remaining two parameters, with values ðmπ0 ; cτπ0 Þ ¼
f5 GeV; 10 GeVg × f0.1 mm; 0.2 mm; 0.3 mmg. Other
mass parameters of the dark sector—confinement scale,
constituent dark quark mass, and vector meson mass—were
scaled with mπ0 , starting at ΛQCD0 ¼ 5 GeV, mq0 ¼ 5 GeV,
and mρ0 ¼ 10.5 GeV for mπ0 ¼ 5 GeV. The probability for
creating dark vector mesons is kept at its default value of
0.75.We assume the dark vector mesons decay promptly and
exclusively to dark pion pairs: ρ0 → π0π0. Our simulated dark
pions decay exclusively to SM down quark-antiquark pairs:
π0 → dd̄. Decays to heavier flavor quarks are in principle
possible for mπ0 values considered and perhaps even moti-
vated by helicity suppression. However, we found such
scenarios less interesting as they produce many additional
displacedvertices from the decays of the heavy flavor quarks,
amounting to a signal too distinct from QCD background.
The benchmark Hidden Valley parameters are summarized
in Table III.
We test the sensitivity of our proposed search to resonant

dijet events produced via pp→Z0→q0q̄0 withmZ0 ¼2TeV.
We assume an interaction Lagrangian of the following
form:

L ⊃ −gqZ0
μq̄γμq − gq0Z0

μq̄0γμq0; ð4:1Þ
where the first term describes the Z0 coupling to SM quarks
and the second to dark quarks.

B. Benchmark datasets

Our background dataset contains 106k events that passed
the full event selection in the dijet invariant mass range
1400 GeV ≤ mjj ≤ 2400 GeV. The majority, 89k, are bb

events and the rest, 17k, are cc events. As can be seen in
Table II, these two channels combined account for the
majority of QCD events that pass selection. We would
ideally simulate the entire QCD dijet sample (rather than
only bb and cc); however this is too computationally expen-
sive for us due to low selection efficiencies of the displaced
objects cut. If we rescale the cross section so that the total
background cross section is correct, then based on the
analysis of Sec. III C this example corresponds to an
integrated luminosity of∼800 fb−1 available for the analysis.
We will analyze in detail the example of a Z0 with mass

mZ0 ¼ 2 TeV and a negligible width relative to the exper-
imental dijet invariant mass resolution. Motivated by the
shape of the resulting dijet invariant mass distribution
[see, e.g., Fig. 5(a)], whose width is not very model
dependent since it is dominated by the experimental reso-
lution, we define the signal region to be the invariant mass
rangemjj ∈ ½1600; 2000� GeV.4 We define the sidebands as
mjj ∈ ½1400; 1600Þ ∪ ð2000; 2400� GeV. These boundaries
are chosen such that the sidebands and the signal region
contain comparable numbers of background events.
Approximately 20% of the background events are in
the signal region. Signals, one of the six hidden sector
configurations described in Sec. IVA, are injected to this
background. Signal size, which we will vary, will be pre-
sented in terms of signal fraction fS ¼ NS=ðNB þ NSÞ,
where NB and NS and the background and signal event
count in the entire mass range (signal region and sidebands)
after event selection.
The feature distributions for the different benchmark

signals (and the background) are provided in Appendix C.
The most discriminating features for this set of benchmarks
are the number of objects in the jet, vertex count, and
transverse momentum fraction. One can also see that as
dark pion displacement increases, from 0.1 mm to 0.3 mm,
the number of signal vertices increases because more dark
pions decay outside the primary vertex resolution. Vertex
mass is a stronger discriminator for the 10 GeV dark pion
mass in comparison to the 5 GeV case.

V. EXAMPLE SEARCH

In this section we present results of an example search
conducted on a simulated benchmark dataset. We provide a
detailed account for the case of a dark sector with mπ0 ¼
10 GeV and cτπ0 ¼ 0.2 mm with a signal fraction fS ¼
0.5%, where the number of signal events is NS ¼ NB ·
fS

1−fS
¼ 530 events. We provide aggregated results for differ-

ent signal fractions of all other benchmark signals.

TABLE III. Hidden Valley parameters used for the six bench-
mark signal configurations.

Gauge group SU(3)

ΛQCD0 5=10 GeV
nq0 1
mq0 5=10 GeV
mπ0 5=10 GeV
mρ0 10.5=21 GeV
cτπ0 0.1=0.2=0.3 mm
rinv 0

4This choice of the mass window is based on the region
in which the resonant contribution appears in our DELPHES

simulation. In an actual experimental analysis, this choice should
be reconsidered based on a more accurate simulation of the
corresponding detector and jet energy scale corrections that are
applied to the reconstructed jets.
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A. Weak jet classifier

We used the number of particle-flow objects, nobj, of each
jet to assign a signal-rich or background-rich (weak) label for
the other jet, as described in Sec. III A. Backgroundlike
threshold, nBobj, was taken to be the 25% (lower) quantile for
the number of particle-flow objects. Signal-like threshold,
nSobj, was taken to be the 75% (upper) quantile for the number
of particle-flow objects (amounting to nBobj ¼ nSobj). The
softer signal-like threshold is complemented by the invariant
mass region selection so that after both cuts the signal- and
background-rich labels are approximately balanced. The
thresholds were chosen after trying a number of alternatives
and finding that results are not very sensitive to this choice.
Using tighter signal- and background-rich thresholds
amounts to a higher effective signal fraction for training.
This comes at the cost of less data available for training. A
quantification of this tradeoff is left for future works.
Jet constituent count thresholds corresponding to the

chosen quantiles are nthreshobj ¼ 24 for cuts on j1 and nthreshobj ¼
25 for cuts on j2. The difference stems from a slightly higher
object multiplicity for second jets. These values were
unaffected by the small signal fractions considered and
are therefore the same for all signals and all signal fractions.
From cutting on j1 and j2 constituent counts, and requiring
that signal-rich jets come from signal-region events, we
obtain two background-rich and two signal-rich samples.
In the 0.5% signal fraction case of the ðmπ0 ; cτπ0 Þ ¼

ð10 GeV; 0.2 mmÞ signal, these cuts leave 26292 (23906)
background-rich jets and 27824 (28432) signal-rich jets
from cuts on j2 (j1) constituent counts. From an initial
0.5% signal fraction in the entire dataset, the enriched
signal fractions are 1.59% (1.56%) in the signal-rich
samples and 0% (0%) in the background-rich samples
from cuts on j2 (j1) multiplicities.

B. Weakly supervised event classifier

After applying the weak cuts to the 0.5% signal fraction
case of the signal with ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ,

51% (49%) of jets were assigned weak labels according to
nj1obj (n

j2
obj). Of these events, 10% are put aside for validation

to avoid overfitting. A classifier, described in Appendix B,
is trained to distinguish between the remaining 46% (44%)
of events using j1 (j2) features and the weak labels. After
weak-label assignment and putting aside of the validation
set, 48704 jets and 47104 jets are available for training j1
and j2 classifiers, respectively. The classifiers were trained
for 100 epochs. Learning curves are presented in Fig. 8. To
evaluate the classifiers’ performance, a new dataset of 35k
signal and 35k background events was generated. NN
outputs and receiver operating characteristic (ROC) curves
for the 0.5% signal fraction case of the ðmπ0 ; cτπ0 Þ ¼
ð10 GeV; 0.2 mmÞ signal are shown in Figs. 1 and 2.
ROCs comparing discrimination of classifiers trained on
different signal fractions are shown in Fig. 3. As expected,
classifier performance deteriorates as fS is decreased.
Still, even at fS ¼ 0.1%, the classifier is very powerful.
However, going to much lower signal fractions is not
relevant because they will not be detectable eventually in
the bump hunt procedure that is discussed in the next
subsection. ROCs comparing the outcomes for the different
benchmark signals with 0.5% signal fraction are shown
in Fig. 4.

C. Identifying and quantifying an excess

Our null hypothesis, which we will confirm in the
following, is that the dijet invariant mass distribution of
the background after the NN cut is still well described by a
smoothly decreasing function. We construct the following
test statistic to probe for deviations from this hypothesis
due to a possible signal. We bin the events (with a bin size
of 50 GeV in our example) and fit the sidebands to the
following three-parameter function:

dN
dmjj

¼ p0

ð1 −mjj=
ffiffiffi
s

p Þp1

ðmjj=
ffiffiffi
s

p Þp2
; ð5:1Þ

FIG. 1. NN output distributions for j1, j2, and combined classifiers, for the scenario with ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ,
fS ¼ 0.5%.
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also used in ATLAS [39] and CMS [40]. The fit parameters
pi were constrained to positive values. We estimate the
number of expected events in the signal region using the fit
and compare it to the measured number of events in the
signal region. Our test statistic is the excess

t ¼ Nsig:reg:
meas − Nsig:reg:

expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2meas þ σ2exp

q : ð5:2Þ

The uncertainty in the measured counts is estimated by
Poisson statistics as σ2meas ¼ Nsig:reg:

exp . The uncertainty in the
expected counts is obtained by linearly propagating param-
eter fit uncertainties. Further details of this procedure are
provided in Appendix D. We obtain test statistic values for
different cut efficiencies of the NN. To avoid training many
classifiers, as would be done in the k-fold procedure
described in Sec. III A, we use the entire 106k event
dataset for semisupervised training and continue with
inference on a new (same size) dataset. This is similar to
the k-fold procedure for a large enough k.
Let us now exemplify the search with one realization of a

background and signal sample. Invariant mass distributions
subject to NN cuts of varying efficiency are presented in
Fig. 5 for the ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ signal with
fS ¼ 0.5%. The invariant mass spectrum of the entire
dataset after the event selection described in Sec. III B is
shown in Fig. 5(a). The test statistic significance prior to
any further cut is −0.72σ. (The negative sign indicates a
downward deviation.) The invariant mass spectra after
applying the NN cuts with ϵD ¼ 2%, 1%, 0.6% are shown

FIG. 2. Solid curves are ROCs for NN jet classifiers trained
using cotraining, and the event classifier obtained from their
product, for the scenario with ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ,
fS ¼ 0.5%. Dashed curves are ROCs for the weak jet classifiers
(constituent count of each jet) and the event classifier obtained
from their sum. Shaded areas signify 1σ statistical uncertainty,
where for a cut leaving NB background events out of a total N0

B
background events, we used σ ¼ N0

B=N
2
B ·

ffiffiffiffiffiffiffi
NB

p
. The curves

were terminated at NB < 10ð1=ϵB ¼ 3500Þ.

FIG. 3. ROCs comparing classifiers trained using weakly
supervised learning with varying signal fractions fS of the
benchmark signal with ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ.

FIG. 4. ROCs comparing classifier discrimination for different
benchmark signals. All classifiers were trained with fS ¼ 0.5%.
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in Figs. 5(b)–5(d), respectively. Apart from the significan-
ces obtained with fit to the sidebands, the information
tables at the bottom of these plots show also the signifi-
cance estimates that would be obtained from the naive
calculation of nS=

ffiffiffiffiffiffi
nB

p
in the signal region. As expected,

since it does not account for the statistical fluctuations in
the sidebands and for the potential contributions in the
sidebands due to the signal tails, the naive estimate of the
significance is unrealistic, and it is crucial to simulate fit to
the sidebands like we did.

Significance as a function of ϵD for different signal
fractions is presented in Fig. 6. The significance peaks
at ϵD ∼ fS, peaking at higher data efficiencies for greater
signal fractions. For fS ¼ 0.25% and fS ¼ 0.5% the signals
pass the discovery threshold of 5σ whereas the fS ¼ 0.1%
signal falls short. Significance obtained for different bench-
mark signals with fS ¼ 0.5% is presented in Fig. 7. All
benchmark signals are discoverable at this signal fraction.
We also test for the bump significance in a dataset with

no signal. This corresponds to the fS ¼ 0 curve in Fig. 6.

FIG. 5. Invariant mass spectrum of events passing NN cut with varying selection efficiency ϵD. The sidebands are shaded. The
significance in the “true” rows corresponds to true nS=

ffiffiffiffiffiffi
nB

p
within the signal region. The significance in the “sideband fit” rows is

obtained from the fit parameters according to Eq. (5.2).

BARDHAN, KATS, and WUNCH PHYS. REV. D 108, 035036 (2023)

035036-8



The significance fluctuates between ∼0 and 2σ for the
values of ϵD considered, which reassures us that no large,
spurious bump is carved in the analysis. However, a similar
significance trend was observed in a second background
realization we tested, suggesting that some ∼þ 1σ bias
exists in our significance estimation. A more detailed
study, which would involve generating a large number

of background realizations, will be needed to quantify the
size of this apparent bias more precisely. Additionally, one
could explore whether the bias could be reduced by using a
different fitting function. More sophisticated methods to
reduce sculpting (e.g., along the lines of Ref. [41]) could
also be explored.
While the weakly supervised machine learning method

outlined here is working well, it is interesting to ask how it
performs relative to simpler methods. An obvious com-
parison in the case of our benchmark models is to cutting
on the jet constituent multiplicity variable. Instead of the
loose cut on the multiplicity that was used in the ML
approach for producing the weak labels, we apply tight
cuts on the sum of the multiplicities of the two jets and use
the same sidebands fit procedure. Table IV summarizes the
bump significance obtained when cutting on the output of
the weakly supervised event classifier and when cutting
on the sum of object multiplicities of both jets, for all
benchmark signals. The ðmπ0 ; cτπ0 Þ ¼ ð5 GeV; 0.3 mmÞ
signal was discovered at fS ¼ 0.25%, and all the rest were
discovered at fS ¼ 0.1%. For these signal fractions it
was usually the case that cutting on multiplicity slightly
outperformed the NN. (Note, however, that significance
values like 5σ and higher are somewhat uncertain because
they assume the fluctuations due to the fit uncertainties to
remain Gaussian far on the tails. Also, the bias discussed
in the previous paragraph needs to be quantified for
both methods. Therefore, small differences should not be
taken too seriously.) The exception is the ðmπ0 ; cτπ0 Þ ¼
ð5 GeV; 0.3 mmÞ signal that was discovered with higher
significance by the NN at fS ¼ 0.25%.

VI. SUMMARY AND CONCLUSIONS

A hidden (“dark”) confining sector may reveal itself at
the LHC in the form of anomalous jets, dubbed dark jets,
whose properties are very model dependent. In this work
we considered dark sectors with dark hadron lifetimes
similar to heavy-flavor QCD quarks. A main feature of jets
arising from such a sector is displaced vertices from the

FIG. 6. Bump significance as a function of selection efficiency
at four signal fractions for ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ
signal.

FIG. 7. Bump significance as a function of selection efficiency
for the six benchmark signals at fS ¼ 0.5%.

TABLE IV. Comparison between object multiplicity cut and
weakly supervised NN cut. The columns max σNN and max σnobj
correspond with the maximum bump significance across selection
efficiencies ϵD for cuts on NN output and cuts on the sum of object
multiplicities of both jets, respectively. For this we consider ten
values of ϵD spaced log uniformly in the range [0.001, 0.1].

fS (%) mπ0 (GeV) cτπ0 (mm) max σNN (σ) max σnobj (σ)

0.1 5 0.1 5.4 7.2
0.1 5 0.2 5.2 5.9
0.1 5 0.3 4.3 4.8
0.25 5 0.3 9.6 8.6
0.1 10 0.1 5.4 6.8
0.1 10 0.2 4.9 7.2
0.1 10 0.3 4 5.6
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decays of dark hadrons. We propose using the features of
reconstructed vertices to further capture the properties of
the displaced objects. The dark sector scenarios we con-
sider are complementary to the ones considered in most of
the papers on the subject, which assume the presence of
missing energy or very large vertex displacements or do not
take advantage of displaced vertices.
The wealth of data collected at the LHC offers an

opportunity to harness machine learning to discriminate
BSM from SM signatures. A traditional approach to doing
so is using MC simulations of signal (or a mix of signals)
events and of SM events to train a NN. This paradigm has
drawbacks. There are large uncertainties in simulating
events, introduced by modeling uncertainties of nonper-
turbative QCD processes (and in our case also those of the
dark confining sector) as well as detector modeling.
Another drawback is a lack of generality which translates
to reduced sensitivity (if any) to signals not used for
training. This is a problem when sensitivity to a wide
range of signals is required. Dark sector details are largely
unconstrained, allowing for a wide range of dark jet
signatures. In this work we propose using the weakly
supervised method Tag N’ Train in searches for dark jets
with displaced vertices. Tag N’ Train is a weakly super-
vised method to obtain a dijet event classifier. The
procedure starts with a weak jet classifier. We propose
using a cut on jet constituent multiplicity for this stage. This
choice makes use of the fact that many dark sector models
produce high multiplicity jets. Using the weak labels
obtained from the weak classifier, two classifiers are
trained, one for each of the two leading jets in the event.
We use dense NN supplied with displaced vertex features,
including number of displaced vertices, vertex transverse
displacement, vertex mass, number of associated tracks,
and the fraction of transverse momentum carried by the
vertex out of total jet transverse momentum. Jet constituent
multiplicity was also supplied.
We tested this procedure on simulated events with a set

of toy dark sector scenarios. We showed that the vertex
features can be good discriminators between heavy flavor
quark jets and dark jets. We demonstrated a concrete
example of a search for resonant dark jet pairs with
displaced vertices. The search is conducted in the form
of a bump hunt where different mass hypotheses are tested
separately. We presented a detailed analysis of the example
of a 2 TeV resonance. The resonance mass hypothesis was
incorporated in the weak classifier—only jets coming from
events within the signal region in invariant mass were
candidates to be assigned the signal-rich label. After
training the NNs and applying them to simulated data,
the significance of the bump was estimated for different NN
selection efficiencies. The semisupervised classifier suc-
ceeded in learning from auxiliary features specific to the
signal that was present in the data for signal fractions as
small as 0.1%.

However, at least for the range of examples we
examined, the sensitivity of our machine learning method
turned out to be comparable (with the details of the
comparison depending on the model) to what can be
achieved by using the number of objects in the two jets,
which by itself is a search that has never been done and
is worth pursuing. One cause of the NN not offering a
big advantage is the low signal fractions. The discrimi-
nation power of CWoLa often deteriorates with decreas-
ing signal fraction while a cut on the number of objects
in the jets is unaffected. The effective signal fraction can
always be increased by tightening the thresholds of the
weak classifier. However, this comes at the cost of fewer
events available for training the NN. Therefore, this
method might improve as more data are collected and
available for analysis.
It could be interesting to extend this method to dark

sectors with promptly decaying dark hadrons, where a very
different set of features and different backgrounds will be
relevant. Another interesting direction would be to consider
nonresonant dijet production, where the Tag N’ Train
method naturally remains applicable.
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APPENDIX A: EVENT GENERATION

Parton level events at collider energy of 13 TeV were
generated using MadGraph5 [42] with the NN23LO1 [43]
PDF set. A massive Z0 mediator with couplings to SM
quarks and dark quarks was implemented using the
Universal FeynRules Output (UFO) files from [8]. Some
parton-level cuts, softer than the eventual selection cuts of
Sec. III B, were applied in MadGraph5 to save computation
time for the background: jet pT > 100 GeV, mjj > 1 TeV,
jet jηj< 3, and ΔRðj1; j2Þ> 1. Showering and hadroniza-
tion were simulated using PYTHIA8 [44]. Dark-sector
showering was done using PYTHIA8’s Hidden Valley
module [38]. Detector simulation was conducted with
DELPHES 3 [45] using the ATLAS detector card with added
track smearing according to [46]. Jets were reconstructed
from calorimeter deposits using the anti-kT algorithm [47]
with jet radius R ¼ 0.7. Particle-Flow5 constituents were

5Particle Flow is an algorithm to reconstruct track and
calorimeter tower measurements into a list of electrons, muons,
charged hadrons, neutral hadrons, and photons.
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then assigned to jets based on their angular distance (ΔR)
from the axes of the reconstructed jets. Vertices were
reconstructed with the Adaptive Vertex Fitting algorithm
[48] using default parameters (σcut;p ¼ 2, σcut;s ¼ 6, and
wmin ¼ 0.5), implemented in the RAVE toolkit [49]. All
event tracks were used for primary vertex reconstruction

while only tracks belonging to a given jet were used to find
secondary vertices.

APPENDIX B: NEURAL NETWORK
ARCHITECTURE

We use a dense neural network architecture built and
trained using Keras [50] with TensorFlow [51] backend. The
network has four hidden layers with 32, 16, 16, 4 nodes,
respectively. These parameters were coarsely optimized to
avoid over/under fitting. The first hidden layer activation is
the leaky rectified linear unit. For the remaining three layers
exponential linear units were used. A sigmoid function was
applied to the output. Each hidden layer except the last was
followed by a dropout layer with a rate of 0.1. A network
summary is provided in Table V. Binary cross-entropy loss
function and Adam optimizer were used for training. Each
input feature was globally shifted and scaled according to
the sample mean and standard deviation of the training
data. These scale and shift values are saved. When new data
are to be inferred by the classifier they are scaled and
shifted by the same values. Examples of learning curves are
shown in Fig. 8.

TABLE V. NN summary.

Layer (type) Output shape # Parameters

Layer-1 (Dense) (None, 32) 224
Activation (LeakyReLU) (None, 32) 0
Dropout (Dropout) (None, 32) 0
Layer-2 (Dense) (None, 16) 528
Activation (ELU) (None, 16) 0
Dropout (Dropout) (None, 16) 0
Layer-3 (Dense) (None, 16) 272
Activation (ELU) (None, 16) 0
Dropout (Dropout) (None, 16) 0
Layer-4 (Dense) (None, 4) 68
Activation (ELU) (None, 4) 0
Output (Dense) (None, 1) 5

Total parameters: 1,097

FIG. 8. Learning curve of j1 (left) and j2 (right) classifiers training on ðmπ0 ; cτπ0 Þ ¼ ð10 GeV; 0.2 mmÞ signal with fS ¼ 0.5%. Since
the validation set is evaluated without use of the dropout layers it is not surprising that the validation set loss is smaller than the training
set loss.
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APPENDIX C: FEATURE DISTRIBUTIONS

This appendix presents in Figs. 9–14 the feature distributions for the benchmark signals and the background based on
events in the mass region mjj ∈ ½1400; 2400� GeV after event selection.

1. ðmπ0 ;cτπ0 Þ = ð5 GeV;0.1 mmÞ

FIG. 9. Distributions of vertex displacementD0=γβT , vertex massmvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number of
tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices (not
including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The step-
like features in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2.

Jets with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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2. ðmπ0 ;cτπ0 Þ = ð5 GeV;0.2 mmÞ

FIG. 10. Distributions of vertex displacement D0=γβT , vertex mass mvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number
of tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices
(not including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The
steps in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2. Jets

with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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3. ðmπ0 ;cτπ0 Þ = ð5 GeV;0.3 mmÞ

FIG. 11. Distributions of vertex displacement D0=γβT , vertex mass mvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number
of tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices
(not including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The
steps in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2. Jets

with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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4. ðmπ0 ;cτπ0 Þ= ð10 GeV;0.1 mmÞ

FIG. 12. Distributions of vertex displacement D0=γβT , vertex mass mvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number
of tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices
(not including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The
steps in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2. Jets

with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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5. ðmπ0 ;cτπ0 Þ= ð10 GeV;0.2 mmÞ

FIG. 13. Distributions of vertex displacement D0=γβT , vertex mass mvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number
of tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices
(not including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The
steps in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2. Jets

with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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6. ðmπ0 ;cτπ0 Þ= ð10 GeV;0.3 mmÞ

FIG. 14. Distributions of vertex displacement D0=γβT , vertex mass mvertex, vertex transverse momentum fraction pvertex
T =pjet

T , number
of tracks associated to vertex ntracks, total number of jet constituents nobj, and total number of reconstructed displaced vertices nvertices
(not including primary vertex). If more than one vertex is reconstructed in a given jet the median value for vertex features is taken. The
steps in the distribution of pvertex

T =pjet
T are an artifact of requiring the sum of this variable over all jet vertices to be greater than 0.2. Jets

with only one displaced vertex, which are the majority of background jets, are constrained to values greater than 0.2. Jets with two
displaced vertices are constrained to a median greater than 0.1, etc.
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APPENDIX D: FIT PROCEDURE

The sidebands were fit using scipy.curve_fit,
SciPy’s [52] implementation of nonlinear least squares
fit. The fit optimizes the cost function L ¼ rTr where ri
is the residual in the ith bin divided by the uncertainty

in measured bin counts. The bin count uncertainty in
a bin with n counts was taken to be

ffiffiffi
n

p
according

to Poisson statistics. The statistical uncertainty of
expected counts in the signal region was estimated accord-
ing to

σ2exp ¼ Var

� X
x∈sig:reg:

Nðx;pÞ
�

≈ Var

� X
x∈sig:reg:

dN
dp

ðx; p̂Þ · ðp − p̂Þ
�

¼
�X

x∈sig:reg:
dN
dp

�
T
Cov

� X
x∈sig:reg:

dN
dp

�
; ðD1Þ

where Nðx;pÞ is the fit function from Eq. (5.1) multiplied by the bin size, p is a random variable vector of fit function
parameters, and p̂ are the estimated parameters. The covariance matrix for the parameters is estimated by

Cov ¼ L
m − n

ðJTJÞ−1; ðD2Þ

where L is the cost function at p̂,m is the number of points used for the fit, n is the number of parameters (¼ 3), and J is the
Jacobian of r with respect to the parameters, evaluated at p̂.
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