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We examine the parameter space region of the inverse seesaw model that is consistent with neutrino
oscillation data. We focus on the correlation between the current limits from the search of the μ → eγ lepton
flavor violating decay and the nonstandard effects associated with the presence of new heavy neutrino
states. Unlike what we would expect from an inverse seesaw model, we present a structure for the neutrinos
mass matrices in which the rates of charged lepton flavor-violating processes are negligible. Additionally,
we provide a model based on symmetries for such a scenario.
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I. INTRODUCTION

The seesaw mechanism offers an attractive scenario to
explain the tiny Majorana neutrino masses. The suppres-
sion of the light masses is due to the tree-level exchange
of very heavy fields, such as right-handed singlet fermions
(type-I seesaw) [1–4], scalar triplet (type-II seesaw) [5–9],
or fermions triplet (type-III seesaw) [10]. Nevertheless, a
direct experimental test of these high-scale scenarios might
be impossible due to the decoupling of the new heavy
particles. Alternatively, low-scale seesaw models, more
specifically, the inverse [11,12] and linear models [13] are
well-motivated variants that open the possibility for a richer
phenomenology at a new physics scale accessible to current
experiments, such as the existence of new heavy neutrino
states with masses at the TeV scale, as well as the presence
of charged lepton flavor violating (cLFV) or lepton number
violation (LNV) processes at sizeable levels [14–24].
In this work, we analyzed the parameter space region

of the so-called inverse seesaw (ISS) model consistent
with the current data in the neutrino sector. We based our
analysis on two possible scenarios. In the first one, which

we will call Model A, we focus on the correlation between
nonunitary effects associated with the presence of heavy
neutrinos and the limits from the search for cLFV proc-
esses. The second case, Model B, presents a scenario by
assuming diagonal structures for the Dirac and heavy mass
matrices, while all the structure comes from the lowest
scale mass matrix. Model B is special since only the SM
neutrinos contribute to cLFV processes. Moreover, the
contribution from the heavy fermions vanishes at the
leading order, which goes against the typical assumption
in a low-energy seesaw model. We verified our findings by
using two methods, the perturbative block mass matrix
diagonalization (BMDM) method presented in [25,26] and
our complete numerical diagonalization routine imple-
mented in Wolfram Mathematica.
We highlight that when the matrix η is diagonal, the

cLFV processes are suppressed no matter the seesaw scale.
For this reason, we provided a UV-complete model for
scenario B. In such a scenario, we stress the comparison of
our results using a complete numerical diagonalization with
the BMDM.
The structure of this manuscript is as follows: Sec. II is

devoted to introducing the general form of the mass matrix
defining the seesaw models, the basic aspects of the
BMDM, and presenting the η matrix that quantifies the
nonunitary effects. After this, we diagonalized the neutrino
mass matrix of the ISS model as a particular case of the
general seesaw structure. Section III presents the analytical
expressions, and the current experimental status of the
cLFV decays l → l0γðl ¼ μðτÞ;l0 ¼ eðe; μÞÞ. In Sec. IV,
we present the numerical analysis associated with the
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phenomenology of Models A and B. Section V introduces
an ultraviolet completion for Model B. We finish with a
summary and conclusions in Sec. VI.

II. SEESAW MODELS

From a theoretical perspective, the Majorana nature
of neutrinos is motivated by the scale suppression in
the dimension 5 Weinberg operator [27], whose UV
completion may rise from the seesaw models. In a seesaw
model, besides the three active left-handed neutrinos νLi
(i ¼ 1, 2, 3) of the SM, the neutrino sector is extended
by a number n of new right-handed singlets fields NRk
(k ¼ 1; 2;…; n) that allow both Dirac and Majorana
mass terms:

−LMass ¼ ν̂LiðMDÞijN̂Rj
þ 1

2
N̂c

RiðMRÞijN̂Rj
þ H:c:;

ð2:1Þ

where ψc ≡ Cψ̄T is the charge conjugated field and C is the
charge conjugation matrix. Notice that in such a case, the
total number of neutrino states is given by n0 ≡ ð3þ nÞ.
Equation (2.1) can be written in a compact form, in the

basis χ̂L ≡ ðν̂L1; ν̂L2; ν̂L3; N̂c
R1;…; N̂c

RnÞ, as follows

−LMass ¼
1

2
χ̂LMχ̂cL þ H:c:;

where Mn0×n0 ¼
 

03×3 MD3×n

MT
Dn×3

MRn×n

!
; ð2:2Þ

where the hat in Eq. (2.2) stands for the fields in the flavor
basis, i.e., χ̂Li ¼ Uν�

ij χLj, and χLj are the physical neutrino
states.1 The above structure defines the type-I seesaw

models, where the dimension of the subblock matrices
MD and MR is denoted by the subindices,2 in such a
way that the complete neutrino matrix M has dimen-
sions n0 × n0.

A. Block matrix diagonalization method (BMDM)

In the type-I seesaw, the heavy right-handed neutrinos
are integrated out. In this case, we are in the limit
jMDj ≪ jMRj. It is possible to block-diagonalize the
neutrino mass matrix up to terms of the order M−1

R MD
by a unitary matrix Uν that connects weak and physical
states as follows [25,26]

ðUνÞTMUν ¼ Mdiag;

where Mdiag
n0×n0 ¼

 
mdiag

ν3×3 03×n

0n×3 Mdiag
Nn×n

!
: ð2:3Þ

In the above expression, mdiag
ν3×3 ≡ diagðm1; m2; m3Þ is a

subblock diagonal matrix associated with the three light
active states, while Mdiag

Nn×n
≡ diagðmN1

; mN2
;…mNn

Þ is a
subblock diagonal matrix defining the masses of n heavy
states. The matrix Uν at leading order is approximated as
[25,26]

Uν
n0×n0 ¼ Uν

n0×n0 · Vn0×n0 ; ð2:4Þ

with

Vn0×n0 ¼
 
V13×3

0

0 V2n×n

!
; ð2:5Þ

and

Uν
n0×n0 ¼

 
I3×3 − 1

2
ðM�

DðM�
RÞ−1M−1

R MT
DÞ3×3 ðM�

DðM�
RÞ−1Þ3×n

−ðM−1
R MT

DÞn×3 In×n − 1
2
ðM−1

R MT
DM

�
DðM�

RÞ−1Þn×n

!
; ð2:6Þ

where I denotes the identity matrix, while the matrices V13×3
and V2n×n

are unitary matrices connecting the flavor and
physical states

mdiag
ν3×3 ¼ðVT

1mνV1Þ3×3; Mdiag
Nn×n

¼ðVT
2MNV2Þn×n: ð2:7Þ

The matrices mν3×3 and MNn×n
are given by

mν3×3 ¼−ðMDM−1
R MT

DÞ3×3; MNn×n
¼MRn×n

: ð2:8Þ

B. Nonunitarity effects

The leptonic charged current characterizing a model with
three generations of left-handed lepton doublets and n right-
handed neutrino singlets can be written as follows [6,14,21]

LW∓ ¼ −
gffiffiffi
2

p W−
μ

X3
i¼1

Xn
j¼1

Bijliγ
μPLχj þ H:c:; ð2:9Þ

1Note also that in order to define all the mass states positive
the matrix Uν can be multiplied by a diagonal matrix

ffiffiffi
λ

p
of

complex phases, this is equivalent to redefining the fields by
χi → χLi þ λiχ

c
Li, where λi ¼ �1 is the CP parity of the field χi.

2We use this notation in all the text when we consider
necessary to clarify the dimensions of the matrices.
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where

Bij ¼
X3
k¼1

Ul�
ki U

ν
kj; ð2:10Þ

defines the mixing in the leptonic sector, and it has a
rectangular form with dimensions 3 × n0 (n0 ¼ 3þ n the
number of total neutrino states). In Eq. (2.10), Ul

3×3 is the
matrix that diagonalizes the charged lepton mass matrix.
It turns out helpful to rewrite the Bij as follows

B3×n0 ≡ ðBL3×3
; BH3×n

Þ; ð2:11Þ

where BL3×3
and BH3×n

are two subblock matrices describing
separately the flavor mixing between light and heavy lepton
states, respectively. Therefore, working in the diagonal
charged lepton mass basis (Ul

ik ¼ δik), we have that

BL3×3
¼
�
I3×3 −

1

2
ðM�

DðM�
RÞ−1M−1

R MT
DÞ3×3

�
· V13×3

;

ð2:12Þ

BH3×n
¼ ðM�

DðM�
RÞ−1Þ3×n · V2n×n

; ð2:13Þ

with V1 identified with the neutrino mixing matrix
UPMNS. Furthermore, as with any general matrix, we
can write it as the product of a Hermitian matrix and a
unitary matrix [28]. BL3×3

can be rewritten in the following
manner

BL3×3
¼ ðI3×3 − η3×3Þ · V13×3

: ð2:14Þ

In this way, when comparing Eqs. (2.12) and (2.14), it is
clear that the matrix that quantifies the deviation from
unitarity of the light neutrino mixing matrix is

η3×3 ¼
1

2
ðM�

DðM�
RÞ−1M−1

R MT
DÞ3×3: ð2:15Þ

For the possible phenomenological effects, such as neutrino
oscillations, of the nonunitarity neutrino mixing matrix
see [29].

C. Inverse seesaw model (NR = 3; S= 3 case)

A well-motivated variant of the usual (high-scale)
type-I seesaw is the so-called inverse seesaw (ISS) model
[11]. In this case, the smallness of the LNV parameter,
μ, explains the lightness of neutrinos. This extra sup-
pression of the light neutrino masses allows for
heavy neutrino states with masses accessible at current
collider energies.
The ISS model requires extending the neutrino sector

with right-handed singlet neutrinos NiR and left-handed

singlets Sj. Here, we consider the case with three NR and
three Sj singlets.

3 The full neutrino mass matrix is [16]

MISS
9×9 ¼

0
B@

03×3 MD3×3
03×3

ðMT
DÞ3×3 03×3 M3×3

03×3 ðMTÞ3×3 μ3×3

1
CA; ð2:16Þ

with the hierarchy jμj ≪ jMDj ≪ jMj. We can generalize
Eq. (2.8), assuming that M is invertible and making the
following identification

MISS
D3×6

¼ ðMD3×3
; 03×3Þ; MISS

R6×6
¼
�

03×3 M3×3

MT
3×3 μ3×3

�
;

ð2:17Þ

where the inverse matrix of MISS
R6×6

is given by

ðMISS
R Þ−16×6¼

0
B@−ððMTÞ−1μM−1Þ3×3 ðMTÞ−13×3

M−1
3×3 03×3

1
CA: ð2:18Þ

Using the BMDM for the inverse seesaw model, we
have that

mISS
ν3×3 ¼ ðMDðMTÞ−1μM−1MT

DÞ3×3; and

MISS
N6×6

¼ MISS
R6×6

: ð2:19Þ

Furthermore, in the limit μ → 0, the weak charged lepton is
given by

BISS
3×9 ¼ ðBISS

L3×3
; BISS

H3×6
Þ; ð2:20Þ

with

BISS
L3×3

¼ ðI3×3 − ηISS3×3Þ · V13×3
;

BISS
H3×6

¼ ð03×3; ðM�
DðM�TÞ−1Þ3×3Þ · V26×6

: ð2:21Þ

Whereas the ηISS3×3 matrix is given by

ηISS3×3 ¼
1

2
ðM�

DðMT�Þ−1M−1MT
DÞ3×3: ð2:22Þ

The two cases we will discuss in Sec. IV share the
assumption that M is diagonal. In such a case, the matrix
V2 in Eq. (2.21), required to determine the heavy physical
states and their mixings, can be approximated by

V26×6
¼ 1ffiffiffi

2
p
�−I3×3 I3×3

I3×3 I3×3

��
i · I3×3 03×3

03×3 I3×3

�
: ð2:23Þ

3Reference [20] studied a minimal scenario with only two NiR
and two Sj neutrino states.
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The i factor in the last matrix ensures that all masses
are positive.

III. CHARGED LEPTON FLAVOR VIOLATION
PROCESSES (cLFV)

A. l → l0γ decays

The branching ratio formula of the cLFV processes
l → l0γ, with l ¼ μðτÞ;l0 ¼ eðe; μÞ neglecting the mass
of the lighter-charged lepton, is given by [21]

BRðl → l0γÞ ¼ α

Γl
m3

ljFγ
Mð0Þj2; ð3:1Þ

Fγ
Mð0Þ ¼

αW
16π

ml

M2
W

X
i

B�
liBl0if

γ
MðxiÞ;

fγM ¼ 3x3 log x
2ðx − 1Þ4 −

2x3 þ 5x2 − x
4ðx − 1Þ3 þ 5

6
; ð3:2Þ

where α ¼ e2=4π is the fine structure constant,
αW ≡ α=s2W , xi ≡m2

χi=M
2
W , and mχi denotes the mass of

all the physical neutrino states. The current and future
limits for these transitions are presented in Table I.

IV. NUMERICAL ANALYSIS

Let us now discuss the phenomenology of two different
scenarios of the ISS model that we call scenarios A and B.
In scenario A, the matrices μ and M in Eq. (2.19) are
diagonals. Therefore all the structure comes from the Dirac
mass matrix MD. Notice that to determine which matrices
can be considered diagonals by redefining the fields
and casting the mass matrices only in terms of physical
parameters, we must identify the different transformations
that leave invariant the density lagrangian for the leptonic
sector, see Sec. 2.4 of Ref. [20]. On the other hand, in
scenario B, we consider that the matrices MD and M are
diagonals, and all the structure comes from the matrix μ.
We give an ultraviolet completion for this model in Sec. V.

A. Scenario A

The Casas-Ibarra parameterization [35] helps to write
the Yukawa couplings in terms of the neutrino mass
matrix and the other mass matrices in the model as
follows [15,16]

MD3×3
¼
�
V�
1

ffiffiffiffiffiffiffiffiffiffi
mdiag

ν

q
RTð ffiffiffi

μ
p Þ−1MT

�
3×3

; ð4:1Þ

with R a real 3 × 3 orthogonal matrix described by
three arbitrary rotation angles ðθ;ϕ;ψÞ.4 Moreover,
we work on the basis where M3×3 and μ3×3 are real
diagonal matrices

M3×3 ¼ diagðM11;M22;M33Þ
¼ vM · diagð1þ ϵM11

; 1þ ϵM22
; 1þ ϵM33

Þ ð4:2Þ

μ3×3 ¼ diagðμ11; μ22; μ33Þ
¼ vμ · diagð1þ ϵμ11 ; 1þ ϵμ22 ; 1þ ϵμ33Þ: ð4:3Þ

In our analysis, we used sixteen parameters: three mixing
angles θ12, θ23, θ13 and one CP-violating phase δCP, three
light neutrino masses in mdiag

ν ¼ diagðmν1 ; mν2 ; mν3Þ, three
rotation angles in the R matrix, three parameters for the μ
matrix, and three parameters for the diagonal M matrix.
We have performed a random scan setting the scale

vM¼1 (10) TeV, and varying vμ into the range [1, 1000] eV,
while we choose the rest of the free parameters as follows:

(i) The three light neutrino masses, the three mixing
angles, and the Dirac CP-violating phase associated
with the active neutrino sector are considered in the
range allowed for the current neutrino oscillation
data [36] (see Table II).

(ii) The angles θ;ϕ;ψ in the matrix R vary into the
range ½0; 2π�.

(iii) The parameters ϵMii
(i ¼ 1, 2, 3.) of the matrix M

vary into the range ½−0.5; 0.5�.
(iv) The parameters ϵμii (i ¼ 1, 2, 3.) of the matrix μ vary

into the range ½−0.5; 0.5�.

TABLE II. Neutrino mixing parameters used in our analysis
[36]. We consider the value mν ¼ 0.12=3ð0.15=3Þ eV as a
benchmark for the lightest neutrino mass, taking into account
the cosmological limit for the total neutrino mass in the normal
(inverted) ordering also reported in [36].

Parameter
Normal ordering

(3σ range)
Inverted ordering

(3σ range)

sin2 θ12 0.271–0.369 0.271–0.369
sin2 θ23 0.434–0.610 0.433–0.608
sin2 θ13 0.02000–0.02405 0.02018–0.02424
δCP=° 128–359 200–353
Δm2

21

10−5 eV2
6.94–8.14 6.94–8.14

jΔm2
31
j

10−3 eV2
2.47–2.63 2.37–2.53

TABLE I. Present limits and future sensitivities for l → l0γ
decays.

Process Present limit Future sensitivity

μ → eγ 4.2 × 10−13 [30] 6 × 10−14 [31]
τ → eγ 3.3 × 10−8 [32] 3 × 10−9 [33]
τ → μγ 4.2 × 10−8 [34] 10−9 [33]

4The matrix R is defined, for simplicity, as a 3 × 3 real
orthogonal matrix, similar to Ref. [15].
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At this point, it is worth mentioning that we have done a
cross-check of our results using both the BMDM described
in Sec. II and our complete numerical routine implemented
in WolframMathematica [37].5 Given our scan’s numerical
matrix in Eq. (2.16), we diagonalize it by demanding a high
machine precision in extracting its eigenvectors. Then, the
matrix B defining the charged lepton current is obtained
directly from the Eq. (2.9), with the subblock matrices BL3×3

and BH3×6
formed by the three first columns, and from the

fourth to the nine columns of B, respectively. Furthermore,
the Hermitian ηISS3×3 matrix is obtained directly from the
relation

BL · B†
L ¼ I − 2ηISS þOððηISSÞ2Þ: ð4:4Þ

We have considered only points satisfying that MDij
<

175 GeV to respect a perturbative limit. After the diago-
nalization of each numerical matrix in Eq. (2.16) of our
scan, we observe in the left plot of Fig. 1 that there are
points that easily overpass the current limit set by the MEG
collaboration [30] for the branching ratio of the μ → eγ
decay.6 Specifically, setting the scale vM ≈ 1 (10) TeV
represented by the blue (purple) points, the scale vμ must
satisfy that vμ ≳ 50 (100) eV to be compatible with both the
current limits from μ → eγ and the data from neutrino

oscillation. It is worth noticing that the future sensitivity
expected from MEG II will be able to test the points
between the solid and dashed black lines in Fig. 1.
Additionally, in the right plot of Fig. 1, we show the

effects of theCP violating phase δCP on the estimation of the
μ → eγ branching ratio. Something interesting to stress here
is that more points tend to have a lower decay rate when CP
is conserved than when the CP violation is maximal.
Regarding the correlation between the nonunitary effects

and the limits from the search of the l → l0γ decays, in
Fig. 2, we show a plot for the branching ratio of the μ → eγ
and τ → l0γ (l0 ¼ e, μ) channels as a function of the
absolute value of the elements of the ηISS3×3 matrix. We can
see, as expected, that there is a stronger correlation between
μ → eγ and η12 than with the other elements of the matrix η.
Similarly, with τ → μγ (τ → eγ) and η23 (η13). In fact,
according to the current limits taken in our scan and setting
the scale vM ≈ 1 TeV, we have that the magnitude of
nonunitary effects must be jη12j≲ 10−5, jη13j≲ 10−4, and
jη23j≲ 10−4 to respect the most restrictive limit coming
from the μ → eγ channel.

B. Scenario B

Here we consider another case where the Dirac and
heavy neutrino mass matrices are diagonal. This is where
M3×3 and MD3×3

in Eq. (2.16) are real diagonal matrices

M3×3 ¼ diagðM11;M22;M33Þ
¼ vM · diagð1þ ϵM11

; 1þ ϵM22
; 1þ ϵM33

Þ; ð4:5Þ

FIG. 1. Branching ratio for the μ → eγ decay in the inverse seesaw model (scenario A). We scan the parameters associated with the
neutrino oscillation data assuming the normal hierarchy values shown in Table II. Then, we scan the other free parameters as explained
in the main text. The blue (purple) points represent the results setting the scale vM ¼ 1 (10) TeV. The horizontal black solid (dashed) line
represents the current limit on BRðμ → eγÞ < 4.2 × 10−13 [30] (future expected sensitivity BRðμ → eγÞ < 6 × 10−14 [31]), while the
vertical dashed lines in the right plot represent the current limits on δCP reported in [36].

5We can share the notebook file with the results upon request.
6In these plots, we have found an excellent agreement between

the BMDM and our exact numerical method, that is the points of
both methods almost overlap. Therefore, we showed only the
points obtained with our numerical routine.
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MD3×3
¼ diagðMD11

;MD22
;MD33

Þ
¼ vSMffiffiffi

2
p · diagðY11; Y22; Y33Þ; ð4:6Þ

where vSM ¼ 246.22 GeV is the vacuum expectation value
of the Higgs field. From the inverse seesaw formula, the μ
matrix is written in terms of M, MD, and mν as follows

μ ¼ MTM−1
D mνðM−1

D ÞTM: ð4:7Þ

In this way, once we give a mass matrixmν compatible with
the light neutrino masses and mixings, namely

mν ¼ U�
PMNSdiagðm1; m2; m3ÞU†

PMNS; ð4:8Þ

we obtain a valid parameter space for the μ matrix. In the
next section, we give a possible realization of this para-
metrization based on an Abelian flavor symmetry.
We have also performed a numerical scan for the scenario

B considering elements of the matrix μij < 1ð10Þ MeV,
gray (orange) points in Fig. 3 in order to satisfy the condition
jμj ≪ jMDj. Here, we let the scale vM vary from 1 to
100 TeV while:

(i) The parameters associated with the neutrino oscil-
lation data, as well as the ϵMii

(i ¼ 1, 2, 3.) of the
matrix M, vary as before.

FIG. 2. Branching ratios for the μ → eγ, τ → μγ, and τ → eγ decays in the ISS model (Model A) as a function of the absolute value of
the elements of the ηISS. We performed a scan assuming a normal hierarchy for the neutrino oscillation data while we scanned the rest of
the free parameters, as explained in the main text. Very similar plots are derived for the inverted hierarchy. Similar to Fig. 1, the blue
(purple) points stand for the results setting the scale vM ¼ 1 (10) TeV. The horizontal black solid (dashed) lines represent the current
limits (future sensitivities) on BRðl → l0γÞ decays reported in Table I.
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(ii) The Yukawa entries Yii (i ¼ 1, 2, 3.) in matrix MD
run into the range ½−0.5; 0.5�.

Something distinctive about this parametrization is that
the branching ratio for μ → eγ using the leading order
BMDM is the same as in the SM. Due to the diagonal
structure of the η matrix parametrizing the nonunitary
effects in Eq. (2.22) only the light neutrino states contribute
to the cLFV processes.7 Indeed, this result is more general,
and it will also happen provided that

MD ¼ λMT; ð4:9Þ

with λ ¼ diagða; b; cÞ a constant diagonal matrix. On the
other hand, we can choose the matrix λ to have some off-
diagonal nonzero elements to allow specific cLFV processes,
see for instance [22,23] for a particular example where
processes between the two first families (μ − e) are strongly
suppressed, but the (τ − μ) and (τ − e) channels can be
maximized within this inverse seesaw parametrization. In
Fig. 3, we show the estimation for μ → eγ using both the
BMDM and our complete numerical result. We can see here
that using the BMDM, the estimation is of the order ∼10−54

corresponding to the contributions of the light neutrino
sector (solid black line). Note, however, that this estimation
comes from the assumption of considering the limit when
μ → 0 in the derivation at the leading order of thematrix ηISS.
Contrary, the gray and orange points represent the complete
numerical estimation for the points where the elements
of the matrix μ satisfy the condition μij < 1 MeV and
μij < 10 MeV, respectively. This plot shows that the results
of the exact numerical estimation for the rate of the μ → eγ
canbe someorders ofmagnitudehigher for somepoints in our
scan compared with the simple estimation given by the
BMDM. In any case, this plot corroborates the fact that, in
this parametrization, the contributions of the heavy neutrinos
to the branching ratio of the μ → eγ decay remain very far
from the current and future experimental searches.

V. INVERSE SEESAW BASED ON A GAUGED
Uð1ÞB−L × Z5 SYMMETRY

A flavor symmetry can lead to a diagonal Yukawa
Lagrangian by appropriately choosing the field represen-
tations. For example, in the case of three flavors, the
smallest symmetry is Z3, using three different charges, one
for each flavor. For the Z3 case, it is sufficient to include a
flavon field that transforms nontrivially under the sym-
metry to generate all entries in the matrix. Therefore, it is
possible to fit all light neutrino masses and mixings.
Let us now consider a generic ZN and fix N̂ according to

the case of interest. Using a gauged Uð1ÞB−L symmetry, we
will use three RH neutrinos N̂R with charge −1 and three
extra sterile fermions Ŝ with charge 0, so that they will not
contribute to the anomalies.
Regarding ZN , the fermion fields L̂i, N̂i and Ŝi, will

transform as ωi, with i ¼ 1, 2, 3. To spontaneously
break the Uð1ÞB−L and ZN symmetries, we need to include
two sets of scalar fields ϕ and ξ.8 We want to reproduce
neutrino masses and mixings but also want some correla-
tions between the observables. For this reason, we will use
Z5 as flavor symmetry. We show the corresponding
Uð1ÞB−L × ZN charges for the fields in Table III. In this
way, the full Yukawa Lagrangian is

FIG. 3. Branching ratio for the μ → eγ decay in the inverse
seesaw model (scenario B) as a function of the scale vM. We
explained the details of our scan in the main text. The black line
represents the estimation at leading order in the BMDM, while
the orange (gray) points correspond to our complete numerical
result assuming the condition μij < 1 (10) MeV. Namely, using
the BMDM approximation for this scenario, only light neutrinos
contribute to cLFV processes (black line) because the contribu-
tion of the new heavy states is exactly zero in this approximation.

TABLE III. Uð1ÞB−L × Z5 charges for the ISS fields and
auxiliary ϕ, ξ fields.

Uð1ÞB−L Z5

L̂i ¼
�
ν̂Li
l̂Li

�
−1 ωi

N̂Ri −1 ωi

Ŝi 0 ωi

ϕ −1 1
ξ 0 ω

7In this parametrization the η matrix is diagonal provided that
the product MDðMTÞ−1 is diagonal. 8The number of ξ fields will depend on the specific model.
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LYuk ¼ yðlÞi L̂iHl̂Ri þ yðνÞi L̂i H̃ N̂Ri þ YðNÞ
i ŜiN̂Riϕ

þ 1

2
λijŜiŜ

c
jξþ

1

2
μi;jŜiŜ

c
j þ H:c:;

where

H ¼
�
Hþ

H0

�
; Li ¼

�
νLi

li

�
;

and H̃ ¼ iσ2H�.
Here we present a model where the light neutrino

phenomenology is compatible with the current experimen-
tal data. The mass matrix takes the form of one of the two-
zero textures, that is, the A1 in the nomenclature of [38] in
which the elements m1;1 and m1;2 vanish. We obtain the
most economical model compatible with this phenomenol-
ogy by using the symmetry Uð1ÞB−L × Z5 with the scalar
field ξ transforming as ω under Z5. In this way, the μmatrix
is given by

μ ¼

0
B@

0 0 λ1hξi
0 λ2hξi μ1

λ1hξi μ1 λ3hξ�i

1
CA: ð5:1Þ

This structure in the matrix μ will lead us to a light neutrino
mass matrix with the same structure as Eq. (5.1) corre-
sponding to the A1 two-zero texture in the nomenclature of
Ref. [38]. This is compatible with the current experiments
on neutrino oscillations for the normal neutrino mass
ordering and predicts negligible neutrinoless double beta
decay effective mass parameter since the mν11 element
vanishes at tree-level [39–41]. In this way, we obtained an
example of many possible models that one can construct
with MD and M diagonal. Notice that in this model, the
Uð1ÞB−L can be local, implying the presence of a new Z0
gauge boson.

VI. CONCLUSIONS

Neutrino oscillations are one of the first pieces of
evidence of new physics beyond the original formulation
of the Standard Model. Consequently, this evidence raises

questions regarding neutrino masses and their Dirac/
Majorana nature. There are various massive neutrino
models proposed in the literature. Among these, the inverse
seesaw model is currently one of the most popular. The idea
behind these scenarios is that the physics responsible
for neutrino masses could lie on the TeV scale. Such a
scenario leads to a testable phenomenology at current or
future colliders, for instance, through the search for cLFV
processes.
Our study explores two different scenarios of the ISS

model that can accommodate the current neutrino oscil-
lation data but with two entirely different phenomenologies
due to the nonunitarity of the light neutrino mixing matrix.
In the first case, where the nondiagonal matrix MD is
parametrized by Eq. (4.1), and the assumption that Rmatrix
is real and orthogonal, we have found that cLFV processes
take place at sizable levels. Indeed, to be consistent with the
limits coming from the current most restrictive μ → eγ
channel, we have found that if the scale of the new heavy
states is around 1 TeV, the magnitude of the nonunitary
effects must be jη12j≲ 10−5.
In the second case, the structure of the model comes from

the lowest scale mass matrix μ described by Eq. (4.7). We
found here that the contributions of the new heavy states to
cLFV processes are negligible as a result of the approxi-
mate diagonal structure of the matrix describing nonunitary
effects.
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