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The proposed work is an extension of the Standard Model, where we have introduced two gauge
symmetries, i.e., Uð1ÞB−L and Uð1ÞLe−Lμ

to study neutrino phenomenology, muon, and electron (g − 2) as
well as leptogenesis using the inverse seesaw mechanism. For this purpose, we have included three right-
handed neutrinos NRi

, three neutral fermions SLi
(i ¼ 1, 2, 3), and two scalar singlet bosons (χ1 and χ2). We

get a definite structure for the neutrino mass matrix due to the aforementioned gauge symmetries. Thus, our
model is able to predict the neutrino oscillation results, which are in accordance with the experimental data
and is inclined towards normal ordering. The outcomes comprise the active neutrino masses, mixing
angles, mass-squared differences, CP-violating phase, etc. Moreover, since the extended gauge symmetries
are local, there are corresponding gauge bosons, denoted as ZB−L and Zeμ. Of these, mass of ZB−L is
OðTeVÞ range to satisfy the collider constraint, while the mass of Zeμ is in the MeV range, making it
feasible to account for current electron and muon (g − 2) results via neutral current interactions.
Furthermore, our model is able to account for leptogenesis, which can demonstrate the matter-antimatter
asymmetry of the Universe. Additionally, we have carried out the prospect of probing our model in the
context of upcoming long-baseline experiments; DUNE, T2HK, and T2HKK, at a confidence level of 5σ.
From the result it is clear that, our model can be tested in its 3σ CL with 5σ allowed region of DUNE,
T2HK, and T2HKK.

DOI: 10.1103/PhysRevD.108.035032

I. INTRODUCTION

The standard model (SM) is inordinately successful in
explaining most of the properties of the hadrons, charged
leptons, and gauge bosons with high precision. In spite of
exceptional triumph, it lacks in explaining the tininess of
neutrino mass [1], nature of the neutrinos, i.e., Dirac or
Majorana, matter-antimatter asymmetry, muon, and elec-
tron anomalous magnetic moments ðg − 2Þμ;e, dark matter
content of the Universe, etc. To work within the domain of
SM and generate small neutrino mass, the Weinberg
operator [2] becomes an unavoidable requisite. However,
sketching a model feasible for explaining other puzzling
phenomena along with neutrino phenomenology seems
difficult via the dimension-5 operator. Therefore, to leap
beyond the standard model (BSM) becomes more of an

obligation, and to do so, we introduce right-handed
neutrinos (RHNs) into the picture, which lays the founda-
tion for the seesaw mechanism. Type-I or canonical [3–5] is
the simplest seesaw mechanism which utilizes only three
additional SM singlet RHNs to showcase the smallness of
neutrino mass. The neutrino mass formula in this frame-
work takes the form shown below

mν ¼ −MDM−1
R MT

D; ð1Þ

where MD, MR are the Dirac and heavy RHN mass
matrices, respectively. In order to bring the scale of active
neutrinos in the sub-eV range as constrained by cosmo-
logical bound [6], one needs heavy RHNs to be as massive
as Oð1014Þ GeV. To prove the existence of such a massive
neutrino is impractical for current experiments. Hence, its
usage is very prevalent, as seen in myriad literature. On the
other hand, additional variants of the seesaw are: type-II
seesaw with scalar triplets [7–10], type-III seesaw with
fermion triplets [11–16], linear seesaw [17–21], inverse
seesaw [22–34], etc. In this article, we investigate the
inverse-seesaw scenario utilizing extended symmetries,
which involves Uð1ÞB−L and Uð1ÞLe−Lμ

along with three
right-handed neutrinos NRi

and three neutral fermions SLi
,

where i ¼ 1, 2, 3. By incorporating these six heavy
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neutrinos, we can maintain the inverse seesaw mass matrix
structure described in Eq. (5) as long as appropriate charge
assignments are made under the extended symmetries. In
the present work, due to the presence of Uð1ÞLe−Lμ

gauge
symmetry, additional one-loop contributions to electron
and muon (g − 2) through the new gauge boson Zeμ are
possible. Thus, our model is able to explain both electron
and muon anomalous magnetic moments ðg − 2Þe;μ.
Additionally, in this work, we have shown the testability
of our model in three future long-baseline experiments,
DUNE, T2HK, and T2HKK.
The primary motivation for utilizing two anomaly-free

gauge symmetries in conjunction with the SM symmetries
is twofold; the Uð1ÞB−L symmetry allows us to generate
small active neutrino mass, facilitate leptogenesis (dis-
cussed in Sec. VI), and provide collider search opportu-
nities. Meanwhile, the MeV range gauge boson arising
from the Uð1ÞLe−Lμ

gauge symmetry aids in explaining the
anomalous magnetic moments of both electrons and
muons. An attractive aspect of these symmetries is that
one of them [Uð1ÞLe−Lμ

] is anomaly free, and another one
[Uð1ÞB−L� becomes anomaly free only by adding three
right-handed neutrinos with B − L value of (−1) each, thus
enabling us to account for various aspects of neutrino
phenomenology, such as the measured values of mixing
angles (sin2 θ13; sin2 θ12, and sin2 θ23), mass-squared
differences (Δm2

31 and Δm2
21), CP-violating phase (δCP),

etc. We also discuss the intriguing results of electron and
muon (g − 2). Previous studies that utilized the Uð1ÞLμ−Lτ

symmetry to explain both neutrino phenomenology and
muon (g − 2) have been successful but lack direct exper-
imental evidence. The gauge boson resulting from the
symmetry breaking of Uð1ÞLμ−Lτ

would not be directly
observable in the current LHC or the e−eþ machines. On
the other hand, the gauge boson associated with Uð1ÞB−L
can be detected by LHC experiments, and e−eþ collider
experiments can determine the upper limit of the mass of
the gauge boson related to Uð1ÞLe−Lμ

. These observations
motivate us for the use of Uð1ÞB−L × Uð1ÞLe−Lμ

as an
extended gauge symmetry. As mentioned earlier, local
gauge symmetries require the cancellation of gauge

anomalies, which can be achieved by assigning appropriate
charges to the NRi

and SLi
under the extended symmetries.

Additionally, two singlet scalar bosons (χ1 and χ2) are
introduced to contribute to symmetry breaking, resulting in
the existence of associated gauge bosons ZB−L and Zeμ.
This paper provides a detailed outline of the model

framework, including particle content, Lagrangian, and
mass matrices in Sec. II. The article then goes on to
present numerical calculations in Sec. III, offering values
for the allowed parameter space that helps explain the
behavior of neutrino oscillation data. It is crucial to test this
proposed model in upcoming neutrino experiments; hence
Sec. IV provides a comparative study of the testability of
the proposed model in various future long-baseline experi-
ments, such as DUNE, T2HK, and T2HKK, which offer
great precision toward the measurement of neutrino oscil-
lation parameters. Electron and muon (g − 2) explanations
are covered in Sec. V, while Sec. VI focuses on lepto-
genesis with possible benchmark points to ensure the
correct baryon asymmetry of the Universe. In Sec. VII,
a brief discussion on the collider search for the gauge boson
ZB−L associated with Uð1ÞB−L is presented. Finally, the
results of this study are summarized in Sec. VIII.

II. MODEL FRAMEWORK

As an extension of the SM, we have added three RHNs
NRi

and three neutral fermions SLi
, (i ¼ 1, 2, 3) to achieve

an inverse seesaw mechanism for giving mass to active
neutrinos in the sub-eV scale. The charges assigned to the
RHNs and neutral fermions under Uð1ÞB−L is −1 and 0,
while, f1;−1; 0g and f1;−1; 0g under Uð1ÞLe−Lμ

, respec-
tively. In addition to the above, we have included two extra
singlet scalars χ1 and χ2 with assigned charges under
Uð1ÞB−L as 1,0 and under Uð1ÞLe−Lμ

: 0,1 respectively. The
particle content along with their assigned charges are
presented in Table I. Uð1ÞB−L gauge symmetry is sponta-
neously broken by the vacuum expectation value (VEV) of
χ1, whereas VEV of χ2 is responsible for the breaking of
Uð1ÞLe−Lμ

symmetry. The Lagrangian for the leptonic
sector of the proposed model is

Llepton ⊃ Llepton
SM þ

h
yeDleLH̃NR1

þ yμDlμLH̃NR2
þ yτDlτLH̃NR3

i
þ ½y1NS̄L1

NR1
χ1 þ y2NS̄L2

NR2
χ1 þ y3NS̄L3

NR3
χ1�

þ ½M12S̄cL1
SL2

þ y13S̄cL1
SL3

χ�2 þ y23S̄cL2
SL3

χ2 þM33S̄cL3
SL3

� þ H:c:; ð2Þ

where Llepton
SM is the standard model Lagrangian for the

leptonic sector, the three terms within bracket of the first
line are the Dirac-type Yukawa interaction terms between

heavy right-handed neutrino and SM particles, the second
line represents the mixing terms involving NRi

and SLi
, and

finally, the terms of third line generate the mass matrix
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ðMμ) for neutral fermions, SLi
. Thus, one can obtain the

Dirac mass term MD, the mixing term MNS, and Mμ as
given below in Eqs. (3) and (4)

MD ¼ vHffiffiffi
2

p

0
BB@

jyeDjeiϕ1 0 0

0 yμD 0

0 0 yτD

1
CCA; ð3Þ

MNS ¼
v1ffiffiffi
2

p

0
BB@

jy1N jeiϕ2 0 0

0 y2N 0

0 0 y3N

1
CCA;

Mμ ¼

0
BB@

0 M12 y13
v2ffiffi
2

p

M12 0 y23
v2ffiffi
2

p

y13
v2ffiffi
2

p y23
v2ffiffi
2

p M33

1
CCA; ð4Þ

where the VEVs of the scalars are represented as
hHi ¼ ð0; vHffiffi

2
p ÞT , hχ1i ¼ v1ffiffi

2
p , hχ2i ¼ v2ffiffi

2
p . In the expressions

ofMD andMNS, we have considered yeD and y1N couplings
to be complex, with associated phases ϕ1 and ϕ2, while
other Yukawa couplings are real by redefinition of phases.
The neutrino mass matrix thus can have the form in the
basis (νL; Nc

R; SL) as

M ¼

0
BBB@

νL Nc
R SL

νL 0 MD 0

Nc
R MT

D 0 MNS

SL 0 MT
NS Mμ

1
CCCA: ð5Þ

The inverse seesaw is executed successfully by considering
the assumption Mμ ≪ MD < MNS. The active neutrino
mass matrix mν can be found from the expression

mν ¼ MT
DðM−1

NSÞTMμM−1
NSMD: ð6Þ

The kinetic terms, which contain the interactions
between the scalars and gauge bosons, are given as

Lkin ¼ jDμHj2 þ jDμχ1j2 þ jDμχ2j2; ð7Þ

where Dμ is the covariant derivative. According to the
quantum charges of gauge bosons, the kinetic term of the
scalar sector can be written as

Lkin ¼
����
�
∂μ − i

g
2
τ⃗:W⃗μ − i

g0

2
Bμ

�
H

����2
þ
����∂μ − igB−LðZB−LÞμ

�
χ1

���2
þ
����∂μ − igeμðZeμÞμ

�
χ2j2: ð8Þ

Here the components of τ⃗ are the Pauli matrices. g, g0, gB−L,
and geμ are the gauge couplings associated to SUð2ÞL,
Uð1ÞY , Uð1ÞB−L, and Uð1ÞLe−Lμ

gauge symmetries respec-
tively. ZB−L and Zeμ are the gauge bosons of the two
additional gauge symmetries Uð1ÞB−L and Uð1ÞLe−Lμ

respectively. It is worth emphasizing here that the three
Uð1Þ symmetries, i.e., Uð1ÞY , Uð1ÞB−L, and Uð1ÞLe−Lμ

are
spontaneously broken by the three scalar fields H, χ1, and
χ2, when they acquire their VEVs. Each of these scalar
fields are charged only under the Uð1Þ symmetries, which
is broken by their VEVs and are neutral under the rest two
symmetries. Therefore, there will be no mixing between the
corresponding gauge bosons and one can safely neglect the
small kinetic mixing between different Uð1Þ gauge bosons.
As a result, the VEVof H will contribute to the masses of
W� and Z bosons as

m2
W ¼ g2

4
v2H; and m2

Z ¼ 1

4
ðg2 þ g02Þv2H: ð9Þ

Analogously, the mass of two new gauge bosons can be
expressed as

m2
ZB−L

¼ 1

2
g2B−Lv

2
1;

m2
Zeμ

¼ 1

2
g2eμv22: ð10Þ

With the values of VEVs (mentioned in Table II) of two
gauge bosons and their respective couplings, we can find
that the mass of one gauge boson (ZB−L) is in TeV range
while mZeμ

is in MeV range.

A. Scalar sector

In this model, we have two singlet scalar bosons χ1 and
χ2 to break the extra gauge symmetries beyond the SM. The
complete scalar potential of the theory is given as

TABLE I. Particles and their corresponding charge assignment
under SUð3ÞC×SUð2ÞL×Uð1ÞY ×Uð1ÞB−L×Uð1ÞLe−Lμ

model.

Particles SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB−L Uð1ÞLe−Lμ

lαLðα ¼ e; μ; τÞ 1 2 −1 −1 1, −1, 0
lαRðα ¼ e; μ; τÞ 1 1 −2 −1 1, −1, 0
NRi

(i ¼ 1, 2, 3) 1 1 0 −1 1, −1, 0
SLi

(i ¼ 1, 2, 3) 1 1 0 0 1, −1, 0

H 1 2 1 0 0
χ1 1 1 0 1 0
χ2 1 1 0 0 1
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V ¼ m2
HðH†HÞ þ λ1ðH†HÞ2 þm2

1ðχ�1χ1Þ þm2
2ðχ�2χ2Þ

þ λ2ðχ�1χ1Þ2 þ λ3ðχ�2χ2Þ2 þ λ4ðH†HÞðχ�1χ1Þ
þ λ5ðH†HÞðχ�2χ2Þ þ λ6ðχ�1χ1Þðχ�2χ2Þ; ð11Þ

where λi; (i ¼ 1, 2, 3, 4, 5, 6) are the quartic couplings, and
m2

H;m
2
1, and m2

2 are the mass terms for three scalar bosons
H; χ1, and χ2, respectively.

B. CP-even sector

The neutral component of the Higgs field H0 and the
scalar fields χ1 and χ2 can be parametrized in the basis of
real and pseudoscalars as

H0 ¼ vH þ hþ iηffiffiffi
2

p ; χ1 ¼
v1 þ χ01 þ iσ1ffiffiffi

2
p ;

χ2 ¼
v2 þ χ02 þ iσ2ffiffiffi

2
p ; ð12Þ

with h; χ01, and χ
0
2 are the CP-even components of the scalar

bosons, η; σ1, and σ2 are the CP-odd components. Thus,
the CP-even mass matrix has the form in the basis of
(h; χ01; χ

0
2) as

M2
E ¼

0
BBB@

h χ01 χ02
h 2λ1v2H λ4vHv1 λ5vHv2
χ01 λ4vHv1 2λ2v21 λ6v1v2
χ02 λ5vHv2 λ6v1v2 2λ3v22

1
CCCA: ð13Þ

As the scalar sector does not play any important role in the
studies that we are interested in, we do not present the
detailed discussion about it in this paper.

III. NUMERICAL CALCULATIONS

The expressions for oscillation parameters related to the
standard Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix U are

sin2θ13 ¼ jUe3j2; sin2θ12 ¼
jUe2j2

1 − jUe3j2
;

sin2θ23 ¼
jUμ3j2

1 − jUe3j2
; ð14Þ

where, Uαi (α ¼ e, μ, τ, i ¼ 1, 2, 3) are the elements of the
PMNS matrix U.
In order to get neutrino phenomenology correlation

plots, we make use of atmospheric and solar mass-squared
differences, i.e., (Δm2

31 and Δm2
21) and other observables of

neutrino oscillations (θ12, θ23, θ13) in their 3σ ranges from
NuFIT data [35] as

sin2θ13 ¼ ð0.02029 − 0.02391Þ;
sin2θ12 ¼ ð0.27 − 0.341Þ; sin2θ23 ¼ ð0.406 − 0.620Þ;
Δm2

31 ¼ ð2.428 − 2.597Þ × 10−3 eV2;

Δm2
21 ¼ ð6.82 − 8.03Þ × 10−5 eV2: ð15Þ

We have summarized the results of neutrino phenom-
enology in Figs. 1 and 2 using “mixing parameter

TABLE II. Allowed ranges of Yukawa couplings and VEVs for
explaining neutrino phenomenology, electron and muon anoma-
lous magnetic moment, and leptogenesis.

Parameters Ranges Parameters Ranges

yeD ½0.01; 2� × 10−6 y23 ½0.1; 1� × 10−7

yμD ½0.1; 2� × 10−3 v1 ½1; 100� × 103 GeV
yτD ½1; 5� × 10−2 v2 ½0.3; 50� × 102 GeV
y1N [1, 2] M12 [1, 3] keV
y2N [0.1, 2] M33 [0.1, 3] keV
y3N [0.1, 2] ϕ1 ½0; 2π� rad
y13 ½0.7; 7� × 10−7 ϕ2 ½0; 2π� rad

(a) (b)

FIG. 1. Panel (a) shows the variation of active neutrino mass (
P

mi) with mixing angle sin2 θ13, (b) depicts mutually viable region for
sin2 θ12 and sin2 θ23.
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tools” [36]. In Fig. 1, panel (a) shows the variation of sum
of active neutrino mass with respect to reactor mixing
angle sin2 θ13. Panel 1(b) depicts the mutually allowed
parameter space for sin2 θ12 and sin2 θ23 with black-
dashed gridlines indicating the corresponding 3σ allowed
range. From panel 1(a), we can see that, sum of active
neutrino mass is very much constrained with the allowed
range 0.058 eV ≤

P
mi ≤ 0.061 eV. From panel 1(b),

it is observed that θ12 is unconstrained but there is a
specific allowed region for sin2 θ23 ranging from
[0.5–0.6]. Interestingly, from the panels with sin2 θ23,
we can conclude that the value of θ23 coming from our
model supports upper octant (i.e., sin2 θ23 > 0.5). Moving
further, in Fig. 2(a) shows the allowed parameter space for
sin2 θ12 with respect to sin2 θ13, whereas, Fig. 2(b) gives the
correlation between sin2 θ23 with respect to sin2 θ13. From
these two panels, we can observe that sin2 θ13 is fully
unconstrained. In Figs. 2(c) and 2(d), the dependence of
CP-violating phase is shown with respect to mixing angles
sin2 θ13 and sin2 θ12, respectively. These two panels
describe very constrained value of δCP within the range
(180–224)°.

IV. TESTING THE MODEL WITH
LONG-BASELINE EXPERIMENTS

After a detailed discussion of themodelwith two extended
gauge symmetries (Uð1ÞB−L ×Uð1ÞLe−Lμ

), in this section
we try to test the proposed model in the context of future
long-baseline experiments; DUNE, T2HK, and T2HKK.
DUNE (DeepUndergroundNeutrino Experiment) is a future
long-baseline experiment where the neutrino source will be
located at FNAL (Fermi National Accelerator Laboratory)
with a beampower of 1.2MW.The far detectorwill be placed
at a distance of 1300 km at Sanford Underground Research
Laboratory, South Dakota, with liquid argon time-projection
chamber detector material of 40 kt fiducial volume. In our
study, we take five-year neutrino and five-year antineutrino
mode running with a proton on target of 1.1 × 1021. In this
analysis, we have taken on-axis wide-band flux from source
to detector. Another most promising future long baseline
experiment T2HK (Tokai to Hyper-Kamiokande), will be
installed in Japan with two large water Cherenkov detectors
of fiducial volume 187 kt each, having the neutrino source at
JPARC, Tokai. The distance between JPARC to Hyper-
Kamiokande (HK) is around 295 km. TheNeutrino beam for

(a) (b)

(c) (d)

FIG. 2. Panel (a) gives the mutually allowed parameter space for mixing angle sin2 θ12 and sin2 θ13, whereas, (b) is the correlation of
sin2 θ13 with sin2 θ23, (c) [(d)] depicts the variation of CP-violating phase δCP with mixing angle sin2 θ13 [sin2 θ12].
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T2HK is 1.3 MWwith a total exposure of 2.7 × 1022 proton
on target. The flux from source to detector is at 2.5° off-axis.
In our study, we take the run time of 10 years with an equal
ratio, five years for neutrino mode and five years for
antineutrinomode.Modified T2HK is also suggested, which
is named as T2HKK (Tokai to Hyper-Kamiokande and
Korea). In T2HKK, one of the water Cherenkov detectors
of HK will be shifted to Korea, 1100 km distant from the
source JPARC. For T2HKK, we have used 295 km 2.5° off-
axis flux and1100km1.5° off-axis flux. Similar toT2HK,we
have used equal run time for neutrino and antineutrino, a total
of ten years; five years neutrino and five years antineu-
trino mode.

A. Simulation details

For simulation purpose, we use GLoBES simulation
package [37,38]. For the estimation of the sensitivity, we
use the Poisson log-likelihood formula

χ2stat ¼ 2
Xn
i¼1

�
Ntest

i − Ntrue
i − Ntrue

i ln

�
Ntest

i

Ntrue
i

�	
; ð16Þ

where Ntrue
i is the event rate from true spectrum and Ntest

i is
the event rate calculated from the test spectrum with “i”
being the number of energy bins. In the present work, we

take Ntrue
i as the events corresponding to the NuFIT [35]

neutrino oscillation parameters (see Table III) and Ntest
i

being the data set coming from our model.

B. Results

We illustrate our results in Figs. 3 and 4. In Fig. 3, we
have shown the correlation plots between neutrino oscil-
lation parameters. Figures 3(a) and 3(b) depicts the varia-
tion of Δm2

31½Δm2
21� with respect to sin2 θ13 ½sin2 θ12�. From

the panels, we can say that oscillation parametersΔm2
31 and

Δm2
21 are unconstrained, thus our model allows all the

values of Δm2
31 and Δm2

21 within the 3σ values of NuFIT.
Proceeding further, Fig. 4 depicts the capability of probing
our model in three future neutrino experiments, Fig. 4(a) is
for DUNE, Fig. 4(b) for T2HK, and Fig. 4(c) for T2HKK
experiments, respectively.
In Fig. 4(a), cyan and pink shaded regions denote the

allowed region from DUNE at 3σ and 5σ CL respectively
by considering current best-fit values of oscillation param-
eters; θ23 and δCP as the true values. Blue and magenta
contours represent the allowed space at 2σ and 3σ CL from
the proposed model. Green and black stars represent the
best-fit values of oscillation parameters for the model and
NuFIT respectively. The middle column of Table III shows
the best-fit values of oscillation parameters from NuFIT,
whereas the rightmost column shows values of these
parameters from our model corresponding to minimum
χ2. From Fig. 4(a), we can see that though the best-fit
values obtained from our model lie outside the 5σ contour
of DUNE, the 2σ and 3σ allowed regions of proposed
model are compatible with 5σ parameter space of DUNE.
Moving further, Fig. 4(b) shows the testability of the

model in the parameter space of the T2HK experiment.
Analogous to DUNE, here too, cyan- and pink-shaded
regions denote 3σ and 5σ allowed parameter space which
will be covered by T2HK, if the current best-fit values of
oscillation parameters remain same in future. Blue and

TABLE III. This table showcases the data from NuFIT along-
side model fit for all the oscillation parameters.

Oscillation parameters NuFIT Model fit

sin2 θ13 0.02203 0.02110
sin2 θ12 0.303 0.301
sin2 θ23 0.572 0.517
Δm2

12
0.0000741 0.0000730

Δm2
23

0.002511 0.002573
δCP 197° 189°

(a) (b)

FIG. 3. Panel (a) shows the variation of Δm2
31 with respect to sin2 θ13, whereas, panel (b) projects the interdependence of Δm2

21 with
respect to sin2 θ12.
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magenta contours represent the 2σ and 3σ CL emerging
from the proposed model. Green and black stars represent
the best-fit values of oscillation parameters for the model
and NuFIT, respectively. T2HK has shorter baseline than
DUNE, so statistics for T2HK is larger than DUNE. As
sensitivity directly depends on statistics, the allowed
parameter space of θ23 and δCP is small for T2HK than
for DUNE. From Fig. 4(b), we can observe that, 3σ allowed
region of our model can be tested by 5σ allowed region of
T2HK. Interestingly, a small contour of parameter space
which is excluded by 2σ CL of the model, is compatible

with 3σ allowed region of T2HK. Thus, if this region is
present in T2HK with the current best-fit values of NuFIT
as true values, one can exclude the proposed model by
2σ CL.
In T2HKK experiment, one of the two water Cherenkov

detectors has been shifted to Korea, 1100 km distance from
JPARC. As the baseline of T2HKK is greater than T2HK,
overall statistics for T2HKK is less than T2HK, resulting in
a wide-allowed parameter space for θ23 − δCP plane.
Figure 4(c) shows the results for T2HKK experiment.
Color code for this panel is exactly same as Figs. 4(a)

(a) (b)

(c)

FIG. 4. Parameter space for θ23 − δCP: (a) is for DUNE experiment, (b) is for T2HK, and (c) is for T2HKK experiment. In each panel,
cyan- and pink-shaded regions denote 3σ and 5σ allowed parameter space of corresponding experiments. Blue and magenta contours
represent the 2σ and 3σ CL of the proposed model. The green and black stars depict the best-fit values correspond to the model fit and
NuFIT, respectively.
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and 4(b). From the panel, we can conclude that 2σ allowed
region is testable by 3σ allowed space of T2HKK. Further,
the 3σ allowed region of our model can be probed by 5σ CL
of T2HKK.

V. MUON AND ELECTRON (g − 2)
A. Electron (g− 2)

The anomalous magnetic moment for electron remains
an open question so far. The value of ðg − 2Þe is still not
accurately measured, unlike ðg − 2Þμ with a confusion
related to its sign. The determination of fine structure
constant with Rubidium atom gives us þve value of
ðg − 2Þe with a discrepancy of 1.6σ over SM [39],

ðΔaeÞRb ¼ ð48� 30Þ × 10−14; ð17Þ

whereas, for cesium atom, [40] Δae has 2.4σ discrepancy
over SM as

ðΔaeÞCs ¼ ð−87� 36Þ × 10−14: ð18Þ

As there is an uncertainty in the extracted value of ðg − 2Þe,
we will go with a more acceptable value of Rubidium atom
measurement [39], where ðg − 2Þe value isþve in sign. The
Lagrangian, that provides additional contributions to ðg −
2Þe due to the new gauge bosons ZB−L and Zeμ is given as

L ¼ gB−LeγμeðZB−LÞμ þ geμēγμeðZeμÞμ; ð19Þ

with gB−L ¼ ð ffiffiffi
2

p
mZB−L

=v1Þ and geμ ¼ ð ffiffiffi
2

p
mZeμ

=v2Þ being
the gauge couplings associated with Uð1ÞB−L and
Uð1ÞLe−Lμ

symmetries, respectively. The corresponding
Feynman diagrams are depicted in Fig. 5 (with l ¼ e),
where the left diagram represents the interaction occurring
through ZB−L while the right one is through Zeμ. The new
contributions to ðg − 2Þe arising from these diagrams are
given as [41,42].

Δae ¼
Z

1

0

 
g2B−L
4π2

x2ð1 − xÞ
x2 þ m2

ZB−L
m2

e
ð1 − xÞ

þ g2eμ
4π2

x2ð1 − xÞ
x2 þ m2

Zeμ

m2
e
ð1 − xÞ

!
dx; ð20Þ

with x as the Feynman parameter. Using the values of gauge
boson masses from Table IV, it can be seen that the ðg − 2Þe
contribution coming from ZB−L is negligibly small, due to
the large mass of ZB−L, i.e., OðTeVÞ. So in Eq. (20) the
main contribution towards electron (g − 2) comes from
MeV range gauge boson, Zeμ. Panel Fig. 6(a) shows the
dependence of electron (g − 2) with respect to gauge-boson
mass mZeμ

. It is evident that geμ should be of the order 10−5

for having the gauge-boson mass mZeμ
in the MeV range,

for satisfying the electron (g − 2).

B. Muon (g− 2)
Numerous studies are available in the literature illustrat-

ing muon (g − 2), both in the context of SM and various
BSM scenarios, see Refs. [46–49]. The recent measurement
from the MEG collaboration at Fermilab [50] shows a
discrepancy of 4.2σ in muon anomalous magnetic moment
with respect to its SM result

ΔaFNALμ ¼ aexpμ − aSMμ ¼ ð25.1� 5.9Þ × 10−10: ð21Þ

Previously, the result from Brookhaven National
Laboratory [51], showed a discrepancy of 3.3σ from SM

ΔaBNLμ ¼ aexpμ − aSMμ ¼ ð26.1� 7.9Þ × 10−10: ð22Þ

Hence, to accommodate the above deviation, one needs to go
beyond SM. In the context of the present model, the new
interactions of muon involving ZB−L and Zeμ bring the extra
contributions towards ðg − 2Þμ. The relevant Feynman dia-
grams are shown in Fig. 5with (l ¼ μ) and the corresponding
neutral current interaction Lagrangian is given as

L ¼ gB−Lμ̄γμμðZB−LÞμ − geμμ̄γμμðZeμÞμ; ð23Þ

with gB−L and geμ are the two associated gauge couplings
respectively. Similar to ðg − 2Þe, the anomalous magnetic

FIG. 5. Possible Feynman diagrams for electron and muon
(g − 2) calculation. In both the figures, l− ¼ ðe−; μ−Þ.

TABLE IV. Ranges of parameters for calculating muon and
electron (g − 2).

Parameters Ranges

gB−L [0.01, 1]
geμ ½10−5; 10−3�
v1 (in GeV) ½1; 100� × 103

v2 (in GeV) ½0.3; 10� × 102
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moment of muon is also dominantly depends on Zeμ gauge
boson. The expression for Δaμ is given as follows [41,42]:

Δaμ ¼
Z

1

0

0
B@g2B−L

4π2
x2ð1 − xÞ

x2 þ m2
ZB−L
m2

μ
ð1 − xÞ

þ g2eμ
4π2

x2ð1 − xÞ
x2 þ m2

Zeμ

m2
μ
ð1 − xÞ

1
CAdx: ð24Þ

In Eq. (24) we can safely ignore the first term involving the
contribution from Uð1ÞB−L gauge boson, as the mass of
corresponding gauge boson is quite heavy. Figure 6(b)
represents the dependence of Δaμ with the gauge-boson
mass mZeμ

.
Finally, we have shown the allowed parameter space in

geμ −mZeμ
plane, for both electron- and muon-anomalous

magnetic moments simultaneously. Figure 6(c) shows the

preferred region for geμ −mZeμ
for both Δae and Δaμ. In

this panel, the points represented by magenta color satisfy
the electron-anomalous magnetic moment while points
in blue give the parameter space for muon anomalous
magnetic moment. The limits from the experiments,
KLOE [43], COHERENT_LAr [44], and CCFR [45]
are depicted within the panel. From Fig. 6(c), we can
observe that our model successfully explains both
muon and electron (g − 2) simultaneously and the allowed
geμ −mZeμ

parameter space is consistent with the constraints
obtained from the experiments: KLOE, COHERENT_LAr,
and CCFR.

VI. LEPTOGENESIS

Generating the observed baryon asymmetry of the
Universe can be accomplished through leptogenesis, which
is considered to be one of the most favored methods. By
utilizing the standard scenario of resonant enhancement
in CP asymmetry, the scale has been reduced to as low as

(a) (b)

(c)

FIG. 6. Panel (a) shows the variation of electron anomalous magnetic moment, Δae with gauge boson mass mZeμ
, panel (b) shows the

change of magnetic moment of muon ðΔaμÞ with gauge boson mass mZeμ
(in MeV). The order of gauge coupling coming out from the

figure is 10−5, panel (c) shows the variation of gauge coupling geμ with gauge-boson mass mZeμ
. In the figure, magenta scatter points

satisfy electron anomalous magnetic moment while blue points give the parameter space for muon anomalous magnetic moment
ðg − 2Þμ. The limits from the experiments KLOE [43], COHERENT_LAr [44], and CCFR [45] have been shown by violet, light-green,
and light-blue shaded regions, respectively.

UNVEILING NEUTRINO PHENOMENOLOGY, … PHYS. REV. D 108, 035032 (2023)

035032-9



TeV [52–56]. The present model is the case of inverse
seesaw where in the basis of ðNc

Ri
; SLi

Þ, we have the heavy-
fermion mass matrix of the form given in Eq. (25). The
presence of Mμ term acts like a small mass-splitting term,

M ¼
�

0 MNS

MT
NS Mμ

�
: ð25Þ

The typical size of Mμ ≪ MNS, and block diagonaliza-
tion of M as in Eq. (25) by using unitary matrix 1ffiffi

2
p ðII −I

I Þ,
yields a diagonal M0 matrix as shown in Eq. (26),

M0 ¼
 
MNS þ Mμ

2
−Mμ

2

−Mμ

2
−MNS þ Mμ

2

!

≈

 
MNS þ Mμ

2
0

0 −MNS þ Mμ

2

!
: ð26Þ

Now, the mass eigenstates can be related to flavor eigen-
states through the unitary rotation matrix as

� SLi

Nc
Ri

�
¼
�
cos θ − sin θ

sin θ cos θ

��
Nþ

i

N−
i

�
: ð27Þ

From Eq. (27), in the limit of maximal mixing, the
additional fermions can be related to their mass eigenstates
by the expressions [57]

Nc
Ri
¼ ðNþ

i þ N−
i Þffiffiffi

2
p ; SLi

¼ ðNþ
i − N−

i Þffiffiffi
2

p : ð28Þ

Thus, one can write the Lagrangian in mass basis of the
heavy fermions as

Llepton ⊃ YSl̄LH̃Nþ
i þ YNl̄LH̃N−

i þMNS − Mμ

2

2
N̄−c

i N−
i

þMNS þ Mμ

2

2
N̄þc

i Nþ
i þ H:c: ð29Þ

The mass eigenvalues for new states Nþ
i ; N

−
i can be

obtained by diagonalizing the matrix (30),

MNS �Mμ

2
¼

0
BBB@

v1ffiffi
2

p jy1N jeiϕ2 �M12

2
�y13

v2
2
ffiffi
2

p

�M12

2
v1ffiffi
2

p y2N �y23
v2
2
ffiffi
2

p

�y13
v2
2
ffiffi
2

p �y23
v2ffiffi
2

p v1ffiffi
2

p y3N � M33

2

1
CCCA:

ð30Þ

The numerical computation of the six mass eigenvalues
results in the identification of N−

1 as the particle with the
lowest mass, as presented in Table V. Additionally, we

assume that the contribution to theCP asymmetry is mainly
due to the lightest pair of particles with masses at the TeV
scale. The negligible difference between the masses of
these lightest particles implies that the contribution from
the self-energy of heavy particle decay through one-loop is
more significant than the contribution coming from the
vertex diagram. The formula for calculating the CP
asymmetry is expressed in the following manner according
to [58],

ðϵCPÞ� ¼ ΓðN�
1 → lHÞ − ΓðN�

1 → lH†Þ
ΓðN�

1 → lHÞ þ ΓðN�
1 → lH†Þ

≈
ImðY†

NYSY
†
NYSÞ11

8πA�

rN
r2N þ Γ2

�=m
2
N�

1

; ð31Þ

where, rN ¼
m2

Nþ
1

−m2
N−
1

mNþ
1
mN−

1

¼
ΔmðmNþ

1
þmN−

1
Þ

mNþ
1
mN−

1

with Aþ ¼ ðY†
SYSÞ11,

A− ¼ ðY†
NYNÞ11. Γ� ¼ A�

mN�
1

8π is the decay width of N�
1

and note that at the leading order, the matrix elements of YN
and YS are approximately of the same magnitude as yαD
(α ¼ e, μ, τ), i.e., YN ≈ YS ≈ 1ffiffi

2
p yαD. Therefore, the afore-

mentioned details enable us to illustrate the CP-asymmetry
plots, as depicted in Fig. 7, which displays the correlation
of the rN parameter with ϵCP. Subsequently, we will discuss
the benchmark values, presented in Table V, which satisfy
both the neutrino mass and the requisite CP asymmetry for
getting the lepton asymmetry that can generate the
observed baryon asymmetry.

TABLE V. In this table, we show the benchmark points (BP) of
the mutual parameter space satisfying neutrino oscillation data for
giving the correct lepton asymmetry.

Parameters MN−
1
(GeV) ϵCP Δm (GeV)

BP 2.96 × 103 1.5 × 10−5 1.5 × 10−6

FIG. 7. Variation ofCP asymmetry with respect to rN parameter.
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The dynamics of the relevant Boltzmann equations can
be used to deduce the evolution of lepton asymmetry.
According to the Sakharov criteria [59], the decay of the
parent fermion must be out of equilibrium to produce
the lepton asymmetry. In order to satisfy this condition, the
Hubble rate must be compared with the decay rate, as

KN−
1
¼ ΓN−

1

HðT ¼ mN−
1
Þ ; ð32Þ

where H ¼ 1.67
ffiffiffiffi
g⋆

p
T2

MPl
, with g⋆ ¼ 106.75, and MPl is

1.22 × 1019 GeV. We further assume that the coupling
strength is approximately equal to ð≈yeDÞ and of the order of
10−7, which is consistent with the minimum order of
coupling parameters obtained from the numerical analysis
section and in accordance with neutrino oscillation data.
This results in KN−

1
∼ 1, preventing the inverse decay from

reaching thermal equilibrium. The Boltzmann equations,
which detail the evolution of the right-handed fermion and
lepton number densities represented in terms of the yield
parameter (the ratio of the number density to entropy
density), are provided in [60–63],

dYN−
1

dz
¼ −

z
sHðmN−

1
Þ
��

YN−
1

Yeq
N−

1

− 1

�
γD þ

��
YN−

1

Yeq
N−

1

�
2

− 1

�
γS

	
;

ð33Þ

dYB−L

dz
¼ −

z
sHðmN−

1
Þ γD

�
ϵN−

1

�
YN−

1

Yeq
N−

1

− 1

�
þ YB−L

2Yeq
l

	
: ð34Þ

Here, s denotes the entropy density, z ¼ mN−
1
=T, and the

equilibrium number densities are outlined in [64] as

Yeq
N−

1
¼ 45gN−

1

4π4g⋆
z2K2ðzÞ; Yeq

l ¼ 3

4

45ζð3Þgl
2π4g⋆

: ð35Þ

Here, gN−
1
¼ 2 and gl ¼ 2 denote the degrees of freedom of

right-handed fermions and leptons, respectively. The decay

rate is given by γD ¼ sYeq
N−

1
ΓD where, ΓD ¼ ΓN−

1

K1ðzÞ
K2ðzÞ with

K1;2 denote modified Bessel functions. While γS denotes the
scattering rate of the decaying fermion, and the Boltzmann
equation for YB−L is free from the subtlety of asymmetry
getting produced even when N−

1 is in thermal equilibrium,
i.e., by subtracting the on shell N−

1 exchange contribution
(γD
4
) from the ΔL ¼ 2 processes [61]. In Fig. 8(a), the

interaction rates are compared to the Hubble expansion
(green solid line), the decay rate (ΓD, red-solid line), and the

inverse decay rate
�
ΓID ¼ ΓD

Yeq
N−
1

Yeq
l

�
, depicted by a dashed-

blue line. It is observed that the inverse decay does not reach
thermal equilibrium. The scattering rate for decaying fer-

mion
�

γS
sYeq

N−
1

�
is projected by the brown dot-dashed line and is

consistent with neutrino oscillation studies. Once the out-of-
equilibrium criteria are met, the decay proceeds slowly,
resulting in over-abundance of YN−

1
[blue dashed curve in

Fig. 8(b)], which does not follow Yeq
N−

1
(magenta solid curve),

and lepton asymmetry (red solid curve) is generated. The
obtained lepton asymmetry is then converted into the
observed baryon asymmetry through the sphaleron transi-
tion, as outlined in [60,65,66],

YB ¼
�

8Nf þ 4NH

22Nf þ 13NH

�
YB−L: ð36Þ

Here, Nf denotes the number of fermion generations, and
NH is the number of Higgs doublets. The observed baryon

(a) (b)

FIG. 8. Panel (a) projects the comparison of interaction rates with Hubble expansion (green line), where the solid red line corresponds
to decay, inverse decay (blue dashed), and scattering rate shown by brown dot-dashed line, whereas, panel (b) exhibits the evolution of
YB−L (red solid) as a function of z ¼ mN−

1
=T.
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asymmetry is quantified in terms of baryon to photon
ratio [67]

η ¼ ηb − ηb̄
ηγ

¼ 6.08 × 10−10: ð37Þ

Based on the relation YB ¼ ð7.04Þ−1η, the current bound on
baryon asymmetry is YB ∼ 8.6 × 10−11. Taking the asymp-
totic value (10−11) of YB−L from the Fig. 8(b)
(red solid), the obtained baryon asymmetry is YB ¼
28
79
YB−L ∼ 10−11.

VII. COMMENTS ON COLLIDER BOUND

In current and past collider physics programs, so many
experiments have given the upper limits on the mass of the
new gauge bosons with respect to the corresponding gauge
couplings. Most of these experiments have searched for new
heavy resonances in both dilepton and dijet signals. Among
these experiments, ATLAS put a stronger bound on the
dilepton signal than dijet due to small background events. In
Fig. 9, the upper bound of ATLAS limit for the cross section
of pp → ZB−L → llðl ¼ e; μÞ with respect to the heavy-
gauge bosonmass has been shown by a red dotted curvewith
the center-of-mass frame momentum

ffiffiffi
s

p ¼ 13 TeV. In our
proposed model, gauge boson associated with Uð1ÞB−L
gauge symmetry can be tested by current and future collider
experiments. From Fig. 9, it can be seen that for gB−L ¼ 0.2
(black curve), the rangemZB−L

≥ 3.4 TeV is excluded, while
for gB−L ¼ 0.07 (magenta curve) and gB−L ¼ 0.04 (blue
curve) the mass range mZB−L

≥ 2.5 TeV and mZB−L
≥

1.5 TeV are excluded. Thus, as we can go greater values
of gB−L, the corresponding allowed parameter space
increases.

VIII. SUMMARY AND CONCLUSION

This article comprehensively analyzes various aspects of
neutrino phenomenology, along with electron and muon
(g − 2), resonant leptogenesis, and probing the model in
future long-baseline experiments within an inverse seesaw
framework. The model includes three additional right-
handed neutrinos (NRi

) and three neutral fermions (SLi
),

i ¼ 1, 2, 3, with the required quantum numbers to cancel the
gauge anomalies via two local gauge symmetries Uð1ÞB−L
and Uð1ÞLe−Lμ

. The spontaneous breaking of these sym-
metries through the VEVs of the scalars χ1 and χ2 induce
masses to the scalar sector aswell as gauge bosons. The study
shows that the sum of active neutrino masses (

P
mi) is

consistent with normal ordering, varies from 0.058 eV to
0.061 eV. Additionally, the oscillation parameters such as
sin2 θ23 strongly prefer the upper octant and vary only within
the range of [0.5, 0.6], while sin2 θ12 ranges from [0.27,
0.34], and sin2 θ13 varies from [0.02029, 0.02389]. The
differences inmass squared values are also altered toΔm2

21 ¼
½6.82; 8.03� × 10−5 eV2 and Δm2

31¼½2.43;2.59�×10−3 eV2.
The CP-violating phase has a more restricted range, with a
value of [180°, 224°] based on our model. Table III lists the
best-fit values for oscillation parameters in our model.
Furthermore, we examine our model in future long-baseline
experiments such as DUNE, T2HK, and T2HKK. Results
from this subsection conclude that the 3σ allowed region of
θ23 − δCP plane can be tested by the 3σ as well as the 5σ
allowed range of DUNE. Similarly, the allowed region of the
3σ CL is consistent with the 5σ CL of T2HK, but, a small
portion of 2σ exclusion region is not compatible with the 3σ
of T2HK. The 5σ region of T2HKK can test our model with
the 3σ allowed range of our proposed model. To account for
the anomalous magnetic moments of electrons and muons,
we include the contributions from two gauge bosons
(ZB−L and Zeμ) in the expressions of Δae and Δaμ. We
found that only Zeμ is involved in the calculation of
anomalous magnetic moment, as mZB−L

is in the TeV range.
Furthermore, our model is capable of simultaneously
explaining the anomalous magnetic moments of electrons
andmuons, satisfying the current results. The heavy fermions
flavor structurewould have resulted in six doubly degenerate
mass eigenstates.However, the presence ofMμ, as discussed
above in the neutrino-phenomenology section, saves the day
by acting like a small mass-splitting term, making it possible
to explain leptogenesis. The lightest heavy fermion eigen-
state’s decay produced a nonzero CP asymmetry. The self-
energy contribution is partially enhanced due to the slight
mass difference between the two lighter heavy fermions. We
used a specific set of model parameters consistent with
oscillation data to solve coupled Boltzmann equations. This
approach enabled us to obtain the evolution of lepton
asymmetry at the TeV scale, which is of the order of
≈10−11. This value is sufficient to explain the current baryon
asymmetry of theUniverse. Finally, the collider bound places

FIG. 9. Collider search by ATLAS dilepton constraints on the
proposed model is shown. Here, the red-dashed line represents
the exclusion limit from ATLAS, and blue, magenta, and black
curves show the dilepton signal cross sections for gauge coupling
values as 0.04, 0.07, and 0.2, respectively, with the function
of mZB−L

.
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a stringent constraint on the parameter space of dilepton
production cross section and mZB−L

.
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