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We study a novel six-dimensional gauge theory compactified on the T2=Z3 orbifold utilizing the
diagonal embedding method. The bulk gauge group is G ×G ×G, and the diagonal part Gdiag remains
manifest in the effective four-dimensional theory. Further spontaneous breaking of the gauge symmetry
occurs through the dynamics of the zero modes of the extradimensional components of the gauge field. We
apply this setup to the SUð5Þ grand unified theory and examine the vacuum structure determined by the
dynamics of the zero modes. We find bulk matter contents that radiatively induce spontaneous breakings of
the unified symmetry Gdiag ≅ SUð5Þ down to SUð3Þ × SUð2Þ × Uð1Þ at the global minima of the one-loop
effective potential for the zero modes. This spontaneous breaking provides notable features such as a
realization of the doublet-triplet splitting without a fine tuning and a prediction of light adjoint fields.
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I. INTRODUCTION

Higher-dimensional gauge theory has been studied
extensively as one of the attractive possibilities for physics
beyond the standard model (SM). It is worth noting that the
higher-dimensional gauge theory can possess the dynami-
cal mechanism for gauge symmetry breaking via continu-
ous Wilson line phases, called the Hosotani mechanism [1].
It is one of the promising approaches to understand the
origin of the gauge symmetry breaking in the electroweak
theory or in the grand unified theory (GUT) [2,3]. The
former attempts are called gauge-Higgs unification [4,5].
Hence, various aspects of the higher-dimensional gauge
theory with the Hosotani mechanism have been
investigated.
The zero modes of the extradimensional components of

the gauge field become the dynamical degrees of freedom,
which behave as scalar fields at low energy [6,7]. The zero
modes are closely related with the Wilson line phases, and
the quantum correction generates the effective potential
for the phases. The zero modes can acquire vacuum

expectation values (VEVs) at a minimum of the potential
to induce the gauge symmetry breaking [1]. Interestingly,
the gauge symmetry breaking patters are definitely deter-
mined irrespective of the detail of the dynamics in the
ultraviolet region thanks to the finiteness of the effective
potential for the phases once we fix the content of matter
fields in the theory [8,9].1 One understands the definite
origin of the potential that induces the gauge symmetry
breaking.
The zero modes originally belong to the adjoint repre-

sentation under the gauge group. Thus, it looks attractive
and natural to apply the Hosotani mechanism to the
spontaneous breaking of the GUT gauge symmetry such
as SUð5Þ [2,3]. We immediately, however, encounter the
difficulty that the existence of the scalar zero mode of the
adjoint representation tends to be incompatible with chiral
fermions, which are required in phenomenologically
acceptable models. That is, if one tries to obtain the chiral
fermion, the orbifold compactification with appropriate
boundary conditions (BCs) is a possible framework, but the
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1Higher-loop corrections to the effective potential calculated
with the bare Lagrangian generally include divergent contribu-
tions, which originate from the loop integral of sub-
diagrams [9,10]. Such divergent contributions are canceled out
with lower-order counterterms, and it is expected that there is no
need to introduce independent counterterms to eliminate the
divergent contributions [9]. In other words, in terms of the
renormalized couplings, which are determined by the low-energy
experiments and thus finite, instead of the bare couplings, the
effective potential is free from the divergences.
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scalar zero mode of the adjoint representation is projected
out for the case. Thus, the SUð5Þ symmetry is broken by
the BCs in many higher-dimensional GUT models [11].
Otherwise, an alternative direction is to consider GUT
models with higher-rank gauge groups [12] that are
spontaneously broken by VEVs of the scalar zero modes
belonging to nonadjoint representations [13]. In these
models, since the Georgi-Glashow SUð5Þ is broken at
some fixed points on the orbifold, characteristic relations in
the simple SUð5Þ GUT, such as the gauge coupling
unification and the matter unification at a high-energy
scale, are generally disturbed by SUð5Þ breaking localized
terms on the fixed points.
The diagonal embedding method [14] makes the adjoint

zero mode exist and overcomes the difficulty to apply the
Hosotani mechanism to the breaking of the SUð5Þ sym-
metry accompanying the chiral fermions. Though the
method is originally invented in the context of the heterotic
string theory, it is possible to apply it to the higher-
dimensional gauge theory. In fact, we have obtained the
five-dimensional GUT models compactified on the orbifold
S1=Z2, in which the SUð5Þ gauge symmetry is broken
down to that of the SM by the Hosotani mechanism without
contradicting the existence of the chiral fermion [15]. We
note that the SUð5Þ gauge symmetry is preserved even at
the fixed points except for the effects from the Wilson
line VEVs and the SUð5Þ breaking localized terms
are absent in this case. We call the theoretical framework
the type A(djoint) grand gauge-Higgs unification.
Phenomenologically notable aspects in the type A grand
gauge-Higgs unification with S1=Z2 compactification have
been investigated [16–19]. For other types of the grand
gauge-Higgs unification, referred to also as gauge-Higgs
grand unification, see Ref. [5], where the Hosotani mecha-
nism is utilized to break the electroweak symmetry.
What is striking is that the effective potential for the

phases obtained in the diagonal embedding method main-
tains the desirable nature, that is, the finiteness. Hence, the
VEV for the zero mode can be determined by minimizing
the effective potential for the fixed matter content to
induces the GUT gauge symmetry breaking without being
affected by the physics in the ultraviolet region.
Furthermore, the diagonal embedding method can straight-
forwardly be extended to the case with more complex
orbifold compactification such as T2=Z3.
In this paper, we shall study the gauge symmetry

breaking of the six-dimensional (6D) SUð5Þ gauge theory
compactified on the T2=Z3 in the type A grand gauge-
Higgs unification. In the counterpart in the string theory for
the Z3 model, the gauge symmetry is realized at a level-3
affine Lie algebra or Kac-Moody algebra. We note that
there is a conjecture that the generation number is a
multiple of the level [20]. Though the generation number
is just a free parameter set by hand within the field theory, it
is meaningful to construct field theoretical models that can

be considered as effective theories of the string theoretical
models with three generations. The 6D model compactified
on the T2=Z3 orbifold is their simplest example. It is
important and interesting to study the T2=Z3 compactifi-
cation from the side of field theory. One can study the
breaking of the SUð5Þ gauge symmetry by minimizing the
one-loop effective potential for the phases. We shall
determine the gauge-symmetry breaking patterns through
the Hosotani mechanism for various matter contents from
the one-loop effective potential and find matter contents
that result the SM gauge symmetry. We also discuss
phenomenological implications qualitatively such as
four-dimensional (4D) chiral fermions, gauge coupling
unification, fermion masses, proton decay, and so on.
This paper is organized as follows. In the next section,

we introduce the basic aspects of the orbifold T2=Z3. We
discuss the field theoretical realization of the diagonal
embedding method focusing on the gauge fields on the
orbifold T2=Z3 in Sec. III. This section contains the
fundamental ingredients for studying the gauge symmetry
breaking in our model. The matter fields are introduced in
Sec. IV, where the BCs and the mass spectrum are studied.
We compute the effective potential for the Wilson line
phases in one-loop approximation and study the gauge
symmetry breaking patterns, including the breaking down
to the gauge symmetry of the SM, in Secs. V and VI. We
also give a brief discussion on phenomenological aspects of
our model in Sec. VI. The final section is devoted to
conclusions and discussions. Some details on the calcu-
lations are given in the appendixes.

II. T2=Z3 ORBIFOLD

We consider the orbifold T2=Z3 as the compact extra
dimensions. To deal with coordinate vectors in T2=Z3, it is
convenient to use the basis vectors ei and the metric gij,
which satisfies

ei · ej ¼ gij; eiþ2 ¼ −ei − eiþ1; eiþ3 ¼ ei; ð2:1Þ

where i ∈ Z. Among ei, we can choose e1 and e2 as a
linearly independent set. A coordinate vector y in T2=Z3 is
spanned by the basis vector as

y ¼ yiei ¼ y1e1 þ y2e2; yi ∈ R; ð2:2Þ

and it satisfies the following identifications:

y ∼ yþ 2πRe1; y ∼ yþ 2πRe2; ð2:3Þ

y ¼ yiei ∼ yieiþ1 ¼ y1e2 þ y2e3 ¼ −y2e1 þ ðy1 − y2Þe2;
ð2:4Þ

where R parametrizes the size of the compact space.
Contractions between upper and lower indices i imply
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the summation over i ¼ 1, 2 hereafter. By requiring that the
metric gij is invariant under the transformation ei → eiþ1,
we can fix it as

�
g11 g12
g21 g22

�
¼
�

1 −1=2
−1=2 1

�
; ð2:5Þ

up to an overall constant, which can be absorbed into the
definition of R.
The two-dimensional Cartesian coordinates, which we

denote by x5 and x6, are related to the oblique coordinates
y1 and y2. We take the basis such that x5 ¼ y1 and x6 ¼ 0

hold for y2 ¼ 0 as

�
x5

x6

�
¼
�
1 cosð2π=3Þ
0 sinð2π=3Þ

��
y1

y2

�
¼
�
1 −1=2

0
ffiffiffi
3

p
=2

��
y1

y2

�
;

ð2:6Þ
�
y1

y2

�
¼
�
1 − cotð2π=3Þ
0 cscð2π=3Þ

��
x5

x6

�

¼
�
1 1=

ffiffiffi
3

p

0 2=
ffiffiffi
3

p
��

x5

x6

�
; ð2:7Þ

In light of Eqs. (2.3) and (2.4), let us introduce the
operators T̂ j (j ¼ 1, 2) and Ŝ0 that act on the coordinates
yi as

T̂ 1

�
y1

y2

�
¼
�
T̂ 1½y1�
T̂ 1½y2�

�
¼
�
y1 þ 2πR

y2

�
;

T̂ 2

�
y1

y2

�
¼
�
T̂ 2½y1�
T̂ 2½y2�

�
¼
�

y1

y2 þ 2πR

�
; ð2:8Þ

Ŝ0

�
y1

y2

�
¼
�
Ŝ0½y1�
Ŝ0½y2�

�
¼
�

−y2

y1 − y2

�
: ð2:9Þ

The identifications in Eqs. (2.3) and (2.4) are rewritten as

T̂ 1½yi� ∼ yi; T̂ 2½yi� ∼ yi; Ŝ0½yi� ∼ yi: ð2:10Þ

We can define an independent domain of the T2 torus
regarding the identifications given by T̂ 1 and T̂ 2, where
one of the domains is shown as the gray-shaded region in
Fig. 1. The additional identification given by Ŝ0 defines the
orbifold T2=Z3, which has the fundamental domain shown
in Fig. 1 by the green-shaded region.
There exist fixed points on the orbifold that are invariant

up to the translations T̂ 1 and T̂ 2 under the discrete rotation
Ŝ0. That is, the fixed points are given by the solution to the
following equation:

ðT̂ 1Þn1ðT̂ 2Þn2 Ŝ0

�
y1

y2

�
¼
�
y1

y2

�
; where n1; n2 ∈ Z:

ð2:11Þ

We denote the three fixed points on the fundamental
domain of T2=Z3 by yifðrÞ (r ¼ 0, 1, 2), which are given by

� y1fð0Þ
y2fð0Þ

�
¼
�
0

0

�
;

� y1fð1Þ
y2fð1Þ

�
¼ 2πR

�
2=3

1=3

�
;

� y1fð2Þ
y2fð2Þ

�
¼ 2πR

�
1=3

2=3

�
: ð2:12Þ

Any other fixed points are given by the translations of yifðrÞ
generated by T̂ 1 and T̂ 2. In Fig. 1, the fixed points are
shown by the small circles.
The operators T̂ 1, T̂ 2, and Ŝ0 satisfy

T̂ 1T̂ 2 ¼ T̂ 2T̂ 1; Ŝ0T̂ 1 ¼ T̂ 2Ŝ0: ð2:13Þ

Thus, T̂ 1, T̂ 2, and Ŝ0 are not independent to each other. In
addition, it is convenient to define

Ŝ1 ≡ T̂ 1Ŝ0; Ŝ2 ≡ T̂ 2T̂ 1Ŝ0; ð2:14Þ

where Ŝ3
r ¼ Î for r ¼ 0, 1, 2 and Î ½yi� ¼ yi. The operators

Ŝr give 2π=3 rotations around the fixed points yifðrÞ and

satisfy Ŝr½yifðrÞ� ¼ yifðrÞ. Among the above operators, we can

choose T̂ 1 and Ŝ0 as the independent ones, and the others
T̂ 2, Ŝ1, and Ŝ2 can be expressed by T̂ 1 and Ŝ0.

FIG. 1. The oblique coordinate system on T2=Z3. The gray-
shaded region is an independent domain of the torus T2. The
green-shaded region is a fundamental domain of the orbifold
T2=Z3. The small circles correspond to the fixed points.
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It is useful to introduce the dual basis vectors ẽi as

ẽi · ej ¼ δij; ẽi · ẽj ¼ gij; gikgkj ¼ δij; ð2:15Þ

where δij is the Kronecker delta and

�
g11 g12

g21 g22

�
¼ 4

3

�
1 1=2

1=2 1

�
: ð2:16Þ

Note that gijej ¼ ẽi and gijẽj ¼ ei hold. We can introduce a
dual vector k̃ that is spanned by the dual basis vectors as

k̃ ¼ k1ẽ1 þ k2ẽ2; ki ∈ R: ð2:17Þ

Then, one sees k̃ · y ¼ kiyi ∈ R. As discussed in
Appendix A, ẽi is a natural basis for a Kalzua-Klein
(KK) discretized momentum, which is mapped to a point
on the lattice spanned by ẽi in a normalization.
The identification in Eq. (2.4) is related to the basis

change ei → eiþ1. Under the basis change, the dual basis
vectors also change ẽi → ẽ0i. Requiring eiþ1 · ẽ0i ¼ δji , we
obtain ẽ01 ¼ −ẽ1 þ ẽ2 and ẽ02 ¼ −ẽ1. Thus, corresponding
to Eq. (2.4), we obtain the identification for the dual
vector as

k̃¼ kiẽi ∼ k1ð−ẽ1 þ ẽ2Þ þ k2ð−ẽ1Þ ¼ ð−k1 − k2Þẽ1 þ k1ẽ2:

ð2:18Þ

Then, the action of the operator Ŝ0 on the coordinates of
dual vectors is naturally defined by

Ŝ0½ki� ¼ ki−1; ð2:19Þ

where we have also defined

k0 ¼ −k1 − k2; kiþ3 ¼ ki; i ∈ Z: ð2:20Þ

From the above, one sees Ŝ0½ki�Ŝ0½yi� ¼ kiyi and

kiŜ0½yi� ¼ Ŝ−1
0 ½ki�yi ¼ kiþ1yi: ð2:21Þ

We use Eq. (2.21) for deriving the KK expansions of fields
discussed in Appendix A.

III. THE DIAGONAL EMBEDDING METHOD ON
M4 × T2=Z3: GAUGE FIELDS

A. Lagrangian for gauge fields

We start to discuss the gauge theory with the field-
theoretical realization of the diagonal embedding method
onM4 × T2=Z3, whereM4 is the Minkowski spacetime. In
the following, we denote the 6D orthogonal coordinates by
xM ¼ ðxμ; x5; x6Þ (μ ¼ 0, 1, 2, 3). For the extradimensional

coordinates, we also use the oblique coordinates y1 and y2

in Eq. (2.7) instead of x5 and x6. The metric ofM4 × T2=Z3

is defined such that xMxM ¼ ηð4Þμν xμxν − gijyiyj, where

ηð4Þμν ¼ diagð1;−1;−1;−1Þ and gij is given in Eq. (2.5).
The action is given by the Lagrangians for the gauge

fields LYM and the matter fields Lmat, which will be
discussed in the next section, as

S¼
Z

2πR

0

dy1
Z

2πR

0

dy2
ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

q Z
d4xL; L¼LYMþLmat;

ð3:1Þ

where det gij ¼ 3=4. The diagonal embedding method on
the orbifold requires that the theory respects three copies of

gauge symmetry G and the global symmetry ZðexÞ
3 that

permutes the three copies cyclically. Therefore, let us
introduce the Lagrangian for the gauge fields as

LYM ¼ −
1

2

X3
k¼1

TrðFðkÞ
MNF

ðkÞMNÞ;

FðkÞ
MN ¼ ∂MA

ðkÞ
N − ∂NA

ðkÞ
M þ ig½AðkÞ

M ; AðkÞ
N �; ð3:2Þ

where g is the gauge coupling constant. The gauge fields

AðkÞ
M (k ¼ 1, 2, 3) are expanded by the generators of the

gauge symmetry as AðkÞ
M ¼ AðkÞa

M tðkÞa , where the indices a
run from 1 to the dimension of the Lie algebra of G,

and the summation over a is implied. The operators tðkÞa

(k ¼ 1, 2, 3) are representation matrices of the generators.
We adopt the convention that the matrices satisfy the
following relations:

½tðkÞa ; tðk
0Þ

b � ¼ ifabct
ðkÞ
c δkk

0
; Tr½tðkÞa tðk

0Þ
b � ¼ 1

2
δabδ

kk0 ; ð3:3Þ

where fabc is the structure constant. In Eqs. (3.2) and (3.3),
the trace is taken over the representation space.
The Lagrangian in Eq. (3.2) has the gauge symmetry

G ×G ×G and the global symmetry ZðexÞ
3 . We define the

gauge transformation of the gauge field as

AðkÞ
M →ΩðkÞ

�
AðkÞ
M −

i
g
∂M

�
ΩðkÞ†; ΩðkÞ ¼ expðigαðkÞatðkÞa Þ;

ð3:4Þ
where αðkÞaðxÞ are gauge parameters. To define the global

ZðexÞ
3 transformation of the gauge field, it is helpful to

extend the range of index k ∈ f1; 2; 3g to k ∈ Z and to

introduce the periodicity for the index k, e.g., Aðkþ3Þa
N ¼

AðkÞa
N and tðkþ3Þ

a ¼ tðkÞa . Hereafter, we use this notation.

Then, we can write the global ZðexÞ
3 transformation of the

gauge field as follows:
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AðkÞ
M ¼ AðkÞa

M tðkÞa ⟶
ZðexÞ

3
Aðkþ1Þa
M tðkÞa : ð3:5Þ

Under the transformations in Eqs. (3.4) and (3.5), the
Lagrangian in Eq. (3.2) is invariant.
Using the above notation, we can define A½p�a

M that are the
eigenstates of the transformation in Eq. (3.5) as

A½p�a
M ¼ 1ffiffiffi

3
p
X3
k¼1

ω−kpAðkÞa
M ; AðkÞa

M ¼ 1ffiffiffi
3

p
X1
p¼−1

ωkpA½p�a
M ;

ð3:6Þ

where p ∈ Z and ω ¼ e2πi=3. From the above definition,

A½pþ3�a
M ¼ A½p�a

M and ðA½p�a
M Þ� ¼ A½−p�a

M hold. Note that A½p�a
M

has the eigenvalue of ωp under the ZðexÞ
3 transformation

in Eq. (3.5).

B. Orbifold boundary conditions and residual
gauge symmetries

In theories on the orbifold, field values are constrained
since the extradimensional coordinates obey the identifi-
cations discussed in the previous section. To clarify the
constraints, we define the BCs [21] for the gauge fields. As
discussed in Sec. II, we treat T̂ 1 and Ŝ0 as the independent
operators and define the BCs for the gauge fields

AðkÞa
M ðxμ; yiÞ as follows:

AðkÞa
μ ðxμ; T̂ 1½yi�Þ ¼ AðkÞa

μ ðxμ; yiÞ;
AðkÞa
μ ðxμ; Ŝ0½yi�Þ ¼ Aðkþ1Þa

μ ðxμ; yiÞ; ð3:7Þ

AðkÞa
yi ðxμ; T̂ 1½yi�Þ ¼ AðkÞa

yi ðxμ; yiÞ;
AðkÞa
yi ðxμ; Ŝ0½yi�Þ ¼ Aðkþ1Þa

yi−1
ðxμ; yiÞ; ð3:8Þ

where AðkÞa
y1 ¼AðkÞa

5 , AðkÞa
y2 ¼−1

2
AðkÞa
5 þ

ffiffi
3

p
2
AðkÞa
6 , and AðkÞa

y0 ¼
−AðkÞa

y1
− AðkÞa

y2
. Hereafter, we also use the notation

AðkÞa
yiþ3 ¼ AðkÞa

yi ði ∈ ZÞ.
In general, BCs can nontrivially act on the representation

space of not only the discrete groupZðexÞ
3 but also the gauge

groupG. Nevertheless, it should be emphasized that we can
always take the trivial BCs for G as in Eqs. (3.7) and (3.8)
without loss of generality. This is understood as follows.
Although one can introduce nontrivial transformations in
the representation space of G [21,22], which we here call
the gauge twists, the nontrivial gauge twists do not affect
the low-energy physics in the present case. For the gauge
twist with respect to Ŝ0, this introduces just a difference
among the bases in the representation space of the gen-

erators tð1Þa , tð2Þa , and tð3Þa . Such difference can always be

absorbed into the redefinition of the generators tðkÞa . The

gauge twist with respect to T̂ 1 can be absorbed by the
continuous Wilson line phases [22], which will be dis-
cussed in detail in the next section, through the gauge
transformations with the gauge parameters depending on
the extradimensional coordinates. Then, if the BCs are the
same up to the gauge twist with respect to T̂ 1, these BCs
are said to belong to the same equivalence class [23–25].
As seen below, the vacuum is determined by a nontrivial
expectation value of theWilson line phases. It is known that
BCs in an equivalence class describe the same low-energy
physics through the dynamics of the Wilson line phases
determined by the effective potential generated by quantum
corrections [24].2

From the BCs and Eq. (3.6), it follows that

A½p�a
μ ðxμ; T̂ 1½yi�Þ ¼ A½p�a

μ ðxμ; yiÞ;
A½p�a
μ ðxμ; Ŝ0½yi�Þ ¼ ωpA½p�a

μ ðxμ; yiÞ; ð3:9Þ

A½p�a
yi ðxμ; T̂ 1½yi�Þ ¼ A½p�a

yi ðxμ; yiÞ;
A½p�a
yi ðxμ; Ŝ0½yi�Þ ¼ ωpA½p�a

yi−1
ðxμ; yiÞ: ð3:10Þ

The Z3 transformation of yi generated by Ŝ0 is discussed in
Sec. II and is contained in SOð2Þ rotations that are part of
the 6D Lorentz transformation. Hence, the extradimen-
sional components of the gauge field nontrivially transform

under the Z3 transformation, and thus A½p�a
yi are not the

eigenstates of the BC for Ŝ0 in Eq. (3.10). We refer to

the Z3 subgroup of the SOð2Þ as ZðLÞ
3 . Let us denote the

eigenstates of the ZðLÞ
3 transformation by AðkÞa

½q� that are

defined as

AðkÞa
½q� ¼ 1

3

X3
l¼1

ω−ðl−1ÞqAðkÞa
yl

; AðkÞa
yl

¼
X3
q¼1

ωðl−1ÞqAðkÞa
½q� ;

ð3:11Þ

where q ∈ Z and the superscript of yl takes l ¼ 1, 2, 3,
whereas that of yi takes i ¼ 1, 2 as explained in Sec. II.
The normalization in Eq. (3.11) is fixed by

AðkÞa
½�1� ¼ ðAðkÞa

5 ∓ iAðkÞa
6 Þ=2, which correspond to the gauge

fields AðkÞa
z and AðkÞa

z̄ associated with the complex coor-
dinates z ¼ x5 þ ix6 and z̄ ¼ x5 − ix6. With this definition,

we find AðkÞa
½qþ3� ¼ AðkÞa

½q� , ðAðkÞa
½q� Þ� ¼ AðkÞa

½−q� , and A
ðkÞa
½0� ¼ 0. For

fixed k and a, there are two real degrees of freedom in AðkÞa
½q�

as in AðkÞa
yi . From Eq. (3.8), the BC for AðkÞa

½q� is given by

2We introduce the twist for ZðexÞ
3 only associated with Ŝ0 in

Eqs. (3.7) and (3.8). One may consider a ZðexÞ
3 twist associated

with T̂ 1, which cannot be absorbed by the Wilson line phases.
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AðkÞa
½q� ðxμ; Ŝ0½yi�Þ ¼ ω−qAðkþ1Þa

½q� ðxμ; yiÞ: ð3:12Þ

Namely AðkÞa
½q� has the eigenvalue ω−q under the ZðLÞ

3

transformation.
From the above discussions, the eigenstates A½p�a

½q� of the
BCs are naturally defined as

A½p�a
½q� ¼ 1ffiffiffi

3
p
X3
k¼1

ω−kpAðkÞa
½q� ¼ 1

3
ffiffiffi
3

p
X3
l¼1

X3
k¼1

ω−kp−ðl−1ÞqAðkÞa
yl

:

ð3:13Þ

Inversely, it also follows that

AðkÞa
yl

¼ 1ffiffiffi
3

p
X1
p¼−1

X1
q¼−1

ωðl−1ÞqþkpA½p�a
½q� : ð3:14Þ

Then, A½p�a
½�1� satisfies the BCs as

A½p�a
½�1�ðxμ; T̂ 1½yi�Þ ¼ A½p�a

½�1�ðxμ; yiÞ;
A½p�a
½�1�ðxμ; Ŝ0½yi�Þ ¼ ωp∓1A½p�a

½�1�ðxμ; yiÞ: ð3:15Þ

From the BCs in Eqs. (3.9) and (3.15), it is implied that

A½0�a
μ , A½1�a

½1� , and A½−1�a
½−1� have zero modes, which do not have

Oð1=RÞ KK masses in the 4D effective theory.

We remind that the Lagrangian possesses ZðexÞ
3 and ZðLÞ

3

symmetries. The gauge field A½p�a
½q� has the charges ωp and

ω−q under the ZðexÞ
3 and ZðLÞ

3 transformations, respectively.

We can rearrange the two Z3 symmetries as ZðþÞ
3 and Zð−Þ

3 ,

under which transformations A½p�a
½q� has the chargesωp−q and

ωpþq, respectively. The BCs for Ŝ0 introduced in Eqs. (3.7)

and (3.8) are regarded as the twist for ZðþÞ
3 , and the zero

mode is neutral under ZðþÞ
3 .

The BCs determine the zero modes of the gauge field.
The low-energy gauge symmetry associated with the zero
modes of the 4D component of the gauge field is referred to
as the residual gauge symmetry. To clarify the residual
gauge symmetry, we focus on the covariant derivative,

Dμ¼∂μþ ig
X3
k¼1

AðkÞa
μ tðkÞa ¼∂μþ ig̃

X1
p¼−1

A½p�a
μ t½−p�a ; ð3:16Þ

where we have introduced

t½p�a ¼
X3
k¼1

ω−kptðkÞa ; tðkÞa ¼ 1

3

X1
p¼−1

ωkpt½p�a ; g̃¼ gffiffiffi
3

p :

ð3:17Þ

The generator t½p�a has a proper normalization and satisfies

½t½p�a ; t½p
0�

b � ¼ ifabct
½pþp0�
c : ð3:18Þ

As mentioned above, A½0�a
μ have zero modes. At a low-

energy regime, A½1�a
μ and A½−1�a

μ are decoupled from the
effective theory since they have no zero modes. Hence, the
residual gauge symmetry is the diagonal part ofG ×G × G

generated by t½0�a ¼ tð1Þa þ tð2Þa þ tð3Þa . We denote this diago-
nal part by Gdiag. From the commutation relation in

Eq. (3.18) for p ¼ 0 and p0 ¼ �1, we see that t½�1�
a

transforms as the adjoint representation under the residual
gauge symmetry Gdiag.

C. Wilson line phases and spontaneous
symmetry breaking

Let us focus on the zero mode of the extradimensional
component of the gauge field. As discussed in the previous

subsection, A½1�a
½1� and A½−1�a

½−1� have zero modes. They carry
continuousWilson line degrees of freedom and can develop
nonzero VEVs to break the gauge symmetry spontane-
ously. We introduce the parametrization as

hA½1�a
½1� i≡

1

Rg̃
aaz ; hA½−1�a

½−1� i ¼ hA½1�a
½1� i

� ¼ 1

Rg̃
aa�z ; ð3:19Þ

where aaz is a complex parameter. Except for the above,

hA½p�a
½�1�i ¼ 0 is satisfied. We also introduce the parametriza-

tion of the VEVs of AðkÞa
yl

as

hAðkÞa
yl

i ¼ 1

Rg
ðωkþl−1aaz þ ω̄kþl−1aa�z Þ≡ 2

Rg
ãakþl; ð3:20Þ

here ω̄ ¼ e−2πi=3. The real part ofωkþl−1aaz is equal to ãakþl.
3

FromEq. (3.20), one sees that ãakþl has the periodicity under
the shift of its subscript as ãakþlþ3 ¼ ãakþl.
Let us consider the Wilson line phases defined with

closed paths on the orbifold T2=Z3. We denote the three
distinct noncontractible cycles by Cl ðl ¼ 1; 2; 3Þ. The
cycle C1 is defined by the path from y1 ¼ 0 to 2πR, while
keeping y2 ¼ 0. The cycle C2 is defined by the path from
y2 ¼ 0 to 2πR, while keeping y1 ¼ 0. The cycle C3 is
defined by the path from −y1 − y2 ¼ 0 to 2πR, while
keeping y1 ¼ y2. By using them, we define the Wilson line
phase factors Wl as

3We have determined the normalization of ãakþl in Eq. (3.20)
so that the Wilson line phase factors defined in Eq. (3.21) are
invariant under integer shifts of ãakþl in the G ¼ SUðNÞ case
where the length of the root vectors are taken to be 1. Namely, the
Cartan generator H in the fundamental representation of the
SUð2Þ Lie algebra associated with a root vector is chosen as
H ¼ diagð1;−1Þ=2.
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Wl ≡ exp

�
ig
X3
k¼1

I
Cl

dyihAðkÞa
yi itðkÞa

�

¼ exp

�
2πigR

X3
k¼1

hAðkÞa
yl

itðkÞa

�
ð3:21Þ

≡ exp ½iðΘl þ Θ†
lÞ�; ð3:22Þ

where l ¼ 1, 2, 3, and we also define the Wilson line
phases Θl as

Θl ¼ 2πωl−1aaz t
½−1�
a : ð3:23Þ

From the above, we find Θlþk ¼ ωkΘl, which implies
Θ1 þ Θ2 þ Θ3 ∝ 1þ ωþ ω̄ ¼ 0. Let us note that the
phase factors in Eq. (3.21) have physical consequences,
rather than the phases in Eq. (3.23) [26].
TheWilson line phases are invariant underZðþÞ

3 since the

phases depend on the VEVs of A½p�a
½p� (p ¼ �1), which is

neutral under ZðþÞ
3 . On the other hand, A½p�

½p� has the

eigenvalue ω2p under Zð−Þ
3 . One sees that the gauge fields

and the phases transform as hAðkÞa
yl

i → hAðkþ1Þa
ylþ1 i and

ãakþl → ãakþl−1 under Z
ð−Þ
3 . This implies the transformation

law of the phase factors,Wl → Wl−1, underZ
ð−Þ
3 . Thus, the

symmetry Zð−Þ
3 is generally broken by nontrivial VEVs of

the Wilson line phases. Notice that, if W1 ¼ W2 ¼ W3 is

satisfied, the symmetry Zð−Þ
3 survives. Thus, the vacuum

with the alignment W1 ¼ W2 ¼ W3 is discriminated in
view of the symmetry and is provided by ãal − ãalþ1 ¼ 0

(mod 1).
The VEVs of the Wilson line phases are dynamically

determined. Thus, we focus on the potential for the zero
mode of AðkÞa

yi . In the present case, LYM involves the

nonvanishing potential for AðkÞa
yi at the classical level.4 From

Eqs. (3.2) and (3.3), we obtain

LYM ∋ −
1

2
gii

0
gjj

0
Tr

�X3
k¼1

FðkÞ
yiyj

X3
k0¼1

Fðk0Þ
yi

0
yj

0

�

¼ −
4

3
Tr

�X3
k¼1

FðkÞ
y1y2

X3
k0¼1

Fðk0Þ
y1y2

�
: ð3:24Þ

The VEVs of the field strength tensors are written by the
Wilson line phases as

X3
k¼1

hFðkÞ
yiyji ¼ ig

�X3
k¼1

hAðkÞa
yi itðkÞa ;

X3
k0¼1

hAðk0Þa
yj itðk0Þa

�

¼ i
ð2πRÞ2g ½Θi þ Θ†

i ;Θj þ Θ†
j �; ð3:25Þ

where we have used Eq. (3.23). Therefore, the tree-level
potential for the Wilson line phases is given by

V tree ≡ 4

3ð2πRÞ4g2 TrðFΘF
†
ΘÞ; where

FΘ ¼ ½Θ1 þ Θ†
1;Θ2 þ Θ†

2� ¼ ðω̄ − ωÞ½Θ1;Θ
†
1�: ð3:26Þ

Note that the tree-level potential is positive definite and has
flat directions. On the flat directions, ½Θ1;Θ

†
1� ¼ 0 is

satisfied, and hence the potential is minimized as V tree ¼ 0.

In this case, W1W2W3 ¼ eiΘ1þΘ2þΘ3eiΘ
†
1
þΘ†

2
þΘ†

3 ¼ 1 is
satisfied.
There are quantum corrections to the effective potential

for the phases. As discussed above, the tree-level potential
is minimized along the flat directions. Due to the loop
factors, the quantum corrections are generally suppressed
compared to the tree-level contribution if it is nonvanishing.
For the quadratic terms, it is vanishing even along the
nonflat direction.5 Thus, we approximate that the minimum
resides in the flat direction and ½Θ1;Θ†

1� ¼ 0 holds even if
the quantum corrections are incorporated. In this case, we
can diagonalizeΘl byGdiag transformations without loss of
generality.
The flat direction of the tree-level potential is no longer

flat in the effective potential. If some nontrivial values of
the phase degrees of freedom Θl þ Θ†

l are determined by
the quantum corrections to the potential, the residual
symmetry Gdiag is spontaneously broken to G0, whose
elements and the Lie algebra g0 are given by

G0 ¼ feiαat½0�a jt½0�a ∈ g0; αa ∈ Rg; where

g0 ¼ ft½0�a j½t½0�a ;Wj� ¼ 0 for j ¼ 1; 2g: ð3:27Þ

In this case, the zero modes of the gauge fields A½0�a
μ , which

is related to the broken generators corresponding to
Gdiag=G0, acquire masses at low energy. This is understood
as follows. By using yi-dependent gauge transformations,
we can always choose a gauge such that nontrivial VEVs of

A½p�a
½p� are gauged away. After the gauge transformations, the

BC for A½0�a
μ related to the translation by T̂ j is changed

4In five-dimensional models compactified on the S1=Z2

orbifold, there is no tree-level potential only for the zero modes
of the extradimensional components of the gauge field, although
the zero modes can have tree-level potentials in supersymmetric
models with the helps of additional scalars belonging to vector
multiplets [27].

5These quadratic terms are contained in tadpole terms of the
field strength, which are generally generated on the fixed points
[28]. In the present model, as long as G of the bulk gauge group
G × G × G is semisimple, such tadpole terms are forbidden
because G remains unbroken on the fixed points.
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to A½0�a
μ ðxμ; T̂ j½yi�Þt½0�a ¼ WjA

½0�a
μ ðxμ; yiÞt½0�a W†

j (j ¼ 1; 2Þ.
Thus, the zero modes of A½0�a

μ of the broken generators
are projected out. In this way, the spontaneous symmetry
breaking can generally be triggered by nontrivial VEVs of
Wilson line phases.
Since Θl þ Θ†

l is diagonal, we can expand them by the
elements of Cartan subalgebra h ∈ g, where g is the Lie
algebra of G. We denote the generators in h by Hâ
ðâ ¼ 1;…; rÞ, where r is the rank of g. Hence, we obtain

Θl þ Θ†
l ¼ 2πRg

X3
k¼1

hAðkÞâ
yl

iHðkÞ
â ¼ 2π

X3
k¼1

ãâkþl2H
ðkÞ
â ;

ð3:28Þ

Wl ¼ expð2πiãâlþ12H
ð1Þ
â Þ ⊗ expð2πiãâlþ22H

ð2Þ
â Þ

⊗ expð2πiãâl2Hð3Þ
â Þ: ð3:29Þ

To determine the VEVs of the Wilson line phases, we
should evaluate the effective potential for ãâl. The quantum
corrections to the effective potential depend on the matter
contents of the theory. Thus, we discuss bulk matter fields
in the next section, and the one-loop corrections are studied
in Sec. V.

IV. THE DIAGONAL EMBEDDING METHOD ON
M4 × T2=Z3: BULK MATTER FIELDS

Let us start to discuss bulk matter fields. The invariance
of the Lagrangian under the ZðexÞ

3 transformation restricts
the matter contents of the theory. We denote the represen-
tation of a matter field under the bulk gauge symmetry

G ×G ×G by ðR1;R2;R3Þ. In order to preserve the ZðexÞ
3

symmetry of the theory, matter fields should be incorpo-
rated as the set of the representations ðR1;R2;R3Þ,
ðR3;R1;R2Þ, and ðR2;R3;R1Þ. We refer to this set of

fields as aZðexÞ
3 threefold. However, there is an exception; if

a field belongs to the representation ofR1 ¼ R2 ¼ R3, we

can incorporate a single field keeping ZðexÞ
3 . We refer to the

field of the type ðR;R;RÞ as a ZðexÞ
3 onefold.

A. Lagrangian for bulk scalar fields

As the simplest example, we first discuss a threefold
scalar ΦðkÞ

R (k ¼ 1, 2, 3), which belongs to the following
representation:

Φð1Þ
R ∼ ðR;1;1Þ; Φð2Þ

R ∼ ð1;R;1Þ; Φð3Þ
R ∼ ð1;1;RÞ;

ð4:1Þ

where 1 means the singlet under G. Their components are

denoted by ðΦðkÞ
R Þα, where α runs 1 to dimðRÞ. Under the

ZðexÞ
3 transformation, the threefold scalar can be defined to

transform as ðΦðkÞ
R Þα → ωpðΦðkþ1Þ

R Þα, where p ∈ f0;�1g.
Here, we introduce the notation Φðkþ3Þ

R ≡ΦðkÞ
R ðk ∈ ZÞ for

convenience. For a real field such as the gauge field, the
integer p should be 0. For the complex scalars, the phase

factor ωp can be absorbed by redefinitions of ðΦðkÞ
R Þα. From

the above definitions, one sees that the following

Lagrangian is ZðexÞ
3 invariant:

LðΦðkÞ
R Þ≡X3

k¼1

jðDðkÞ
M ÞβαðΦðkÞ

R Þβj2;

ðDðkÞ
M Þβα ¼ ∂Mδ

β
α þ igAðkÞa

M ðT ½R�
a Þβα; ð4:2Þ

where the repeated sets of upper and lower indices are
summed. The representation matrices on R of the gen-

erators of G are denoted by T ½R�
a . The threefold scalar ΦðkÞ

R

transforms as R under Gdiag.
Next, let us discuss a more general case. Let ΦðkÞ

R123

(k ¼ 1, 2, 3) be a threefold scalar that belongs to the
following representations:

Φð1Þ
R123

∼ ðR1;R2;R3Þ; Φð2Þ
R123

∼ ðR3;R1;R2Þ;
Φð3Þ

R123
∼ ðR2;R3;R1Þ: ð4:3Þ

We denote elements of the representation matrices T ½Rk�
a of

the generators by ðT ½Rk�
a Þαkβk, where the indices αk and βk run

from 1 to dim(Rk). The component of ΦðkÞ
R123

is written as

ðΦð1Þ
R123

Þα1α2α3 ; ðΦð2Þ
R123

Þα3α1α2 ; ðΦð3Þ
R123

Þα2α3α1 : ð4:4Þ

We introduce a convenient notationsΦðkþ3Þ
R123

≡ΦðkÞ
R123

ðk ∈ ZÞ
and ðΦðkÞ

R123
Þ½α1α2α3�, where the latter represents the

components in Eq. (4.4) all at once, that is, ðΦð1Þ
R123

Þ½α1α2α3� ¼
ðΦð1Þ

R123
Þα1α2α3 , ðΦð2Þ

R123
Þ½α1α2α3� ¼ ðΦð2Þ

R123
Þα3α1α2 , and

ðΦð3Þ
R123

Þ½α1α2α3� ¼ ðΦð3Þ
R123

Þα2α3α1 . The ZðexÞ
3 transformation

law of the threefold field is defined as

ðΦð1Þ
R123

Þα1α2α3 → ωpðΦð2Þ
R123

Þα3α1α2 ; ð4:5Þ

ðΦð2Þ
R123

Þα3α1α2 → ωpðΦð3Þ
R123

Þα2α3α1 ; ð4:6Þ

ðΦð3Þ
R123

Þα2α3α1 → ωpðΦð1Þ
R123

Þα1α2α3 ; ð4:7Þ

which can be summarized as

ðΦðkÞ
R123

Þ½α1α2α3� → ðΦðkþ1Þ
R123

Þ½α1α2α3�: ð4:8Þ
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We note that the phase factor ωp appearing in the above can
be absorbed by the field redefinitions for the case with

complex scalars. TheZðexÞ
3 -invariant kinetic term forΦðkÞ

R123
is

given by

LðΦðkÞ
R123

Þ≡X3
k¼1

jDðkÞ
M ΦðkÞ

R123
j2

¼ jðDð1Þ
M Þβ1β2β3α1α2α3ðΦð1Þ

R123
Þβ1β2β3 j2

þ jðDð2Þ
M Þβ3β1β2α3α1α2ðΦð2Þ

R123
Þβ3β1β2 j2

þ jðDð3Þ
M Þβ2β3β1α2α3α1ðΦð3Þ

R123
Þβ2β3β1 j2; ð4:9Þ

where the covariant derivatives are written as follows:

ðDð1Þ
M Þβ1β2β3α1α2α3 ¼ δβ1α1δ

β2
α2δ

β3
α3∂M þ igfAð1Þa

M ðT ½R1�
a Þβ1α1δβ2α2δβ3α3

þ δβ1α1A
ð2Þa
M ðT ½R2�

a Þβ2α2δβ3α3
þ δβ1α1δ

β2
α2A

ð3Þa
M ðT ½R3�

a Þβ3α3g; ð4:10Þ

ðDð2Þ
M Þβ3β1β2α3α1α2 ¼ δβ3α3δ

β1
α1δ

β2
α2∂M þ igfAð1Þa

M ðT ½R3�
a Þβ3α3δβ1α1δβ2α2

þ δβ3α3A
ð2Þa
M ðT ½R1�

a Þβ1α1δβ2α2
þ δβ3α3δ

β1
α1A

ð3Þa
M ðT ½R2�

a Þβ2α2g; ð4:11Þ

ðDð3Þ
M Þβ2β3β1α2α3α1 ¼ δβ2α2δ

β3
α3δ

β1
α1∂M þ igfAð1Þa

M ðT ½R2�
a Þβ2α2δβ3α3δβ1α1

þ δβ2α2A
ð2Þa
M ðT ½R3�

a Þβ3α3δβ1α1
þ δβ2α2δ

β3
α3A

ð3Þa
M ðT ½R1�

a Þβ1α1g: ð4:12Þ

From the ZðexÞ
3 transformation law of the gauge field,

AðkÞa
M → Aðkþ1Þa

M , we find that the above covariant derivatives

transform as ðDðkÞ
M Þ½β1β2β3�½α1α2α3� → ðDðkþ1Þ

M Þ½β1β2β3�½α1α2α3�, where we use

the same notations for the indices as ðΦðkÞ
R123

Þ½α1α2α3�. The
transformation law helps us to see theZðexÞ

3 invariance of the
above Lagrangian.
Let us discuss the irreducible decomposition of ΦðkÞ

R123

under Gdiag. For any k, ΦðkÞ
R123

transforms under Gdiag as
the common reducible direct product representation
R1 ⊗ R2 ⊗ R3, which can be decomposed into the direct
sum of irreducible representations R̃i ði ¼ 1;…; nÞ as

R1 ⊗ R2 ⊗ R3 ¼ R̃1 ⊕ R̃2 ⊕ … ⊕ R̃n: ð4:13Þ

This ensures that, in the representation space, there exist

linear transformations that decompose ðΦðkÞ
R123

Þ½α1α2α3� into a

set of irreducible representations under Gdiag as

ðΦðkÞ
R123

Þ½α1α2α3� → ðΦðkÞ
R̃1
Þα̃1 ⊕ ðΦðkÞ

R̃2
Þα̃2 ⊕ … ⊕ ðΦðkÞ

R̃n
Þα̃n ;
ð4:14Þ

where α̃i runs from 1 to dim(R̃i).
6 Thus, we can find a basis

in the representation space such that each irreducible

representation transforms under the ZðexÞ
3 transformation as

ðΦðkÞ
R̃i
Þα̃i ⟶

ZðexÞ
3

ωpðΦðkþ1Þ
R̃i

Þα̃i : ð4:15Þ

The above discussion means that a general threefold scalar
transforms underGdiag as a set of the threefold scalars of the
type in Eq. (4.1); this is schematically written as

ðR1;R2;R3Þ þ ðR3;R1;R2Þ þ ðR2;R3;R1Þ
∼
X
R̃i

½ðR̃i; 1; 1Þ þ ð1; R̃i; 1Þ þ ð1; 1; R̃iÞ�: ð4:16Þ

We should note that the above relation for matter fields is
limited for the transformation properties under Gdiag, while
the couplings between the matter fields and the Wilson line
phases, which belong to ðG × G ×GÞ=Gdiag, are slightly
modified from the above. We will discuss the modification
with an explicit example in the next section.
Finally let us discuss the onefold scalar ΦR3, which

belongs to the following representation:

ΦR3 ∼ ðR;R;RÞ: ð4:17Þ

The component of the onefold is denoted by ðΦR3Þα1α2α3,
which transforms as ðΦR3Þα1α2α3 → ωpðΦR3Þα3α1α2 under

the ZðexÞ
3 transformation. We note that the phase factor ωp

cannot be absorbed into field redefinitions in the onefold
case. If one considers the threefold scalar of the represen-

tation R1 ¼ R2 ¼ R3, whose ZðexÞ
3 transformation law is

given by ðΦðkÞ
R123

Þ½α1α2α3� → ωp0 ðΦðkþ1Þ
R123

Þ½α1α2α3�, the linear

combination
P

3
k¼1 ω

−ðp−p0ÞkΦðkÞ
R123

has the same transfor-
mation law of the onefold scalar. The kinetic term for the
onefold scalar is given by

LðΦR3Þ≡ jðDMÞβ1β2β3α1α2α3ðΦR3Þβ1β2β3 j2; ð4:18Þ

ðDMÞβ1β2β3α1α2α3 ¼ δβ1α1δ
β2
α2δ

β3
α3∂M

þ igfAð1Þa
M ðT ½R�

a Þβ1α1δβ2α2δβ3α3 þAð2Þa
M δβ1α1ðT ½R�

a Þβ2α2δβ3α3
þAð3Þa

M δβ1α1δ
β2
α2ðT ½R�

a Þβ3α3g; ð4:19Þ

6The linear transformations that give Eq. (4.14) generally
depend on k of ΦðkÞ

R123
.
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where the operator ðDMΦR3Þα1α2α3 is invariant up to phase

factors under the ZðexÞ
3 transformation.

B. Lagrangian for bulk fermion fields

Let us discuss bulk fermion fields. The notation of the
fermion fields in six dimensions is summarized in
Appendix D. We denote the 6D Weyl fermion with the
positive and negative chiralities by Ψþ and Ψ−, respec-
tively. Each of the 6D Weyl fermions involves a vectorlike
pair of the 4D Weyl fermions, ψL and ψR.
Let Ψ�ðkÞ

R be a ZðexÞ
3 threefold 6D Weyl fermion that

belongs to the representation as in Eq. (4.1). Its component

is denoted by ðΨ�ðkÞ
R Þα, where the subscript α runs from one

to dimðRÞ. The ZðexÞ
3 transformation is defined as

ðΨ�ðkÞ
R Þα → ωp�ðΨ�ðkþ1Þ

R Þα, where p� ∈ f0;�1g. The

ZðexÞ
3 -invariant kinetic term is given by

LðΨ�ðkÞ
R Þ≡X3

k¼1

ðΨ�ðkÞ
R ÞαiΓMðDðkÞ

M ÞβαðΨ�ðkÞ
R Þβ; ð4:20Þ

where ΓM is the 6D gamma matrix, given in Appendix D.

The covariant derivative ðDðkÞ
M Þβα is the same form as in

Eq. (4.2). Using 4DWeyl fermions ψ�ðkÞ
R;L and ψ�ðkÞ

R;R , we can
write

ΨþðkÞ
R ≡

 
ψþðkÞ
R;L

ψþðkÞ
R;R

!
; Ψ−ðkÞ

R ≡
 
ψ−ðkÞ
R;R

ψ−ðkÞ
R;L

!
: ð4:21Þ

From Eq. (D22), the Lagrangian can be rewritten by

LðΨþðkÞ
R Þ ¼

X3
k¼1

ðψþðkÞ
R;L ;−ψ

þðkÞ
R;R Þ

 
iγμDðkÞ

μ − ¯̃DðkÞ
y

−D̃ðkÞ
y −iγμDðkÞ

μ

!

×

 
ψþðkÞ
R;L

ψþðkÞ
R;R

!
; ð4:22Þ

LðΨ−ðkÞ
R Þ ¼

X3
k¼1

ðψ−ðkÞ
R;R ;−ψ

−ðkÞ
R;L Þ

 
iγμDðkÞ

μ − ¯̃DðkÞ
y

−D̃ðkÞ
y −iγμDðkÞ

μ

!

×

 
ψ−ðkÞ
R;R

ψ−ðkÞ
R;L

!
; ð4:23Þ

where we have defined

D̃ðkÞ
y ¼ 2

3
ðDðkÞ

y1
þ ωDðkÞ

y2
þ ω̄DðkÞ

y3
Þ;

¯̃DðkÞ
y ¼ 2

3
ðDðkÞ

y1
þ ω̄DðkÞ

y2
þ ωDðkÞ

y3
Þ; ð4:24Þ

and the indices in the representation space of R are
suppressed.
For a general threefold fermion, denoted byΨ�ðkÞ

R123
, whose

representation is R1 ⊗ R2 ⊗ R3, we can write the
Lagrangian by using the covariant derivatives of the forms
in Eqs. (4.10)–(4.12). The irreducible decomposition under
Gdiag is obtained as the scalar case, discussed in the
previous subsection.
Let us turn to deal with the onefold 6D Weyl fermions,

which is denoted by Ψ�
R3. Let ðΨ�

R3Þα1α2α3 be a component
of Ψ�

R3 , which is defined to transform into ðΨ�
R3Þα3α1α2

under the ZðexÞ
3 transformation. The Lagrangian is

written by

LðΨ�
R3Þ ¼ ðΨ�

R3Þα1α2α3iΓMðDMÞβ1β2β3α1α2α3ðΨ�
R3Þβ1β2β3 ; ð4:25Þ

where the covariant derivative is the same as in Eq. (4.18).
Using 4D Weyl fermions ψ�

R3;L and ψ�
R3;R, we can write

Ψþ
R3 ≡

�ψþ
R3;L

ψþ
R3;R

�
; Ψ−

R3 ≡
�ψ−

R3;R

ψ−
R3;L

�
: ð4:26Þ

Then the Lagrangian can be written as

LðΨþ
R3Þ¼

X3
k¼1

ðψþ
R3;L

;−ψþ
R3;R

Þ
�
iγμDμ − ¯̃Dy

−D̃y −iγμDμ

��ψþ
R3;L

ψþ
R3;R

�
;

ð4:27Þ

LðΨ−
R3Þ¼

X3
k¼1

ðψ−
R3;R;−ψ

−
R3;LÞ

�
iγμDμ − ¯̃Dy

−D̃y −iγμDμ

��ψ−
R3;R

ψ−
R3;L

�
;

ð4:28Þ

where D̃y and ¯̃Dy are defined as Eq. (4.24) with the
covariant derivative in Eq. (4.18), and the indices in the
representation space are suppressed here.
In general, bulk gauge anomalies arise from 6D

chiral fermions. The requirement of cancellations of the
anomalies gives constraints on the matter contents of
theories [21,22,29,30]. In our setup, bulk anomaly can-
cellations can be ensured by introducing vectorlike sets of
6D Weyl fermions. There also appear 4D gauge anomalies
on the boundaries, i.e., the fixed points on T2=Z3. Such 4D
anomalies depend on BCs for fermions and will be
discussed in the next subsection.

C. ORBIFOLD BOUNDARY CONDITIONS
AND LOW-ENERGY MASS SPECTRA

We here discuss the BCs for matter fields. First, let us see
the transformation laws of covariant derivatives under T̂ 1

and Ŝ0, which must be consistent with the BCs for gauge
fields. From Eqs. (3.7) and (3.8), we find that the covariant
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derivatives in Eqs. (4.2) and (4.10)–(4.12) for threefolds
and in Eq. (4.18) for onefolds transform as

T̂ 1½ðDðkÞ
fμ;yigÞ

β
α�¼ ðDðkÞ

fμ;yigÞ
β
α; Ŝ0½ðDðkÞ

fμ;yigÞ
β
α�¼ ðDðkþ1Þ

fμ;yi−1gÞ
β
α;

ð4:29Þ

T̂ 1½ðDðkÞ
fμ;yigÞ

½β1β2β3�
½α1α2α3�� ¼ ðDðkÞ

fμ;yigÞ
½β1β2β3�
½α1α2α3�;

Ŝ0½ðDðkÞ
fμ;yigÞ

½β1β2β3�
½α1α2α3�� ¼ ðDðkþ1Þ

fμ;yi−1gÞ
½β1β2β3�
½α1α2α3�; ð4:30Þ

T̂ 1½ðDfμ;yigÞβ1β2β3α1α2α3 � ¼ ðDfμ;yigÞβ1β2β3α1α2α3 ;

Ŝ0½ðDfμ;yigÞβ1β2β3α1α2α3 � ¼ ðDfμ;yi−1gÞβ3β1β2α3α1α2 ; ð4:31Þ

where we have used the shorthand notation to show the
boundary conditions for the covariant derivative along xμ

and yi by the subscript fμ; yig.
The BCs for the matter fields are taken to be consistent

with the above transformations and written as

ϕðxμ; T̂ 1½yi�Þ ¼ ωptϕðxμ; yiÞ;
ϕðxμ; Ŝ0½yi�Þ ¼ ωpsϕSðxμ; yiÞ; ð4:32Þ

where a pair of fields ϕ and ϕS represent the scalars Φ and
6D Weyl fermions Ψ�:

ðϕ;ϕSÞ∈fððΦðkÞ
R Þα;ðΦðkþ1Þ

R ÞαÞ;ððΦðkÞ
R123

Þ½α1α2α3�;ðΦ
ðkþ1Þ
R123

Þ½α1α2α3�Þ;
ððΦR3Þα1α2α3 ;ðΦR3Þα1α2α3Þ;ððΨ

�ðkÞ
R Þα;−S̃ΨðΨ�ðkþ1Þ

R ÞαÞ;
ððΨ�ðkÞ

R123
Þ½α1α2α3�;−S̃ΨðΨ

�ðkþ1Þ
R123

Þ½α1α2α3�Þ;ððΨ�
R3Þα1α2α3 ;−S̃ΨðΨ�

R3Þα3α1α2Þg: ð4:33Þ

The definition of S̃Ψ is shown in Eq. (D24), and pt; ps ∈
f0;�1g are chosen by hand for each field. Since the 6D
Weyl fermions compose of 4DWeyl fermions, the last three
pairs in Eq. (4.33) are rearranged to the six pairs of the 4D
Weyl fermions as

ððψ�ðkÞ
R;L Þα;ω�1ðψ�ðkþ1Þ

R;L ÞαÞ; ððψ�ðkÞ
R;R Þα;ω∓1ðψ�ðkþ1Þ

R;R ÞαÞ;
ð4:34Þ

ððψ�ðkÞ
R123;L

Þ½α1α2α3�;ω�1ðψ�ðkþ1Þ
R123;L

Þ½α1α2α3�Þ;
ððψ�ðkÞ

R123;R
Þ½α1α2α3�;ω∓1ðψ�ðkþ1Þ

R123;R
Þ½α1α2α3�Þ; ð4:35Þ

ððψ�
R3;LÞα1α2α3 ;ω�1ðψ�

R3;LÞα3α1α2Þ;
ððψ�

R3;RÞα1α2α3 ;ω∓1ðψ�
R3;RÞα3α1α2Þ: ð4:36Þ

Any BCs given above are formally written as

ϕðkÞðxμ; T̂ 1½yi�Þ ¼ ωptϕðkÞðxμ; yiÞ;
ϕðkÞðxμ; Ŝ0½yi�Þ ¼ ωp̃sϕðkþ1Þðxμ; yiÞ; ð4:37Þ

where ϕðkþ3Þ ¼ ϕðkÞ ðk ∈ ZÞ is a boson or a 4D Weyl
fermion and is a component of an irreducible representation
under G ×G × G. The integer p̃s is equal to ps for a boson
and equal to ps � 1 ðps ∓ 1Þ for a left-handed (right-
handed) fermion with the 6D chirality �. In most cases,
components in a set fϕð1Þ;ϕð2Þ;ϕð3Þg are not identical and

are mixed by the ZðexÞ
3 transformation; in this case we call

ϕðkÞ as a ZðexÞ
3 triplet. There is a special case, where

ϕðkþ1Þ ¼ ϕðkÞ holds; in this case the field ϕðkÞ is an

eigenstate of the ZðexÞ
3 transformation and called a ZðexÞ

3

singlet. We list the sets of the form fϕð1Þ;ϕð2Þ;ϕð3Þg as
follows:

fðΦð1Þ
R Þα; ðΦð2Þ

R Þα; ðΦð3Þ
R Þαg; ð4:38Þ

fðΦð1Þ
R123

Þα1α2α3 ; ðΦ
ð2Þ
R123

Þα3α1α2 ; ðΦ
ð3Þ
R123

Þα2α3α1g; ð4:39Þ

fðΦR3Þα1α2α3 ; ðΦR3Þα3α1α2 ; ðΦR3Þα2α3α1g; ð4:40Þ

fðΨ�ð1Þ
R;fL;RgÞα; ðΨ�ð2Þ

R;fL;RgÞα; ðΨ�ð3Þ
R;fL;RgÞαg; ð4:41Þ

fðΨ�ð1Þ
R123;fL;RgÞα1α2α3 ; ðΨ

�ð2Þ
R123;fL;RgÞα3α1α2 ; ðΨ

�ð3Þ
R123;fL;RgÞα2α3α1g;

ð4:42Þ

fðΨ�
R3;fL;RgÞα1α2α3 ; ðΨ�

R3;fL;RgÞα3α1α2 ; ðΨ�
R3;fL;RgÞα2α3α1g:

ð4:43Þ

Among them, only the onefold components with α1 ¼
α2 ¼ α3 formZðexÞ

3 singlets, and the others areZðexÞ
3 triplets.

Although ZðexÞ
3 singlets are eigenstates of the BCs,

triplets are not. From a ZðexÞ
3 triplet, we can define three

eigenstates of the BCs, denoted by ϕ½p� ðp ¼ 0;�1Þ, as

ϕ½p� ¼ 1ffiffiffi
3

p
X3
k¼1

ω−kpϕðkÞ; ϕðkÞ ¼ 1ffiffiffi
3

p
X1
p¼−1

ωkpϕ½p�: ð4:44Þ
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Then, ϕ½p� obeys the following BCs:

ϕ½p�ðxμ; T̂ 1½yi�Þ ¼ ωptϕ½p�ðxμ; yiÞ;
ϕ½p�ðxμ; Ŝ0½yi�Þ ¼ ωpþp̃sϕ½p�ðxμ; yiÞ: ð4:45Þ

We note that ϕ½p� is convenient to examine the KK
expansions, which are summarized in Appendix A, while
the couplings between matter fields and the Wilson line
phases are simplified for ϕðkÞ.
From the eigenvalues of the BCs, we can find zero

modes, which are constant excitations over the extradimen-
sional space. The zero mode can appear as a light degree of
freedom in a low-energy effective 4D theory, where gauge
symmetry G × G ×G is reduced to Gdiag as discussed in
Sec. III B. In contrast, the other modes have Oð1=RÞ
masses and become heavy. For ZðexÞ

3 triplets, ϕ½p�

with pt ¼ pþ p̃s ¼ 0 in Eq. (4.45) has a zero mode.

For ZðexÞ
3 singlets, fields with pt ¼ p̃s ¼ 0 have zero

modes. Note that fields with pt ¼ �1 do not have any
zero modes.
We discuss zero mode spectrum that arises from three-

fold fields in detail. Since threefold fields do not involve
any ZðexÞ

3 singlet, they are always organized into ZðexÞ
3

triplets. For the case with a threefold scalar ΦðkÞ
R with

pt ¼ 0, there appear zero modes, contained in the triplet
component ϕ½−ps�. These zero modes belong to the repre-
sentation R under Gdiag. For the fermion case, a threefold

Ψ�ðkÞ
R can be decomposed into ψ�ðkÞ

R;L þ ψ�ðkÞ
R;R . For the case

with a ΨþðkÞ
R ðΨ−ðkÞ

R Þ having pt ¼ 0, a vectorlike pair ψþðkÞ
R;L

and ψþðkÞ
R;R (ψ−ðkÞ

R;R and (ψ−ðkÞ
R;L ) has vectorlike zero modes,

which appear from the triplet components ϕ½−ps−1� and
ϕ½−psþ1�, respectively. Thus, in these cases we always have
vectorlike fermion zero modes, which belongs to R under
Gdiag. Similar discussions hold also for a more general

threefold scalar ΦðkÞ
R123

and fermion Ψ�ðkÞ
R123

.
Next, we discuss zero mode spectrum of onefold fields.

A onefold involves both ZðexÞ
3 singlets and triplets except

for the case with the trivial representation R ¼ 1. From

ZðexÞ
3 singlets in a onefold scalar ΦR3 with pt ¼ 0, zero

modes appear only if ps ¼ 0. For ZðexÞ
3 triplets in ΦR3 with

pt ¼ 0, zero modes appear from the component ϕ½−ps�. For
the fermion case, both ψ�

R3;L and ψ�
R3;R in a onefold Ψ�

R3

have ZðexÞ
3 singlets. For the case with pt ¼ 0, singlets in

ψ�
R3;L (ψ�

R3;R) have zero modes only if ps ¼ −1 (ps ¼ 1).

These zero modes of ZðexÞ
3 singlets yield chiral fermion

mass spectrum. There also exist triplets in Ψ�
R3 . For pt ¼ 0,

zero modes appear from the triplet components ϕ½−ps∓1�

(ϕ½−ps�1�), constructed from ψ�
R3;L (ψ�

R3;R). The zero modes

of ZðexÞ
3 triplets always compose vectorlike pairs of 4D

fermions. We note that any zero modes belong to irreduc-
ible representations, which are contained in the irreducible
decomposition of R ⊗ R ⊗ R under Gdiag.
As an illustrative example, we consider G ¼ SUðNÞ and

the N–dimensional fundamental representation as R. In
this case, the irreducible decomposition of R ⊗ R ⊗ R is
shown by the following Young tableaux:

ð4:46Þ

One sees that ZðexÞ
3 singlets in ΦR3 and Ψ�

R3 always
belong to the first representation on the right-hand
side of Eq. (4.46). These singlets carry N out of N3 degrees
of freedom, and the rest N3 − N degrees of freedom
form ðN3 − NÞ=3 ¼ NðN − 1ÞðN þ 1Þ=3 triplets. For

pt ¼ ps ¼ 0, since the ZðexÞ
3 singlets have zero modes,

there appearN þ ðN3 − NÞ=3 degrees of freedom appear as

zero modes, whose representations correspond to the first
and third terms on the right-hand side of Eq. (4.46). On the
other hand, for ps ¼ �1 case with pt ¼ 0, there appear
ðN3 − NÞ=3 degrees of freedom as zero modes, which
transform as the representation corresponds to the second
terms on the right-hand side of Eq. (4.46). Consistently to
the above, one sees the relation

ð4:47Þ
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where ♯ð�Þ is the degrees of freedom of �. We see that N in Eq. (4.47) corresponds to the degrees of freedom of ZðexÞ
3 singlet

components.
Let us examine the fermion zero modes in the SUðNÞ case. For the case with onefold fermions, zero mode spectrum can

become chiral. For example, we consider the case with a onefoldΨþ
R3 of pt ¼ 0. In this case, the representations of the zero

modes depend on ps, which are summarized as follows:

ð4:48Þ

ð4:49Þ

ð4:50Þ

Thus, low-energy spectrum of 4D fermions is chiral for
ps ¼ �1, but vectorlike for ps ¼ 0. A similar discussion
holds for the case with Ψ−

R3 .
Finally, we give comments on 4D gauge anomalies. If

there are fermion zero modes, they generally contribute to
the anomalies. For threefold fermions, their zero modes
are always vector-like and do not give 4D anomalies. On
the other hand, onefold fermions can have chiral zero
modes and thus generally generate 4D anomalies. Thus, a
requirement of the cancellation of 4D anomalies con-
strains the onefold fermion contents. In addition to the
zero mode anomalies, localized anomalies induced at the
fixed points yifðrÞ (r ¼ 0, 1, 2), defined in Eq. (2.12),
should also be concerned [22]. The localized contributions
arise even if the fermion has pt ¼ �1, in which case there
is no zero modes. In our setup, contribution to the
localized anomalies at yifðrÞ can arise from a fermion

ψðxμ; yiÞ that satisfy the BCs ψðxμ; Ŝr½yi�Þ ¼ ψðxμ; yiÞ.
One can see that the contributions to the localized
anomalies at each fixed point from threefold fermions
always cancel out since the contributions are always
vectorlike. For the onefold fermion, localized anomalies
generally exist; it gives constraints on the matter content
of the theory. When the localized anomalies vanish,
also the 4D anomalies do. Conversely, the 4D anomaly
cancellation does not ensure vanishing localized
anomalies.

V. ONE-LOOP EFFECTIVE POTENTIALS FOR
WILSON LINE PHASES IN SUð5Þ MODELS

In this section, we study one-loop effective potentials for
the classical backgroundVEVs ãakþl in Eq. (3.20), which are

related to the Wilson line phase degrees of freedom. As a
concrete example, we focus on the case with G ¼ SUð5Þ.
The discussion can be generalized to other gauge group
cases.

A. Contributions from ZðexÞ
3 threefold fields

First, we derive one-loop contributions from a ZðexÞ
3

threefold scalar field to the effective potential. The simplest

example is the threefold ΦðkÞ
5 , which transforms under

SUð5Þ × SUð5Þ × SUð5Þ as

Φð1Þ
5 ∼ ð5; 1; 1Þ; Φð2Þ

5 ∼ ð1; 5; 1Þ; Φð3Þ
5 ∼ ð1; 1; 5Þ;

ð5:1Þ

where 5 and 1 are the fundamental and the trivial
representations of SUð5Þ, respectively. Based on the dis-
cussion in the previous section, we define BCs for their

components, ðΦðkÞ
5 Þα (α ¼ 1;…; 5), as

ðΦðkÞ
5 Þαðxμ; T̂ 1½yi�Þ ¼ ωptðΦðkÞ

5 Þαðxμ; yiÞ;
ðΦðkÞ

5 Þαðxμ; Ŝ0½yi�Þ ¼ ωpsðΦðkþ1Þ
5 Þαðxμ; yiÞ: ð5:2Þ

In the following, the fundamental representation of

the SUð5Þ generators is denoted by ðT ½5�
a Þβα ≡ ðTaÞβα.

From Eq. (4.2), Lagrangian for ΦðkÞ
5 has the ZðexÞ

3 -invariant
form,
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LðΦðkÞ
5 Þ ¼

X3
k¼1

jðDðkÞ
M ÞβαðΦðkÞ

5 Þβj2;

ðDðkÞ
M Þβα ¼ δβα∂M þ igAðkÞa

M ðTaÞβα: ð5:3Þ
To obtain the effective potential for ãakþl in Eq. (3.20), let

us expand the Lagrangian in Eq. (5.3) around the classical
background VEVs and extract quadratic terms of the
quantum fluctuations. As discussed in Sec. III C, we always
take a basis where the Wilson line phases are diagonal and
have the form like Eq. (3.28). One-loop corrections to the
effective potential for the phases can be derived through

path integral over the fluctuation ðΦðkÞ
5 Þα. The quadratic

terms are written as follows:

Lð2ÞðΦðkÞ
5 Þ≡ −

X3
k¼1

ðΦðkÞ†
5 Þαðδβα□ − gijhDðkÞ

yi iα
0

α hDðkÞ
yj iβα0 Þ

× ðΦðkÞ
5 Þβ; ð5:4Þ

hDðkÞ
yi iβα ≡ δβα∂yi þ i

2

R
ãâiþkðHâÞβα; ð5:5Þ

where we have defined hDðkÞ
yi iβα as a background covariant

derivative and □ ¼ ∂μ∂
μ. The matrices Hâ ðâ ¼ 1;…; 4Þ

are the fundamental representation of the Cartan generators
of SUð5Þ, which we can take as

H1 ¼
1

2
diagð1;0;0;0;−1Þ; H2 ¼

1

2
diagð0;1;0;0;−1Þ;

H3 ¼
1

2
diagð0;0;1;0;−1Þ; H4 ¼

1

2
diagð0;0;0;1;−1Þ:

ð5:6Þ
Thus, the Wilson line phases in Eq. (5.5) are written as

2ãâiþkHâ ¼ diagðã1iþk; ã
2
iþk; ã

3
iþk; ã

4
iþk; ã

5
iþkÞ; where

ã5iþk ¼ −
X4
â¼1

ãâiþk: ð5:7Þ

We now readily rewrite the quadratic Lagrangian in
Eq. (5.4) as

Lð2ÞðΦðkÞ
5 Þ ¼ −

X5
α¼1

X3
k¼1

ðΦðkÞ†
5 Þαð□þ M̂2

k;αÞðΦðkÞ
5 Þα; ð5:8Þ

where we have introduced the differential operator M̂2
k;α as

M̂2
k;α ≡ gij

�
−i∂yi þ

ãαiþk

R

��
−i∂yj þ

ãαjþk

R

�

¼ 2

3

X3
l¼1

�
−i∂yl þ

ãαkþl

R

�
2

: ð5:9Þ

We note that the above corresponds to the operator
in Eq. (A38).
Based on the discussion in Sec. IVA and the

BCs in Eq. (5.2), we see that the components

fðΦð1Þ
5 Þα; ðΦð2Þ

5 Þα; ðΦð3Þ
5 Þαg form a ZðexÞ

3 triplet. In

Appendix A, we first show the KK expansion of ZðexÞ
3

singlets in Eq. (A18), and using it, we derive the expansion
of triplets in Eq. (A35). Here we briefly provide the
overview of the derivation. From the triplet ϕðkÞ that obeys
the BCs in Eq. (4.37), we can define ϕ½p� that are
eigenstates of the BCs as in Eq. (4.45). The KK expansion

of ϕ½p� yields the corresponding KK modes ϕ̃½p�
N1;N2

in
Eq. (A30), where Ni ¼ ni þ pt=3 and ni ∈ Z. From

ϕ̃½p�
N1;N2

, we can define ϕ̃ðkÞ
N1;N2

appearing in Eq. (A35).
Their KK masses are given by replacing the operator
−i∂yl in Eq. (5.9) by Nl=R ðN3 ¼ −N1 − N2Þ. In the

present case, the KK masses for ðΦðkÞ
5 Þα are given by

M2
k;α ¼

2

3R2

X3
l¼1

ðNl þ ãαlþkÞ2; where

Ni ¼ ni þ pt=3; N3 ¼ −N1 − N2: ð5:10Þ

For details, please refer to Appendix A.
With the above result, the 4D effective Lagrangian in

Eq. (5.4) is rewritten by KK modes of the triplet, and we
can integrate them to obtain the effective potential. The
derivation of the potential is shown in Appendix B. Using
the result shown in Eq. (B14), we find that the effective
potential contribution from a real degree of freedom in

ðΦðkÞ
5 Þα is given by

VðptÞðãαi Þ ¼ −
ffiffiffi
3

p

32π7R4

X
w1;w2∈Z0

cosð2π½w1ðpt=3þ ãα1Þ þ w2ðpt=3þ ãα2Þ�Þ
½ðw1Þ2 − w1w2 þ ðw2Þ2�3 ; ð5:11Þ
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where we have used ãαi (i ¼ 1, 2) as the parameter of the
potential since they are taken to be the independent
variables among ãαl ðl ¼ 1; 2; 3Þ. As discussed in
Appendix B, the summation with respect to w1 and w2

is taken over for all integers except for ðw1; w2Þ ¼ ð0; 0Þ,
which is denoted by w1; w2 ∈ Z0. We note that the potential
in Eq. (5.11) can also be naturally expressed by the vector
notation as

VðptÞðãαi Þ ¼ −
ffiffiffi
3

p

32π7R4

X
w∈Λ0

w

cosð2πw · ãα0Þ
ðjwj2Þ3 ; ð5:12Þ

where we have introduced the vector w and the lattice Λ0
w as

Λ0
w ¼ fw ¼ w1e1 þ w2e2jw1; w2 ∈ Z0g; ð5:13Þ

and the dual vector ãα0 ¼ ðpt=3þ ãα1Þẽ1 þ ðpt=3þ ãα2Þẽ2,
similar to those in Appendix B.
Let ΔVðptÞðΦðkÞ

5 Þ be the contribution to the effective

potential from ΦðkÞ
5 with pt defined in Eq. (5.2). Then, we

obtain

ΔVðptÞðΦðkÞ
5 Þ ¼ 2

X5
α¼1

VðptÞðãαi Þ; ð5:14Þ

where the overall factor 2 on the right-hand side arises due
to the real degrees of freedom of a complex scalar. The
potential in Eq. (5.11) is manifestly invariant under integer
shifts of an arbitrarily chosen component of the Wilson line
phases, ãαi → ãαi � 1, which preserve the Wilson line phase
factors Wl in Eq. (3.29). Given the above invariance, we
relax the traceless condition imposed in Eq. (5.7) asP

5
â¼1 ã

â
iþk ¼ 0 (mod 1) in the following discussions.

We can generalize the above result to triplets belonging
to other representations of SUð5Þ. Contributions to the
effective potential depend on components of weight vectors
with respect to the Cartan generators Hâ; for a given
representation R, the representation matrix of Hâ is

denoted by H½R�
â . We can express eigenvalues of

2ãâiþkH
½R�
â by using ãâiþk. Here, let us consider a threefold

scalar ΦðkÞ
R , which transforms under SUð5Þ × SUð5Þ ×

SUð5Þ as

Φð1Þ
R ∼ ðR;1;1Þ; Φð2Þ

R ∼ ð1;R;1Þ; Φð3Þ
R ∼ ð1;1;RÞ:

ð5:15Þ

We write the contributions to the effective potential

generated by ΦðkÞ
R as ΔVðptÞðΦðkÞ

R Þ. We find that the
contributions from, e.g., R ¼ 10; 15; 24 cases are given by

ΔVðptÞðΦðkÞ
10 Þ ¼ 2

X
1≤α<β≤5

VðptÞðãαi þ ãβi Þ; ð5:16Þ

ΔVðptÞðΦðkÞ
15 Þ ¼ 2

X
1≤α≤β≤5

VðptÞðãαi þ ãβi Þ; ð5:17Þ

ΔVðptÞðΦðkÞ
24 Þ ¼ 2

X
1≤α≠β≤5

VðptÞðãαi − ãβi Þ; ð5:18Þ

respectively. Here, we have discarded irrelevant constants
that are independent of ãαi .
For general threefold scalars in Eq. (4.3), we can derive a

differential operator as in Eq. (5.9). As an example, let us
consider an ðR1;R2;R3Þ ¼ ð5; 5; 1Þ case. In this case, a

component of ΦðkÞ
R123

has two indices, which we denote by
α1 and α2 ðα1;α2 ¼ 1;…; 5Þ. Corresponding to Eq. (5.9),
we find the following differential operator:

M̂2
k;α1;α2 ¼

2

3

X3
l¼1

�
−i∂yl þ

ãα1kþl þ ãα2kþlþ1

R

�
2

: ð5:19Þ

From the above, we obtain a one-loop correction to the

potential from ΦðkÞ
R123

in a similar way to the previous cases.
The result is given by

ΔVðptÞðΦðkÞ
R123

Þ ¼ 2
X5

α1;α2¼1

VðptÞðãα1i þ ãα2iþ1Þ: ð5:20Þ

We note that, except for the subscripts of the phases, the
potential contribution coincides with the sum of those

coming fromΦðkÞ
10 andΦðkÞ

15 , which is an explicit example of
the modification explained below Eq. (4.16).
We turn to discuss the contributions to the

effective potential from threefold fermions. The contribu-
tions mostly depend on the eigenvalues of differential
operators as in Eq. (5.9). Since the covariant derivatives
for bosons and fermions are the same if they belong
to the same representation of SUð5Þ, the eigenvalues are
also common for bosons and fermions. Thus, the contri-
butions from threefold fermions can be written by using
the contributions from threefold boson. We denote a

6D Weyl fermion Ψ�ðkÞ
R , whose representation is the

same as in Eq. (5.15). A contribution to the effective

potential from Ψ�ðkÞ
R is denoted by ΔVðptÞðΨðkÞ

R Þ. Then, we
find ΔVðptÞðΨðkÞ

R Þ ¼ −2ΔVðptÞðΦðkÞ
R Þ.

B. Contributions from ZðexÞ
3 onefold fields

We start to discuss the contributions from ZðexÞ
3 onefolds.

We first examine a bulk matter scalar Φ53, whose compo-
nent is written by ðΦ53Þα1α2α3. Here, the Greek indices run
from 1 to 5. The BCs can be introduced as
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ðΦ53Þα1α2α3ðxμ; T̂ 1½yi�Þ ¼ ωptðΦ53Þα1α2α3ðxμ; yiÞ; ð5:21Þ

ðΦ53Þα1α2α3ðxμ; Ŝ0½yi�Þ ¼ ωpsðΦ53Þα3α1α2ðxμ; yiÞ: ð5:22Þ

The extradimensional component of the covariant deriva-
tive acting on ðΦ53Þα1α2α3 is written by

hDyiiβ1β2β3α1α2α3 ¼ δβ1α1δ
β2
α2δ

β3
α3

�
∂yi þ i

2

R
ðãα1iþ1 þ ãα2iþ2 þ ãα3iþ3Þ

�
;

ð5:23Þ

where the indices αk (k ¼ 1, 2, 3) are not summed on the
right-hand side in the above.
As discussed in Sec. IV C, ðΦ53Þα1α2α3 contains ZðexÞ

3

triplets and singlets. The latter corresponds to the compo-
nents of α1 ¼ α2 ¼ α3. From Eq. (5.23), it is clear that the
singlet does not couple to the Wilson line phases since

ãαiþ1 þ ãαiþ2 þ ãαiþ3 ¼ 0 holds. Thus, only ZðexÞ
3 triplets can

give contribution to the effective potential.
For a set of fixed values of fα1; α2; α3g, a triplet is

given by

fðΦR3Þα1α2α3 ; ðΦR3Þα3α1α2 ; ðΦR3Þα2α3α1g≡ fϕð1Þ;ϕð2Þ;ϕð3Þg:
ð5:24Þ

One can see that ϕðkÞ couples to the Wilson line phases of
ãα1iþk þ ãα2iþ1þk þ ãα3iþ2þk via the covariant derivative in
Eq. (5.23). Then, as in Eq. (5.10), a KK mode of the
triplet ϕðkÞ has the following KK mass:

M2
k;α1;α2;α3

¼ 2

3R2

X3
l¼1

ðNl þ ãα1kþl þ ãα2kþlþ1 þ ãα3kþlþ2Þ2:

ð5:25Þ

This implies that a contribution to the effective potential from
the triplet ϕðkÞ is proportional to VðptÞðãα1i þ ãα2iþ1 þ ãα3iþ2Þ.
Let ΔVðptÞðΦ53Þ be the contribution from the onefold

Φ53 . Among 53 ¼ 125 components of ðΦ53Þα1α2α3 , five
components are singlets, which give constants independent
of the Wilson line phases. The remaining 120 components
compose 40 triplets. We can take summations of the
contributions from the triplets as

ΔVðptÞðΦ53Þ ¼
2

3

� X5
α1;α2;α3¼1

−
X5

α1¼α2¼α3¼1

�

× VðptÞðãα1i þ ãα2iþ1 þ ãα3iþ2Þ; ð5:26Þ

where on the right-hand side the overall factor appears
since Φ53 is a complex scalar, and the factor 1=3 should be
included to correctly count 40 triplets composed of 120
components. Let us note that the subtracted α1 ¼ α2 ¼ α3

contributions in Eq. (5.26) are constant, which do not affect
the vacuum structure of the potential.
Generalizations to the other representation than 5 are

straightforward. For example, we find that the contribution
from Φ103 is given by

ΔVðptÞðΦ103Þ¼
2

3

��Y3
i¼1

X
1≤αi<βi≤5

�
−

X
ðα1;β1Þ¼ðα2;β2Þ¼ðα3;β3Þ

�

×VðptÞðãα1i þ ãβ1i þ ãα2iþ1þ ãβ2iþ1þ ãα3iþ2þ ãβ3iþ2Þ;
ð5:27Þ

where the above potential consists of the contributions from
ð103 − 10Þ=3 ¼ 330 triplets. As in the case of the threefold
scalar, difference between contributions from the onefold
scalars and fermions is just an overall factor. Let
ΔVðptÞðΨR3Þ be the contribution to the potential from a
fermion Ψ�

R3 . Then, it follows that ΔVðptÞðΨR3Þ ¼
−2ΔVðptÞðΦR3Þ, where the contribution does not depend
on 6D chiralities of fermions.

VI. GAUGE SYMMETRY BREAKING PATTERNS
IN SUð5Þ MODELS

A. Vacuum structure and unbroken gauge symmetries

We study the vacuum structure of the effective potential
for the Wilson line phases derived in the previous section.
For simplicity, we only consider the contributions to the

potential from the gauge fields and threefold fields of ΦðkÞ
R

and Ψ�ðkÞ
R for R ¼ 5; 10; 15; 24. First, for a chosen R, we

numerically find VEVs of theWilson line phases at a global

minimum of a contribution ΔVðptÞðΦðkÞ
R Þ or ΔVðptÞðΨðkÞ

R Þ.
In the fundamental representation of SUð5Þ, the Wilson line
phase factors Wl in Eq. (3.29) take the following form:

Wl ¼ diagðe2πiã1lþ1 ; e2πiã
2
lþ1 ; e2πiã

3
lþ1 ; e2πiã

4
lþ1 ; e2πiã

5
lþ1Þ

⊗ diagðe2πiã1lþ2 ; e2πiã
2
lþ2 ; e2πiã

3
lþ2 ; e2πiã

4
lþ2 ; e2πiã

5
lþ2Þ

⊗ diagðe2πiã1l ; e2πiã2l ; e2πiã3l ; e2πiã4l ; e2πiã5lÞ: ð6:1Þ

Thus, if a VEV at a minimum is determined, we can find a
gauge symmetry breaking pattern through Eqs. (3.27)
and (6.1).
Before starting to show results, let us mention that there

are degenerate vacua in potentials for the Wilson line
phases. The degeneracy is related to the invariance of the
potential under some transformations of the Wilson line
phases. As we mentioned below Eq. (5.14), VðptÞðãαi Þ in
Eq. (5.11) is invariant under an integer shift ãαi → ãαi � 1.
Thus, effective potentials for the Wilson line phases
generally have degeneracy related to the integer shift
invariance. This is due to the phase property of ãαi . In
addition, from Eq. (5.11), we see that a simultaneous
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change of the overall sign of the VEVs as ãαi → −ãαi for
i ¼ 1, 2 and α ¼ 1–5 does not change the potentials for
pt ¼ 0 cases. This leads to a degeneracy in the potentials.
On the other hand, the contributions to the potentials
from fields with pt ¼ 1 and −1 are related to each other
by the overall sign change of the phases, i.e.,
Vð−1Þðãαi Þ ¼ Vð1Þð−ãαi Þ, which is shown from Eq. (5.11).
The potentials are invariant under the permutation of the
index α, which can be regarded as a basis change in the
representation space. The exchange of ãα1 and ãα2 also does
not change the potentials. Finally, the potential contribu-
tions from adjoint matter fields are invariant under the Z5

transformation, which is the center subgroup of SUð5Þ,
with ãαi þ ni=5 (i ¼ 1, 2), where ni ∈ Z.
Concerning the above degeneracy, in the following, we

show representatives of VEVs at a degenerate global
minimum. In Table I, we show the values of ãαi at a global

minimum of each contribution of ΔVðptÞðΦðkÞ
R Þ and

ΔVðptÞðΨðkÞ
R Þ for pt ¼ 0, 1 andR ¼ 5; 10; 15; 24. As noted

below Eq. (5.14), the traceless condition holds modulo 1.
We also show the unbroken gauge symmetry G0

at the minimum. We don’t give explicit results of

pt ¼ −1 cases since they are obtained from the ones of
pt ¼ 1 cases through the relation Vð−1Þðãαi Þ ¼ Vð1Þð−ãαi Þ
explained above.
The gauge field also generates the contribution to the

effective potential, which is equal to 2ΔVð0ÞðΦðkÞ
24 Þ, whose

minimum respects SUð5Þ symmetry. Thus, we need bulk
matter fields in the theory to obtain the SM gauge
symmetry GSM ≡ SUð3Þ × SUð2Þ ×Uð1Þ at a vacuum.

Let us remark that 2ΔVð0ÞðΦðkÞ
24 Þ þ ΔVð0ÞðΨðkÞ

24 Þ ¼ 0 at

the one-loop level, and the contribution ΔVð1ÞðΨðkÞ
5 Þ has

degenerate global minima with GSM and SUð5Þ, as seen in
Table I. Thus, we easily find matter contents that ensure
GSM at a minimum and have no bulk and boundary
anomalies. We show two examples in Table II. We refer
to the bulk matter contents shown in the left and right tables
as case (i) and (ii), respectively. The case (i) consists of a
pt ¼ 0 adjoint threefold fermion with positive chirality and
10 sets of the pt ¼ 1 fundamental threefold fermion with
negative chirality. The case (ii) consists of a pt ¼ 0 adjoint
threefold fermion with positive chirality, the 16 sets of the
pt ¼ 1 fundamental threefold fermion with negative chi-
rality, and the two sets of the pt ¼ 0 antisymmetric

TABLE I. The values of ãαi at a global minimum of the contributions ΔVðptÞðϕÞ, where ϕ is ΦðkÞ
R or Ψ�ðkÞ

R for R ¼ 5; 10; 15; 24. We
also show the unbroken gauge symmetry G0 at the minimum. The constant vx ¼ 0.24796 is used.

R Potential ðã11; ã21; ã31; ã41; ã51Þ ðã12; ã22; ã32; ã42; ã52Þ G0

5 ΔVð0ÞðΦðkÞ
5 Þ (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ

ΔVð1ÞðΦðkÞ
5 Þ ð3; 3; 3; 3; 3Þ=5 ð3; 3; 3; 3; 3Þ=5 SUð5Þ

ð3; 3; 3; 3; 3Þ=5 ð4; 4; 4; 4; 4Þ=5 SUð5Þ
ΔVð0ÞðΨðkÞ

5 Þ ð2; 1; 1; 1; 1Þ=3 ð2; 1; 1; 1; 1Þ=3 SUð4Þ ×Uð1Þ

ΔVð1ÞðΨðkÞ
5 Þ

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ
ð1; 1; 1; 0; 0Þ=3 ð1; 1; 1; 0; 0Þ=3 SUð3Þ × SUð2Þ × Uð1Þ

10 ΔVð0ÞðΦðkÞ
10 Þ (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ

ΔVð1ÞðΦðkÞ
10 Þ

ð2; 2; 2; 2; 2Þ=5 ð4; 4; 4; 4; 4Þ=5 SUð5Þ
ð4; 4; 4; 4; 4Þ=5 ð4; 4; 4; 4; 4Þ=5 SUð5Þ

ΔVð0ÞðΨðkÞ
10 Þ

ð1; 1; 1; 1; 1Þ=5 ð1; 1; 1; 1; 1Þ=5 SUð5Þ
ð1; 1; 1; 1; 1Þ=5 ð3; 3; 3; 3; 3Þ=5 SUð5Þ

ΔVð1ÞðΨðkÞ
10 Þ

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ
ð1; 2; 2; 2; 2Þ=3 ð1; 2; 2; 2; 2Þ=3 SUð4Þ ×Uð1Þ

15 ΔVð0ÞðΦðkÞ
15 Þ (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ

ΔVð1ÞðΦðkÞ
15 Þ

ð2; 2; 2; 2; 2Þ=5 ð4; 4; 4; 4; 4Þ=5 SUð5Þ
ð4; 4; 4; 4; 4Þ=5 ð4; 4; 4; 4; 4Þ=5 SUð5Þ

ΔVð0ÞðΨðkÞ
15 Þ

ð2; 1; 1; 1; 1Þ=6 ð2; 1; 1; 1; 1Þ=6 SUð4Þ ×Uð1Þ
ð2; 1; 1; 1; 1Þ=6 ð1; 2; 2; 2; 2Þ=3 SUð4Þ ×Uð1Þ

ΔVð1ÞðΨðkÞ
15 Þ (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ

24 ΔVð0ÞðΦðkÞ
24 Þ (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SUð5Þ

ΔVð1ÞðΦðkÞ
24 Þ ð1; 1; 2; 2; 0Þ=3 ð1; 1; 2; 2; 0Þ=3 SUð2Þ2 ×Uð1Þ2

ΔVð0ÞðΨðkÞ
24 Þ ð1=3; 2=3; 0; vx; 1 − vxÞ ð1=3; 2=3; vx; 1 − vx; 0Þ Uð1Þ4

ΔVð1ÞðΨðkÞ
24 Þ (0,0,0,0,0) (0,0,0,0,0) SUð5Þ
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(10-dimensional) representation threefold fermion with
negative chirality.7 In both cases, one sees that there are
no anomalies. In addition, the potential contributions from
the gauge field and an adjoint fermion field cancel out. For
the case (i), the sum of the effective potential contributions

is proportional to ΔVð1ÞðΨðkÞ
5 Þ, in which SUð5Þ and GSM

vacua are degenerate. For the case (ii), we numerically find
that, at the global minima of the effective potential, the
values of the Wilson line take

ãα1 ¼ ãα2 ¼ ð1; 1; 1; 0; 0Þ=3; ð6:2Þ

and the symmetry SUð5Þ is broken down to GSM. We
note that on this vacuum ãα3 ¼ ð−2;−2;−2; 0; 0Þ=3 and
ãαl − ãαlþ1 ¼ 0 (mod 1) are obtained. Thus, this vacuum

respects the symmetry ZðþÞ
3 × Zð−Þ

3 ≅ ZðexÞ
3 × ZðLÞ

3 , as dis-
cussed in Sec. III C.

B. Phenomenological implications

On the vacuum shown in Eq. (6.2), interestingly, the so-
called doublet-triplet splitting among the Higgs fields in the
5 representation can be realized, similarly in the S1=Z2

case [16].
If we introduce a 5 threefold scalar with pt ¼ 0, its triplet

component gets contribution from theWilson line phases to
become massive, while its doublet component does not and
contains a massless mode. We note that on this vacuum, the

ZðexÞ
3 symmetry remains unbroken, even though the zero

modes of the extradimensional components of the gauge
fields which develop nonvanishing VEV, Ayi , have non-

trivial charges of the ZðexÞ
3 symmetry. This means that the

tadpole term of the zero mode of Ayi is absent even in the
higher-loop corrections to allow the vacuum to be a (local)

minimum without a fine tuning. In addition, the effective
theory around the TeV scale would have a Z3 symmetry,
though a soft-breaking term of the Z3 symmetry may be
introduced as in the S1=Z2 case [17].
Of course, therewould be large radiative corrections to the

scalar masses in nonsupersymmetric (non-SUSY) models,
and thus we impose the SUSY in following. In the SUSY
limit, however, the contributions from the fermions and the
bosons to the effective potential are canceled out. Thus, the
actual effective potential strongly depends on the SUSY
breaking. In addition, when there is a hierarchy between the
SUSY-breaking scale and the compactification scale, the
effective potential suffers from the large logarithms, and we
need to treat the renormalization group equations. In this
way, the analysis in the previous subsection can not be
applied directly. Nevertheless, it provides a hope that the
vacuum tends to be realized in a sizable parameter region,
besides a proof of existence.
Concerning the vacuum selection, we have proposed an

interesting scenario in Ref. [18], which may be applied also
to the present case. In the reference, we have calculated the
effective potential at a finite temperature and found that
there are models where the desired vacuum (in the S1=Z2

case) is the global minimum at high temperature. Thus, if
the universe started with very high temperature of order the
Planck scale, the vacuum would be selected around the
temperature of order the compactification/GUT scale,
before the inflation. Then, it is natural to expect that the
vacuum does not move so much until the reheating and has
been selected.
An outstanding prediction of the SUSY version is the

existence of light adjoint chiral supermultiplets of masses
around the SUSY-breaking scale, which would be a TeV
scale. This is understood as follows. The zero modes
of Ayi are massless at the tree level and receive masses
through radiative corrections that are suppressed by the
SUSY-breaking scale. Since the mass differences among
components in a single supermultiplet are at most of the
SUSY-breaking scale, the masses of their SUSY partners
are also at most of the scale. Some collider phenomenol-
ogy of them in the S1=Z2 case was studied in Ref. [17]. In
Ref. [19], another attractive possibility to regard the
adjoint chiral supermultiplets as those introduced in the
Dirac gaugino scenario [31] is studied to show that the so-
called goldstone gauginos [32] are naturally realized.
Similar analyses in the present case are desirable.
An unfavorable point of this prediction is that the light

adjoint chiral supermultiplets ruin the success of the gauge
coupling unification in the minimal SUSY SUð5Þ
model [3]. This is because the adjoint multiplets give
contributions of Δbadji ¼ ð0; 2; 3Þ for the beta function
coefficients to that of the minimal supersymmetric SM
(MSSM), bMSSM

i ¼ ð33=5; 1;−3Þ. It is possible, however,
to recover the gauge coupling unification, for example by

TABLE II. Examples of bulk matter contents. We refer to the
matter contents of the left (right) table as the case (i) (case (ii)).

Case (i)

Bulk matter pt Flavor

ΨþðkÞ
24

0 1

Ψ−ðkÞ
5

1 10

Case (ii)

Bulk matter pt Flavor

ΨþðkÞ
24

0 1

Ψ−ðkÞ
5

1 16

Ψ−ðkÞ
10

0 2

7The same SUð5Þ representations of the fermionic sector are
found in one of the supersymmetric models in [30].
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introducing additional multiplets that give further correc-
tion of Δbaddi ¼ ð3þ n; 1þ n; nÞ [16].
It is notable that an example with n ¼ 0 is naturally

realized in the present case, for instance by adding one 5
and two 10 threefold hypermultiplets with pt ¼ 0. This is
because the above 5 (10) hypermultiplet contains a zero
mode vectorlike pairs of the component with the SM charge
ð1; 2Þ−1=2 (ð1; 1Þ1). We note that it is in contrast to the
S1=Z2 case, where the pair with ð1; 1Þ1 can not be realized
separately. This difference would bring significant effects
on the phenomenology as the quantum corrections to the
colored particles are not so enhanced in contrast to the
n ¼ 1 case where the color SUð3Þ symmetry is asymptotic
nonfree (though still perturbative around the GUT
scale) [17].
Next, we discuss the matter sector. As shown in

Sec. IV C, the zero modes of the threefold fermions are
vector-like, and those of the onefold fermions may be chiral
but the possible representations are restricted. Then, the
simplest way to realize the chiral fermion in the SM is to
put them on the fixed points. Though there are still several
possibilities to put the fermions on the three fixed points,
we consider here only the case all the SM fermions are put
on a common fixed point, for simplicity.
In contrast to the usual gauge-Higgs unification models

where the SM Higgs field is unified into a gauge field, the
SM Higgs field is introduced as a 5 field in our scenario,
and its Yukawa coupling can be set by hand on the fixed
point. The flavor structure of the Yukawa couplings is
similar to usual 4D models and it might be set by hand or a
flavor symmetry may be introduced. A difference from the
usual 4D models is the SUð5Þ breaking effect, which is
carried only by Ayi, and thus bulk fermions are necessary as
messenger of the SUð5Þ breaking, to solve the wrong GUT
relation among the Yukawa couplings.
Finally, we comment on the μ problem and the proton

decay. If we put a 5 threefold hypermultiplet with negative
chirality and pt ¼ 0, the zero modes are a vectorlike pair of
the doublet chiral supermultiplet with the Z3-charge þ1.
When these are identified with Hu and Hd of the MSSM,
the matter chiral supermultiplet 10i and 5̄i where the index i
denotes the generation should have the Z3 charge þ1 to
allow the Yukawa couplings. These Z3 charge forbids the
dimension 5 operator for the proton decay, 10i10j10k5̄l,
and, at the same time, the μ term in the MSSM.We suppose
the SUSY breaking sector breaks theZ3 symmetry softly to
solve the μ problem. Though thisZ3 breaking may generate
the dimension-5 proton decay operator, its contribution to
the proton decay is quite suppressed. Then, the proton
decay via the dimension-6 operators mediated by the gauge
field becomes dominant. In the 6D spacetime, the sum of
the contributions from the KK gauge boson is (logarithmi-
cally) divergent [33], when all the fermion fields are put on
a single fixed point. Though the summation should be cut
off at some point as the 6D theory is also an effective

theory, this process is enhanced, besides the effect of the
enhanced coupling of the KK gauge field and the boundary
fermions by a factor

ffiffiffi
3

p
shown in Eq. (3.17). Meanwhile, it

also has a suppression factor. It is possible that the
dominant element of the SM fermion may come from
the “messenger field” instead of the boundary fields. In
case that the origins of the dominant modes of the
components of each SUð5Þ multiplet are different, the
gauge interactions do not connect them. These points
should be studied in a future work.

VII. CONCLUSIONS AND DISCUSSIONS

We have formulated a field theoretical realization of the
diagonal embedding method in the gauge theory compac-
tified on the T2=Z3 orbifold. The original bulk gauge group

of the theory is G × G × G, and a global ZðexÞ
3 trans-

formation permutes them. Through the BCs, only the
diagonal part of the gauge groupGdiag, which is isomorphic
toG, remains manifest at a low-energy effective theory. The
4D effective theory contains the zero mode of the extra-
dimensional component of the gauge field, which belongs
to the adjoint representation of Gdiag. The continuous
Wilson line phase degrees of freedom, i.e., the zero mode
along the flat direction of the tree-level potential for the
extradimensional gauge fields, can acquire VEVs that
further spontaneously break the gauge symmetry Gdiag.
Thus, the theory possesses rich vacuum structure. We have
shown a parametrization of the VEVs and the Wilson line
phases, which are required to clarify the symmetry break-
ing patterns.
We have also discussed the bulk scalar and fermion fields

in our setup. The representations of these bulk matter fields
under the gauge group are restricted to be the ZðexÞ

3

threefold or onefold to keep the ZðexÞ
3 invariance of the

Lagrangian. We have examined the possible BCs for the
matter fields and the KK mass spectrum. The onefold
fermions can have 4D chiral fermions as their zero modes,
although the threefold ones always have vectorlike 4D
fermion zero modes. A particular feature is that the
representations of the chiral zero modes under the gauge
group are restricted due to the diagonal embedding method,
as shown in Eqs. (4.49) and (4.50).
We have studied the SUð5Þ type A grand gauge-Higgs

unification model compactified on T2=Z3 with the diagonal
embedding method as an explicit application. We have
derived the one-loop contributions to the effective potential
for the zero modes of extradimensional gauge fields. We
have examined the vacuum structure of the effective
potential and discussed the symmetry breaking patterns
related to the bulk matter contents. Our analysis has shown
that the SUð5Þ symmetry is broken down to SUð3Þ ×
SUð2Þ × Uð1Þ at the global minima of the effective
potential with the specific bulk matter contents. Thus,
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the type A grand gauge-Higgs unification model on T2=Z3

is viable for explaining the spontaneous GUT breaking.
In the present analysis, we utilize the dual-lattice

technique, which is just a Fourier transformation. It is
actually useful to analyze the KK expansion in the T2=Z3

model, which is the minimal Z3 orbifold model and may be
regarded as an effective theory of the heterotic string theory
with an adjoint scalar zero mode and with three gener-
ations. In addition, this technique can be applied to more
general orbifold models, for instance in a ten-dimensional
spacetime, straightforwardly. It is also possible to treat
more general gauge symmetry than SUð5Þ considered in
this article, such as SOð10Þ, E6 and E8. These generaliza-
tions would be attractive future works.
Finally, we have discussed the phenomenological impli-

cations qualitatively, focusing on the GUT breaking vac-
uum. A notable feature of this spontaneous GUT breaking
is to provide a solution to the doublet-triplet splitting
problem in GUT models. In addition, the vacuum is
characterized by the enhancement of a Z3 symmetry and
is implied to be stable against higher-loop quantum
corrections. With a SUSY extension, the light three chiral
supermultiplets, which are adjoint representations under
SUð3Þ, SUð2Þ, or Uð1Þ, are predicted to appear around the
SUSY-breaking scale. The unification of the three gauge
couplings in the SM can be consistently explained with
the vanishing beta function coefficient of the color SUð3Þ
at the one-loop order. We have also given discussions about
the SM matter sector and proton decay, although detailed
examinations are left for future studies.
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APPENDIX A: KALZUA-KLEIN EXPANSIONS
ON M4 × T2=Z3

In this appendix, we discuss the KK expansion on
M4 × T2=Z3. In the following, we regard T̂ 1 and Ŝ0 as
the independent operators among T̂ 1;2 and Ŝ0;1;2 defined
in Sec. II.

1. ZðexÞ
3 singlet fields

We first discuss the KK expansion of ZðexÞ
3 singlet fields.

Let ϕðxμ; yiÞ be a ZðexÞ
3 singlet field that obeys the BCs as

ϕðxμ; T̂ 1½yi�Þ ¼ ωptϕðxμ; yiÞ;
ϕðxμ; Ŝ0½yi�Þ ¼ ωpsϕðxμ; yiÞ; ðA1Þ

where pt; ps ∈ f0;�1g, which are consistent with Ŝ3
r ¼ Î

(r ¼ 0, 1, 2).

To examine the KK expansion, we introduce the ortho-
normalized eigenfunction under the translation ȳi →
T̂ j½ȳi� ¼ ȳi þ δij ði; j ¼ 1; 2Þ, where ȳi ¼ yi=ð2πRÞ, as

fðȳiðni þ αiÞÞ ¼
1

2πRðdet gijÞ1=4
e2πiȳ

iðniþαiÞ;

ni ∈ Z; αi ∈ R: ðA2Þ

One sees the eigenfunction satisfies

fðT̂ j½ȳi�ðni þ αiÞÞ ¼ e2πiαjfðȳiðni þ αiÞÞ; ðA3ÞZZ
T2

d2yf�ðȳiðniþαiÞÞfðȳjðn0jþαjÞÞ ¼ δn1n01δn2n02 ≡ δð2Þnin0i
;

ðA4Þ

where we have definedZ Z
T2

d2y≡
Z

2πR

0

dy1
Z

2πR

0

dy2
ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q

¼ 3

4

Z
2πR

0

dy1
Z

2πR

0

dy2: ðA5Þ

As explained in Sec. II, a pair of the same upper and lower
indices, such as i in Eq. (A3), is always contracted
as ȳini ¼ ȳ1n1 þ ȳ2n2.
Notice that fðȳiðni þ αiÞÞ is not an eigenfunction of the

Z3 transformation generated by Ŝ0 defined in Eq. (2.9).
Using Eq. (2.21), we see that the transformation of the
function is

fðŜ0½ȳi�ðni þ αiÞÞ ¼ fðȳiŜ−1
0 ½ni þ αi�Þ

¼ fðȳiðniþ1 þ αiþ1ÞÞ; ðA6Þ

where we have defined n3 ¼ −n1 − n2, α3 ¼ −α1 − α2,
niþ3 ¼ ni, and αiþ3 ¼ αi for i ∈ Z. The eigenfunction of
both the transformations T̂ 1 and Ŝ0 is given by

f̃½p�ðȳiNiÞ ¼
1ffiffiffi
3

p
X3
k¼1

ω−kpfðȳiNiþkÞ; p ∈ Z; ðA7Þ

where

N1 ≡ n1 þ
pt

3
; N2 ≡ n2 þ

pt

3
;

N3 ≡ −n1 − n2 −
2pt

3
; Niþ3 ≡ Ni: ðA8Þ

Conversely, we also obtain the relation as

fðȳiNiþkÞ ¼
1ffiffiffi
3

p
X1
p¼−1

ωkpf̃½p�ðȳiNiÞ: ðA9Þ
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From Eq. (A7), one confirms

f̃½ps�ðT j½ȳi�NiÞ ¼ ωpt f̃½ps�ðȳiNiÞ;
f̃½ps�ðS0½ȳi�NiÞ ¼ ωps f̃½ps�ðȳiNiÞ; ðA10Þ

where the eigenvalues are exactly the same as in Eq. (A1).

Thus, a ZðexÞ
3 singlet field with the BCs in Eq. (A1) is

expanded by f̃½ps�ðȳiNiÞ.8
The eigenfunctions in the set ff̃½p�ðȳiNiÞg for ni ∈ Z are

neither completely independent nor orthonormalized.9

From the right of Eq. (A10) and Eq. (2.21), we find

f̃½p�ðSl
0 ½ȳi�NiÞ ¼ f̃½p�ðȳiNiþlÞ ¼ ωlpf̃½p�ðȳiNiÞ; ðA11Þ

which implies a linear dependency f̃½p�ðȳiNiþlÞ ∝
f̃½p�ðȳiNiÞ related to the Z3 transformation. As seen below,
there is no additional linear dependencies except for the
above. To handle the eigenfunctions, it is convenient to
introduce the normalized momentum lattice, which corre-
sponds to the possible momentum values on T2 in a
normalization and is expanded by the dual basis vector
in Eq. (2.15) as

Λhpti ¼
�
N1ẽ1 þ N2ẽ2 ¼

�
n1 þ

pt

3

�
ẽ1

þ
�
n2 þ

pt

3

�
ẽ2jn1; n2 ∈ Z

�
: ðA12Þ

We hereafter refer to Λhpti as the dual lattice. In Fig. 2, the
dual lattice with pt ¼ 0;�1 is illustrated. Since we can
relate Nl and Nlþ1 appearing in f̃½p�ðȳiNiþl−1Þ to a point
NðlÞ ≡ Nlẽ1 þ Nlþ1ẽ2 on Λhpti, we regard that there is a
corresponding eigenfunction on each point on the lattice.
Note that Nð1Þ, Nð2Þ, and Nð3Þ are not identical points on
Λhpti, except for the case of ðN1; N2Þ ¼ ð0; 0Þ. These points
are related to each other by theZ3 transformation generated
by Ŝ0 as found in Eq. (A6) and identified to the positions of
vertices of the equilateral triangle, whose center is located
at the origin. From the above observation, we can divide
Λhpti into the sublattice as10

Λhpti ¼ Λhpti
ð1Þ þ Λhpti

ð2Þ þ Λhpti
ð3Þ þ Λð0Þδpt0

; ðA13Þ

where

Λhpti
ðlÞ ¼

�
NðlÞ ¼ Nlẽ1 þ Nlþ1ẽ2jNi ¼ ni þ

pt

3
;

n1; n2 ∈ Z; N2 ≥ 0; N1 > −N2

�
; ðA14Þ

for l ¼ 1, 2, 3 and Λð0Þ is the origin. If f̃½p�ðȳiNiÞ
corresponds to a point onΛhpti

ðlÞ , then the dependent function

f̃½p�ðȳiNiþ1Þ corresponds to a point on Λhpti
ðlþ1Þ. Thus, we see

that the set of the eigenfunctions ff̃½p�ðȳiNiÞg defined on a

sublattice Λhpti
ðlÞ are linearly independent.

In the following, we use

N¼N1ẽ1þN2ẽ2¼
�
n1þ

pt

3

�
ẽ1þ

�
n2þ

pt

3

�
ẽ2; ðA15Þ

FIG. 2. The dual lattice Λhpti defined in Eq. (A12) for pt ¼ 0; 1;−1. The black dots show the point with n1 ¼ n2 ¼ 0. As an example,

we denote NðlÞ for n1 ¼ n2 ¼ 1 by the yellow dots. Dots on the green, gray, and red-shaded regions belong to the sublattice Λhpti
ð1Þ ; Λ

hpti
ð2Þ ,

and Λhpti
ð3Þ defined in Eq. (A14), respectively.

8The eigenfunctions f̃½ps�ðȳiNiÞ given by linear combinations
of the exponential functions in Eq. (A2) are analogues to
sinðyn=RÞ or cosðyn=RÞ ðn ∈ ZÞ in S1=Z2 orbifold models.

9This is similar to the fact that sinðyn=RÞ and sinð−yn=RÞ is
not linearly independent even if n ≠ −n is satisfied. If one
considers m;m0 ∈ Z≥0, sinðym=RÞ and sinðym0=RÞ are linearly
independent for m ≠ m0.

10The decomposition in Eq. (A13) with pt ¼ 0 corresponds to
Z ¼ Z>0 þ Z<0 þ f0g in S1=Z2 orbifold models.
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N0 ¼N0
1ẽ

1þN0
2ẽ

2¼
�
n01þ

pt

3

�
ẽ1þ

�
n02þ

pt

3

�
ẽ2: ðA16Þ

With the help of δð2Þniþkn0iþk0
¼ δkk0δ

ð2Þ
nin0i

, one can derive the

orthonormal relation

ZZ
T2

d2yf̃½p��ðȳiNiÞf̃½p0�ðȳiN0
iÞ¼δð2Þnin0i

δpp0 ; forN;N0∈Λhpti
ðlÞ ;

ðA17Þ

for a fixed l, from the definition of f̃½p�ðȳiNiÞ in Eq. (A7)
and the relation in Eq. (A4).
Using the eigenfunction in Eq. (A7), we define the KK

expansion of the singlet field in Eq. (A1) as follows:

ϕðxμ; yiÞ ¼
X

N∈Λhpti
ðlÞ

ϕ̃N1;N2
ðxμÞf̃½ps�ðȳiNiÞ

þ δpt0
δps0

2πRðdet gijÞ1=4
ϕ̃0;0ðxμÞ; ðA18Þ

wherewe refer to ϕ̃N1;N2
ðxμÞ as the KKmode. The zeromode

in the last term exists only for the casewith ðpt; psÞ ¼ ð0; 0Þ.
We define the first term in Eq. (A18) to be independent of a

choice of l in Λhpti
ðlÞ . Thus, we can substitute Λ

hpti
ðl∓1Þ for Λ

hpti
ðlÞ

in Eq. (A18) and use Eq. (A11) to get

X
N∈Λhpti

ðlÞ

ϕ̃N1;N2
ðxμÞf̃½ps�ðȳiNiÞ

¼
X

N∈Λhpti
ðl∓1Þ

ϕ̃N1;N2
ðxμÞω∓ps f̃½ps�ðȳiNi�1Þ ðA19Þ

¼
X

N∈Λhpti
ðlÞ

ω∓ps ϕ̃N1∓1;N2∓1
ðxμÞf̃½ps�ðȳiNiÞ: ðA20Þ

This implies the constraint on the KK mode ϕ̃N1;N2
ðxμÞ as

ϕ̃N1�l;N2�l
ðxμÞ ¼ ω∓lps ϕ̃N1;N2

ðxμÞ: ðA21Þ

Let us derive the effective 4D Lagrangian for the singlet
field in Eq. (A1) from the KK expansion (A18). As an
example, we treat ϕðxμ; yiÞ as a scalar and consider the 6D
canonical kinetic term.11 From the definitions of the
eigenfunctions in Eqs. (A2) and (A7), we find the following
relations:

gjk∂yj∂yk f̃
½ps�ðȳiNiÞ ¼

2

3

X3
l¼1

ð∂ylÞ2f̃½ps�ðȳiNiÞ

¼ −
2

3R2

X3
l¼1

ðNlÞ2f̃½ps�ðȳiNiÞ: ðA22Þ

Using them, we obtain the effective 4D Lagrangian Lsinglet
eff

for ϕ̃N1;N2
ðxμÞ:

Lsinglet
eff ¼ −

Z Z
T2

d2yϕ�ðxμ; yiÞð□ − gjk∂yj∂ykÞϕðxμ; yiÞ

ðA23Þ

¼ −
X

ni∈Λ
hpti
ðlÞ

ϕ̃�
N1;N2

�
□þ 2

3R2

X3
k¼1

ðNkÞ2
�
ϕ̃N1;N2

− ϕ̃�
0;0□ϕ̃0;0δpt0

δps0
; ðA24Þ

where ϕ̃N1;N2
ðxμÞ is an independent field for Ni ∈ Λhpti

ðlÞ
with a fixed l. Thus, the above KK mode is a canonically
normalized 4D field with the following KK mass squared:

2

3R2

X3
k¼1

ðNkÞ2 ¼
2

3R2

��
n1 þ

pt

3

�
2

þ
�
n2 þ

pt

3

�
2

þ
�
−n1 − n2 −

2pt

3

�
2
�

ðA25Þ

¼ 4

3R2

��
n1þ

pt

3

�
2

þ
�
n1þ

pt

3

��
n2þ

pt

3

�

þ
�
n2þ

pt

3

�
2
�
; ðA26Þ

which is the squared norm of the vector N=R on the
momentum lattice spanned by ẽi=R.

2. ZðexÞ
3 triplet fields

We start to study KK expansion of a ZðexÞ
3 triplet field

ϕðkÞ that obeys the BCs as

ϕðkÞðT̂ 1½yi�Þ¼ωptϕðkÞðyiÞ; ϕðkÞðŜ0½yi�Þ¼ωpsϕðkþ1ÞðyiÞ;
ðA27Þ

where we have suppressed the coordinate xμ in the above
for shorthand notations. Let us define ϕ½p�ðyiÞ as

11The ZðexÞ
3 singlet does not couple to the Wilson line phases in

our model as discussed in Sec. V B, although the ZðexÞ
3 triplets

generally couple to the Wilson line phases as Eq. (A38).
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ϕ½p�ðyiÞ ¼ 1ffiffiffi
3

p
X3
k¼1

ω−kpϕðkÞðyiÞ;

ϕðkÞðyiÞ ¼ 1ffiffiffi
3

p
X1
p¼−1

ωkpϕ½p�ðyiÞ: ðA28Þ

Then, ϕ½p� becomes an eigenstate of the BCs,

ϕ½p�ðT̂ 1½yi�Þ¼ωptϕ½p�ðyiÞ; ϕ½p�ðŜ0½yi�Þ¼ωpsþpϕ½p�ðyiÞ;
ðA29Þ

as the ZðexÞ
3 singlet in Eq. (A1) but ps is substituted by

ps þ p. Thus, from a similar discussion deriving Eq. (A18),
we define the KK expansion as

ϕ½p�ðyiÞ¼
X

N∈Λhpti
ðlÞ

ϕ̃½p�
N1;N2

f̃½psþp�ðȳiNiÞþ
δpt0

δpsþp0

2πRðdetgijÞ1=4
ϕ̃½−ps�
0;0 :

ðA30Þ
Using the above, we obtain the KK expansion of ϕðkÞðyiÞ as

ϕðkÞðyiÞ ¼ 1ffiffiffi
3

p
X

N∈Λhpti
ðlÞ

X1
p¼−1

ωkpϕ̃½p�
N1;N2

f̃½psþp�ðȳiNiÞ

þ ω−kpsδpt0

2πRðdet gijÞ1=4
ϕ̃½−ps�
0;0ffiffiffi
3

p : ðA31Þ

Note that, as Eq. (A21), the KK mode ϕ̃½p�
N1;N2

satisfy the
following constraint:

ϕ̃½p�
N1�l;N2�l

¼ ω∓lðpsþpÞϕ̃½p�
N1;N2

: ðA32Þ

In view of Eq. (A28), it is natural to define the KK mode

ϕ̃ðkÞ
N1;N2

as

ϕ̃ðkÞ
N1;N2

≡ 1ffiffiffi
3

p
X1
p¼−1

ωkpϕ̃½p�
N1;N2

; ϕ̃½p�
N1;N2

¼ 1ffiffiffi
3

p
X3
k¼1

ω−kpϕ̃ðkÞ
N1;N2

:

ðA33Þ

As seen below, ϕ̃ðkÞ
N1;N2

is a basis that diagonalize contri-
butions from the Wilson line phases to KK masses.

Combining Eq. (A31) and the second equation in (A33),

we can expand ϕðkÞðyiÞ by ϕ̃ðkÞ
N1;N2

. To see this, we use the
formula

1ffiffiffi
3

p
X1
p¼−1

ωðk−k0Þpf̃½psþp�ðȳiNiÞ ¼ ω−ðk−k0ÞpsfðȳiNiþk−k0 Þ;

ðA34Þ

derived from Eq. (A7). Using it, we obtain

ϕðkÞðyiÞ ¼ 1ffiffiffi
3

p
X

N∈Λhpti
ðlÞ

X3
k0¼1

ω−k0ps ϕ̃ðk−k0Þ
N1;N2

fðȳiNiþk0 Þ

þ ω−kpsδpt0

2πRðdet gijÞ1=4
ϕ̃½−ps�
0;0ffiffiffi
3

p : ðA35Þ

From Eq. (A32), we find the constraint on ϕ̃ðkÞ
N1;N2

is
written as

ϕ̃ðkÞ
N1�l;N2�l

¼ ω∓lps ϕ̃ðk∓lÞ
N1;N2

: ðA36Þ

Let us derive the 4D effective Lagrangian for the triplet
scalar defined in in Eq. (A27). We consider the 6D kinetic
term,

Ltriplet
eff ¼−

ZZ
T2

d2y
X3
k¼1

ϕðkÞ�ðyiÞð□þM̂2
kÞϕðkÞðyiÞ; ðA37Þ

where M̂2
k is a differential operator including Wilson line

phases as in Eq. (5.9) and is defined by

M̂2
k ¼ gij

�
−i∂yi þ

ãiþk

R

��
−i∂yj þ

ãjþk

R

�

¼ 2

3

X3
l¼1

�
−i∂yl þ

ãlþk

R

�
2

: ðA38Þ

Using the KK expansion in Eq. (A35) and the definition of
the eigenfunction in Eq. (A2), we obtain the effective 4D

Lagrangian for ϕ̃ðkÞ
N1;N2

and the zero mode ϕ̃½−ps�
0;0 as

Ltriplet
eff ¼ −

X
N∈Λhpti

ðl0Þ

X3
k¼1

ϕ̃ðkÞ�
N1;N2

�
□þ 2

3R2

X3
l¼1

ðNl þ ãlþkÞ2
�
ϕ̃ðkÞ
N1;N2

− δpt0
ϕ̃½−ps��
0;0

�
□þ 2

3R2

X3
l¼1

ã2l

�
ϕ̃½−ps�
0;0 ; ðA39Þ

where ϕ̃ðkÞ
N1;N2

is an independent and a canonically normalized fields for Ni ∈ Λhpti
ðl0Þ with a fixed l0. With the help of

Eq. (A36), we can rewrite Eq. (A39) with the summation over the dual lattice Λhpti as
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Ltriplet
eff ¼ −

X
N∈Λhpti

ϕ̃ð0Þ�
N1;N2

�
□þ 2

3R2

X3
l¼1

ðNl þ ãlÞ2
�
ϕ̃ð0Þ
N1;N2

;

ðA40Þ

where we have defined ϕ̃ð0Þ
0;0; ≡ ϕ̃½−ps�

0;0 . Although we choose

k ¼ 0 of ϕ̃ðkÞ
N1;N2

as a representative in the above, a similar
expression holds for any choice of k. The KK mass in
Eq. (A40) is again the squared norm of the vector as the
case in Eq. (A26), but the vector N is shifted by the Wilson
line phases as N þ ãiẽi.
The KK mass spectrum in Eq. (A40) is a similar one in

models with T2 compactification. This situation is shared
with the S1=Z2 model with the diagonal embedding
method, where the resulting KK mass spectrum is a similar
one in models with S1 compactification.

APPENDIX B: CALCULATION OF EFFECTIVE
POTENTIALS ON M4 × T2=Z3

We derive contributions from a ZðexÞ
3 triplet field to the

effective potential obtained from the Lagrangian in
Eq. (A37). For later convenience, we denote the KK mass
in Eq. (A40) by

M2ðãiÞ≡ 2

3R2

X3
l¼1

ðNl þ ãlÞ2

¼ 4

3R2
fðN1 þ ã1Þ2 þ ðN1 þ ã1ÞðN2 þ ã2Þ

þ ðN2 þ ã2Þ2g: ðB1Þ

In addition, we define ã ¼ ãiẽi. Then, we can write
M2ðãiÞ ¼ jN þ ãj2=R2. Since Eq. (A37) is rewritten as
Eq. (A40), by performing the path integration of the KK

modes ϕ̃ð0Þ
N1;N2

, we obtain the following contribution to the
effective potential:

ΔVðptÞ ≡ N̂deg

2

X
N∈Λhpti

Z
d4pE

ð2πÞ4 lnðp
2
E þM2ðãiÞÞ; ðB2Þ

where N̂deg ¼ 2 for the case of a complex scalar, and the
square of an Euclidean four-momentum is denoted by p2

E.
To deal with the divergent momentum integral, we use

the zeta-function regularization and introduce

ζðsÞ≡ X
N∈Λhpti

Z
d4pE

ð2πÞ4 ðp
2
E þM2ðãiÞÞ−s: ðB3Þ

Then, the contributions to the potential is rewritten as

ΔVðptÞ ¼ −
N̂deg

2
lim
s→0

d
ds

ζðsÞ: ðB4Þ

A straightforward calculation shows

ζðsÞ¼ 1

8π2
X

N∈Λhpti

Z
∞

0

dp̄p̄3

Z
∞

0

dt
ts−1

ΓðsÞe
−½p̄2þM2ðãiÞ�t ðB5Þ

¼ s
16π2

X
N∈Λhpti

Z
∞

0

dtt−3e−M
2ðãiÞt þOðs2Þ; ðB6Þ

where ΓðsÞ is the gamma function, and jsj ≪ 1 is implied.
Thus, we get

d
ds

ζðsÞ ¼ 1

16π2
X

N∈Λhpti

Z
∞

0

dtt−3e−M
2ðãiÞt þOðsÞ; ðB7Þ

where the singularity associated with t → 0 corresponds to
the ultraviolet divergence in the integral.
The Oðs0Þ term in Eq. (B7) is evaluated by using the

Poisson resummation formula, which is derived in the next
section. In Eq. (C8), we set D ¼ 2 and

di ¼
pt

3
þ ãi; Aij ¼

πR2

t
gij; ðA−1Þij ¼ t

πR2
gij;

detA¼ 3π2R4

4t2
; ðB8Þ

where gij and gij are the metric given in Sec. II. Let us
introduce the vector w and the lattice Λw expanded by ei,
which is associated with the metric gij, as

Λw ¼ fw ¼ w1e1 þ w2e2jw1; w2 ∈ Zg: ðB9Þ

Then, we obtain

X
N∈Λhpti

e−M
2ðãiÞt ¼

X
N∈Λhpti

e−
t
R2
jNþãj2

¼
ffiffiffi
3

p
πR2

2
ffiffiffiffi
t2

p
X
w∈Λw

e−
π2R2

t jwj2e2πiw·ã0 ; ðB10Þ

where we have defined ã0 ≡ ðpt=3þ ã1Þẽ1 þ ðpt=3þ
ã2Þẽ2 and

jwj2 ¼ ðw1Þ2 þ ðw2Þ2 − w1w2;

w · ã0 ¼ ðpt=3þ ã1Þw1 þ ðpt=3þ ã2Þw2: ðB11Þ

Thus, we can replace the summation over Λhpti by the
summation over Λw. The integers wi are often called
winding numbers. Let us consider a continuum path on
the covering space of T2=Z3, where the separation between
the endpoints of the path corresponds to the vector 2πRw.
In this case, such continuum path represents a noncontrac-
tible cycle on T2=Z3, whose winding number along the
ei direction is given by wi, except for the case of w ¼ 0.
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This implies that the summation over the possible momen-
tum states, i.e., KK modes, in the evaluation of the effective
potential is replaced by performing the summation over the
possible winding numbers. Notice that the term with w ¼ 0
in the summation represents a local effect and is indepen-
dent of the nonlocal Wilson line ãi. To deal with it, we
define Λ0

w ¼ Λwnfw ¼ 0g and write
P

w∈Λw
FðwÞ ¼

Fð0Þ þPw∈Λ0
w
FðwÞ for a function FðwÞ.

From the above, we find

lim
s→0

d
ds

ζðsÞ ¼
ffiffiffi
3

p

16π7R4

X
w∈Λ0

w

e2πiw·ã
0

ðjwj2Þ3 þ ðconstÞ

¼
ffiffiffi
3

p

16π7R4

X
w∈Λ0

w

cosð2πw · ã0Þ
ðjwj2Þ3 þ ðconstÞ: ðB12Þ

In the last equation, we have used that jwj2 is symmetric
under wi → −wi. We have separated the irrelevant constant
term with w ¼ 0 in the above. In this paper, we discard the
constant term in the effective potential. The summation
over all integers for w1 and w2 except for ðw1; w2Þ ¼ ð0; 0Þ
is denoted by w1; w2 ∈ Z0. Finally, we obtain

ΔVðãiÞ ¼ N̂degVðptÞðãiÞ; ðB13Þ

VðptÞðãiÞ≡ −
ffiffiffi
3

p

32π7R4

X
w1;w2∈Z0

×
cosð2π½w1ðpt=3þ ã1Þ þ w2ðpt=3þ ã2Þ�Þ

½ðw1Þ2 − w1w2 þ ðw2Þ2�3 :

ðB14Þ

APPENDIX C: THE POISSON RESUMMATION
FORMULA IN D DIMENSIONS

Let us consider the summation including a matrix A−1,
which is the inverse of a symmetric D ×D matrix A, as

ID ¼
X

n1;…;nD∈Z
e−πðniþdiÞðA−1ÞijðnjþdjÞ; ðC1Þ

where ðA−1Þij are elements of A−1, and the indices i, j run
from 1 toD. Since ID is periodic under di → di þ 1, we can
expand it as

ID ¼
X

w1;…;wD∈Z

CðwiÞe2πiwjdj ; where

CðwiÞ ¼
�YD

i¼1

Z
1

0

dd̃i

�
e−2πiw

jd̃j ID: ðC2Þ

Introducing βi ¼ ni þ di, we rewrite CðwiÞ as

CðwiÞ ¼
�YD

i¼1

Z
∞

−∞
dβi

�
e−πβjðA−1Þjkβke−2πiwlβl

¼
�YD

i¼1

Z
∞

−∞
dβ̃i

�
e−πβ̃jðA−1Þjkβ̃ke−πw

j̄Aj̄ k̄w
k̄
; ðC3Þ

where β̃j ¼ βj þ iAjkwk.
Since A is symmetric, A−1 is diagonalized by an

orthogonal matrix O ðOOT ¼ 1Þ and is written as

ðA−1Þij ¼ ðOTÂ−1OÞij; ðÂ−1Þkl ¼ ða−1Þkδkl; ðC4Þ

where Â−1 is the diagonal matrix and ða−1Þk is a k-th
eigenvalue of Â−1. Defining zi ¼ Oi

jβ̃j, we obtain

CðwiÞ ¼
�YD

i¼1

Z
Ci

dzie−πða
−1ÞiðziÞ2

�
e−πw

jAjkwk
; ðC5Þ

where Ci denotes a path in the complex plane defined by
ReðziÞ ¼ ð−∞;∞Þ with a fixed ImðziÞ ¼ Oi

jAjkω
k. With

the help of the relationZ
∞

−∞
dxe−πcðxþiyÞ2 ¼

Z
∞

−∞
dxe−πcx

2 ¼ 1ffiffiffi
c

p ; ðC6Þ

we obtain

CðwiÞ¼
�YD

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
ða−1Þi

p �
e−πw

jAjkwk ¼
ffiffiffiffiffiffiffiffiffiffi
detA

p
e−πw

iAijwj
:

ðC7Þ
Thus, the following relation holds:X

n1;…;nD∈Z
e−πðniþdiÞðA−1ÞijðnjþdjÞ

¼
ffiffiffiffiffiffiffiffiffiffi
detA

p X
w1;…;wD∈Z

e−πw
iAijwj

e2πiw
kdk ; ðC8Þ

which is the Poisson resummation formula used in
Appendix B. The above is naturally rewritten by the
vectors and the metric that are defined by W ¼ wiEi,
n ¼ niẼ

i, d ¼ diẼ
i, Ei · Ẽ

j ¼ δji , and Ei · Ej ¼ Aij asX
n1;…;nD∈Z

e−πjnþdj2 ¼
ffiffiffiffiffiffiffiffiffiffi
detA

p X
w1;…;wD∈Z

e−πjWj2e2πiW·d: ðC9Þ

APPENDIX D: FERMION FIELDS
IN SIX DIMENSIONS

We here summarize the notations related to fermion
fields in 6D theories. First, we work with the metric
ηMN ¼ diagð1;−1;−1;−1;−1;−1Þ. The 4D gamma matri-
ces γμ can be written by
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γμ ¼
�

0 σμ

σ̄μ 0

�
; σμ ¼ ðI2; σ1; σ2; σ3Þ;

σ̄μ ¼ ðI2;−σ1;−σ2;−σ3Þ; ðD1Þ

where I2 is the 2 × 2 identity matrix and σi (i ¼ 1, 2, 3) are
the Pauli matrices. A 4D Dirac fermion ψ is denoted by
ψ ¼ ψL þ ψR, where 4D chirality is defined by

γ5¼ iγ0γ1γ2γ3¼
�−I2 0

0 I2

�
; γ5ψL¼−ψL; γ5ψR¼ψR:

ðD2Þ

Thus, the 4D Weyl fermions are written by

ψL ¼
�
ξL

0

�
; ψR ¼

�
0

η̄R

�
; ðD3Þ

where ξL and η̄R are two-component spinors.
The 6D gamma matrices can be defined by the 4D

gamma matrices in Eq. (D1) as

Γμ¼σ3⊗ γμ¼
�
γμ 0

0 −γμ

�
; Γ5¼ iσ1⊗ I4¼

�
0 iI4
iI4 0

�
;

Γ6¼ iσ2⊗ I4¼
�

0 I4
−I4 0

�
; ðD4Þ

so that they satisfy the 6D Clifford algebra,

fΓM;ΓNg ¼ 2ηMN: ðD5Þ

To study the 6D chirality, it is useful to define

Γ7¼Γ0Γ1Γ2Γ3Γ5Γ6¼−σ3⊗ γ5

¼
�−γ5 0

0 γ5

�
¼diagð1;1;−1;−1;−1;−1;1;1Þ; ðD6Þ

which satisfies fΓ7;ΓMg ¼ 0. The 6D Dirac fermion Ψ is
decomposed into a sum of the 6D Weyl fermions Ψ�,
which are eigenstates of Γ7, as

Ψ ¼ Ψþ þ Ψ−; Γ7Ψ� ¼ �Ψ�: ðD7Þ

Thus, we can write

Ψ� ≡ 1� Γ7

2
Ψ ¼

� 1∓γ5
2

0

0 1�γ5
2

�
Ψ; Ψþ ¼

�
ψþ
L

ψþ
R

�
;

Ψ− ¼
�
ψ−
R

ψ−
L

�
: ðD8Þ

A 6D Weyl fermion Ψ� involves a vectorlike pair of 4D
Weyl fermions. By using the two-component spinor nota-
tion in Eq. (D3), we can also write

Ψ ¼ Ψþ þ Ψ− ¼
�
ψþ
L þ ψ−

R

ψþ
R þ ψ−

L

�
¼

0
BBB@

ξþL
η̄−R
ξ−L
η̄þR

1
CCCA: ðD9Þ

Let us study fermion bilinears. We define Ψ̄≡Ψ†Γ0 and
find

Ψþ ¼ ðψþ
L ;−ψ

þ
R Þ; Ψ− ¼ ðψ−

R;−ψ−
LÞ: ðD10Þ

The fermion bilinears without derivatives are given by

Ψ̄Ψ ¼ Ψ−Ψþ þΨþΨ−; ðD11Þ

which are written in terms of the 4D Weyl fermions as

Ψ−Ψþ ¼ ψ−
Rψ

þ
L − ψ−

Lψ
þ
R ; ΨþΨ− ¼ ψþ

Lψ
−
R − ψþ

Rψ
−
L:

ðD12Þ

To obtain the kinetic terms for fermion fields, we use the
fermion bilinears with a derivative,

Ψ̄ΓM
∂MΨ ¼ ΨþΓM

∂MΨþ þ Ψ−ΓM
∂MΨ−; ðD13Þ

where

ΓM
∂M ¼

�
γμ∂μ ið∂5 − i∂6Þ

ið∂5 þ i∂6Þ −γμ∂μ

�
: ðD14Þ

Thus, by using the 4D Weyl fermions, we can rewrite the
above as

ΨþΓM
∂MΨþ ¼ ψþ

L γ
μ
∂μψ

þ
L þ ψþ

R γ
μ
∂μψ

þ
R

þ ψþ
L ið∂5 − i∂6Þψþ

R − ψþ
R ið∂5 þ i∂6Þψþ

L ;

ðD15Þ

Ψ−ΓM
∂MΨ− ¼ ψ−

Lγ
μ
∂μψ

−
L þ ψ−

Rγ
μ
∂μψ

−
R

þ ψ−
Rið∂5 − i∂6Þψ−

L − ψ−
Lið∂5 þ i∂6Þψ−

R:

ðD16Þ

The mixing terms between ψ�
L and ψ�

R include the
derivatives on the extradimensional coordinates.
To deal with the gamma matrices and study fermion

fields on M4 × T2=Z3, it is useful to introduce the oblique
coordinates discussed in Sec. II. With the oblique coor-
dinates y1 and y2 found in Eq. (2.2), we naturally define the
new gamma matrices from Γ5 and Γ6 as
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Γy1 ≡ Γ5 þ 1ffiffiffi
3

p Γ6 ¼ 2ffiffiffi
3

p
�
0 −ω̄
ω 0

�
⊗ I4;

Γy2 ≡ 2ffiffiffi
3

p Γ6 ¼ 2ffiffiffi
3

p
�

0 1

−1 0

�
⊗ I4: ðD17Þ

As expected, they satisfy

fΓyi ;Γyjg ¼ −2gij; fΓμ;Γyig ¼ 0; ðD18Þ

where gij is the metric in Eq. (2.16). It is also natural to
define Γyi ≡ −gijΓyj , which are explicitly written as

Γy1 ¼−i
�
0 1

1 0

�
⊗ I4; Γy2 ¼−i

�
0 ω̄

ω 0

�
⊗ I4: ðD19Þ

We also introduce the useful notations:

Γy3 ¼−Γy1 −Γy2 ¼−i
�
0 ω

ω̄ 0

�
⊗ I4; Γyiþ3 ¼Γyi : ðD20Þ

Then, Eq. (D14) is rewritten as

ΓM
∂M ¼ Γμ

∂μ − gijΓyi∂yj ¼ Γμ
∂μ −

2

3

X3
l¼1

Γyl∂yl ðD21Þ

¼
�

γμ∂μ i2
3
ð∂y1 þ ω̄∂y2 þω∂y3Þ

i2
3
ð∂y1 þω∂y2 þ ω̄∂y3Þ −γμ∂μ

�
:

ðD22Þ

Let us discuss the BC on T2=Z3 related to the Z3

transformation yi → Ŝ0½yi� for fermion fields. The Z3

transformation generated by Ŝ0 is a SOð2Þ ≅ Uð1Þ rotation
with the angle 2π=3 on a two-dimensional Euclidean space,
under which the derivative ∂yi transforms to ∂yi−1 as in
Eq. (2.19). It is convenient to define a matrix S̃Ψ that
satisfies

S̃†ΨΓyi S̃Ψ¼Γyi−1 ; ½Γμ; S̃Ψ�¼0; S̃†ΨS̃Ψ¼ I2⊗ I4: ðD23Þ

One of the possible choices is

S̃Ψ ≡ −
�
ω 0

0 ω̄

�
⊗ I4: ðD24Þ

Using S̃Ψ, we can define the transformation law of the 6D
Dirac fermion Ψ under the SOð2Þ rotation with the angle
2π=3 as Ψ → S̃ΨΨ so that the 2π rotation gives Ψ → −Ψ.
One sees that the 2π=3 rotation keeps the fermion bilinear
in Eq. (D13) invariant as required from the 6D Lorentz
invariance, with the help of the relation

S̃†ΨΓ0ΓM
∂MS̃Ψ ¼ S̃†ΨΓ0

�
Γμ
∂μ −

2

3

X3
l¼1

Γyl∂yl−1

�
S̃Ψ ðD25Þ

¼ Γ0

�
Γμ
∂μ −

2

3

X3
l¼1

Γyl−1∂yl−1

�
¼ Γ0ΓM

∂M: ðD26Þ

We can define the BC for the 6D Dirac fermionΨðxμ; yiÞ
as

Ψðxμ; Ŝ0½yi�Þ ¼ −ωps S̃ΨΨðxμ; yiÞ; ðD27Þ

where ps ∈ f0;�1g can be chosen by hand, and the overall
minus sign on the right-hand side originates from the
fermion number operator. We note that the BC in Eq. (D27)
is consistent with Ŝ3

0 ¼ Î as required. Using the 4D Weyl
fermions, we rewrite the BC as follows:

ψ�
L ðxμ; Ŝ0½yi�Þ ¼ ωps�1ψ�

L ðxμ; yiÞ;
ψ�
R ðxμ; Ŝ0½yi�Þ ¼ ωps∓1ψ�

R ðxμ; yiÞ; ðD28Þ

which allows us to leave a 4D chiral fermion spectrum as
the zero mode from a 6D Weyl fermion Ψ�.
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