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We study a novel six-dimensional gauge theory compactified on the 72/Z orbifold utilizing the

diagonal embedding method. The bulk gauge group is G x G x G, and the diagonal part G4 remains
manifest in the effective four-dimensional theory. Further spontaneous breaking of the gauge symmetry
occurs through the dynamics of the zero modes of the extradimensional components of the gauge field. We
apply this setup to the SU(5) grand unified theory and examine the vacuum structure determined by the
dynamics of the zero modes. We find bulk matter contents that radiatively induce spontaneous breakings of
the unified symmetry G9%¢ &~ SU(5) down to SU(3) x SU(2) x U(1) at the global minima of the one-loop
effective potential for the zero modes. This spontaneous breaking provides notable features such as a
realization of the doublet-triplet splitting without a fine tuning and a prediction of light adjoint fields.
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I. INTRODUCTION

Higher-dimensional gauge theory has been studied
extensively as one of the attractive possibilities for physics
beyond the standard model (SM). It is worth noting that the
higher-dimensional gauge theory can possess the dynami-
cal mechanism for gauge symmetry breaking via continu-
ous Wilson line phases, called the Hosotani mechanism [1].
It is one of the promising approaches to understand the
origin of the gauge symmetry breaking in the electroweak
theory or in the grand unified theory (GUT) [2,3]. The
former attempts are called gauge-Higgs unification [4,5].
Hence, various aspects of the higher-dimensional gauge
theory with the Hosotani mechanism have been
investigated.

The zero modes of the extradimensional components of
the gauge field become the dynamical degrees of freedom,
which behave as scalar fields at low energy [6,7]. The zero
modes are closely related with the Wilson line phases, and
the quantum correction generates the effective potential
for the phases. The zero modes can acquire vacuum

*kojima@ artsci.kyushu-u.ac.jp
"takenaga@kumamoto-hsu.ac.jp
*tyamashi @aichi-med-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/108(3)/035031(29)

035031-1

expectation values (VEVs) at a minimum of the potential
to induce the gauge symmetry breaking [1]. Interestingly,
the gauge symmetry breaking patters are definitely deter-
mined irrespective of the detail of the dynamics in the
ultraviolet region thanks to the finiteness of the effective
potential for the phases once we fix the content of matter
fields in the theory [8,9].l One understands the definite
origin of the potential that induces the gauge symmetry
breaking.

The zero modes originally belong to the adjoint repre-
sentation under the gauge group. Thus, it looks attractive
and natural to apply the Hosotani mechanism to the
spontaneous breaking of the GUT gauge symmetry such
as SU(5) [2,3]. We immediately, however, encounter the
difficulty that the existence of the scalar zero mode of the
adjoint representation tends to be incompatible with chiral
fermions, which are required in phenomenologically
acceptable models. That is, if one tries to obtain the chiral
fermion, the orbifold compactification with appropriate
boundary conditions (BCs) is a possible framework, but the

1Higher-loop corrections to the effective potential calculated
with the bare Lagrangian generally include divergent contribu-
tions, which originate from the loop integral of sub-
diagrams [9,10]. Such divergent contributions are canceled out
with lower-order counterterms, and it is expected that there is no
need to introduce independent counterterms to eliminate the
divergent contributions [9]. In other words, in terms of the
renormalized couplings, which are determined by the low-energy
experiments and thus finite, instead of the bare couplings, the
effective potential is free from the divergences.
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scalar zero mode of the adjoint representation is projected
out for the case. Thus, the SU(5) symmetry is broken by
the BCs in many higher-dimensional GUT models [11].
Otherwise, an alternative direction is to consider GUT
models with higher-rank gauge groups [12] that are
spontaneously broken by VEVs of the scalar zero modes
belonging to nonadjoint representations [13]. In these
models, since the Georgi-Glashow SU(5) is broken at
some fixed points on the orbifold, characteristic relations in
the simple SU(5) GUT, such as the gauge coupling
unification and the matter unification at a high-energy
scale, are generally disturbed by SU(5) breaking localized
terms on the fixed points.

The diagonal embedding method [14] makes the adjoint
zero mode exist and overcomes the difficulty to apply the
Hosotani mechanism to the breaking of the SU(5) sym-
metry accompanying the chiral fermions. Though the
method is originally invented in the context of the heterotic
string theory, it is possible to apply it to the higher-
dimensional gauge theory. In fact, we have obtained the
five-dimensional GUT models compactified on the orbifold
S'/Z,, in which the SU(5) gauge symmetry is broken
down to that of the SM by the Hosotani mechanism without
contradicting the existence of the chiral fermion [15]. We
note that the SU(5) gauge symmetry is preserved even at
the fixed points except for the effects from the Wilson
line VEVs and the SU(5) breaking localized terms
are absent in this case. We call the theoretical framework
the type A(djoint) grand gauge-Higgs unification.
Phenomenologically notable aspects in the type A grand
gauge-Higgs unification with S'/Z, compactification have
been investigated [16—19]. For other types of the grand
gauge-Higgs unification, referred to also as gauge-Higgs
grand unification, see Ref. [5], where the Hosotani mecha-
nism is utilized to break the electroweak symmetry.

What is striking is that the effective potential for the
phases obtained in the diagonal embedding method main-
tains the desirable nature, that is, the finiteness. Hence, the
VEV for the zero mode can be determined by minimizing
the effective potential for the fixed matter content to
induces the GUT gauge symmetry breaking without being
affected by the physics in the ultraviolet region.
Furthermore, the diagonal embedding method can straight-
forwardly be extended to the case with more complex
orbifold compactification such as 72/Z;.

In this paper, we shall study the gauge symmetry
breaking of the six-dimensional (6D) SU(5) gauge theory
compactified on the 72/Z5 in the type A grand gauge-
Higgs unification. In the counterpart in the string theory for
the Z; model, the gauge symmetry is realized at a level-3
affine Lie algebra or Kac-Moody algebra. We note that
there is a conjecture that the generation number is a
multiple of the level [20]. Though the generation number
is just a free parameter set by hand within the field theory, it
is meaningful to construct field theoretical models that can

be considered as effective theories of the string theoretical
models with three generations. The 6D model compactified
on the T?/Z; orbifold is their simplest example. It is
important and interesting to study the 72/Z; compactifi-
cation from the side of field theory. One can study the
breaking of the SU(5) gauge symmetry by minimizing the
one-loop effective potential for the phases. We shall
determine the gauge-symmetry breaking patterns through
the Hosotani mechanism for various matter contents from
the one-loop effective potential and find matter contents
that result the SM gauge symmetry. We also discuss
phenomenological implications qualitatively such as
four-dimensional (4D) chiral fermions, gauge coupling
unification, fermion masses, proton decay, and so on.

This paper is organized as follows. In the next section,
we introduce the basic aspects of the orbifold 72/Z5. We
discuss the field theoretical realization of the diagonal
embedding method focusing on the gauge fields on the
orbifold 7%/Z5 in Sec. IIl. This section contains the
fundamental ingredients for studying the gauge symmetry
breaking in our model. The matter fields are introduced in
Sec. IV, where the BCs and the mass spectrum are studied.
We compute the effective potential for the Wilson line
phases in one-loop approximation and study the gauge
symmetry breaking patterns, including the breaking down
to the gauge symmetry of the SM, in Secs. V and VI. We
also give a brief discussion on phenomenological aspects of
our model in Sec. VI. The final section is devoted to
conclusions and discussions. Some details on the calcu-
lations are given in the appendixes.

1. T2/Z; ORBIFOLD

We consider the orbifold 72/Z; as the compact extra
dimensions. To deal with coordinate vectors in T2/Z5, it is
convenient to use the basis vectors e; and the metric g;;,
which satisfies
€ €; = Jij, €2 = —€ —¢€, ez =e;, (2.1)
where i € Z. Among e;, we can choose e; and e, as a
linearly independent set. A coordinate vector y in 72/Z5 is
spanned by the basis vector as

y=Ye =yle +ye, yER  (22)
and it satisfies the following identifications:
y~y+2zRe,, y~y+2zRe,, (2.3)

y=ye ~ye. =ye +ye =—ye +(y —y)e,
(2.4)

where R parametrizes the size of the compact space.
Contractions between upper and lower indices i imply
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the summation over i = 1, 2 hereafter. By requiring that the
metric g;; is invariant under the transformation e; — ¢; |,
we can fix it as

<911 912) . ( 1 —1/2)
921 922 -1/2 1 ’
up to an overall constant, which can be absorbed into the
definition of R.

The two-dimensional Cartesian coordinates, which we
denote by x° and x°, are related to the oblique coordinates
y! and y?. We take the basis such that x> = y! and x® = 0
hold for y*> = 0 as

()= om0 =0 i) ()

(2.6)
(y‘) B (1 —cot(2ﬂ/3)) <x5)
y2)  \0 csc(2z/3) x°
(o ama) ()
0 2/\/§ X))
In light of Egs. (2.3) ancAl (2.4), let us introduce the
operators 7 ; (j = 1, 2) and S, that act on the coordinates

(2.5)

(2.7)

y'as
A= ()= ()
“(2)Gi) (o) 0
SoG;) _ <§ZE:D _ (yl‘_yzyz>. (2.9)

The identifications in Eqgs. (2.3) and (2.4) are rewritten as

T~y Th]~y,  Sbi~y. (2.10)

We can define an independent domain of the 72 torus
regarding the identifications given by 7, and 7 ,, where
one of the domains is shown as the gray-shaded region in
Fig. 1. The additional identification given by S’O defines the
orbifold T2/ Z5, which has the fundamental domain shown
in Fig. 1 by the green-shaded region.

There exist fixed points on the orbifold that are invariant
up to the translations 7| and 7, under the discrete rotation

S’O. That is, the fixed points are given by the solution to the
following equation:

e

FIG. 1. The oblique coordinate system on 72/Z5. The gray-
shaded region is an independent domain of the torus 72. The
green-shaded region is a fundamental domain of the orbifold
T?/Z5. The small circles correspond to the fixed points.

1

1
(’j'l)"‘(’j'z)”zg()(yz) = (yz) where ny,n, € Z.
y y

(2.11)

We denote the three fixed points on the fundamental
domain of T?/Z; by yé(r) (r = 0, 1, 2), which are given by
1

(J’fl(o)> _ (0) (Yf(1)> :275R<2/3>
2 0) 2 1/3)’
Yt0) Yea)

1

y 1/3
( ;@)) :m( / )

Yr) 2/3

Any other fixed points are given by the translations of yé(r)

(2.12)

generated by ’j'l and 7 ». In Fig. 1, the fixed points are
shown by the small circles.
The operators 7|, 7,, and S satisfy

807—1 - TZSO' (213)

Thus, 7 1s T 2, and 3‘0 are not independent to each other. In
addition, it is convenient to define

31 7130, 32 = sz'lso,

(2.14)

where 83 = 7 for r = 0, 1, 2 and Z[y'] = y'. The operators
3, give 27/3 rotations around the fixed points y;l(r) and

satisfy S ,[y%m} = y§<r). Among the above operators, we can

choose 7 1 and 3‘0 as the independent ones, and the others
’fz, 31, and S’z can be expressed by ’fl and 30.
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It is useful to introduce the dual basis vectors &' as

¢-e; =4, é-e =gy, g gy =85 (2.15)
where 6} is the Kronecker delta and
112
4/ 1 1/2
(921 922) :-( / ) (2.16)
g g 3\1/2 1

Note that ge; = & and g;;¢/ = e; hold. We can introduce a
dual vector k that is spanned by the dual basis vectors as

k = ke + ke, k; € R. (2.17)
Then, one sees k-y=k;y' € R. As discussed in
Appendix A, & is a natural basis for a Kalzua-Klein
(KK) discretized momentum, which is mapped to a point
on the lattice spanned by &' in a normalization.

The identification in Eq. (2.4) is related to the basis
change e; — ¢, . Under the basis change, the dual basis
vectors also change & — &', Requiring e;. | - &' = &, we
obtain &' = —&' + &> and &2 = —&'. Thus, corresponding
to Eq. (2.4), we obtain the identification for the dual
vector as

k=ke ~k (-8 +&) + ky(—8") = (=k; —ky)&" + k,&.
(2.18)

Then, the action of the operator 30 on the coordinates of
dual vectors is naturally defined by

A

Solki] = ki (2.19)
where we have also defined
ko= —k —ky,  kis=k., i€Z  (220)
From the above, one sees So[k;]Sy[y'] = k;y' and
ki‘ASO[yi} = 351 [ki]y" = kiy'. (2.21)

We use Eq. (2.21) for deriving the KK expansions of fields
discussed in Appendix A.

III. THE DIAGONAL EMBEDDING METHOD ON
M* x T%/Z;: GAUGE FIELDS

A. Lagrangian for gauge fields

We start to discuss the gauge theory with the field-
theoretical realization of the diagonal embedding method
on M* x T?/Z, where M* is the Minkowski spacetime. In
the following, we denote the 6D orthogonal coordinates by
M = (x*, x°,x%) (u = 0, 1, 2, 3). For the extradimensional

coordinates, we also use the oblique coordinates y! and y?

in Eq. (2.7) instead of x> and x°. The metric of M* x T?/Z,

is defined such that xx,, :n,(,i)x”x”—g,»jy"y-", where

'h(t? = diag(1,~1,~1,~1) and g;; is given in Eq. (2.5).

The action is given by the Lagrangians for the gauge
fields Lyy and the matter fields L£,,, which will be
discussed in the next section, as

27R 27R
S—/ dyl/ dyzw/detg,»j/d“xﬁ, L="Lyym~+ Lo
0 0

(3.1)

where detg;; = 3/4. The diagonal embedding method on
the orbifold requires that the theory respects three copies of

gauge symmetry G and the global symmetry dex) that
permutes the three copies cyclically. Therefore, let us
introduce the Lagrangian for the gauge fields as

1< .
Lym = —EZTY(FSWBVF(]()MN)’
k=1

k k k . k k
Fion = 0uAy = oyAly + iglal) ay)),  (3.2)

where g is the gauge coupling constant. The gauge fields

Ay;) (k =1, 2, 3) are expanded by the generators of the

gauge symmetry as AE‘,];) = ASS)HIEH, where the indices a

run from 1 to the dimension of the Lie algebra of G,

and the summation over a is implied. The operators t,(zk)

(k =1, 2, 3) are representation matrices of the generators.
We adopt the convention that the matrices satisfy the
following relations:

/ 1 /
Tr[el 1)) = 25,64 .

)1y = if a1 :

(3.3)
where f ;¢ is the structure constant. In Egs. (3.2) and (3.3),
the trace is taken over the representation space.

The Lagrangian in Eq. (3.2) has the gauge symmetry

G x G x G and the global symmetry dex). We define the
gauge transformation of the gauge field as

AP Q) <A§§) - ’aM> QW Qb =exp(igakar))),
g

(3.4)

where a(¥)?(x) are gauge parameters. To define the global

dex) transformation of the gauge field, it is helpful to

extend the range of index k € {1,2,3} to k€ Z and to
introduce the periodicity for the index k, e.g., AI(\],{H)’Z =
A%()a and t&kH) = tgk>. Hereafter, we use this notation.

)

Then, we can write the global dex transformation of the

gauge field as follows:
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Z(CX)
A[(‘I/;) _ A(Mk)”t(k) ;)A(kal)“t(k)

a M a -

(3.5)

Under the transformations in Eqgs. (3.4) and (3.5), the
Lagrangian in Eq. (3.2) is invariant.

Using the above notation, we can define Al[f,;]a that are the
eigenstates of the transformation in Eq. (3.5) as

Z e

p*—l

1 3
A[P]“ — E w—kpA(k)a’
M \/§ - M
(3.6)

where p € Z and w = ¢**/3. From the above definition,

Al — gl ang (Allley = AP hold. Note that A

has the eigenvalue of @” under the Z{™

in Eq. (3.5).

transformation

B. Orbifold boundary conditions and residual
gauge symmetries

In theories on the orbifold, field values are constrained
since the extradimensional coordinates obey the identifi-
cations discussed in the previous section. To clarify the
constraints, we define the BCs [21] for the gauge fields. As
discussed in Sec. II, we treat 7| and S, as the independent
operators and define the BCs for the gauge fields

AN (x# 7Y as follows:

AP T ) = A ),

AP, Boly)) = Ay, (37
AP T ]) = AP (o, ),
AP By = Al ey (38)

whereA() :Agk)a,A(’?a:—%Agk
N 2

Aiﬁg — A% (i e 2).

In general BCs can nontrivially act on the representation
space of not only the discrete group Z3° ) but also the gauge
group G. Nevertheless, it should be emphas1zed that we can
always take the trivial BCs for G as in Egs. (3.7) and (3.8)
without loss of generality. This is understood as follows.
Although one can introduce nontrivial transformations in
the representation space of G [21,22], which we here call
the gauge twists, the nontrivial gauge twists do not affect
the low-energy physics in the present case. For the gauge

twist with respect to So, this introduces just a difference

among the bases in the representation space of the gen-

erators t,(11>, z£3>, and tf)

Ja +\/7§Aék)a, and Ai{?“ =

Hereafter, we also use the notation

. Such difference can always be

absorbed into the redefinition of the generators tflk). The

gauge twist with respect to T | can be absorbed by the
continuous Wilson line phases [22], which will be dis-
cussed in detail in the next section, through the gauge
transformations with the gauge parameters depending on
the extradimensional coordinates. Then, if the BCs are the

same up to the gauge twist with respect to 7T, these BCs
are said to belong to the same equivalence class [23-25].
As seen below, the vacuum is determined by a nontrivial
expectation value of the Wilson line phases. It is known that
BCs in an equivalence class describe the same low-energy
physics through the dynamics of the Wilson line phases
determined by the effective potential generated by quantum
corrections [24].2
From the BCs and Eq. (3.6), it follows that

AP T = A (),

AP, Soly]) = @l AP (x4, y),  (3.9)
AT o Ty [y]) = AT (e, ),
Al (o 8o[y]) = wr AT (v, ). (3.10)

The Z5 transformation of y’ generated by 30 is discussed in
Sec. I and is contained in SO(2) rotations that are part of
the 6D Lorentz transformation. Hence, the extradimen-
sional components of the gauge field nontrivially transform
[pla

under the Z; transformation, and thus Ay[

eigenstates of the BC for 30 in Eq. (3.10). We refer to

the Z3 subgroup of the SO(2) as ZgL). Let us denote the
(L) (K)a

are not the

eigenstates of the Z;~ transformation by A[q] that are
defined as
13 3
(£-1)q (£-1)
Al =3 ;w 2“’ Ay
= q=

(3.11)

where g € Z and the superscript of y” takes # = 1, 2, 3,
whereas that of y’ takes i = 1, 2 as explained in Sec. II.
The normalization in Eq. (3.11) is fixed by

A&)ﬁ = (A< ey A ) /2, which correspond to the gauge
fields A( and A( ) associated with the complex coor-

dinates z = x° + ix%® and 7 = x° — ix®. With this definition,

(k)a (K)a p(K)ays _ 4 (K)a (K)a _
we find A[q+3] Ay (A[q] )= A, and Ajg™ = 0. For
(k)a

fixed k and a, there are two real degrees of freedom in A[q]

as in A< ) From Eq. (3.8), the BC for A[ ] is given by

*We introduce the twist for dex)

Egs. (3.7) and (3.8). One may consider a dex) twist associated
with 7°;, which cannot be absorbed by the Wilson line phases.

only associated with S, in
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AE(];])a(X”,SO[yiD = w_qAE:]H)a(x",yi). (3.12)
Namely AE(];])’I has the eigenvalue w™? under the Zg‘)

transformation.
From the above discussions, the eigenstates A% ]] of the
BCs are naturally defined as

3 303
pla _ 1 —kp ga 1 —kp—(£—1)q 4 (K)a
A= E_ A =g m ) D et Al

fe=1 /=1 k=1
(3.13)
Inversely, it also follows that
Z Z W~ “H’W’A (3.14)
p——l q=-1
Then, AET] satisfies the BCs as
AR (o T [y]) = AP (e ),
A S b)) = 0T AR (YY) (3.15)

From the BCs in Egs. (3.9) and (3.15), it is implied that

ALO]“ [l]a and A[ ] have zero modes, which do not have

o1/ R) KK masses in the 4D effective theory.

We remind that the Lagrangian possesses dex) and ng

[pla

symmetries. The gauge field A[ ] has the charges o” and

®~9 under the Z(ex) and Z( ) transformations, respectively
We can rearrange the two Z5 symmetries as Z ) and Z3 ,
under which transformations A%‘q’ ]] has the charges w7 and

wP T4, respectively. The BCs for S, introduced in Egs. (3.7)
(+)

and (3.8) are regarded as the twist for Z;"’, and the zero

mode is neutral under ZgH.

The BCs determine the zero modes of the gauge field.
The low-energy gauge symmetry associated with the zero
modes of the 4D component of the gauge field is referred to
as the residual gauge symmetry. To clarify the residual
gauge symmetry, we focus on the covariant derivative,

D,=o0 +ngA ta =9 +ngA ,

p=—1

(3.16)

where we have introduced

The generator t[p ) has a proper normalization and satisfies
[ 1) = if o7, (3.18)

As mentioned above, ALO]“ have zero modes. At a low-
1]a

energy regime, A, and AL_I]“ are decoupled from the
effective theory since they have no zero modes. Hence, the
residual gauge symmetry is the diagonal part of G X G x G
generated by tg) I — tgl) + zf) + t,(f). We denote this diago-
nal part by G%¢ From the commutation relation in
Eq. (3.18) for p =0 and p’ = +1, we see that £
transforms as the adjoint representation under the residual
gauge symmetry GYiag,

C. Wilson line phases and spontaneous
symmetry breaking

Let us focus on the zero mode of the extradimensional

component of the gauge ﬁeld. As discussed in the previous

subsection, A[ ]a and A[ ] “ have zero modes. They carry

continuous Wilson line degrees of freedom and can develop
nonzero VEVs to break the gauge symmetry spontane-
ously. We introduce the parametrization as

a 1 - ax
A =geat AT = A4 = g

where a¢ is a complex parameter. Except for the above,

<AE1]> = 0 is satisfied. We also introduce the parametriza-

tion of the VEVs of A;f)

_i(wkw lad + @M1 )El

% g e (3.20)

k+0—1 3

here @ = e~>"/3_ The real part of » adisequaltoay ..
From Eq. (3.20), one sees that af , , has the periodicity under
the shift of its subscript as aj, , 3 = ag, ,.

Let us consider the Wilson line phases defined with
closed paths on the orbifold 72/Z5. We denote the three
distinct noncontractible cycles by C, (£ =1,2,3). The
cycle C, is defined by the path from y' = 0 to 2zR, while
keeping y> = 0. The cycle C, is defined by the path from
y> =0 to 2zR, while keeping y' = 0. The cycle C; is
defined by the path from —y' —y> =0 to 2zR, while
keeping y! = y%. By using them, we define the Wilson line
phase factors W, as

*We have determined the normalization of & %+ in Eq. (3.20)
so that the Wilson line phase factors defined in Eq. (3.21) are
invariant under integer shifts of af,, in the G = SU(N) case
where the length of the root vectors are taken to be 1. Namely, the
Cartan generator H in the fundamental representation of the
SU(2) Lie algebra associated with a root vector is chosen as
H = diag(1,-1)/2.
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3
W, = exp (z‘gz 7{: dyf<A§,’:>“>tgk>>
k=1/Cr

3

= exp (27zigR Z<A§§)a>tgk)> (3.21)
k=1

=exp[i(®, +O))], (3.22)

where £ = 1, 2, 3, and we also define the Wilson line
phases ©, as

0, = 2z’ tadty " (3.23)

From the above, we find ©®, ; = w*®,, which implies
O, +0,+0;x1+w+a®=0. Let us note that the
phase factors in Eq. (3.21) have physical consequences,
rather than the phases in Eq. (3.23) [26].

The Wilson line phases are invariant under Zgﬂ since the

phases depend on the VEVs of A{Z %a (p = £1), which is

neutral under Zgﬂ. On the other hand, A%Z } has the

eigenvalue ®*” under Zg_). One sees that the gauge fields

and the phases transform as <A(1;)“> - <A(ﬁfll)”> and
y ¥

ag,, — ag, ,_, under Zg_). This implies the transformation

law of the phase factors, W, — W,_;, under Zg_). Thus, the
symmetry Zg_)
the Wilson line phases. Notice that, ift W, = W, =

is generally broken by nontrivial VEVs of
Ws is
satisfied, the symmetry Zg_) survives. Thus, the vacuum
with the alignment W; = W, = W3 is discriminated in
view of the symmetry and is provided by ay —ay,;, =0
(mod 1).
The VEVs of the Wilson line phases are dynamically
determined. Thus, we focus on the potential for the zero
mode of A() In the present case, Lyy involves the

nonvamshlng potential for A( Ja
Egs. (3.2) and (3.3), we obtam

at the classical level.* From

3 3
tons =3 (T E S
=1 k=1

:—Tr<ZFIZZF12>

K=1

(3.24)

The VEVs of the field strength tensors are written by the
Wilson line phases as

“In five-dimensional models compactified on the S'/Z,
orbifold, there is no tree-level potential only for the zero modes
of the extradimensional components of the gauge field, although
the zero modes can have tree-level potentials in supersymmetric
models with the helps of additional scalars belonging to vector
multiplets [27].

3 3 3
(k) _ - (k)ay (k) (Kay (K)
;<F),fy,>—zg[Z<Ay,» 0S|

k=1 k=1

©, + 6.0, + 6], (3.25)

(271'R)2

where we have used Eq. (3.23). Therefore, the tree-level
potential for the Wilson line phases is given by

4
3(2zR)*g?
Fo=1[0,+0].0,+0]] = (&-

Viree = Tr(FeF, g), where

)[©,,01].  (3.26)

Note that the tree-level potential is positive definite and has

flat directions. On the flat directions, [©,,0]] =0 is
satisfied, and hence the potential is minimized as V.. = 0.
In this case, W,W,W; = ¢i®+0:10s,i0[+0,46] _ | g
satisfied.

There are quantum corrections to the effective potential
for the phases. As discussed above, the tree-level potential
is minimized along the flat directions. Due to the loop
factors, the quantum corrections are generally suppressed
compared to the tree-level contribution if it is nonvanishing.
For the quadratic terms, it is vanishing even along the
nonflat direction.” Thus, we approximate that the minimum
resides in the flat direction and [@,,®!] = 0 holds even if
the quantum corrections are incorporated. In this case, we
can diagonalize ®, by G122 transformations without loss of
generality.

The flat direction of the tree-level potential is no longer
flat in the effective potential. If some nontrivial values of
the phase degrees of freedom ®, + @:; are determined by
the quantum corrections to the potential, the residual
symmetry G%2 is spontaneously broken to G,, whose
elements and the Lie algebra g, are given by

G — {eia”tg)]‘t[o]
= {1,

€ gp,a* € R}, where

W] =0 for j = 1,2}. (3.27)

In this case, the zero modes of the gauge fields A,[,O]a, which
is related to the broken generators corresponding to
G%22 /G, acquire masses at low energy. This is understood
as follows. By using y’-dependent gauge transformations,
we can always choose a gauge such that nontrivial VEVs of

A%ﬁ %“ are gauged away. After the gauge transformations, the

BC for A,[,O]a related to the translation by T ; is changed

These quadratic terms are contained in tadpole terms of the
field strength, which are generally generated on the fixed points
[28]. In the present model, as long as G of the bulk gauge group
G x G x G is semisimple, such tadpole terms are forbidden
because G remains unbroken on the fixed points.

035031-7



KOJIMA, TAKENAGA, and YAMASHITA

PHYS. REV. D 108, 035031 (2023)

A0

to AP Tl = WA (o y) ' Wl =1,2).
(O]a

Thus, the zero modes of A, of the broken generators
are projected out. In this way, the spontaneous symmetry
breaking can generally be triggered by nontrivial VEVs of
Wilson line phases.

Since O, + G; is diagonal, we can expand them by the
elements of Cartan subalgebra § € g, where g is the Lie
algebra of G. We denote the generators in § by H,

(a=1,...,r), where r is the rank of g. Hence, we obtain
3 3
0, +06) =21Rg > (AVYHY =223 al, 2H),
k=1~ k=1
(3.28)
W, = exp(2ziat, 2H.)) ® exp(2ridl,,2H.)
® exp(ZﬂLa‘,}ZHS)) (3.29)

To determine the VEVs of the Wilson line phases, we
should evaluate the effective potential for Zz‘}. The quantum
corrections to the effective potential depend on the matter
contents of the theory. Thus, we discuss bulk matter fields
in the next section, and the one-loop corrections are studied
in Sec. V.

IV. THE DIAGONAL EMBEDDING METHOD ON
M* x T?/Z5: BULK MATTER FIELDS

Let us start to discuss bulk matter fields. The invariance
of the Lagrangian under the Z\™ transformation restricts
the matter contents of the theory. We denote the represen-
tation of a matter field under the bulk gauge symmetry
G x G xGby (R, Ry, R3). In order to preserve the dex)
symmetry of the theory, matter fields should be incorpo-

rated as the set of the representations (R;,R,, R3),
(R3,R1,R,), and (R,,R3,R;). We refer to this set of

fields as a dex) threefold. However, there is an exception; if
a field belongs to the representation of R| = R, = R3, we
can incorporate a single field keeping Zg %) We refer to the

field of the type (R,R,R) as a dex) onefold.

A. Lagrangian for bulk scalar fields

As the 51mplest example, we first discuss a threefold
scalar CDR (k =1, 2, 3), which belongs to the following
representation:

o)~ (RL1), P ~(LR1), O ~(LLR),

(4.1)

where 1 means the singlet under G. Their components are
denoted by (<I>(Rk))a, where a runs 1 to dim(R). Under the

dex) transformation, the threefold scalar can be defined to

transform as (@%))a - of (P Pt )o» Where p € {0, £1}.

Here, we introduce the notation CD;’{H) = <Rk) (k € Z) for
convenience. For a real field such as the gauge field, the
integer p should be 0. For the complex scalars, the phase
factor w? can be absorbed by redefinitions of ((I)<Rk))a. From
the above definitions, one sees that the following

(ex)

Lagrangian is Z5 invariant:

3
k k
=S |(D) (@),
k=1

(DS = 0y + igAl (TR,

’

(4.2)

where the repeated sets of upper and lower indices are
summed. The representation matrices on R of the gen-

erators of G are denoted by TLR]. The threefold scalar d>§§>
transforms as R under G422,

Next, let us discuss a more general case. Let @%‘323
(k=1, 2, 3) be a threefold scalar that belongs to the
following representations:

q);zll)zs ~ (Rl’ R2’ R3>’ q)g?% ~ (RBv Rl, 7?/2)7

q>§§323 ~ (R, R3. Ry). (4.3)

We denote elements of the representation matrices T[R‘] of

(T [Rk])

the generators by where the indices a; and f; run

(k)

from 1 to dim(R;). The component of <I>Rm is written as

(1) (2) 3)
((DR123)“|(12(13’ ((DR]23)113(1]{12’ (q)R]23>az(13(1] . (44)
We introduce a convenient notations <I>(k+3) CI)%{?23 (ke z)

and (dJ() where the Ilatter represents the
Rixs

)[(11(12113]’
components in Eq. (4.4) all at once, that is, (@%323)[01%%] =

1 2 2
(CD( ) ( 2) ( (2)

R123)“l(12”’3’ RIZB)[(llaZ(lB] R123)(13(l|(12’
(3) — 3) (ex) .
( Rm)[alazag] = ( 73123)(,2%[,1. The Z; transformation

law of the threefold field is defined as

and

(@) Varrs = O (P e (4.5)

(@) s = @ (PR ) (4.6)

e LA L I I (4.7)
which can be summarized as

(@) o] = (%) s (4.8)
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We note that the phase factor w” appearing in the above can

be absorbed by the field redefinitions for the case with
(ex) (k)

complex scalars. The Z3™ -invariant kinetic term for @ is
given by
2
CDRm Z |D (I)RIB |
= |(Dj )(’Zi{i;’;z (@) g
=+ | ( )gzéillg27 ((D%Ls )/7'%/31/"2 |2
+ |( )gggﬁg‘ll ((I);g323 )/7'2/32/"1 (49)

where the covariant derivatives are written as follows:

(Di e, = 9 0l ous -+ ig{ Ay (T4 oot

+5€1A(2>“( T,

f

+ Ay (T, (4.10)
(D} st = 9000 6 0u -+ ig{ Ay (T4 ot

+ Al (T ol

LAY (T, (4.11)
(D3 s = 3100060 + ig{ Ay (Tl o

AN (T

AN (T V). (4.12)

From the dex) transformation law of the gauge field,

Ag\f([)a N A(k+1)a

transform as (D M))

we find that the above covariant derivatives
[1525] (D(k+1))[/”|/)’7/53]

[alaoag] M [aras)?

the same notations for the indices as (qD%L2

transformation law helps us to see the dex)

above Lagrangian.
Let us discuss the irreducible decomposition of <I>§3>B

where we use

The

) [ ay03]

invariance of the

under G2, For any k, @ 1)23 transforms under G2 as

the common reducible direct product representation
R1 ® R, ® R3, which can be decomposed into the direct

sum of irreducible representations R; (i = 1,...,n) as

This ensures that, in the representation space, there exist

linear transformations that decompose (<I><Rk?23 ) layapas) 1O @

set of irreducible representations under G%%¢ as

(k) (k)
7*32)&2 ©...0 (q)fg”)&n’
(4.14)

k k
((Dgafx)[al“zas] - (q);”al))&l @ ((D

where @; runs from 1 to dim(7~€i).6 Thus, we can find a basis
in the representation space such that each irreducible

(ex)

representation transforms under the Z;™’ transformation as

Z(e)
(@), = wr(@%), . (4.15)

R; R; i
The above discussion means that a general threefold scalar

transforms under G428 as a set of the threefold scalars of the
type in Eq. (4.1); this is schematically written as

(R],R2,R3) + (R3,R1,R2) + (RQ,R3,R1)

~Y (R L) + (LR, 1) + (L1 Ry). (4.16)
R,

We should note that the above relation for matter fields is
limited for the transformation properties under G422, while
the couplings between the matter fields and the Wilson line
phases, which belong to (G x G x G)/G%, are slightly
modified from the above. We will discuss the modification
with an explicit example in the next section.
Finally let us discuss the onefold scalar @53, which
belongs to the following representation:
Pri~ (R, R, R). (4.17)
The component of the onefold is denoted by (®x:)
which transforms as (®gps) - o (Dps3)

the dex) transformation. We note that the phase factor w”
cannot be absorbed into field redefinitions in the onefold
case. If one considers the threefold scalar of the represen-
tation R; =R, =

given by (CI><Rk])2%

3 )[0’10‘20!3]

—(p—p’)kq)%>
123

aymay?

under

aja o a3

‘R3, whose dex) transformation law is

/ q)(k+1)

» .
- P (O the linear

)[0510’20‘3]’
combination Y 3_, @ has the same transfor-
mation law of the onefold scalar. The kinetic term for the

onefold scalar is given by

L(Dgs) = |(DM)gluﬁz§fﬁfz (Pr3)p, ., 2,

(4.18)

(D e, = 8 33 On
+ig{AS (TR0 Sl ol + A ol (TIFY o
+ A S S (T (4.19)

®The linear transformations that give Eq. (4.14) generally

depend on k of d)(Rk)

123"
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where the operator (D, ®%:) is invariant up to phase

factors under the dex)

ajma3

transformation.

B. Lagrangian for bulk fermion fields

Let us discuss bulk fermion fields. The notation of the
fermion fields in six dimensions is summarized in
Appendix D. We denote the 6D Weyl fermion with the
positive and negative chiralities by ¥+ and ¥, respec-
tively. Each of the 6D Weyl fermions involves a vectorlike
pair of the 4D Weyl fermions, y; and yg.

Let T ® be a Z(ex) threefold 6D Weyl fermion that
belongs to the representation as in Eq. (4.1). Its component
is denoted by (\Pi(k) ),» Where the subscript @ runs from one
to dim(R). The dex) transformation is defined as
w51y, = @ (WL where p* € {0.£1}. The

dex)-invariant kinetic term is given by

a’

(4.20)

where I'™ is the 6D gamma matrix, given in Appendix D.

The covariant derivative (D(Mk) ){i is the same form as in

Eq. (4.2). Using 4D Weyl fermions l,t/?élz) and z//?;?, we can

write

(k) l//;é(I]i) (k) l//7_Q(]1<€>

+(k _ . —(k — >

Y, = ( o > , Y, = ( ) ) . (4.21)
YRR YRL

From Eq. (D22), the Lagrangian can be rewritten by

[ — ; ”D<k) _B(k)
—(k —(k —(k Iy Dy
ﬁ(“PR( )) = E (V/R(,R)’ —WR<,L))< D(k) '

W—(k)
< [ TR, (4.23)
—(k)
YR.L
where we have defined
- 2
b = 3 W+ oD + &D®)
= 2
P = : (D% + D% + wD'Y), (4.24)

and the indices in the representation space of R are
suppressed.

For a general threefold fermion, denoted by W7, ( ) , whose
representation is R; ® R, ® R3, we can wnte the
Lagrangian by using the covariant derivatives of the forms
in Egs. (4.10)—(4.12). The irreducible decomposition under
G422 is obtained as the scalar case, discussed in the
previous subsection.

Let us turn to deal with the onefold 6D Weyl fermions,
which is denoted by W;. Let (Wgs )y, a,q, e @ component

of ‘P,,izg, which is deﬁned to transform into (‘P

under the dex) transformation. The Lagrangian is
written by

)
R3/aza o

Wt \amas ; BrB2p3
L(¥5) = (T =i (Dy Yot (Vs ) gy s (4:25)

where the covariant derivative is the same as in Eq. (4.18).
Using 4D Weyl fermions 7, , and 1;/%’ &> WE can write

lI_Hr

B (‘/f?zs,L ) - <w7;3_R )
3 — ) 3 — — .
® V/7+33,R * LETEN)

Then the Lagrangian can be written as

)=> [ Ve ~WRoR

o (T )
k=1 —D —l.]/'uD” W7-;3.R
(4.27)

i(__ — <MD,, -D, )(%)
= Vs s~ W3 . . _ ,
< R*.R R.L -D, —iy*D, YRl

(4.28)

(4.26)

y

where Dy and Dy are defined as Eq. (4.24) with the
covariant derivative in Eq. (4.18), and the indices in the
representation space are suppressed here.

In general, bulk gauge anomalies arise from 6D
chiral fermions. The requirement of cancellations of the
anomalies gives constraints on the matter contents of
theories [21,22,29,30]. In our setup, bulk anomaly can-
cellations can be ensured by introducing vectorlike sets of
6D Weyl fermions. There also appear 4D gauge anomalies
on the boundaries, i.e., the fixed points on 7%/Z5. Such 4D
anomalies depend on BCs for fermions and will be
discussed in the next subsection.

C. ORBIFOLD BOUNDARY CONDITIONS
AND LOW-ENERGY MASS SPECTRA

We here discuss the BCs for matter fields. First, let us see
the transformation laws of covariant derivatives under 7,

and 30, which must be consistent with the BCs for gauge
fields. From Egs. (3.7) and (3.8), we find that the covariant
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derivatives in Egs. (4.2) and (4.10)—(4.12) for threefolds
and in Eq. (4.18) for onefolds transform as

Dy = (Dl o Sol(DlG ) = (D0 o

{ {uy="}
(4.29)
> (k) \BiBBsly (k) \[B1B2h5)
TPy, ) waa)] = Py layaaa)
2 k 3 k+1 B3
Sol(DY ) tmtee) = (D oy (430)
TA[(D gy Joil) = (D Vot
Fe | B3
Sol(D iy Yolil] = (Dpyimy Vo, (431)

(6.95) € {(@R),. (@5 ™)) (@)
lpi(k)) ’ _Sv\y(ll_,?j;(k+l)) ),

)[alazag])’ ((T7jé3)a]aza3 ’ _S‘P(lp;tz3)a3ala2)}'

(((DR3 )a]a2a3 ’ (q)R3 )ala2a3 )’ ((

+(k F
((Tszj)[ala2“3] ’ _ST( Ri2s

The definition of Sy is shown in Eq. (D24), and p,, p, €
{0, £1} are chosen by hand for each field. Since the 6D
Weyl fermions compose of 4D Weyl fermions, the last three
pairs in Eq. (4.33) are rearranged to the six pairs of the 4D
Weyl fermions as

+(k +(k+1 +(k +(k+1
(W) o™ Wir e (e o™ @Rk ),
(4.34)
+(k +(k+1
«WREzz)-L)[alaz%] > w*! (WRszyL))[alaz%])’
+(k +(k+1
(W )i @ W & iayasa) ) (435)
((W%B’L)alazay wil(l//;s{]ﬂ)agalaz)’
((W7iz3.R)alazas ’ aﬂ:l (W%3,R)a3a1az)' (4'36)
Any BCs given above are formally written as
PO T [y]) = ol (),
PP (e, Soly]) = @l gt (xm, y7), (437

where ¢*+3) = () (k € Z) is a boson or a 4D Weyl
fermion and is a component of an irreducible representation
under G X G x G. The integer p, is equal to p, for a boson
and equal to p, £ 1 (p, F 1) for a left-handed (right-
handed) fermion with the 6D chirality £. In most cases,

components in a set {1, ¢, $>} are not identical and

(ex)

are mixed by the Z; ™ transformation; in this case we call

dM as a Z(;x) triplet. There is a special case, where

k1)

where we have used the shorthand notation to show the
boundary conditions for the covariant derivative along x*
and y' by the subscript {u, y'}.

The BCs for the matter fields are taken to be consistent
with the above transformations and written as

(. T1[y']) = wPip(x*, y'),

P Soly']) = @l (. ¥'), (4.32)

where a pair of fields ¢ and ¢ 5 represent the scalars @ and
6D Weyl fermions ¥*:

(k+1

+1)
)[(llazas]’<®73123 >[‘llaza3]>’

(4.33)

d*D = p®) holds; in this case the field ¢ is an

eigenstate of the Z\™ transformation and called a Z\™)

singlet. We list the sets of the form {¢), ), p} as
follows:

1 2 3
{(@R))or (O ) (PR}, (4.38)
(1) (2) 3)
{(¢R]23)(11a2a3 ’ ((I)R123)a3a](12’ <¢R123)a2a3a] }7 (439)
{(q)R2 )a1a2a3 ’ ((DR3 )a3(x1a2 ’ (¢R3 )a2a3a1 }’ (440)
+(1 +(2 +(3
(¥R ) (Pritn)e (B g)ads  (441)
(1) +(2) +(3)
{( RIZSu{luR})alaZaB’ ( Rlzg,{L,R})azalaz’ (TRIB,{L.R} )a2a3a1 }v
(4.42)
{(\P%3,{L,R})alazfl3 > <1P7:§3,{L,R})a30’1052 ’ (\P;t%3.{L.R})aza30’| }
(4.43)

Among them, only the onefold components with a; =

(ex) (ex)

a, = a3 form Z5 ™ singlets, and the others are Z; " triplets.

Although dex) singlets are eigenstates of the BCs,
triplets are not. From a dex) triplet, we can define three

eigenstates of the BCs, denoted by ¢P! (p = 0,+£1), as

3 1
PP :\%Zw"”’qﬁ("), g :\% Z o PPlrl. (4.44)
k=1

p=-1
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Then, ¢[P! obeys the following BCs:

PP (T 1 [y7]) = wPrgplP)(x, y7),

PP, Soly']) = wr PP, yT).  (4.45)
We note that ¢!?! is convenient to examine the KK
expansions, which are summarized in Appendix A, while
the couplings between matter fields and the Wilson line
phases are simplified for ¢*).

From the eigenvalues of the BCs, we can find zero
modes, which are constant excitations over the extradimen-
sional space. The zero mode can appear as a light degree of
freedom in a low-energy effective 4D theory, where gauge
symmetry G x G x G is reduced to G%22 as discussed in
Sec. IIIB. In contrast, the other modes have O(1/R)

masses and become heavy. For dex) triplets, l”!
with p, = p+ p, =0 in Eq. (4.45) has a zero mode.

For dex) singlets, fields with p, = p, = 0 have zero
modes. Note that fields with p, = £1 do not have any
zero modes.

We discuss zero mode spectrum that arises from three-
fold fields in detail. Since threefold fields do not involve
any dex) singlet, they are always organized into dex)
triplets. For the case with a threefold scalar (D%{) with
p, = 0, there appear zero modes, contained in the triplet
component ¢l=7s]. These zero modes belong to the repre-
sentation R under G428, For the fermion case, a threefold
‘sz(k) can be decomposed into l//;sfllj) + wglkg. For the case
with a ‘I‘7+3(k) (‘I’;k)) having p, = 0, a vectorlike pair yf%@

|

o O o O =

One sees that dex) singlets in ®gps and ‘P% always
belong to the first representation on the right-hand
side of Eq. (4.46). These singlets carry N out of N> degrees
of freedom, and the rest N° — N degrees of freedom
form (N3—-N)/3=N(N-1)(N+1)/3 triplets. For
p, = ps =0, since the dex) singlets have zero modes,

there appear N + (N3 — N)/3 degrees of freedom appear as
|

(oeg) -

=N

)

D:D@Qxl@ﬁ.

|) _ %(N+1)(N+2)+%(N— 1)(N—2)> - g(m Y

and wgf? (1;/7_2(.[2 and (1;/7_2(.[2)) has vectorlike zero modes,
which appear from the triplet components ¢[=7s=! and
=Pt respectively. Thus, in these cases we always have
vectorlike fermion zero modes, which belongs to R under
G%4¢, Similar discussions hold also for a more general

threefold scalar @%?%

Next, we discuss zero mode spectrum‘ of onefold fields.
A onefold involves both dex) singlets and triplets except
for the case with the trivial representation R = 1. From

and fermion ‘Pi(]];)

Z;ex) singlets in a onefold scalar ®xs with p, = 0, zero
modes appear only if p, = 0. For dex) triplets in ®3 with
p, = 0, zero modes appear from the component ¢!=7s). For

the fermion case, both 1//%‘ , and z,u?t23 & in a onefold ‘P%

have dex) singlets. For the case with p, = 0, singlets in
Was , Wgs p) have zero modes only if p; = —1 (p, = 1).

These zero modes of Z(;X) singlets yield chiral fermion
mass spectrum. There also exist triplets in ‘P%}. For p, =0,

zero modes appear from the triplet components ¢pl=7sF1]
(@l=P+=1), constructed from y%, | (i, ). The zero modes

of dex) triplets always compose vectorlike pairs of 4D
fermions. We note that any zero modes belong to irreduc-
ible representations, which are contained in the irreducible
decomposition of R ® R ® R under G422,

As an illustrative example, we consider G = SU(N) and
the N-dimensional fundamental representation as R. In
this case, the irreducible decomposition of R @ R ® R is
shown by the following Young tableaux:

(4.46)

[
zero modes, whose representations correspond to the first
and third terms on the right-hand side of Eq. (4.46). On the
other hand, for p; = 41 case with p, = 0, there appear
(N3 —N)/3 degrees of freedom as zero modes, which
transform as the representation corresponds to the second
terms on the right-hand side of Eq. (4.46). Consistently to
the above, one sees the relation

(4.47)
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where {{() is the degrees of freedom of *. We see that N in Eq. (4.47) corresponds to the degrees of freedom of Zy

components.

(ex) singlet

Let us examine the fermion zero modes in the SU(N') case. For the case with onefold fermions, zero mode spectrum can
become chiral. For example, we consider the case with a onefold \P% of p, = 0. In this case, the representations of the zero

modes depend on p,, which are summarized as follows:

Ps = 0 <w7§37L>zcro mode ™ ) (¢7J£37R)ZCTO mode ™ ) (448)
P =1 (¥t 1 )sero mode ~ [T, (Vs e mode ~ E@@’ (4.49)
ps=—1 (¢;2L>mﬂ>m0¢fAJ[IZ[jQ}Eﬂ’ (¥Rs )aero mode ~ (4.50)

Thus, low-energy spectrum of 4D fermions is chiral for
ps = £1, but vectorlike for p; = 0. A similar discussion
holds for the case with W7;.

Finally, we give comments on 4D gauge anomalies. If
there are fermion zero modes, they generally contribute to
the anomalies. For threefold fermions, their zero modes
are always vector-like and do not give 4D anomalies. On
the other hand, onefold fermions can have chiral zero
modes and thus generally generate 4D anomalies. Thus, a
requirement of the cancellation of 4D anomalies con-
strains the onefold fermion contents. In addition to the
zero mode anomalies, localized anomalies induced at the
fixed points yém (r=0, 1, 2), defined in Eq. (2.12),
should also be concerned [22]. The localized contributions
arise even if the fermion has p, = 41, in which case there
is no zero modes. In our setup, contribution to the
localized anomalies at yé(r) can arise from a fermion

w(x*,y') that satisfy the BCs w(x*,S,[y]) = w(x*,y').
One can see that the contributions to the localized
anomalies at each fixed point from threefold fermions
always cancel out since the contributions are always
vectorlike. For the onefold fermion, localized anomalies
generally exist; it gives constraints on the matter content
of the theory. When the localized anomalies vanish,
also the 4D anomalies do. Conversely, the 4D anomaly
cancellation does not ensure vanishing localized
anomalies.

V. ONE-LOOP EFFECTIVE POTENTIALS FOR
WILSON LINE PHASES IN SU(5) MODELS

In this section, we study one-loop effective potentials for
the classical background VEVs af , , in Eq. (3.20), which are

related to the Wilson line phase degrees of freedom. As a
concrete example, we focus on the case with G = SU(5).
The discussion can be generalized to other gauge group
cases.

A. Contributions from dex) threefold fields
(ex)

First, we derive one-loop contributions from a Z,
threefold scalar field to the effective potential. The simplest
example is the threefold @gk), which transforms under

SU(5) x SU(5) x SU(5) as

o) ~(1.1,5),
(5.1)

o) ~(5.1.1), o ~(1,5.1),

where 5 and 1 are the fundamental and the trivial
representations of SU(5), respectively. Based on the dis-
cussion in the previous section, we define BCs for their

components, ((Dék))a (@=1,...,5), as

(@) (o, T1[y]) = P (@), (o, 1),
= w (@), (e, y).  (5.2)

In the following, the fundamental representation of
the SU(5) generators is denoted by (7 LS}){Z;(Ta)Q.

From Eq. (4.2), Lagrangian for @;k> has the dex) -invariant
form,
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k . k)a
(D)) = Sadny + igAyy) (T, ). (5.3)

To obtain the effective potential for af , in Eq. (3.20), let
us expand the Lagrangian in Eq. (5.3) around the classical
background VEVs and extract quadratic terms of the
quantum fluctuations. As discussed in Sec. III C, we always
take a basis where the Wilson line phases are diagonal and
have the form like Eq. (3.28). One-loop corrections to the
effective potential for the phases can be derived through
path integral over the fluctuation ((D(Sk))a. The quadratic
terms are written as follows:

k
x (@) 5, (5.4)
2 .
k - ~a
(D'VYh = oy + ,Eai+k(Ha)§, (5.5)

where we have defined <Dik)>£ as a background covariant

derivative and [J = d,0". The matrices H, (a=1,...,4)
are the fundamental representation of the Cartan generators
of SU(5), which we can take as

1

1
H, diag(1,0,0,0,-1), H, zidiag(O, 1,0,0,-1),

m

= —diag(0,0,1,0,-1),

l\)l#—l\)l

1
Hy = 5 diag(0.0.0,1,~1).
(5.6)

Thus, the Wilson line phases in Eq. (5.5) are written as

22 =3 =4 55
2a% H, = diag(a} . a?,,. @ . at,,.al.,), where

-5 ~a
Aitg = — E :ai+k'
a=1

We now readily rewrite the quadratic Lagrangian in
Eq. (5.4) as

(5.7)

—ij DO+ 83 ,) (@), (5.8)

5
a=1 k
|

where we have introduced the differential operator M %’a as

A a%
M, (—za T ’+k> (—iayj+’g")
2 ( k+f)
3; '

We note that the above corresponds to the operator

(5.9)

in Eq. (A38).
Based on the discussion in Sec. IVA and the
BCs in Eq. (5. 2) we see that the components

(I)(l) ,CD(Z) ,(ID form a Z(ex) triplet. In
5 Ja 5 Ja 5 p

Appendix A, we first show the KK expansion of dex)

singlets in Eq. (A18), and using it, we derive the expansion
of triplets in Eq. (A35). Here we briefly provide the
overview of the derivation. From the triplet ¢*) that obeys
the BCs in Eq. (4.37), we can define P! that are
eigenstates of the BCs as in Eq. (4.45). The KK expansion

of ¢P! yields the corresponding KK modes ¢N N, In
Eq (A30), where N;=n;+ p,;,/3 and n; € Z. From
¢N1 N,» We can define (}51(\],?,,\,2 appearing in Eq. (A3)).
Their KK masses are given by replacing the operator
—id,e in Eq. (5.9) by Ny/R (N3 =—N;—N,). In the

present case, the KK masses for (d>ék))a are given by

P 3
M%VQ:W;(NK—Fa?%)z, where
Nizni—l—pt/?), N3:—N1—N2. (510)

For details, please refer to Appendix A.

With the above result, the 4D effective Lagrangian in
Eq. (5.4) is rewritten by KK modes of the triplet, and we
can integrate them to obtain the effective potential. The
derivation of the potential is shown in Appendix B. Using
the result shown in Eq. (B14), we find that the effective
potential contribution from a real degree of freedom in

(d)gk))a is given by

pz/3+aa) + w? (p:/3 +aj3)])

w>ez’

cos(2z[w
7 4 E:

S O >
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where we have used af (i =1, 2) as the parameter of the
potential since they are taken to be the independent
variables among a¢ (¢ =1,2,3). As discussed in
Appendix B, the summation with respect to w' and w?
is taken over for all integers except for (w!,w?) = (0,0),
which is denoted by w', w? € Z'. We note that the potential
in Eq. (5.11) can also be naturally expressed by the vector
notation as

o cos(2zw - a“’)
VP (59) = 32;;7R4Z . (5.12)

i (W)
where we have introduced the vector w and the lattice A/, as

A, ={w =wle, + we,|w',w* € 7'}, (5.13)
and the dual vector a*’ = (p,/3 + a%)eé'
similar to those i 1n Appendix B.

Let AV(P) (dD ) be the contribution to the effective
potential from (I)g ) with p, defined in Eq. (5.2). Then, we
obtain

+ (p./3 + a3)eé

5

Av(p,)(q);")) -2 Z V(P

a=1

(5.14)

where the overall factor 2 on the right-hand side arises due
to the real degrees of freedom of a complex scalar. The
potential in Eq. (5.11) is manifestly invariant under integer
shifts of an arbitrarily chosen component of the Wilson line
phases, af — af &= 1, which preserve the Wilson line phase
factors W, in Eq. (3.29). Given the above invariance, we
relax the traceless condition imposed in Eq. (5.7) as
ZZ 1a '« = 0 (mod 1) in the following discussions.

We can generalize the above result to triplets belonging
to other representations of SU(5). Contributions to the
effective potential depend on components of weight vectors
with respect to the Cartan generators H,; for a given
representation R, the representation matrix of H; is

denoted by HEIR]. We can express eigenvalues of
2al+k

scalar <I>%(), which transforms under SU(5) x SU(5) x
SU(5) as

H([}R] by using @, ,. Here, let us consider a threefold

ol ~(R.11), P ~1R.1). o~ (LLR).

(5.15)

We write the contributions to the effective potential

generated by <I>(Rk> as AV(I")(¢§I€>). We find that the
contributions from, e.g., R = 10, 15, 24 cases are given by

AVPI@E) =2 3 Vi (ar + ab), (5.16)
1<a<p<5

AV @) =2 Y vied(ag + a), (5.17)
1<a<p<s

AV (@) =2 > vedag - af), (5.18)

1<a#p<5

respectively. Here, we have discarded irrelevant constants
that are independent of a¢.

For general threefold scalars in Eq. (4.3), we can derive a
differential operator as in Eq. (5.9). As an example, let us

consider an (R, R,, R3) = (5,5,1) case. In this case, a
component of @%1)23 has two indices, which we denote by
ay and a, (a;,a, =1, ...,5). Corresponding to Eq. (5.9),
we find the following differential operator:

2 @t a0
M, m:gg (-@wﬁ . (5.19)

From the above, we obtain a one-loop correction to the

potential from (I)%?

The result is given by

,, in a similar way to the previous cases.

5
AVEI@Y) ) =2 N V@t +an,).

ay,a=1

(5.20)

We note that, except for the subscripts of the phases, the
potential contribution coincides with the sum of those
coming from (D;I:)) and d>§];), which is an explicit example of
the modification explained below Eq. (4.16).

We turn to discuss the contributions to the
effective potential from threefold fermions. The contribu-
tions mostly depend on the eigenvalues of differential
operators as in Eq. (5.9). Since the covariant derivatives
for bosons and fermions are the same if they belong
to the same representation of SU(5), the eigenvalues are
also common for bosons and fermions. Thus, the contri-
butions from threefold fermions can be written by using
the contributions from threefold boson. We denote a

6D Weyl fermion ‘Pi(k), whose representation is the
same as in Eq. (5.15). A contribution to the effective

is denoted by AV/(P/) (‘I’%‘)) Then, we
24V ) (@),

potential from ‘sz(k)
find AV (P¥)) =

B. Contributions from dex) onefold fields

We start to discuss the contributions from dex) onefolds.

We first examine a bulk matter scalar @53, whose compo-
nent is written by (®s3),,4,4,- Here, the Greek indices run
from 1 to 5. The BCs can be introduced as
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(q)53)a1a2a3 (xﬂ? /jil [yl]) = ol <(I)53)a1a2a3 (xﬂ’ yi)’ (521)

(¢53)a1a2a3 (X”, SO [yl]) = (CD53 )a3a]a2 (-x#? yl) (522)

The extradimensional component of the covariant deriva-

tive acting on (®@s3), ,,, is Written by

2 .
(D, = O 0y + i (@ + a2, + ) .

(5.23)

where the indices «; (k = 1, 2, 3) are not summed on the
right-hand side in the above.

As discussed in Sec. IV C, (®s3),,,,,, cONtains VAS
triplets and singlets. The latter corresponds to the compo-
nents of a; = a, = a3. From Eq. (5.23), it is clear that the
singlet does not couple to the Wilson line phases since
as,, + a%, + a?, , = 0 holds. Thus, only Z\™ triplets can
give contribution to the effective potential.

For a set of fixed values of {a;,a,,a3}, a triplet is
given by

{(q)R3 )ala2a3 s ((I)Rz )a3a1a2 ’ (q)R3 )aza3a] } = {¢(l)
(5.24)

One can see that ¢¥) couples to the Wilson line phases of
ai,, +ai,, +as,,, via the covariant derivative in
Eq. (5.23). Then, as in Eq. (5.10), a KK mode of the
triplet ¢*) has the following KK mass:

3
2 a
~Q ~(12 ~a3 2
3R E (Ne+ a3y + a0 ) + 80 010)"
P

M2

k.ay,a,a3
(5.25)

This implies that a contribution to the effective potential from

the triplet ¢¥) is proportional to VP (af" + a2, + a3,).
Let AV(?)(®g) be the contribution from the onefold
®g;. Among 57 = 125 components of (®s), 44, five
components are singlets, which give constants independent
of the Wilson line phases. The remaining 120 components
compose 40 triplets. We can take summations of the

contributions from the triplets as

Av<Pr>(c1>53)=§< i - i >

a,m.03=1  a=a,=az=1

x VP (aft + a2, + af,), (5.26)
where on the right-hand side the overall factor appears
since ®@g is a complex scalar, and the factor 1/3 should be
included to correctly count 40 triplets composed of 120

components. Let us note that the subtracted a; = a, = a3

@, 43},

contributions in Eq. (5.26) are constant, which do not affect
the vacuum structure of the potential.

Generalizations to the other representation than § are
straightforward. For example, we find that the contribution
from @,y is given by

3

AV (@) % < {H 2 2 >)

i=l1 15“'<ﬂ'<5:| (ay.p1)=(a2,f2)=(a3.53
<@ +al 4l +al + a4 a,),
(5.27)

where the above potential consists of the contributions from
(10% — 10)/3 = 330 triplets. As in the case of the threefold
scalar, difference between contributions from the onefold
scalars and fermions is just an overall factor. Let
AV(P)(¥3) be the contribution to the potential from a
fermion ¥,. Then, it follows that AV P (Wps) =

—2AV(P)(®ys3), where the contribution does not depend
on 6D chiralities of fermions.

VI. GAUGE SYMMETRY BREAKING PATTERNS
IN SU(5) MODELS

A. Vacuum structure and unbroken gauge symmetries

We study the vacuum structure of the effective potential
for the Wilson line phases derived in the previous section.
For simplicity, we only consider the contributions to the

potential from the gauge fields and threefold fields of <I>§§)

and ‘I’fz(k) for R = 5,10, 15, 24. First, for a chosen R, we
numerically find VEVs of the Wilson line phases at a global

minimum of a contribution AV(pt)(CI)%{)) or AV(P/) (‘I’%))
In the fundamental representation of SU(5), the Wilson line
phase factors W, in Eq. (3.29) take the following form:

2ria! 27id? 27id 2nia

4
I I i A | 32’””f+1)

W, = diag(e
. il .5
® dlag( 2maf+2 eZmzzﬂz’ eZmaHZ’ eZmaHz’ eZmaHz)

o U g
® dlag( 2ma 2ma/’ eZmaf’ eZmzzt,7 e (61)

27[1'?1;)_
Thus, if a VEV at a minimum is determined, we can find a
gauge symmetry breaking pattern through Eqgs. (3.27)
and (6.1).

Before starting to show results, let us mention that there
are degenerate vacua in potentials for the Wilson line
phases. The degeneracy is related to the invariance of the
potential under some transformations of the Wilson line
phases. As we mentioned below Eq. (5.14), V7 (&%) in
Eq. (5.11) is invariant under an integer shift a¢ — a¢ & 1.
Thus, effective potentials for the Wilson line phases
generally have degeneracy related to the integer shift
invariance. This is due to the phase property of af. In
addition, from Eq. (5.11), we see that a simultaneous

035031-16



GRAND GAUGE-HIGGS UNIFICATION ON 72/Z;

PHYS. REV. D 108, 035031 (2023)

TABLE L. The values of @* at a global minimum of the contributions AV(?) (), where ¢ is ®i or Wi for R = 5,10, 15, 24. We
also show the unbroken gauge symmetry G, at the minimum. The constant v, = 0.24796 is used.

R Potential (al,a2, a3, at,a3) (al, a3, a3, a3, a) Gy
5 AVO) (@) (0,0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
e () (3,3,3,3,3)/5 (3,3,3,3,3)/5 SU(5)
Avi(@g7) (3.3.3.3.3)/5 (4.4,4,4,4)/5 SU(S)
0 (0,0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
AV (wY) (1,1,1,0,0)/3 (1,1,1,0,0)/3 SU(3) x SU(2) x U(1)
10 AVO (@) (0,0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
e ® (2,2,2,2,2)/5 (4,4,4,4,4)/5 SU(5)
AV (@yg) (4.4,4.4,4)/5 (4.4,4,4,4)/5 SU(5)
o ey (8) (1,1,1,1,1)/5 (1,1,1,1,1)/5 SU(5)
AVO () (1,1,1.1,1)/5 (3.3.3.3.3)/5 SU(s)
" (0,0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
AV (¥y) (1,2,2,2,2)/3 (1,2,2,2,2)/3 SU4) = U(1)
15 AVO @) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
0 (2,2,2,2,2)/5 (4,4,4,4,4)/5 SU(5)
AVI(®)5) (4,4,4,4,4)/5 (4.4.4.4.4)/5 SU(S)
0 ) (2.1,1,1,1)/6 (2.1,1,1,1)/6 SU(4) x U(1)
AV (¥is) 2.1.1,1,1)/6 (1,2.2.2,2)/3 SU4) x U(1)
AVO) (g9 0.0, 0,0, 0) 0, 0,0, 0,0 SU(s)
24 AVO) (@) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) SU(5)
AV (@) (1,1,2,2,0)/3 (1,1,2,2,0)/3 SU(2)* x U(1)?
Av<o>(lp;/;>) (1/3,2/3,0, v, 1 — vy) (1/3,2/3,v,,1 = 2,,0) U(1)*
AV () (0,0.0,0.0) (0,0,0,0,0) SU(s)
change of the overall sign of the VEVs as a¥ — —af for  p, = —1 cases since they are obtained from the ones of

i =1, 2 and a = 1-5 does not change the potentials for
p, = 0 cases. This leads to a degeneracy in the potentials.
On the other hand, the contributions to the potentials
from fields with p, = 1 and —1 are related to each other
by the overall sign change of the phases, i.e.,
Veh(a) = V(U (=a®), which is shown from Eq. (5.11).
The potentials are invariant under the permutation of the
index a, which can be regarded as a basis change in the
representation space. The exchange of a{ and a$ also does
not change the potentials. Finally, the potential contribu-
tions from adjoint matter fields are invariant under the Z5
transformation, which is the center subgroup of SU(5),
with a¢ +n;/5 (i =1, 2), where n; € Z.

Concerning the above degeneracy, in the following, we
show representatives of VEVs at a degenerate global
minimum. In Table I, we show the values of a¢ at a global

minimum of each contribution of AV(?) (<I><Rk)) and
AV(”r)(‘I’%{)) for p, =0, 1 and R = 5,10, 15, 24. As noted
below Eq. (5.14), the traceless condition holds modulo 1.

We also show the unbroken gauge symmetry G
at the minimum. We don’t give explicit results of

p, = 1 cases through the relation V(=) (a%) = V1) (-a%)
explained above.

The gauge field also generates the contribution to the
effective potential, which is equal to 2AV(0)(<I>;Z) ), whose
minimum respects SU(5) symmetry. Thus, we need bulk
matter fields in the theory to obtain the SM gauge
symmetry Ggy = SU(3) x SU(2) x U(1) at a vacuum.
Let us remark that 2AV(©) (CI><2§)) +AV(0)(‘P$‘)) =0 at

the one-loop level, and the contribution AV(I)(‘I’gk)) has
degenerate global minima with Ggy; and SU(5), as seen in
Table I. Thus, we easily find matter contents that ensure
Ggy at a minimum and have no bulk and boundary
anomalies. We show two examples in Table II. We refer
to the bulk matter contents shown in the left and right tables
as case (i) and (ii), respectively. The case (i) consists of a
p, = 0 adjoint threefold fermion with positive chirality and
10 sets of the p, = 1 fundamental threefold fermion with
negative chirality. The case (ii) consists of a p, = 0 adjoint
threefold fermion with positive chirality, the 16 sets of the
p, = 1 fundamental threefold fermion with negative chi-
rality, and the two sets of the p, =0 antisymmetric
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TABLE II. Examples of bulk matter contents. We refer to the
matter contents of the left (right) table as the case (i) (case (ii)).
Case (i)
Bulk matter D: Flavor
+(k)

Y 0 :

.P;(k) 1 10

Case (ii)

Bulk matter D: Flavor
+(k)

Yy 0 !

\P;(k) 1 16
—(k)

¥ 0 2

(10-dimensional) representation threefold fermion with
negative chirality.7 In both cases, one sees that there are
no anomalies. In addition, the potential contributions from
the gauge field and an adjoint fermion field cancel out. For
the case (i), the sum of the effective potential contributions
is proportional to AV(')(‘I‘gH), in which SU(5) and Ggy
vacua are degenerate. For the case (ii), we numerically find
that, at the global minima of the effective potential, the
values of the Wilson line take

at =a5=(1,1,1,0,0)/3, (6.2)
and the symmetry SU(5) is broken down to Ggy. We
note that on this vacuum a§ = (-2,-2,-2,0,0)/3 and

ay —ay,, =0 (mod 1) are obtained. Thus, this vacuum

respects the symmetry ZgH X Zg_) = dex) X ng, as dis-

cussed in Sec. IIIC.

B. Phenomenological implications

On the vacuum shown in Eq. (6.2), interestingly, the so-
called doublet-triplet splitting among the Higgs fields in the
5 representation can be realized, similarly in the S'/Z,
case [16].

If we introduce a 5 threefold scalar with p, = 0, its triplet
component gets contribution from the Wilson line phases to
become massive, while its doublet component does not and
contains a massless mode. We note that on this vacuum, the

dex) symmetry remains unbroken, even though the zero
modes of the extradimensional components of the gauge
fields which develop nonvanishing VEV, A;, have non-

trivial charges of the dex) symmetry. This means that the

tadpole term of the zero mode of A, is absent even in the
higher-loop corrections to allow the vacuum to be a (local)

"The same SU (5) representations of the fermionic sector are
found in one of the supersymmetric models in [30].

minimum without a fine tuning. In addition, the effective
theory around the TeV scale would have a Z; symmetry,
though a soft-breaking term of the Z; symmetry may be
introduced as in the S'/Z, case [17].

Of course, there would be large radiative corrections to the
scalar masses in nonsupersymmetric (non-SUSY) models,
and thus we impose the SUSY in following. In the SUSY
limit, however, the contributions from the fermions and the
bosons to the effective potential are canceled out. Thus, the
actual effective potential strongly depends on the SUSY
breaking. In addition, when there is a hierarchy between the
SUSY-breaking scale and the compactification scale, the
effective potential suffers from the large logarithms, and we
need to treat the renormalization group equations. In this
way, the analysis in the previous subsection can not be
applied directly. Nevertheless, it provides a hope that the
vacuum tends to be realized in a sizable parameter region,
besides a proof of existence.

Concerning the vacuum selection, we have proposed an
interesting scenario in Ref. [18], which may be applied also
to the present case. In the reference, we have calculated the
effective potential at a finite temperature and found that
there are models where the desired vacuum (in the S'/Z,
case) is the global minimum at high temperature. Thus, if
the universe started with very high temperature of order the
Planck scale, the vacuum would be selected around the
temperature of order the compactification/GUT scale,
before the inflation. Then, it is natural to expect that the
vacuum does not move so much until the reheating and has
been selected.

An outstanding prediction of the SUSY version is the
existence of light adjoint chiral supermultiplets of masses
around the SUSY-breaking scale, which would be a TeV
scale. This is understood as follows. The zero modes
of A, are massless at the tree level and receive masses
through radiative corrections that are suppressed by the
SUSY-breaking scale. Since the mass differences among
components in a single supermultiplet are at most of the
SUSY-breaking scale, the masses of their SUSY partners
are also at most of the scale. Some collider phenomenol-
ogy of them in the S'/Z, case was studied in Ref. [17]. In
Ref. [19], another attractive possibility to regard the
adjoint chiral supermultiplets as those introduced in the
Dirac gaugino scenario [31] is studied to show that the so-
called goldstone gauginos [32] are naturally realized.
Similar analyses in the present case are desirable.

An unfavorable point of this prediction is that the light
adjoint chiral supermultiplets ruin the success of the gauge
coupling unification in the minimal SUSY SU(5)
model [3]. This is because the adjoint multiplets give
contributions of Ab;’d’ = (0,2,3) for the beta function
coefficients to that of the minimal supersymmetric SM
(MSSM), b%VISSM = (33/5,1,-3). Tt is possible, however,
to recover the gauge coupling unification, for example by
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introducing additional multiplets that give further correc-
tion of Ab¢¥ = (3 +n, 1+ n,n) [16].

It is notable that an example with n = 0 is naturally
realized in the present case, for instance by adding one 5
and two 10 threefold hypermultiplets with p, = 0. This is
because the above 5 (10) hypermultiplet contains a zero
mode vectorlike pairs of the component with the SM charge
(1,2)_,,, ((1,1),). We note that it is in contrast to the

S'/7, case, where the pair with (1, 1), can not be realized
separately. This difference would bring significant effects
on the phenomenology as the quantum corrections to the
colored particles are not so enhanced in contrast to the
n = 1 case where the color SU(3) symmetry is asymptotic
nonfree (though still perturbative around the GUT
scale) [17].

Next, we discuss the matter sector. As shown in
Sec. IV C, the zero modes of the threefold fermions are
vector-like, and those of the onefold fermions may be chiral
but the possible representations are restricted. Then, the
simplest way to realize the chiral fermion in the SM is to
put them on the fixed points. Though there are still several
possibilities to put the fermions on the three fixed points,
we consider here only the case all the SM fermions are put
on a common fixed point, for simplicity.

In contrast to the usual gauge-Higgs unification models
where the SM Higgs field is unified into a gauge field, the
SM Higgs field is introduced as a 5 field in our scenario,
and its Yukawa coupling can be set by hand on the fixed
point. The flavor structure of the Yukawa couplings is
similar to usual 4D models and it might be set by hand or a
flavor symmetry may be introduced. A difference from the
usual 4D models is the SU(5) breaking effect, which is
carried only by A, and thus bulk fermions are necessary as
messenger of the SU(5) breaking, to solve the wrong GUT
relation among the Yukawa couplings.

Finally, we comment on the u problem and the proton
decay. If we put a 5 threefold hypermultiplet with negative
chirality and p, = 0, the zero modes are a vectorlike pair of
the doublet chiral supermultiplet with the Z;-charge +1.
When these are identified with H,, and H, of the MSSM,
the matter chiral supermultiplet 10, and 5; where the index i
denotes the generation should have the Z; charge +1 to
allow the Yukawa couplings. These Z; charge forbids the
dimension 5 operator for the proton decay, 10i10j10k5,,
and, at the same time, the y term in the MSSM. We suppose
the SUSY breaking sector breaks the Z; symmetry softly to
solve the u problem. Though this Z; breaking may generate
the dimension-5 proton decay operator, its contribution to
the proton decay is quite suppressed. Then, the proton
decay via the dimension-6 operators mediated by the gauge
field becomes dominant. In the 6D spacetime, the sum of
the contributions from the KK gauge boson is (logarithmi-
cally) divergent [33], when all the fermion fields are put on
a single fixed point. Though the summation should be cut
off at some point as the 6D theory is also an effective

theory, this process is enhanced, besides the effect of the
enhanced coupling of the KK gauge field and the boundary
fermions by a factor v/3 shown in Eq. (3.17). Meanwhile, it
also has a suppression factor. It is possible that the
dominant element of the SM fermion may come from
the “messenger field” instead of the boundary fields. In
case that the origins of the dominant modes of the
components of each SU(5) multiplet are different, the
gauge interactions do not connect them. These points
should be studied in a future work.

VII. CONCLUSIONS AND DISCUSSIONS

We have formulated a field theoretical realization of the
diagonal embedding method in the gauge theory compac-
tified on the T?/Z5 orbifold. The original bulk gauge group

of the theory is G x G x G, and a global dex) trans-
formation permutes them. Through the BCs, only the
diagonal part of the gauge group G%?¢, which is isomorphic
to G, remains manifest at a low-energy effective theory. The
4D effective theory contains the zero mode of the extra-
dimensional component of the gauge field, which belongs
to the adjoint representation of G%4¢, The continuous
Wilson line phase degrees of freedom, i.e., the zero mode
along the flat direction of the tree-level potential for the
extradimensional gauge fields, can acquire VEVs that
further spontaneously break the gauge symmetry GYe,
Thus, the theory possesses rich vacuum structure. We have
shown a parametrization of the VEVs and the Wilson line
phases, which are required to clarify the symmetry break-
ing patterns.

We have also discussed the bulk scalar and fermion fields
in our setup. The representations of these bulk matter fields

under the gauge group are restricted to be the dex

threefold or onefold to keep the Z;ex) invariance of the

Lagrangian. We have examined the possible BCs for the
matter fields and the KK mass spectrum. The onefold
fermions can have 4D chiral fermions as their zero modes,
although the threefold ones always have vectorlike 4D
fermion zero modes. A particular feature is that the
representations of the chiral zero modes under the gauge
group are restricted due to the diagonal embedding method,
as shown in Egs. (4.49) and (4.50).

We have studied the SU(5) type A grand gauge-Higgs
unification model compactified on 72/Z5 with the diagonal
embedding method as an explicit application. We have
derived the one-loop contributions to the effective potential
for the zero modes of extradimensional gauge fields. We
have examined the vacuum structure of the effective
potential and discussed the symmetry breaking patterns
related to the bulk matter contents. Our analysis has shown
that the SU(S5) symmetry is broken down to SU(3) x
SU(2) x U(1) at the global minima of the effective
potential with the specific bulk matter contents. Thus,
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the type A grand gauge-Higgs unification model on 72/Z5
is viable for explaining the spontaneous GUT breaking.

In the present analysis, we utilize the dual-lattice
technique, which is just a Fourier transformation. It is
actually useful to analyze the KK expansion in the 7%/Z;
model, which is the minimal Z5 orbifold model and may be
regarded as an effective theory of the heterotic string theory
with an adjoint scalar zero mode and with three gener-
ations. In addition, this technique can be applied to more
general orbifold models, for instance in a ten-dimensional
spacetime, straightforwardly. It is also possible to treat
more general gauge symmetry than SU(5) considered in
this article, such as SO(10), E4 and Ej. These generaliza-
tions would be attractive future works.

Finally, we have discussed the phenomenological impli-
cations qualitatively, focusing on the GUT breaking vac-
uum. A notable feature of this spontaneous GUT breaking
is to provide a solution to the doublet-triplet splitting
problem in GUT models. In addition, the vacuum is
characterized by the enhancement of a Z; symmetry and
is implied to be stable against higher-loop quantum
corrections. With a SUSY extension, the light three chiral
supermultiplets, which are adjoint representations under
SU(3), SU(2), or U(1), are predicted to appear around the
SUSY-breaking scale. The unification of the three gauge
couplings in the SM can be consistently explained with
the vanishing beta function coefficient of the color SU(3)
at the one-loop order. We have also given discussions about
the SM matter sector and proton decay, although detailed
examinations are left for future studies.
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APPENDIX A: KALZUA-KLEIN EXPANSIONS
ON M* xT?/Z;

In this appendix, we discuss the KK expansion on

M* x T%/Z5. In the following, we regard 7, and S, as

the independent operators among T 12 and 30,1,2 defined
in Sec. II.

1. dex) singlet fields
We first discuss the KK expansion of Z{
Let ¢p(x*, y') be a Z\™ singlet field that obeys the BCs as

singlet fields.

P, T1[y]) = oPp(x*.y'),

P, Soly']) = wPsp(x+,y"), (A1)

where p,, p, € {0, =1}, which are consistent with S =
(r=0,1, 2).

To examine the KK expansion, we introduce the ortho-
normalized eigenfunction under the translation y' —

f'j[j/i] =3 +6 (i,j=1,2), where 3’ = y'/(22R), as

) 1 -
VL )= ———————— 27[!)1’(!1,'“1’(1,-)’
O+ @) = R et gy
n; S Z, a; € R. (AZ)
One sees the eigenfunction satisfies
LT + @) = 5 f (3 (n; + ;). (A3)

[ or 6ot s 5700+ ) = =55

(A4)
where we have defined
27R 27R
/ ny/ dyl/ dyqudetgij
72 0 0
3 27R 27R
== / dy! / dy? (A5)
4 Jo 0

As explained in Sec. II, a pair of the same upper and lower
indices, such as i in Eq. (A3), is always contracted
as )_iin,» = .)_71”1 + 5)21’12.

Notice that f(7'(n; + @;)) is not an eigenfunction of the
Z4 transformation generated by S, defined in Eq. (2.9).
Using Eq. (2.21), we see that the transformation of the
function is

= f(5'Sy [ + ai))
= f(3' (nip1 + @is1)),

F(So[¥](n; + @)
(A6)
where we have defined n; = —n; — n,, a3 = —a; — o,

ni.3 =n;, and a;, 3 = a; for i € Z. The eigenfunction of
both the transformations 7; and S is given by

3
7z Z o f(¥Niy), pEZ, (A7)
k=
where
p P
N15”1+§t» NzEanr?t,
2
N3E—n1—n2—%, Niiz =N,  (A3)
Conversely, we also obtain the relation as
FG'Nisx) = Z o PPN, (A9)

p*—l
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FIG.2. The dual lattice A" defined in Eq. (A12) for p, = 0, 1, —1. The black dots show the point with n; = n, = 0. As an example,

we denote N ) for n; = n, = 1 by the yellow dots. Dots on the green, gray, and red-shaded regions belong to the sublattice A( )

and Aég’)'> defined in Eq. (A14), respectively.

From Eq. (A7), one confirms

f[’"’] (Tj[_i]Ni) _ wp,}[ﬂ\-] ()—,iNi)’

FPUS[FIN;) = P fPI(FN)), (A10)

where the eigenvalues are exactly the same as in Eq. (Al).
Thus, a dex) singlet field with the BCs in Eq. (Al) is
expanded by FP:(3N;)5 o

The eigenfunctions in the set { fP/(3'N,)} for n; € Z are
neither completely independent nor orthonormalized.’
From the right of Eq. (A10) and Eq. (2.21), we find
FPUSEING = FPU (N we) = o PFPI (N, (A1)
which implies a linear dependency fI/(¥'N,.,)
FIPl(37N;) related to the Z transformation. As seen below,
there is no additional linear dependencies except for the
above. To handle the eigenfunctions, it is convenient to
introduce the normalized momentum lattice, which corre-
sponds to the possible momentum values on 72 in a

normalization and is expanded by the dual basis vector
in Eq. (2.15) as

AP = {Nlél LNy = (n1 +%)é1

+ <n2 +?)é2|n1,n2 € Z}.

¥The eigenfunctions f”*('N;) given by linear combinations
of the exponential functions in Eq. (A2) are analogues to
sing(yn/R) or cos(yn/R) (n € Z) in S'/Z, orbifold models.

This is similar to the fact that sin(yn/R) and sin(—yn/R) is
not linearly independent even if n # —n is satisfied. If one
considers m, m' € Z, sin(ym/R) and sin(ym'/R) are linearly
independent for m # m'.

(A12)

(P} AP0
NG

We hereafter refer to A'P7) as the dual lattice. In Fig. 2, the
dual lattice with p, = 0, +£1 is illustrated. Since we can
relate N, and N, appearing in f”/(3'N,,,_,) to a point
N =Ns&' + N,y 1 on AP, we regard that there is a
corresponding eigenfunction on each point on the lattice.
Note that N(;), N(2), and N 3) are not identical points on
AlPi) | except for the case of (N1, N,) = (0, 0). These points
are related to each other by the Z; transformation generated
by S’O as found in Eq. (A6) and identified to the positions of
vertices of the equilateral triangle, whose center is located
at the origin. From the above observation, we can divide
AP into the sublattice as'”

D) AP ) (Ps)
AP = A+ NS+ A+ A)Sp,00 (A13)
where
A(Pr>: N =N él—FN 52|N:n+&
() (3] 3 ‘+1 i i 3
nl,nZEZ,N220,N1 >—N2}, (A14)

for £ =1, 2, 3 and A is the origin. If fPI(5'N))

(ps)

corresponds to a point on A(;) , then the dependent function

(ps)
(7+1

that the set of the eigenfunctions { 7"/ (¥'N,)} defined on a

H (Pr)
sublattice A( )

In the following, we use

f[P] (¥'N;,) corresponds to a point on A ) Thus, we see

are linearly independent.

N:Nlél+N2é2:(nl—f—%)él—f—(nz"—%)éz, (A15)

""The decomposition in Eq. (A13) with p, = 0 corresponds to
Z=7.y+Z.y+ {0} in S'/Z, orbifold models.
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(A16)

N'=N'&' + N}& —<nl+§’>”+< +%)52.

With the help of 5,(121,( ),, one can derive the

orthonormal relation

= G0,

// Py fP(FN) PN =6.0),8,,. forN.N' €A
1 o

(A17)

for a fixed #, from the definition of f”!(3'N;) in Eq. (A7)
and the relation in Eq. (A4).

Using the eigenfunction in Eq. (A7), we define the KK
expansion of the singlet field in Eq. (Al) as follows:

V)= o, () FPIGEN)
Ne/\(”;
6,00
r.0%p,0
W¢OO( ) (A18)

where we refer to ¢ v, N, (X*) as the KK mode. The zero mode
in the last term exists only for the case with (p,, p,) = (0,0).
We define the first term in Eq. (A18) to be 1ndependent of a

choice of Z in AE )> Thus, we can substitute AE fjm for Ag;)
in Eq. (A18) and use Eq. (Al1) to get

> b, () FPFNG)

NeA(”’
Z 977N1,N2 ()0 TPs fIPI (3N ) (A19)
NEAEQI)
= Z CU]FF“@NW,,NZ;. ()P (3N, (A20)

(pr)
NEA(/)

This implies the constraint on the KK mode ¢y LN, (x*) as

¢Nlﬂ,N2ﬂ(x”) = wq:fpsﬁle,Nz (x”). (A21)

Let us derive the effective 4D Lagrangian for the singlet
field in Eq. (Al) from the KK expansion (A18). As an
example, we treat ¢p(x*, y') as a scalar and consider the 6D
canonical kinetic term.'"" From the definitions of the
eigenfunctions in Egs. (A2) and (A7), we find the following
relations:

"The Z; (ex) singlet does not couple to the Wilson line phases in

our model as discussed in Sec. V B, although the Z( x)
generally couple to the Wilson line phases as Eq. (A38)

triplets

23 . .
=2 (0, PN

gjkayj ayk.?[pX] (}_)ZNZ)

w

AN

3
S VTP, (a22)
/=1

Using them, we obtain the effective 4D Lagrangian ﬁ;lffflglet

for &Nl N, (x):

[:Zlffflglet _ / ; Py (x#, y') (O = g%0,,0 1) p (., y')
(A23)

:_Z¢N1Nz 0+ ZZNk) ¢N1N2
3R

n; EAE"’>

- ¢0,0 D¢0,05p,05pl‘0» (A24)

where ¢y, x,(x*) is an independent field for N; € A%/

with a fixed £. Thus, the above KK mode is a canonically
normalized 4D field with the following KK mass squared:

which is the squared norm of the vector N/R on the
momentum lattice spanned by & /R.

2. 7\ triplet fields .

We start to study KK expansion of a Z;
¢ that obeys the BCs as

triplet field
dO(T 1y =0rd® (). pP(Soly]) =wrs¢*D (),
(A27)

where we have suppressed the coordinate x* in the above
for shorthand notations. Let us define ¢!”/(y’) as
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1 3
P === e g (),
33
1 J
PH () =—= > o rglrl(y) (A28)
VD
Then, ¢[”] becomes an eigenstate of the BCs,
PP(T [y ]) =P P (y),  plP(Soly]) =P rplrl(y),
(A29)

as the dex) singlet in Eq. (A1) but p, is substituted by
ps + p. Thus, from a similar discussion deriving Eq. (A18),
we define the KK expansion as

=S

NeA(’”

f[pﬁrp N)) 85,00p,+p0 Z[=ps

(A30)

Using the above, we obtain the KK expansion of ¢*) (y) as

Z Z a)kp¢ ]7] [ps+P]( Nl)
NeA o) p==1
a)—kpsé N[_px]

+ p.0 0,0
27[R(det glj) 1/4 \/§ '

(A31)

Note that, as Eq. (A21), the KK mode g;ﬁk,’]]
following constraint:

v, satisfy the

— @ F(petp) ‘z’k”},Nz (A32)

¢Nlif Nozp =

In view of Eq. (A28), it is natural to define the KK mode

~(k
ﬁlﬁz(vl).zv2 as

k [p
Z p('le WNy» Nl N, ™

p*—l

¢N1 N, =
(A33)

As seen below, J)E\I,:)_Nz is a basis that diagonalize contri-

butions from the Wilson line phases to KK masses.
|

3

IR

NeA ”‘ ) k=1
«

triplet
L eft

2zR(detg;;)/*" 0

\/—Z _kp¢N] N,*

2 - ~ 7 (k *
O+ 223> (N +ae) Faw, = pobiy” O+ 722 Z Do,
3R £~ 3R

Combining Eq. (A31) and the second equation in (A33),

we can expand ¢*) (y') by gfﬁ%(])_,vz. To see this, we use the

formula
RN [py7]
- w(k—k’)p"'ps—kp —iNi _ w—(k—k’)pS _iNi ),
\/gpgl A (¥'N;) SO'Nisrr)
(A34)

derived from Eq. (A7). Using it, we obtain

Z S o n B N )

NEA(p;>k =1
A (A35)

+ .
271R(detg,»j)1/4 \/§

From Eq. (A32), we find the constraint on (}55\1,{1).1\,2 is
written as

= 0¥y (A36)

¢N 14¢-Note
Let us derive the 4D effective Lagrangian for the triplet

scalar defined in in Eq. (A27). We consider the 6D kinetic
term,

ﬁgflflet_ // ngzqs

NO+ER)P0 (), (A37)

where M% is a differential operator including Wilson line
phases as in Eq. (5.9) and is defined by

o a,
oo ) )
—io, + 2k a”"
=3 § .

Using the KK expansion in Eq. (A35) and the definition of
the eigenfunction in Eq. (A2), we obtain the effective 4D

(A38)

Lagrangian for g?)%:) v, and the zero mode QZ([;O ) as

(A39)

where &%‘?’NZ is an independent and a canonically normalized fields for N; € Aé;}; with a fixed ¢/. With the help of
)

Eq. (A36), we can rewrite Eq. (A39) with the summation over the dual lattice AP

as
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riple
L =— Z ¢N,N7{D+3R22Nf+af }¢N|N2

NeAr)
(A40)

where we have defined g?ﬁ(()(’)& = ¢i "], Although we choose

k=0 of &%CI)’NZ as a representative in the above, a similar
expression holds for any choice of k. The KK mass in
Eq. (A40) is again the squared norm of the vector as the
case in Eq. (A26), but the vector N is shifted by the Wilson
line phases as N + @;é'.

The KK mass spectrum in Eq. (A40) is a similar one in
models with 7% compactification. This situation is shared
with the S!'/Z, model with the diagonal embedding
method, where the resulting KK mass spectrum is a similar
one in models with §' compactification.

APPENDIX B: CALCULATION OF EFFECTIVE
POTENTIALS ON M* x T%/Z,4

We derive contributions from a Z triplet field to the
effective potential obtained from the Lagrangian in
Eq. (A37). For later convenience, we denote the KK mass

in Eq. (A40) by

(B1)

In addition, we define @ = @;é'. Then, we can write
M?(a;) = [N +a|*/R?. Since Eq. (A37) is rewritten as
Eq. (A40), by performing the path integration of the KK
modes chz(\(,)l) v,» We obtain the following contribution to the
effective potential:

p, ENdeg Z / pE

NeAr)

2+ M%*(a;)), (B2)

where N deg = 2 for the case of a complex scalar, and the

square of an Euclidean four-momentum is denoted by p3.
To deal with the divergent momentum integral, we use
the zeta-function regularization and introduce

Z/dpE

NeAP)

2+ M?(a;))™s. (B3)

Then, the contributions to the potential is rewritten as

— Ndeg lim — d

AVP) =
2 s-0ds

g(s). (B4)

A straightforward calculation shows

¢(s) =32 Z/ dpﬁ3/ dt e M@l (Bs)
n

NeAPr)

16;;2 2 / e+ 0(s%),
Ne

AlPe)

(B6)

where I'(s) is the gamma function, and |s| < 1 is implied.
Thus, we get

—g 16 — > / dir=3e~M @)t 1 O(s),

NeAlr

(B7)

where the singularity associated with # — 0 corresponds to
the ultraviolet divergence in the integral.

The O(s°) term in Eq. (B7) is evaluated by using the
Poisson resummation formula, which is derived in the next
section. In Eq. (C8), we set D = 2 and

P, - nR? it
di:?l"‘aiv Ai,/ gl/’ (A l)jzmgjv
37°R*
detA = th ) (B8)

where g;; and g" are the metric given in Sec. II. Let us
introduce the vector w and the lattice A,, expanded by e;,
which is associated with the metric g;;, as

A, ={w=wle, + woe,lw', w? € Z}.  (B9)
Then, we obtain
oM@ — o N+l
N§‘> N§)t)
\/_ﬂ'R 22R2) 12 o
= w| eme-a” (BIO)
2V ZA:
where we have defined @ = (p,/3+ a,)e' + (p,/3 +
@,)é* and
WP = (w2 + (W) — wiw?,
w-a = (p,/3+a)w' + (p,/3 + a)w? (B11)

Thus, we can replace the summation over AP by the
summation over A,. The integers w' are often called
winding numbers. Let us consider a continuum path on
the covering space of 7%/ Z5, where the separation between
the endpoints of the path corresponds to the vector 2zRw.
In this case, such continuum path represents a noncontrac-
tible cycle on 7?/Z5, whose winding number along the
e; direction is given by w', except for the case of w = 0.
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This implies that the summation over the possible momen-
tum states, i.e., KK modes, in the evaluation of the effective
potential is replaced by performing the summation over the
possible winding numbers. Notice that the term withw = 0
in the summation represents a local effect and is indepen-
dent of the nonlocal Wilson line &;. To deal with it, we
define Aj, = A, \{w =0} and write .\ F(w)=
F(0) + > yen, F(w) for a function F(w).
From the above, we find

\/g eZm’w-d’
t
HodsC( )= T6rRe 2 < (wpys +(consy
cos(2aw - @)
+ (const). (B12)
1672:7R4 ; (lw]?)?

In the last equation, we have used that |w|? is symmetric
under w' — —w'. We have separated the irrelevant constant
term with w = 0 in the above. In this paper, we discard the
constant term in the effective potential. The summation

over all integers for w! and w? except for (w', w?) = (0,0)
is denoted by w',w? € Z’. Finally, we obtain
AV(a;) = NdegV@r)(ai)’ (B13)
_ V3
e = -y 2
w' wee”Z
cos(2z[w! (p,/3 + @) + w*(p/3 + @)])

WIWZ + (WZ)ZP

[(w!)? =
(B14)

APPENDIX C: THE POISSON RESUMMATION
FORMULA IN D DIMENSIONS

Let us consider the summation including a matrix A~!,
which is the inverse of a symmetric D x D matrix A, as
Z 6_”("i+di)(A_])ij("j+dj)

Ip = (C1)

where (A~!)¥ are elements of A~!, and the indices i, j run
from 1 to D. Since [, is periodic under d; — d; + 1, we can
expand it as

where

Z C(Wi) 27iwd; j,

< / dd> —27rlwfdll

Introducing f; = n; + d;, we rewrite C(w') as

ID:

(C2)

D o | |
C(Wi) = <H / dﬁz) e_”ﬁf(A_l)-”‘ﬂk e‘zmwlﬂ,
j=1+J—
D * B ik D = -
- <H / dﬁz) 6_”ﬁj(A_l VB €_ﬂWjA7kWA ’
=1 Y~

where B, = p; + iA w*.
Since A is symmetric, A~' is diagonalized by an
orthogonal matrix O (OOT = 1) and is written as

(C3)

(A—l)ij _ (OTA—10>1'/" (A—l)kl _ (a—1>k5kl’ (C4)
where A~ is the diagonal matrix and (a~')F is a k-th
eigenvalue of A7l Defining z; = O,/f ;, we obtain
D . .
= (H / dzie'”("_l)’(zf>2>e'”W]Af'"Wk, (C5)
i=1 /G

where C; denotes a path in the complex plane defined by
Re(z;) = (—o0, 00) with a fixed Im(z;) = O/A o*. With
the help of the relation

[<3) . o 1
/ dxe—lrc(x+ly)2 — / dxe—ﬂcxz — %, (C6)

we obtain

— 7wl A L wk —awi A w/
oW Ajw® detAe aW'Ajjw .

()

(C7)
Thus, the following relation holds:
S e k)
ny,..., npEZ
— /detA Z e—ﬂWiAiijje2ﬂikadk’ (CS)
wh,...wPez

which is the Poisson resummation formula used in
Appendix B. The above is naturally rewritten by the
vectors and the metric that are defined by W = w'E,,
n=nkE,d=dE E; -E =5, and E; -E; = A; as

z o-rlntdl? — \/agr Z

—7z|W|2 e2miWd. (C9)

APPENDIX D: FERMION FIELDS
IN SIX DIMENSIONS

We here summarize the notations related to fermion
fields in 6D theories. First, we work with the metric
nuy = diag(1,—1,—-1,—1,—1, —1). The 4D gamma matri-
ces y* can be written by
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0 o
= (—,4 0 > ot = (I,,0'. 0% 0%),
O’

" = (I, —o', —6%,—0°), (D1)
where I, is the 2 x 2 identity matrix and ¢’ (i = 1, 2, 3) are
the Pauli matrices. A 4D Dirac fermion y is denoted by
v =y + g, where 4D chirality is defined by

-1, 0
Oply2y3 < >, YsWL=—Yr, VsWR=WYR.

pr— i pu—
Vs=wryvrvy 0 1
(D2)
Thus, the 4D Weyl fermions are written by
93 0
Y = < ) Yr=1\_. | (D3)
0 R

where &; and 7 are two-component Spinors.
The 6D gamma matrices can be defined by the 4D
gamma matrices in Eq. (D1) as

0 0 il
l—‘”:03®y":<y > F5:i01®14:< 14),

0 —y# il, 0
0 I
=ic’Q®I =< > D4
=\, 0 (D4)
so that they satisfy the 6D Clifford algebra,
{rM, TN} = 29MN, (D5)

To study the 6D chirality, it is useful to define
[ =TT'T T =—6° Qs
—ys 0
:( s ):diag(l,1,—1,—1,—1,—1,1,1), (D6)
0 7s

which satisfies {I’;, M} = 0. The 6D Dirac fermion ¥ is
decomposed into a sum of the 6D Weyl fermions V.,
which are eigenstates of I'7, as

Y=t P TPE = (D7)

Thus, we can write

1
Wi:ﬁq_(% 0 )T w_(wz)
- 2 - 9 - 9

0 1iJ/5 l//
‘%’ <lI/R > '
l//L

2
A 6D Weyl fermion W+ involves a vectorlike pair of 4D
Weyl fermions. By using the two-component spinor nota-
tion in Eq. (D3), we can also write

(D8)

&

+ + — n_
‘P:‘P*Jr‘l“:(wi W’f): "1 (Do)

wr Y 53

T

Let us study fermion bilinears. We define ¥ = ¥T and
find

¥~ = (wg.—y1).  (DI0)
The fermion bilinears without derivatives are given by
PY = PP+ L PP, (D11)

which are written in terms of the 4D Weyl fermions as

VW =y g — YRy
(D12)

YW =yl v

To obtain the kinetic terms for fermion fields, we use the
fermion bilinears with a derivative,

PIr¥g,,¥ = $Ivo, ¥+ + ¥ T, v, (D13)
where
“o i(ds — i
rMaM:(_ v % 6)). (D14)
(05 + idg) —y*o,

Thus, by using the 4D Weyl fermions, we can rewrite the
above as

VMO Wt = 0wt + wer' ok
+ w1 i(0s — i06 )y — yri(ds + ids)yry
(D15)

YTy Y™ = Yyt o +wrrt ok
+ygi(0s — idg)wp — i i(0s + ids)w-
(D16)

The mixing terms between w; and w7 include the
derivatives on the extradimensional coordinates.

To deal with the gamma matrices and study fermion
fields on M* x T?/Z;, it is useful to introduce the oblique
coordinates discussed in Sec. II. With the oblique coor-
dinates y' and y? found in Eq. (2.2), we naturally define the
new gamma matrices from I'> and I'® as
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1 5 1 6 2 0 _6)
=I5+ —_ro=-" ® 1.

Vi V3le 0
2 2 0 1
=_"_rf=_" 1. D17
Vi V3 (—1 0> ol 1
As expected, they satisfy
'y =247, {1} =0, (DI8)

where ¢'/ is the metric in Eq. (2.16). It is also natural to

define I'yi = —g; ijj, which are explicitly written as
/01 {0 @
Fyl = —1 1 O ®14, FyZI—l o 0 ®I4 (D19)

We also introduce the useful notations:

/0 w
Fyzz—ryl—ryz:—l<&) 0)@]4, Fyi+3 :Fyi. (DZO)

Then, Eq. (D14) is rewritten as
3

N 2
FMOM = I—Waﬂ - gljryiayj = Fﬂaﬂ - gzryfayf
=1

(D21)

< 70, i5(0y1 + @0, +w6},3)>
~ \i2(0y + o, +@0y) ~7*a, '
(D22)

Let us discuss the BC on T?/Z; related to the Z,
transformation y' — S;[y’] for fermion fields. The Z;
transformation generated by S is a SO(2) = U(1) rotation
with the angle 27/3 on a two-dimensional Euclidean space,
under which the derivative dy; transforms to dyi-1 as in
Eq. (2.19). It is convenient to define a matrix Sy that
satisfies

SelySy =Ty, [[.5¢]=0, SiSy=1,®1, (D23)
One of the possible choices is
- o 0
0 @

Using Sy, we can define the transformation law of the 6D
Dirac fermion ¥ under the SO(2) rotation with the angle
27/3 as ¥ — Sy¥ so that the 27 rotation gives ¥ — —P.
One sees that the 27/3 rotation keeps the fermion bilinear
in Eq. (D13) invariant as required from the 6D Lorentz
invariance, with the help of the relation

s . P s
SLIOTM9,, 8y = S4T0 (Fﬂaﬂ -3 > Loy ) Sy (D25)
=1

2 3
=10 <rﬂaﬂ - gz:ryf_layf_l) =TTM9,.  (D26)
=1

We can define the BC for the 6D Dirac fermion ¥(x*, y')
as

W, SV]) = —wP Sy, y), (D27)

where p, € {0, +1} can be chosen by hand, and the overall
minus sign on the right-hand side originates from the
fermion number operator. We note that the BC in Eq. (D27)
is consistent with 8§ = 7 as required. Using the 4D Weyl
fermions, we rewrite the BC as follows:

i (. Soy]) = Py (o)),

+
L
wik (4, Soy]) = o Ty (2, y), (D28)

which allows us to leave a 4D chiral fermion spectrum as
the zero mode from a 6D Weyl fermion ¥+,
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