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We investigate the effects of a nonstandard interaction (NSI) extension of the standard model of particle
physics on solar neutrino flavor oscillations. This NSI model introduces a UZ0 ð1Þ gauge symmetry through
a Z0 boson that mixes with the photon, creating a neutral current between active neutrinos and matter fields
via a unique coupling to up and down quarks. The interaction is defined by a single parameter, ζo, which is
related to the Z0 boson’s mass mZ0 and coupling constant gZ0 . Notably, this model relaxes the bounds on
coherent elastic neutrino-nucleus scattering experiments and fits the experimental values of the anomalous
magnetic dipole moment of the muon. In this study, we use solar neutrino measurements and an up-to-date
standard solar model to evaluate the neutrino flavor oscillations and assess the constraints on ζo. Our study
indicates that the NSI model aligns with the current solar neutrino data when ζo is between −0.7 and 0.002.
These models have χ2ν values equal to or better than the standard neutrino flavor oscillation model, which
stands at a χ2ν of 3.12. The best NSI model comes with a ζo value of −0.2 and a χ2ν of 2.96. Including extra
data from the Darwin experiment in our analysis refines the range of ζo values from −0.7 to 0.002, down to
−0.5 to −0.002. These results hint at the possible existence of novel interactions, given that NSI models
achieve a comparable or superior fit to the solar neutrino data when contrasted with the prevailing standard
model of neutrino flavor oscillation.
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I. INTRODUCTION

Neutrinos are widely regarded as one of the most
valuable probes for studying the Standard Model (SM)
of elementary particles and fundamental interactions,
thanks to their unexpected behavior when compared to
other elementary particles [e.g., [1,2] ]. This insight has
been derived from extensive experimental datasets from
detectors around the world. Our knowledge of neutrinos
spans many different physical contexts and energy scales,
from detecting astrophysical neutrinos with energies rang-
ing from MeV to PeV, to producing them in nuclear
reactors and accelerators with energies above MeV and
GeV, respectively [e.g., [3,4] ].
Astrophysical neutrinos have been historically at the

heart of some of the most compelling challenges to modern
physics and astrophysics. This sphere of exploration
includes groundbreaking discoveries, such as the detection
of solar neutrinos, as evidenced by Davis et al. [5], and the
identification of neutrino production in remarkable events

like Supernova 1987A, as reported by Hirata et al. [6] and
Bionta et al. [7]. Additionally, the recent discovery of high-
energy neutrinos sourced from distant celestial entities, as
chronicled by the IceCube Collaboration et al. [8], high-
lights the substantial advancements unfolding within the
specialized field of neutrino astronomy. A historical per-
spective on the critical role of astrophysical neutrinos
within modern physics can be gleaned from comprehensive
reviews, such as those by Zuber [9], Gerbino and Lattanzi
[10], Fuller and Haxton [11], and Nakahata [12]. These
phenomena have collectively designated neutrinos as the
ultimate messengers of novel physics extending beyond the
Standard Model’s boundaries.
Despite the SM providing the framework for how

neutrinos interact with leptons and quarks through weak
interactions, many fundamental questions remain unan-
swered, such as the mechanism for neutrino mass gener-
ation or whether neutrinos are Dirac or Majorana particles.
For a more detailed account, please refer to the compre-
hensive reviews by Mohapatra et al. [13] and Athar et al.
[14]. These questions provide solid motivation for thor-
oughly testing the standard picture of the three-neutrino
flavor oscillation [e.g., [15,16] ]. Specifically, neutrino
oscillations over the years have presented compelling
evidence for novel physics surpassing the boundaries of
the Standard Model, as evidenced by Fukuda et al. [17] and
Ahmad et al. [18]. Consequently, they function as a highly
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effective tool for examining the possible presence of novel
particles and their interactions. With the increasing sensi-
tivity of neutrino experiments [19], it is timely to inves-
tigate whether there are any new interactions between
neutrinos and matter.
The particle physics community has proposed many

alternative neutrino physics models to address these ques-
tions, including simple extensions to the SM and models
addressing the origin of dark matter, dark energy, and
experimental neutrino anomalies [e.g., [20–24] ]. These
models encompass the introduction of novel particles,
including new types of fermions and bosons, such as sterile
neutrinos and axionlike particles [e.g., [14,19,25–28] ].
In this article, we delve into the impact of a new quark

neutrino interaction on the three neutrino flavor oscillation
model [16], which is predicted by the current standard solar
model [e.g., [29–31] ]. This nonstandard interaction (NSI)
model, developed by Bernal and Farzan [32], provides a
compelling explanation for some of the unsettled experi-
mental data, including the coherent elastic neutrino-nucleus
scattering (CEνNS) experiments [33] and the anomalous
magnetic dipole moment of the muon ðg − 2Þμ [34]. This
model is based on a Uð1Þ gauge symmetry, incorporating a
light gauge boson that mixes with the photon [e.g., [35,36] ].
The coupling of neutrinos with up (u-) and down (d-)

quarks leads to a ratio that nullifies the contribution to
the CEνNS amplitude, relaxing the constraint on the NSI
model with the CEνNS experimental measurements [33].
Furthermore, the constraints imposed on the parameter
space of this model through experimental and observational
bounds lead to a solution that is compatible with the ðg − 2Þμ
anomaly.
Here, we present novel constraints on the NSI model

using state-of-the-art solar neutrino data and an up-to-date
standard solar model [e.g., [37] ]. Furthermore, we deter-
mine the parameter range that is consistent with solar
neutrino experimental measurements and predict potential
constraints that could be derived from future neutrino
experiments.
The article is organized as follows: Sec. II provides a

summary of the nonstandard quark-neutrino model used in
this work. In Sec. III, we calculate the survival probability
of electron neutrinos. Next, Sec. IV presents the constraints
obtained from the standard solar model. Finally, Sec. V
provides a summary and draws conclusions.

II. NEUTRINOS AND NONSTANDARD
INTERACTION WITH QUARKS

Here, we consider an extension to the standard model of
elementary particles and fundamental interactions with a
new interaction between active neutrinos and up and down
quarks [e.g., [19,27,38–40] ]. Accordingly, we consider
that our model’s Lagrangian density L corresponds to the
sum of the standard model’s Lagrangian LST plus a
nonstandard interaction (NSI) Lagrangian LNSI. Hence,

L ¼ LST þ LNSI; ð1Þ

where LNSI is the effective Lagrangian that describes the
NSI contribution resulting from the neutrino propagation in
matter [e.g., [27,41] ]. In this study, we focus on an
extension of the standard model by a new local group
UZ0 ð1Þ. Z0 denotes the gauge boson of theUZ0 ð1Þ symmetry
group. We also assume that Z0 has a mass mZ0 and couples
to matter with a coupling constant gZ0 . The LNSI corre-
sponds now to a NSI vectorlike interaction [32], such that
LNSI ≡ LZ0 , where LZ0 is defined as

LZ0 ¼ 2
ffiffiffi
2

p
GFϵ

f
αβ

�
ν̄αγμ

1 − γ5
2

νβ

�
ðf̄γμfÞ; ð2Þ

where α and β refer to neutrino flavors e, μ and τ; and f and
f̄ correspond to the fermions or antifermions: up quarks,
down quarks, and electrons. The previous Lagrangian
[Eq. (2)] corresponds an NSI model with an arbitrary
ratio of NSI coupling to the u—and d—quarks [e.g.,
[35,42,43] ]. Since we are interested in only the contribu-
tion of the NSI interaction for the neutrino oscillation
experiments, only the vector part contributes to the inter-
action ϵfαβ. Consequently, the coherent forward scattering of
neutrino in the matter is unpolarized [e.g., [27] ]. In the case
where jϵfαβj ∼ 1, the contribution of NSI becomes as strong

as the weak interaction. We notice, in the limit that ϵfαβ ¼ 0,
we obtain the standard case for which L ¼ LST (LNSI ¼ 0).
Here, we describe the propagation of neutrinos through

vacuum and matter employing the three-flavor neutrino
oscillation model [e.g., [26,44,45] ]. As usual, we follow
the standard convention, ðνe; ντ; νμÞ, ðν1; ν2; ν3Þ, and
ðm1; m2; m3Þ correspond to the neutrino flavors, neutrino
mass eigenstates, and the associated neutrino masses.
Accordingly, the neutrino evolution equation reads

i
dΨ
dr

¼ HνΨ ¼ ðHvac þHmatÞΨ; ð3Þ

where r (distance to the center of the Sun) is the coordinate
along the neutrino trajectory, Hν is the Hamiltonian, and
Ψ ¼ ðνe; ντ; νμÞT . Conveniently, we can decompose thisHν

in a vacuum and matter components:Hvac ¼ UM2U†=ð2EÞ
andHmat ≡ V, where E is the energy of the neutrino, M2 ¼
diagð0;Δm2

21;Δm2
31Þ is the neutrino mass matrix, U is a

unitary matrix describing the mixing of neutrinos in
vacuum, V is a diagonal matrix of Wolfenstein potentials.
Δm2

21 and Δm2
31 are the mass-squared differences between

neutrinos of different mass eigenstates, such as Δm2
21 ¼

m2
2 −m2

1 and Δm2
31 ¼ m2

3 −m2
1. Moreover, we decompose

V into two additional components [32], one related to the
standard matter interactions and another one to NSI
interactions,
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V ¼ VSM þ VNSI; ð4Þ

where VSM is the standard matter Wolfenstein potential
defined as VSM¼diagðVSM

e ;0;0Þ, and VNSI is the NSI matter
Wolfenstein potential defined as VNSI¼diagð0;VNSI

μ ;VNSI
τ Þ.

Therefore, the nonstandard interactions matrix, symbolized
asVNSI, is characterized as a diagonal3 × 3matrix,mirroring
the structure of the standardWolfenstein potential denoted as
VSM. This process corresponds to a generalization of the
well-known Mikheyev-Smirnov-Wolfenstein effect [MSW;
[46,47] ]. For the standardWolfenstein potential for neutrino
propagation [16], we conveniently chose to define it as

VSM
e ¼

ffiffiffi
2

p
GFneðrÞ; ð5Þ

where GF is the Fermi constant and neðrÞ is the number
density of electrons inside the Sun.
In this study, we focus on the NSI model proposed by

Bernal and Farzan [32]. They have opted to impose in this
NSI model the additional condition: the lepton numbers Lμ

and Lτ, the baryon numbers Bi with flavor i (such that
i ¼ 1, 2, 3 corresponding to the three generations) and
any arbitrary real value of co, fulfil the following rule:
Lμ þ Lτ − coðB1 þ B2Þ − 2B3ð1 − coÞ, which accommo-
dates the B meson anomalies observed at LHC [48], under
which the model is anomaly free [49]. The relationship
established earlier shows that if we consider an arbitrary
real number, such as co ≠ 2=3, then the UZ0 ð1Þ charges of
the third generation of quarks will differ from those of the
first and second generations. In the model calculated by
Bernal and Farzan [32], the nonstandard interaction con-
tribution to the potential, which relates to neutrino propa-
gation in matter, assumes a straightforward form: VNSI

μ ¼
VNSI
τ ¼ VZ0 . Here, VZ0 is defined as

VZ0 ¼ 2
ffiffiffi
2

p
GFneðrÞϵZ0ðrÞ; ð6Þ

demonstrating the relationship between the NSI potential,
the Fermi constant (GF), electron density (ne), and the NSI
strength parameter (ϵZ0).
In the previous equation, ϵZ0ðrÞ estimates the contribu-

tion of the NSI Lagrangian. Here, ϵZ0ðrÞ is given by

ϵZ0ðrÞ ¼ ζo
nnðrÞ þ npðrÞ

neðrÞ
; ð7Þ

where ζo ¼ −cog2Z0=ð2
ffiffiffi
2

p
GFm2

Z0 Þ, and nnðrÞ and npðrÞ are
the number density of neutrons and protons or u—quarks
and d—quarks inside the Sun. We notice ζo, like co can be
a positive or negative value. A detailed account of this
model is available in Bernal and Farzan [32], and additional
information is available in other related articles [e.g.,
[50,51] ]. Furthermore, we will assume that the Z0 boson’s
mass is sufficiently large, and there is no need to consider

the size of the medium in the computation of the
Welfonstein potentials [52].
The standard three-flavor neutrino oscillation model

features a universal term, denoted as VSM
e , that applies to

all active neutrino flavors and does not alter the flavor
oscillation pattern. This allows us to simplify the model by
setting V ¼ VSM ≡ diagðVSM

e ; 0; 0Þ Now, the inclusion of
NSI interaction in the model alters V [see Eq. (4)] by
incorporating a new interaction with u—and d—quarks, as
a consequence, V ¼ diagðVSM

e ; VZ0 ; VZ0 Þ. Now, if we sub-
tract the common term, VZ0 [Eq. (6)] to the diagonal matrix
V [e.g., [26] ], the latter takes the simple form V ¼
diagðVeff ; 0; 0Þ with Veff ≡ VSM

e − VZ0 defined as

Veff ¼
ffiffiffi
2

p
GFneffðrÞ; ð8Þ

and neffðrÞ is the effective number density given by

neff ¼ neðrÞ½1 − 2ϵZ0ðrÞ�; ð9Þ

where ϵZ0 is given by Eq. (7).

III. SOLAR NEUTRINOS: SURVIVAL
PROBABILITY OF ELECTRON NEUTRINOS

We compute the survival probability of electron neu-
trinos PeðEÞ of several NSI models with different ζo
[Eq. (7)] values and compare them with the data from
recent solar neutrino experiments. Several groups have
shown that, at a reasonable approximation, the neutrino
flavor oscillations are adiabatic [53–55]. As such, we can
compute a full analytical PeðEÞ expression that agrees with
the current solar neutrino data [e.g., [56] ]. Moreover, many
authors opted to include a second-order nonadiabatic
contribution in PeðEÞ by modifying the original adiabatic
PeðEÞ expression [e.g., [54,56–59] ]. The reader can find a
detailed discussion about nonadiabatic neutrino flavor
oscillations in many articles, among others, the following
ones: Gonzalez-Garcia and Nir [60], and Fantini et al. [61].
Here, we follow a recent review of particle physics on

this topic [62], specifically in the computation described in
the “Neutrino Masses, Mixing, and Oscillations” section
[[63], the update of November 2017]. The survival prob-
ability of electron neutrinos PeðEÞ is given by

PeðEÞ ≈ cos4ðθ13ÞP2νe
e þ sin4ðθ13Þ ð10Þ

and

P2νe
e ðEÞ ¼ 1

2
þ
�
1

2
− Pγ

�
cos ð2θ12Þ cos ð2θmÞ: ð11Þ

In the previous expression, P2νe
e ðEÞ gives the survival

probability of electron neutrinos in the two neutrino flavor
model (θ13 ¼ 0), Pγ computes the probability jumps
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coming from the nonadiabatic correction, and θm ¼ θmðrsÞ
is the matter mixing angle [64]. θm is evaluated in the
neutrino production (source) region located at a distance rs
from the Sun’s center [e.g., [65,66] ]. The jump probability
Pγ reads

Pγ ¼
e−γ sin

2 θ12 − e−γ

1 − e−γ
PH; ð12Þ

where γ ¼ 2πhγΔm2
21=2E, hγ is the scale height [67] and

PH is a regular step function. The matter mixing angle [68]
θm is given by

cosð2θmÞ ¼
Amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
m þ sin2 ð2θ12Þ

p ; ð13Þ

where Am reads

Am ¼ cos ð2θ12Þ − Vm=Δm2
21: ð14Þ

In the standard case [53], it corresponds to Vm ¼
2VSM

e cos2ðθ13ÞE where VSM
e is given by Eq. (5).

However, VSM
e ðrÞ in this study will be replaced by a new

effective potential VeffðrÞ given by Eq. (8), with neffðrÞ
by Eq. (9).
We remind the reader that we use standard parametrization

for the neutrino flavor oscillations: mass square splitting and
angle between neutrinos of different flavors [e.g., [69] ].
Hence, we adopt the recent values obtained by the data
analysis of the standard three-neutrino flavor oscillation
model obtained by de Salas et al. [70]. Accordingly, for
a parametrization with a normal ordering of neutrino
masses the mass-square difference and the mixing angles
have the following values [see Table 3 of [70] ]: Δm2

21¼
7.50þ0.22

−0.20×10−5 eV2, sin2θ12¼0.318�0.016, and sin2θ13¼
0.02250þ0.00055

−0.00078 . Similarly, Δm2
31¼2.55þ0.02

−0.03×10−3 eV2 and
sin2 θ23 ¼ 0.574� 0.014.
The maximum production of neutrinos in the Sun’s core

occurs in a region between 0.01 and 0.25 solar radius, with
neutrino nuclear reactions of the proton-proton chain and
carbon-nitrogen-oxygen cycle occurring at different loca-
tions [e.g., [30,71] ]. These neutrinos produced at various
values of rs, when traveling towards the Sun’s surface,
follow paths of different lengths. Moreover, neutrinos
experience varying plasma conditions during their travel-
ing, including a rapid decrease of the electron density from
the center towards the surface. In general, we expect that
nonadiabatic corrections averaged out and be negligible
along the trajectory of the neutrinos, except at the boun-
daries (layer of rapid potential transition) of the neutrino
path, typically around the neutrino production point or at
the surface of the Sun. Therefore, we could expect Eq. (11)
to be very different when considering such effects.
Nevertheless, this is not the case: de Holanda et al. [72]

analyzed in detail the contribution to Pe [Eq. (10)] coming
from nonadiabaticity corrections and variation on the
locations of neutrino production, i.e., rs, and they found
that the impact is minimal. Generally, Pγ ¼ 0 [Eq. (12)]
corresponds to an adiabatic flavor conversion and Pγ ≠ 0 to
a nonadiabatic one. For reference, the conversion is called
nonadiabatic only if Pγ ≠ 0 has a non-negligible value.
We notice that inside the Sun, the number densities of

electrons, protons, and neutrons vary considerably among
the different neutrino paths. Accordingly, neðrÞ, npðrÞ, and
nnðrÞ decrease monotonically from the center towards the
surface. As the neutrinos produced in the core propagate
towards the surface, a fraction is converted to other flavors.
The magnitude of this conversion depends on the neutrino’s
energy and the coupling constant to electrons, up quarks
and down quarks. We remember that in the standard
neutrino flavor oscillation model with ζo ¼ 0, only the
neðrÞ contributes to the matter flavor conversion. However,
in our NSI model with ζo ≠ 0, the npðrÞ and nnðrÞ also
participate in the flavor conversion.
Neutrinos in their path will cross a layer where Am ¼ 0

[Eq. (14)]. This layer is defined by the resonance condition,

Vm ¼ Δm2
21 cos ð2θ12Þ: ð15Þ

We compute the effective number density associated with
the resonance condition by matching Eqs. (14) and (15).
Therefore, the neff in the resonance layer reads

noeff ≡ neffðroÞ ¼
Δm2

21 cos ð2θ12Þ
2

ffiffiffi
2

p
GFE cos2ðθ31Þ

; ð16Þ

where r ¼ ro (≠ hγ) is defined as the layer where the
resonance condition neffðroÞ ¼ nresðEÞ occurs. We observe
that in the previous equation, noeffðrÞ corresponds to the
quantity defined in Eq. (9). Although in the classic case
(ϵZ0 ¼ 0), the effective number density is equivalent to the
electronic number density in the resonance layer:
neffðroÞ ¼ noeðroÞ. In general, the adiabatic and nonadia-
batic nature of neutrino oscillations depends of the neu-
trino’s energy E and the relative value of the resonance
condition of nresðEÞ [Eq. (16)]. For instance, if a neutrino of
energy E is such that: (i) noeffðEÞ ≫ neff neutrinos oscillate
practically as in vacuum, (ii) noeff ≪ neffðEÞ oscillations as
suppressed in the presence of matter [63].
In our models, most of the cases correspond to adiabatic

transitions, for which Pγ ≈ 0. Nevertheless, it is possible to
compute the contribution of the nonadiabatic component
Pγ to PeðEÞ by using Eq. (12) and the following pre-
scription: (i) compute the value of noeff [using Eq. (16)] for
each value of E (with fixed values of Δm2

12, θ12 and θ13),
(ii) calculate the scale-height hγ ¼ jneff=ðdneff=drÞjro at the
point ro defined as neffðroÞ ¼ noeffðEÞ, (iii) calculate Pγ and
γ for the value of hγ . The scale height hγ also reads
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hγ ¼ jðd ln neff=drÞ−1jro . Conveniently, to properly take
into account the nonadiabatic correction into Eqs. (11)
and (12), we included the step function PH, defined as
PHðVm − Δm2

21 cos ð2θ12ÞÞ. This function is one for
Δm2

21 cos ð2θ12Þ ≤ Vm, and is 0 otherwise [e.g., [73] ].
Figure 1 shows PeðEÞ for the standard neutrino flavor
oscillation model. In any case, in this study, we focus on the
solar neutrino energy window (0.1 up to 20 MeV), as the Pγ

contribution for PeðEÞ is negligible.
Numerous studies [e.g., [71,74] ] have highlighted that

the nuclear reactions occurring in the Sun’s core produce a
significant amount of electron neutrinos. Due to their
extensive mean free path, these neutrinos interact mini-
mally with the solar plasma as they travel towards Earth.
During their journey, these particles undergo flavor oscil-
lations (neutrino’s energy range spans from 0.1 to
100 MeV): lower-energy neutrinos experience flavor
transformations due to vacuum flavor oscillations, while
high-energy neutrinos participate in additional flavor oscil-
lations, courtesy of the MSW effect or matter flavor
oscillations [46,47]. This additional oscillation mechanism
is significantly influenced by both the origin of the
neutrino-emitting nuclear reactions and the energy of the
produced neutrinos.
Here, we will investigate the influence of these revised

NSI neutrino models on the flux variation of different
neutrino flavors. Specifically, we will consider how these
variations are affected by the local alterations in the
distributions of protons and neutrons. This new flavor

mechanism will affect all electron neutrinos produced in the
proton-proton (PP) chain reactions and carbon-nitrogen-
oxygen (CNO) cycle [56,74]. Therefore, the survival
probability of electron neutrinos associated with each
nuclear reaction will depend on the location of the neutrino
source in the solar interior. A detailed discussion of how the
location of solar neutrino sources affects PeðEÞ [Eq. (10)]
can be found on Lopes [56,74]. The average survival
probability of electron neutrinos for each nuclear reaction
in the solar interior, i.e., Pe;k (≡hPeðEÞik) is computed as

Pe;kðEÞ ¼ A−1
k

Z
R⊙

0

PeðE; rÞϕkðrÞ4πρðrÞr2dr; ð17Þ

where Ak ð¼ R R⊙
0 ϕiðrÞ4πρðrÞr2dr in which ϕkðrÞ is the

electron neutrino emission function for the k solar nuclear
reaction) is a normalization constant, and k corresponds to
the following solar neutrino sources: pp, pep, 8B, 7Be, 13N,
15O, and 17F.
The probability of electron-neutrinos changing flavor is

influenced by variables tied to both vacuum and matter
oscillations and the intrinsic physics of the Sun’s interior. In
particular, matter flavor conversion significantly relies on
the local plasma conditions. Consequently, the quantity of
electron neutrinos detected on Earth for each “k” species, as
indicated by Φ⊗;kðEÞ, diverges markedly from the electron
neutrinos generated by each neutrino-producing nuclear
reaction, denoted as Φ⊙;kðEÞ. These quantities are related
as follows:

Φ⊗;kðEÞ ¼ Pe;kðEÞΦ⊙;kðEÞ; ð18Þ

where Pe;kðEÞ [Eq. (17)] is the electron-neutrino survival
probability of a neutrino of energy E. In this study, k is
equal to 8B or 7Be.

IV. CONSTRAINTS TO NSI NEUTRINO MODEL

We now turn our attention to the impact of the non-
standard interactions model on neutrino flavor oscillations,
as explored in previous sections. Specifically, we calculate
the survival probability of electron neutrinos for varying
values of the NSI parameter ζo [as per Eq. (16)]. This
analysis applies to an updated standard solar model
characterized by low metallicity, or “low-Z.” A compre-
hensive explanation of the origins of low-Z solar models is
presented in the review article of Haxton et al. [59]. For
further exploration of the impact of low metallicity on solar
modeling, we refer to the articles by Serenelli et al. [75],
Vinyoles et al. [76], and Capelo and Lopes [29].
We obtain the present-day Sun’s internal structure using

an up-to-date standard solar model that agrees relatively
well with current neutrino fluxes and helioseismic datasets.
To that end, we use a one-dimensional stellar evolution
code that follows the star’s evolution from the premain

10-1 100 101 102
0.3

0.35

0.4

0.45

0.5

0.55

FIG. 1. The survival probability of the electron neutrino PeðEÞ
[Eqs. (10) and (11)] computed for the standard model of neutrino
flavor oscillations. We use an updated version of the standard
solar model for this calculation. See main text for details. We
compute PeðEÞ including the term Pγ [Eq. (12)] in two cases: one
where we include the probability jump term Pγ ≠ 0 (continuous
blue curves) and a second one for which Pγ ¼ 0 (dashed red
curve). Pγ is negligible for most of the neutrino energy interval
shown, becoming marginally significant for E ≥ 50 MeV.
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sequence phase until the present-day solar structure:
age, luminosity, and effective temperature, 4.57 Gyr,
3.8418×1033 ergs−1, and 5777°K, respectively. Moreover,
our solar reference model has the following observed
abundance ratio at the Sun’s surface: ðZs=XsÞ⊙¼ 0.01814,
where Zs and Xs are the metal and hydrogen abundances at
the star’s surface [29,31,77]. The details about the physics
of this standard solar model in which we use the AGSS09
(low-Z) solar abundances [78] are described in Capelo and
Lopes [29], and Lopes and Silk [30].
Figure 2 compares our predictions with current solar

neutrino data. Each data point illustrated herein represents
the measured survival probabilities of electron-neutrinos,
as captured by three solar neutrino detectors: SNO,
Super-Kamiokande, and Borexino. In detail: Borexino data
include measurements from pp reactions (yellow dia-
mond), 7Be reactions (red upward triangle), pep reactions
(blue downward triangle), and 8B reactions in the high-
energy region (HER), presented in salmon (HER), orange
(HER-I), and magenta (HER-II) circles. SNO’s 8B mea-
surements are denoted by a cyan square, while the joint
KamLAND=SNO7Be measurements are represented by a

green square. Refer to Borexino Collaboration et al. [79],
Agostini et al. [80], Bellini et al. [81], Abe et al. [82,83],
Aharmim et al. [84], Cravens et al. [85], and included
references for additional insight into this experimental data.
The lowest neutrino energy data point relates to the
anticipated precision of the Darwin experiment in meas-
uring Pe � ΔPe (ζo ¼ 0). Here, ΔPe has the potential to be
as reduced as 0.017, as suggested by Aalbers et al. [86].
Here, we compute Pe for several NSI models as given by
Eq. (10). It shows Pe for the standard three neutrino flavor
model (continuous red curve) and different NSI models
(other continuous coloured curves). Only a restricted set of
NSI models with relatively low ζo agree with all the
neutrino data. Notably, the NSI models with lower ζo have
an explicit agreement with the 8B measurements for
neutrino energies just below 10MeV (as depicted in Fig. 2).
For illustration, we present a selection of NSI models

that significantly diverges from the standard flavor oscil-
lation model in their impact on Pe. The degree of effect in
these NSI models depends on the value of ζo, the location
of neutrino emission, and the energy spectrum of neutrinos
from each nuclear reaction. We illustrate this impact in
Figs. 3 and 4, demonstrating how the parameter ζo
influences neutrino flavor oscillation [refer to Eq. (17)]
and modulates the 8B spectrum [see Eq. (18)]. To exemplify
the influence of the neutrino source location on Pe, Fig. 3
displays curves based on the presumption that neutrinos
originate from the Sun’s center, indicated as “Ref”. These
curves are then juxtaposed with those derived from
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FIG. 2. Survival probability of electron neutrinos in standard
and nonstandard interaction (NSI) neutrino flavor oscillation
models with distinct coupling to up and down quarks. Colored
continuous curves represent PeðEÞ [Eq. (10)] for various NSI
models, accompanied by the corresponding χν

2 values calculated
using Eq. (19). The NSI neutrino models include: ζo ¼ 2 (gold
curve, B): χν2 ¼ 111.6; ζo ¼ −2 (brown curve, C): χν2 ¼ 5.26;
ζo ¼ 0.002 (blue curve, D): χν2 ¼ 3.13; and ζo ¼ −0.04 (cyan
curve, E): χν

2 ¼ 2.99. The red curve (A) corresponds to the
standard neutrino flavor model with χν

2 ¼ 3.12, and the green
curve (F) represents the best-fit NSI model with ζo ¼ −0.5 and
χν

2 ¼ 2.96. Data points indicate the measured survival proba-
bilities of electron neutrinos by three solar neutrino detectors
(SNO, Super-Kamiokande, and Borexino) using a current stan-
dard solar model. For further details regarding the figure and data
points, please consult the main text and the referenced sources.
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FIG. 3. Survival probability of electron neutrinos: Curves
labeled 8B correspond to neutrinos generated by the 8B nuclear
reaction (ϕkðrÞ), as described in Eq. (17), while the curve labeled
as Ref represents the survival probability of electron neutrinos
[Eq. (10)] at the Sun’s center. The figure presents three distinct
sets of Pe;kðEÞ for two NSI models: ζo ¼ 2 (top set of curves),
ζo ¼ −2 (lower set of curves), and the standard neutrino flavor
model (middle set of curves).
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neutrinos generated by the 8B nuclear reaction for a variety
of ζo values.
To enhance the robustness of our analysis, we opt to

calculate a chi-squared-like test (χ2ν—test). This test lev-
erages the inherent reliance of Pe on the solar background
structure. Therefore, we define this chi-squared-like test as
follows:

χ2ν ¼
X
i;k

�
Pobs
e;k ðEiÞ − Pth

e;kðEiÞ
σobsðEiÞ

�2

: ð19Þ

This function compares our theoretical predictions with
the empirical data collected by various neutrino experi-
ments, evaluated at different energy values, E, used to
calculate the survival probability function Pe;kðEÞ, as
defined in Eq. (17). Here, the subscript “obs” and “th”
signify the observed and theoretical values, respectively, at
the neutrino energy Ei. The subscript i points to specific
experimental measurements (refer to Fig. 2), and k corre-
sponds to the source of solar neutrino [see Eq. (17)]. The
term σobsðEiÞ represents the error in measurement i. The
data points, Pobs

e;k ðEiÞ, are measurements derived from solar
neutrino experiments, as cited in Borexino Collaboration
et al. [79], Agostini et al. [80], Bellini et al. [81], Abe et al.
[82,83], Aharmim et al. [84], and Cravens et al. [85].
Figure 2 presents the experimental data points, Pobs

e;k ðEiÞ,
juxtaposed with the curves of select NSI models. The
corresponding χ2ν values for these models are explicitly

listed in the figure’s caption. In the χ2ν test, as described by
Eq. (19), the standard neutrino flavor model yields a χ2ν
value of 3.12.
For comparison, when the ζo values are at −2 and 2, the

corresponding χ2ν values are 5.26 and 111.6, respectively.
Our study reveals that a χ2ν value of 3.12 or less is achieved
when ζo lies between−0.7 and 0.002. This result is visually
demonstrated in Fig. 5 with a dashed horizontal line
intersecting the blue curve, which connects the series of
red circles at the points −0.7 and 0.002. According to this
preliminary analysis, an NSI neutrino model with ζo ¼
−0.2 yields a χ2ν value of 2.96, suggesting a better fit to the
solar neutrino data than the standard neutrino flavor model.

V. CONCLUSION

Currently, a new class of models based on flavor gauge
symmetries with a lighter gauge boson is being proposed in
the literature to resolve some of the current particle
anomalies in the standard model of physics. These new
interactions lead to nonstandard neutral current interactions
between neutrinos and quarks. Specifically, we focus on
studying and testing an NSI model proposed by Bernal and
Farzan [32] that incorporates a new U(1) gauge symmetry
through a light gauge boson Z0, which mixes with the
photon. The interaction leads to a neutral current between

FIG. 4. 8B solar neutrino spectrum [refer to Eq. (18)]: Φ⊗ðEÞ
represents the electron neutrino energy spectrum of 8B neutrinos
for the current Sun, measured on Earth and computed for two
NSI neutrino models: ζo ¼ 2 (gold area, (C) and ζo ¼ −2
(brown area, D), as well as the standard neutrino flavor
oscillation model (orange area, B). The dark blue curve (A)
corresponds to Φ⊙ðEÞ, the neutrino spectrum emitted from the
Sun’s interior. These neutrino spectra calculations utilize an up-
to-date standard solar model.
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FIG. 5. Values of the χ2ν-test plotted against the coupling
constant ζo for various NSI neutrino models. The red circles,
interconnected by a blue line, represent varying χ2ν values
corresponding to these NSI models, while the green vertical line
signifies the χ2ν of the standard neutrino model. The green circles,
linked with the salmon line, correspond to the same NSI model,
including a data point from the Darwin experiment. In this
calculation, we assign the Darwin data point a value correspond-
ing to PðEÞ, assuming ζo ¼ 0. The horizontal dashed lines guide
delineating the range between two sets of NSI models—those
without the Darwin data point (represented by the blue line) and
those incorporating the Darwin data point (depicted by the
salmon line).
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active neutrinos and matter fields, with an arbitrary
coupling to the up and down quarks. This model has some
intriguing features, as it relaxes the bound on the coherent
elastic neutrino-nucleus scattering experiments and fits the
measured value of the anomalous magnetic dipole moment
of the muon.
In this paper, we analyze the impact of the NSI model

proposed by Bernal and Farzan [32] on neutrino flavor
oscillations, using an up-to-date standard solar model that
is in good agreement with helioseismology and neutrino
flux datasets. Specifically, we examine the impact of this
nonstandard interaction model on the survival probability
of electron neutrinos, with a focus on the PP-chain nuclear
reactions taking place in the Sun’s core. Our results show
that the shapes of the neutrino spectra vary with the location
of the nuclear reactions in the core, depending on the
algebraic value of ζo. The effect is particularly visible in the
8B neutrino spectrum.
We find that the NSI models with −0.7 ≤ ζo ≤ 0.002

fit the solar neutrino data equal or better than the stan-
dard neutrino flavor model. The best NSI model corre-
sponds to ζo ¼ −0.2. From Eq. (7), we can derive a
relationship between the mass of the Z0 boson mZ0 , the
gauge coupling gZ0 , and the quark charge co: ζo ¼ −cog2Z0=
ð2 ffiffiffi

2
p

GFm2
Z0 Þ ¼ −0.2.

In essence, our research underscores the significance of
neutrino oscillation analyses in assessing NSI models. Our
findings reveal the potential of these neutrino models to
refine the parameters of NSI models. This methodology
provides a robust and independent means to confirm this
class of NSI models, especially as they address certain
existing experimental data anomalies, such as those
observed in coherent elastic neutrino-nucleus scattering
experiments and in measurements of the muon’s anomalous
magnetic dipole moment.
In the future, the validation or exclusion of such a class

of NSI models can be achieved more efficiently with new
solar neutrino detectors that can obtain much more accurate
measurements [e.g., [87–89] ]. For instance, the Darwin
experiment [86] is set to generate data that can better

calculate the survival rate of low-energy electron neutrinos
(see Fig. 2). The figure shows that by factoring in the
predicted precision from Darwin and presuming the PðEÞ
value to be standard at E ¼ 0.150 MeV (with ζo ¼ 0.0),
we anticipate a Pe � ΔPe where ΔPe ¼ 0.017. This addi-
tional data point from Darwin, when included in the χ2

analysis, narrows down the set of NSI models that perform
equal or better than the standard case in terms of χ2.
Specifically, it shifts the ζo interval from −0.7 to 0.002 to a
tighter range of −0.5 to −0.002. Furthermore, the addition
of this data point also decreases the χ2=d:o:f: value. For
reference, in Fig. 5, the models with a d.o.f. of 7 display
χ2ν=d:o:f: values that vary from 0.50 to 0.53 within the ζo
range of −1 to 0.2, and hit a local minimum of χ2ν=d:o:f: ¼
0.4 at ζo ¼ −0.2. Adding one more data point increases the
d.o.f. to 8 and adjusts the χ2ν=d:o:f: range to 0.48 to 0.47.
The local minimum remains at ζo ¼ −0.2, but its value
reduces to χ2ν=d:o:f: ¼ 0.37.
This work emphasizes the significance of NSI models in

defining the fundamental properties of particles and their
interactions, driving theoretical progress in this research
field. As research in experimental neutrino physics con-
tinues to advance at a rapid pace, studies of this nature will
be critical for comprehensive analysis of neutrino proper-
ties [90]. We anticipate that the innovative approach out-
lined in this paper will offer a fresh perspective for
exploring new particle physics interactions using the
standard solar model combined with a comprehensive
analysis of neutrino flavor oscillation experimental data.
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