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We compute the axion-pion scattering aπ → ππ, relevant for the axion thermalization rate in the early
Universe, within unitarized next-to-leading-order chiral perturbation theory. The latter extends the range of
validity of the chiral expansion of axion-pion scattering and thus provides a crucial ingredient for the
reliable determination of the relic density of thermal axions, whenever the axion decoupling temperature is
below that of the QCD phase transition. Implications for cosmological observables are briefly discussed.
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I. INTRODUCTION

The QCD axion is a well-motivated new physics
paradigm that provides at the same time a solution to
the strong CP problem [1–4] and a cold dark matter
candidate [5–8]. Additionally, a thermal population of
relativistic axions [9], behaving as dark radiation or hot
dark matter, might further contribute to the energy density
of the Universe. Thermally produced axions can be probed
by cosmic microwave background (CMB) experiments,
such as the Planck satellite [10,11], as well as planned
CMB Stage 4 (CMB-S4) surveys [12] which provide an
observational window on the axion couplings to the
Standard Model (SM) fields.
Depending on the axion decay constant fa (or, equiv-

alently, the axion mass ma ≃ 5.7 × 106 GeV=fa eV),
whose inverse sets the strength of axion couplings,
there are several processes stemming from the model-
independent axion coupling to gluons, αs

8π
a
fa
GG̃, which can

keep the axion in thermal equilibrium with the SM thermal
bath. For ma ≲ 10 meV, thermal axion production domi-
nantly proceeds via its scatterings with gluons [13,14],
corresponding to a decoupling temperature TD above the
GeV scale. On the other hand, for heavier axions one has
TD ≲ 1 GeV and hence processes involving pions and
nucleons must also be considered [15–17]. Although this
transition region cannot be precisely determined due to the
complications of the quark-hadron phase transition,1 for
axions approaching the eV scale the main thermalization
channel is provided by the scattering aπ → ππ [16,17],
with TD ≲ Tc, where Tc ≃ 155 MeV [20–22] is the QCD
deconfinement temperature. The highest attainable axion
mass from cosmological constraints on thermally produced
axions is known as the axion hot dark matter bound (for
recent analyses, see Refs. [23,24]), and it is mainly set by
the axion-pion thermalization rate.
The scattering aπ → ππ can be computed at low energies

within chiral perturbation theory (ChPT). The leading-order
(LO) calculation was performed in Refs. [16,17], while
Ref. [25] considered the impact of next-to-leading-order
(NLO) corrections in order to assess the convergence of the
chiral expansion. In this paper, we correct a mistake of
Ref. [25] regarding the evaluation of the loop function in the
NLO contribution. As discussed in the following, with the
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1It was recently proposed in Refs. [18,19] to interpolate the
axion thermalization rate by matching the known high- and low-
temperature asymptotic regions.
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corrected result it can still be argued that the tempera-
ture where the chiral expansion of the axion-pion thermal-
ization rate breaks down is Tχ ∼ 70 MeV, and hence it
remains a crucial question to extend the validity of ChPT
between Tχ and Tc ≃ 155 MeV. This is actually the main
goal of the present work, that is, to extend the chiral descrip-
tion of axion-pion scattering above the validity region of
standard ChPT, by employing a unitarization technique
known as the inverse amplitude method (IAM) [26–28].
This method restores exact elastic unitarity attached to the
so-called unitarity or right-handed cut of the amplitude,
while preserving crossing symmetry perturbatively.
The paper is structured as follows. In Sec. II we recall the

basic ingredients of the axion-pion chiral Lagrangian and
update the NLO correction to axion-pion scattering in
ChPT. In Sec. III we present the new calculation of the
axion-pion scattering within unitarized NLO ChPT, whose
impact on the axion-pion thermalization rate is sub-
sequently discussed in Sec. IV. In Sec. V we discuss the
convergence of the chiral expansion, while cosmological
implications are considered in Sec. VI, and we finally
conclude in Sec. VII. More technical details are deferred to
a set of appendices.

II. AXION-PION SCATTERING IN ChPT

At the LO in the chiral expansion, the axion-pion
effective Lagrangian is described by the contact inter-
actions (see, e.g., Refs. [29,30])

LLO
a−π ⊃

Caπ

fafπ
∂
μa½2∂μπ0πþπ− − π0∂μπ

þπ− − π0πþ∂μπ−�

ð1Þ
and coupling strength

Caπ ¼
1

3

�
md −mu

mu þmd
þ c0d − c0u

�
: ð2Þ

Here, c0u;d are model-dependent coefficients which depend
on the axion UV completion. For instance, c0u;d ¼ 0 in the
Kim-Shifman-Vainshtein-Zakharov model [31,32], while
c0u ¼ 1

3
cos2 β and c0d ¼ 1

3
sin2 β in the Dine-Fischler-

Srednicki-Zhitnitsky model [33,34], where tan β is the
ratio between the vacuum expectation values of two-
Higgs doublets.
For temperatures below the QCD phase transition, the

main processes relevant for the axion thermalization rate
are aðp1Þπ0ðp2Þ → πþðp3Þπ−ðp4Þ, whose amplitude at
LO reads

MLO
aπ0→πþπ− ¼ Caπ

fπfa

3

2
½m2

π − s�; ð3Þ

with s ¼ ðp1 þ p2Þ2, together with the crossed channels
aπ− → π0π− and aπþ → πþπ0. The amplitudes of the
latter are obtained by replacing s ↔ t ¼ ðp1 − p3Þ2 and
s ↔ u ¼ ðp1 − p4Þ2, respectively. Taking equal masses for
the neutral and charged pions, one finds the squared matrix
element (summed over the three channels above) [17]

X
jMj2LO ¼

�
Caπ

fafπ

�
2 9

4
½s2 þ t2 þ u2 − 3m4

π�: ð4Þ

The formulation of the axion-pion chiral Lagrangian
including axion derivative terms at the NLO was worked
out in Ref. [25] (see also Ref. [35]). The main ingredients
are the axion-dressed Oðp4Þ terms of the standard chiral
Lagrangian [36] and the NLO pion axial current to which
the axion couples derivatively. A nontrivial aspect, com-
pared to the standard two-flavor chiral Lagrangian, consists
in the mixing between the axion and the neutral pion, which
can be dealt with either by diagonalizing the axion-pion
propagator at the NLO or by explicitly retaining the mixing
in the Lehmann-Symanzik-Zimmermann reduction for-
mula [37] for the aπ → ππ scattering amplitude. For more
details, we refer the reader directly to Ref. [25].
However, Ref. [25] contained a mistake in the loop

function of the NLO scattering amplitude, related to a
wrong choice of the branch cut of the two-point unitary
loop function that affects the results for negative u and t.
The corrected aπ0 → πþπ− NLO amplitude is given in
AppendixA, togetherwith that foraπ0 → π0π0which enters
the cross section only at next-to-next-to-leading order
(NNLO) (as this channel is absent at LO), but which will
be needed for the nonperturbative unitarization method
of the NLO ChPT aπ → ππ amplitudes to be discussed
in Sec. III.
For the numerical evaluation of the perturbative

ChPT rates discussed in this work we use the central
values of the standard low-energy constants (LECs):
l1 ¼ −0.36ð59Þ [38], l2 ¼ 4.31ð11Þ [38], l3 ¼ 3.53ð26Þ
[39], l4 ¼ 4.73ð10Þ [39], l7 ¼ 7ð4Þ × 10−3 [40], along
with mu=md ¼ 0.50ð2Þ [39], fπ ¼ 92.1ð8Þ MeV [41], and
mπ ¼ 137 MeV (corresponding to the average neutral/
charged pion mass).

III. UNITARIZED AXION-PION SCATTERING

Partial-wave amplitudes (PWAs) are the most adequate
method to impose unitarity constraints on amplitudes
at low energies. As it is also conventional in studies of
ππ scattering, we start our analysis by projecting the
amplitudes M from the charge basis to a basis with
well-defined total isospin I, giving rise to the amplitudes
AI . For aπ0 → πþπ− and aπ0 → π0π0 scattering (see
Appendix B for conventions),
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A0 ¼ −
1ffiffiffi
3

p ð2Mþ− þM00Þ;

A2 ¼
ffiffiffi
2

3

r
ðM00 −Mþ−Þ; ð5Þ

where we have simplified the notation by indicating
the charges of the two final pions as subscripts of the
amplitudes in the charge basis. We have also used the
fact that Mþ− ¼ M−þ because of charge-conjugation
symmetry.
For aπþ → π0πþ scattering,

A1 ¼ −
1ffiffiffi
2

p ðMþ0 −M0þÞ;

A2
0 ¼ −

1ffiffiffi
2

p ðMþ0 þM0þÞ: ð6Þ

The amplitudes with definite isospin for aπ− → π0π− differ
from A1 and A0

2 only by a global minus sign. Note that A2

and A0
2 are different because the coupling of the axion with

pions violates isospin.
The projection of these amplitudes into a basis of states

with well-defined total angular momentum J is obtained by
means of the usual formulas for the PWAs of the scattering
of spin-zero particles,

AIJðsÞ ¼
1

2

Z þ1

−1
dxPJðxÞAIðs; xÞ;

AIðs; xÞ ¼
X∞
J¼0

ð2J þ 1ÞPJðxÞAIJðsÞ: ð7Þ

As long as inelasticities in aπ → ππ scattering can be
neglected (see discussion below), unitarity implies the
following algebraic constraint for its PWAs [28,42]:

ImAIJðsÞ ¼
σðsÞ
32π

AIJðsÞT�
IJðsÞθðs − 4m2

πÞ; ð8Þ

where σðsÞ is the phase-space factor defined below
Eq. (A1) and TIJðsÞ are the strong PWAs of ππ scattering
in the isospin basis. In Eq. (8) we are using the conventions
for the normalization of the states in Appendix B and have
included a Bose-symmetric factor of 1=2 that appears in the
isospin basis. From the unitarity relation it follows that the
continuous phases of AIJðsÞ and TIJðsÞ (i.e., phase shifts)
are the same, which is Watson’s theorem for final-state
interactions [43].
Unitarity is fulfilled only perturbatively in ChPT. Indeed,

if we denote the amplitudes calculated up to Oðp2nÞ in the

chiral expansion by Að2nÞ
IJ and Tð2nÞ

IJ , then Eq. (8) implies2

ImAð4Þ
IJ ðsÞ ¼

σðsÞ
32π

Að2Þ
IJ ðsÞTð2Þ

IJ ðsÞθðs − 4m2
πÞ: ð9Þ

Different methods have been proposed to impose exact
elastic unitarity in scattering amplitudes that match the
perturbative ChPT predictions at low energies. These have
seen multiple applications and led to very significant
progress in the understanding of the hadronic phenomena
(see Refs. [28,42,44,45] for recent reviews). In fact, ππ
scattering, with the characterization of the σ or f0ð500Þ
resonance, stands as one of the first successful applications
of these methods [28,44,46–49]. Given that the unitary
corrections to the ChPT NLO calculation of aπ → ππ
scattering will be given by the pion’s final-state inter-
actions, we expect the unitarization methods to provide a
realistic amplitude in the energy region relevant for the
axion hot dark matter bound.
In our analysis we focus on the IAM technique which

adopts the form

AIJðsÞ ¼
Að2Þ
IJ ðsÞ

1 − Að4Þ
IJ ðsÞ=Að2Þ

IJ ðsÞ
ð10Þ

and can also be regarded as a Padé approximant of the NLO
ChPT amplitude [50]. The IAM formula can be formally
derived using a dispersion relation [27,28,51,52] and the
different caveats and uncertainties of the method have been
thoroughly studied in Ref. [53]. One particular caveat
concerns the validity of the two-body unitarity relation
for s above the four-pion threshold. However, as discussed
and estimated quantitatively for ππ scattering in Ref. [53],
these inelastic contributions to the imaginary part are
suppressed and can be neglected for the energies of interest.
An obvious benefit of expanding the inverse of

the AIJ instead of the latter is that A−1
IJ has a zero at a

resonance pole, while AIJ becomes infinity. This makes the
IAM, in the form (10), a suitable method to address
resonance dynamics below the chiral expansion scale
ΛChSB ≃ 4πfπ [53]. This is also reflected in the two-body
elastic unitarity relation for the inverse amplitude, which
reads

ImA−1
IJ ðsÞ ¼ −

σðsÞ
32π

TIJðsÞ
AIJðsÞ

; ð11Þ

as can be easily deduced from Eq. (8). Therefore, a
resonance pole, which appears in both TIJ and AIJ, cancels
in their ratio.
For our analysis we implement the IAM for the PWAs in

the S wave (J ¼ 0, I ¼ 0, 2) and P wave (J ¼ 1, I ¼ 1).
The cases (I ¼ J ¼ 0, 1) are of special interest since they
correspond to the quantum numbers of the prominent
f0ð500Þ (also known as σ) and ρð770Þ resonances [54],
respectively, leading to large (unitarity) corrections to ππ
scattering in the low-energy region of interest below 1 GeV.

2We have explicitly checked that the imaginary parts of our
NLO results fulfill perturbative unitarity in the PWAs studied in
this work.
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The infinite tower of PWAs with J ≥ 2 can be included
perturbatively in ChPT. Indeed, we have checked that their
contribution is only of a few percent relative to the S and P
waves in the low-energy region. Therefore, we neglect
them in the following.
In Fig. 1 we show the phase shifts δIJðsÞ of the different

aπ → ππ PWAs compared to the experimental data from ππ
scattering, which should be identical as per Watson’s
theorem. Besides the prediction in the IAM, for comparison
we show the ππ scattering phase shifts obtained from
perturbative ChPT at LO and NLO. The latter is derived
using the results in Ref. [36] and the standard values
for the LECs introduced above in Sec. II. The perturbative
expressions for the phase shifts are described inAppendixC.
The LECs in IAM can be slightly different to those of
ChPT. In particular, for the IAM calculations we use the
combinations l1 − l2 ¼ −5.95ð2Þ, with l1 þ l2 ¼ 4.9ð6Þ,
determined from ππ scattering to fit the pole position and
width of the ρ resonance precisely [46]. This is illustrated in
the left panel of Fig. 1 by the good agreement of δ11ðsÞwith
data across the resonance region.
For the case of the phase shifts of aπ0 scattering the IAM

also agrees with the experimental data in both the I ¼ 0 and
I ¼ 2 channels. In particular, the amplitudes describe the
structure induced by the σ resonance in δ00ðsÞ. As
expected, the phase shifts obtained for the aπ scattering
amplitudes are equivalent to those calculated in Ref. [46]
for the ππ scattering amplitudes using the IAM. Note
that the worsening of the agreement in δ00 starting atffiffiffi
s

p ≳ 0.8 GeV is an effect induced by the increase
of the f0ð980Þ resonance and the subsequent strong
coupling to the KK̄ channel with a prominent threshold
effect [47,48,68], which are omitted in our SUð2Þ analysis.
In fact, our results for δ00ðsÞ are in very good agreement
with those obtained in Ref. [69] by unitarizing ππ scattering
calculated at NLO in SUð2Þ ChPT. On the other hand, the

energy range of applicability of the IAM framework can be
in principle improved by unitarizing the coupled ππ, KK̄,
and ηη interactions predicted by NLO SU(3) ChPT, as first
shown in Ref. [70].
In the left panel of Fig. 2 we present our theoretical

predictions for the aπ → ππ cross sections in the different
channels of the charge basis, obtained in the IAM by
inverting Eqs. (5)–(7). ChPT departs from the IAM results
at low energies,

ffiffiffi
s

p
≃ 0.5 GeV. In the case of the πþπ−

channel this is the typical scale at which unitarity correc-
tions become large due to the σ resonance in the I ¼ J ¼ 0

channel. In the case of the π�π0 channel the disagreement
is due to the prominent structure of the ρ resonance
emerging in the amplitude.
In the right panel of Fig. 2 we show the predictions in

IAM and ChPT for the sum of cross sections, which is the
quantity most closely related to the thermal rate to be
calculated in Sec. IV. NLO and higher-order corrections of
size estimated by including the NNLO pieces (from the
squared NLO contributions to the rate) start to get very
large around

ffiffiffi
s

p
≃ 0.6 GeV. In Appendix B we present a

more detailed comparison between ChPTat different orders
and the IAM for the cross sections and also the absolute
values of the PWAs.

IV. AXION-PION THERMALIZATION RATE

The axion-pion thermalization rate is defined via the
phase-space integral [16,17]

Γa ¼
1

neqa

Z
d3p1

ð2πÞ32E1

d3p2

ð2πÞ32E2

d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

×
X

jMj2ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ
× f1f2ð1þ f3Þð1þ f4Þ; ð12Þ

FIG. 1. Experimental data for the ππ → ππ phase shifts in the relevant channels compared to the theoretical aπ → ππ phase shifts in
IAM (solid red), and the ππ → ππ predictions at LO ChPT (dotted black) and NLO ChPT (dashed blue). The IAM predictions include
the 1σ confidence level regions that stem from the uncertainties in the LECs. The references for the data of the phase shifts for the ππ
PWAs are given next: δ11, Ref. [55] (pink squares) and Ref. [56] (black circles); δ20, Ref. [57] (pink triangles) and Ref. [58] (black
circles); δ00, Ref. [59] (green triangles), Ref. [60] (pink squares), and the average data from Refs. [61–66] (black circles). The average
procedure is explained in the δ0011 subsection of Ref. [67].
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where neqa ¼ ðζ3=π2ÞT3 and fi ¼ 1=ðeEi=T − 1Þ. Here we
neglect thermal corrections to the scattering matrix element,
which is a good approximation for T ≲mπ [71–73].
The integration of the thermal rate has been performed
following the same procedure presented in Ref. [25] (see
also Ref. [74]).
The perturbative result, Γa ¼ ΓLO

a þ ΓNLO
a , is obtained

by expanding the amplitude squared in ChPT as
P jMj2 ≃P jMj2LO þP

2Re½MLOM�
NLO� and it can be cast in the

following way:

ΓaðTÞ ¼
�
Caπ

fafπ

�
2

0.163T5½hLOðmπ=TÞ

− 0.251
T2

f2π
hNLOðmπ=TÞ�; ð13Þ

where the h functions are shown in Fig. 3. Note that
we normalized hLOðmπ=TcÞ ¼ hNLOðmπ=TcÞ ¼ 1, with
mπ=Tc ≃ 0.88. In fact, the h functions are meaningful only
for T ≲ Tc, since for higher temperatures pions are
deconfined.
On the other hand, the thermal rate obtained via the

unitarized IAM amplitude is given by

ΓIAM
a ðTÞ ¼

�
Caπ

fafπ

�
2

0.137T5hIAMðmπ=TÞ; ð14Þ

where we factored out a T5 dependence, which is character-
istic of the LO ChPT rate. In order to compare the IAM
result with the perturbative one (cf. Fig. 3), we also
normalized hIAMðmπ=TcÞ ¼ 1.
The integrals in Eq. (12) cover a broad range of energies

with contributions suppressed at high energies by the axion
and pion Boltzmann factors. In order to assess the

robustness of our predictions, especially at temperatures
close to Tc, it is important to investigate the relative
contributions to the thermal rate stemming from low
energies

ffiffiffi
s

p ≲ 1 GeV, which we deem the upper energy
limit of applicability for IAM (for further qualifications, see
Ref. [53]). In Fig. 4 we illustrate this by showing the
temperature dependence of

ffiffiffiffiffiffiffiffiffiffiffi
sMAX

p
which is the cutoff (inffiffiffi

s
p

) needed in Eq. (12) for the low-energy contribution to
describe 70%, 80%, or 90% of the total thermal rate. By
looking at the value of

ffiffiffiffiffiffiffiffiffiffiffi
sMAX

p
for T ≃ Tc we find that 90%

of the contribution to the thermal rates in IAM stem from
the low-energy region for all of the temperatures of interest
in our work.
In our analysis and in the parametrization shown in

Eq. (14) we use the result of Γa obtained by cutting off the
contributions in Eq. (12) at

ffiffiffiffiffiffiffiffiffiffiffi
sMAX

p ¼ 1 GeV. Moreover,
we estimate our theoretical error based on the difference
between the thermal rates calculated within the IAM with
and without cutoff.

FIG. 2. Cross sections σaðsÞ for axion-pion scattering in units of mb for fa ¼ fπ, so they scale as ∝ f−2a . Left: plots for aπ0 → πþπ−

(blue), aπ0 → π0π0 (magenta), and aπ� → π�π0 (orange). Solid, dashed, and dotted lines are the predictions in IAM, NLO ChPT, and
LO ChPT, respectively. We also include a dot-dashed magenta line describing the rate for the aπ0 → π0π0 channel in ChPT which is a
pure NLO contribution (the amplitude is zero at LO [25]). Right: sum of all the cross sections predicted in the IAM (solid, red) and in
ChPT at LO (dotted, black), NLO (dashed, blue), and including the squared NLO pieces (NNLO) in the cross section (dot-dashed,
green). Uncertainties in the IAM predictions are 1σ CL regions stemming from the errors in the LECs.

FIG. 3. Profile of the hLO, hNLO, and hIAM functions, normal-
ized to 1 at the value mπ=Tc ≃ 0.88.
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V. ON THE BREAKDOWN OF THE CHIRAL
EXPANSION

In Ref. [25] the ratio between the NLO correction and the
LO value of the axion-pion thermalization rate was taken as
a criterion for the breakdown of ChPT, by requiring that
jΓNLO

a =ΓLO
a j≲ 50%. However, it is more instructive to

inspect the breakdown of ChPT at the levels of both cross
sections and thermal rates, as well as for different final
states separately. This analysis is summarized in Fig. 5.
Starting from the ratio of cross sections in the left panel, we
observe that for the πþπ0 channel it reaches a maximal
value of ∼40% around

ffiffiffi
s

p
∼ 0.6 GeV, which agrees

approximately with the energy at which NLO ChPT departs
from the IAM prediction in Fig. 2. As discussed in Sec. III,
this is due to large unitarity corrections and the emergence
of the ρ resonance, which is ultimately the cause of the
breakdown of the chiral expansion in the I ¼ J ¼ 1
channel at those energies. In the middle panel of Fig. 5
we show the temperature dependence of the ratio between
the NLO and LO contributions to the thermal rates. In this
case, the maximum is reached at Tχ ∼ 70 MeV that,
according to our discussion for the cross sections, we
interpret as the temperature at which ChPT breaks down.
This correspondence between

ffiffiffi
s

p
and T can be supported

by different semiquantitative arguments. For instance, by
equating the NLO/LO ratio of cross sections and thermal
rates given in Fig. 5, one gets the correlation between

ffiffiffi
s

p
and T shown in Fig. 6. We have also checked that
alternative criteria, like, e.g., taking

ffiffiffi
s

p
∼ hEπiT þ hEaiT

in terms of the thermal average hEiT ¼ ρðTÞ=nðTÞ, give
similar results.
Finally, in the right panel of Fig. 5 we show the ratio of

the thermal rates between the results obtained with IAM
and ChPT at LO. The differences in this case are more
prominent and appear at lower temperatures. In fact,
significant differences are visible even at T ¼ 20 MeV
for the πþπ− channel. However, this is not surprising

given that a similar effect at threshold is known from
ππ scattering. Indeed, higher-order corrections to the
I ¼ J ¼ 0 ππ scattering length at LO are around 25% [75],
which at the level of the cross sections implies a correction
of around 50% near threshold.

VI. COSMOLOGICAL IMPLICATIONS

We next discuss the cosmological implications of the
newly computed axion-pion thermalization rate. While an
exhaustive treatment of cosmological observables is
beyond the scope of this paper (for recent analyses, see
Refs. [23,24]), here we focus on the axion contribution
to the effective number of extra relativistic degrees of
freedom [76],

ΔNeff ≃
4

7

�
43

4gSðTDÞ
�

4=3
; ð15Þ

where gSðTDÞ is the number of entropydegrees of freedomat
the axion decoupling temperature TD. The latter follows
from the decoupling condition, ΓaðTDÞ ≃HðTDÞ,3
in terms of the axion-pion thermalization rate in Eq. (12)
and the Hubble rate, HðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g⋆ðTÞ=45

p
T2=mpl

(assuming a radiation-dominated Universe), where
mpl ¼ 1.22 × 1019 GeV is the Planck mass and g⋆ðTÞ
denotes the effective number of relativistic degrees of
freedom. For the functions gSðTÞ and g⋆ðTÞ we employ
the values provided by Ref. [77].
In the following, we set the model-dependent axion

couplings to quarks in Eq. (2) to zero, i.e. c0u;d ¼ 0, in order
to represent the bound from ΔNeff as a function of ma (the
generalization to c0u;d ≠ 0 is straightforward; see, e.g.,
Ref. [78]). The perturbative and unitarized rates are shown
in Fig. 7 for the reference axion mass value ma¼ 0.3 eV.
For the IAM rate we employ a theoretical error that is based
on the criterion discussed at the end of Sec. IV.
The bound of ΔNeff from Planck 2018 data [10,11] on

the axion mass is finally displayed in Fig. 8, employing
different approximations for the ChPT calculation of the
axion-pion thermalization rate. With the IAM computation,
valid up to temperatures approaching Tc, we can extract the
conservative bound ma≲0.24 eV.
To assess the impact of the high-energy discrepancy

between the δ00 phase shift obtained from ππ data and the
theoretical IAM prediction (see Fig. 1), we also compute
the πþπ− and π0π0 rates by cutting off the energies aboveffiffiffi
s

p ≳ 0.8 GeV. Under this condition, the total rate is
reduced by 10% at T ¼ 150 MeV, with an error band
reaching 11%, in comparison to the 7% represented by the

FIG. 4. Temperature dependence of
ffiffiffiffiffiffiffiffiffiffiffi
sMAX

p
at which it is

sufficient to cut off the integration of the thermal rate in order
to get 90%, 80%, and 70% of the total rate (without cutoff) for the
LO and IAM cases. The plot shows the channel πþπ−.

3A more refined determination of the axion thermal density,
beyond the instantaneous decoupling approximation, would
require the solution of the associated Boltzmann equation (see,
e.g., Ref. [24]).
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red band in Fig. 7. The corresponding hot dark matter
bound would be ma≲0.25 eV.
We remark that in the region betweenma ¼ 0.1 and 1 eV

axions transit from behaving as dark radiation to hot dark
matter, so a more refined cosmological analysis would be

needed in this intermediate regime. On the other hand, for
ma ≲ 0.3 eV where the bound is extracted, the use of
ΔNeff is still adequate (see, e.g., Fig. 1 in Ref. [23]).
Finally, we note that the description in terms of axion dark
radiation is well justified in the presence of model-
dependent axion couplings c0u;d ≫ 1 (as in some axion
models [79]), since in order to keep Caπ=fa constant, the
relevant mass window gets shifted to lower values ofma, or
in symmetry-based models where the axion mass is
exponentially suppressed [80–82].

VII. CONCLUSIONS

The purpose of this work was twofold: to correct a
mistake in Ref. [25] about the NLO correction to aπ → ππ
scattering, and to extend the validity of the chiral descrip-
tion of axion-pion scattering by means of a unitarization
method known as IAM. While the axion-pion thermal-
ization rate can be computed within ChPT up to tempera-
tures of Tχ ∼ 70 MeV, the unitarization method allows one
to extend this further up to temperatures approaching the
QCD deconfinement, Tc ≃ 155 MeV. The IAM rate shows

FIG. 6.
ffiffiffi
s

p
− T correspondence, using two different criteria:

equating the % correction in the left and center panels of Fig. 5
(black line) and summing the axion-pion thermal energies in the
initial state of the scattering (orange line).

FIG. 7. Axion-pion thermalization rate vs Hubble rate (blue
line) for ma¼ 0.3 eV. The LO result, NLO correction, and total
rate at NLO are denoted by the dashed, dotted, and solid black
lines, respectively. In turn, the IAM rate is represented by a red
band, where the upper line is the rate without a cutoff and the
lower line is the rate cut off at

ffiffiffi
s

p ¼ 1 GeV.

FIG. 5. Left (center): ratio between the NLO correction and LO axion-pion cross section (thermalization rate), considering the
individual final-state channels πþπ− (red), πþπ0, and π−π0 (blue, with the latter two being equal) and their sum (black). Right: ratio
between the IAM (cutoff at 1 GeV) and LO thermalization rate.

FIG. 8. ΔNeff as a function of ma. The perturbative ChPT
predictions are extrapolated for illustrative purposes beyond the
temperature Tχ ∼ 70 MeV where the chiral expansion fails. The
LOþ NLO curve is stopped at ma ¼ 0.31 eV, corresponding to
the minimum value of ma for which the total rate at NLO
intersects the Hubble rate.
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a sizable deviation from the perturbative one for tempera-
tures T ≳ 40 MeV, corresponding to the contribution of the
σ and ρ resonances in the region

ffiffiffi
s

p ≳ 400 MeV for axion-
pion scattering.
Further improvements of particle physics aspects of the

calculation of the axion thermal relic could stem from
extending the analysis to three flavors which, as discussed
in Sec. III, can start to produce large effects from energiesffiffiffi
s

p
≃ 800 MeV and higher due to the kaon threshold and

the appearance of the f0ð980Þ. As discussed in Sec. IV and
illustrated in Fig. 4, these energies are only relevant for the
higher temperatures, which could indeed become important
to fully exploit future measurements of ΔNeff expected
from the CMB-S4 experiments. In this context, one should
also consider computing thermal corrections to the scatter-
ing amplitude (along the lines of the calculations done in
Refs. [83,84]) and, eventually, develop techniques to
describe axion thermal production in the intermediate
region between Tc ≃ 155 MeV and 1 GeV.
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Note added.—While completing this work, Ref. [85]
appeared on the arXiv, where the validity of ChPT for
axion-pion scattering is extended by using ππ scattering
data via a rescaling of the corresponding cross sections. In
Appendix D we provide a detailed comparison with the
methodology of Ref. [85], in which we show that we obtain
a reasonable agreement, up to subleading Oð8%Þ correc-
tions in the calculation of the thermal rate.

APPENDIX A: NLO AMPLITUDES

The full analytical expression of the renormalized NLO
amplitude for the aπ0 → πþπ− process reads

MNLO
aπ0→πþπ− ¼ Caπ

192π2f3πfa

(
15m2

πðuþ tÞ − 11u2 − 8ut − 11t2 − 6l1ðm2
π − sÞð2m2

π − sÞ

− 6l2ð−3m2
πðuþ tÞ þ 4m4

π þ u2 þ t2Þ þ 18l4m2
πðm2

π − sÞ

þ 3

"
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
sðm2

π − sÞ ln
�
σðsÞ − 1

σðsÞ þ 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

t

r
ðm2

πðt − 4uÞ þ 3m4
π þ tðu − tÞÞ ln

�
σðtÞ − 1

σðtÞ þ 1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

u

r
ðm2

πðu − 4tÞ þ 3m4
π þ uðt − uÞÞ ln

�
σðuÞ − 1

σðuÞ þ 1

�#)
−
4l7m2

πmdðs − 2m2
πÞmuðmd −muÞ

f3πfaðmd þmuÞ3
; ðA1Þ

where σðsÞ ¼ ð1 − 4m2
π=sÞ1=2. Note that the term proportional to l̄4 in the second row arises from the NLO correction to fπ

in the LO amplitude (see, e.g., Ref. [36]). The amplitudes for the crossed channels aπ− → π0π− and aπþ → πþπ0 are
obtained by cross symmetry through the replacements s ↔ t and s ↔ u, respectively. Similarly, for the aπ0 → π0π0

amplitude that is needed for the IAM unitarization method we obtain

Maπ0→π0π0 ¼
3Caπ

96π2f3πfa

�
−2ðl1 þ 2l2 þ 3Þð3m4

π − 3m2
πðtþ uÞ þ t2 þ tuþ u2Þ− 3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r
ðm2

π − sÞ2 ln
�
σðsÞ− 1

σðsÞ þ 1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

t

r
ðm2

π − tÞ2 ln
�
σðtÞ− 1

σðtÞ þ 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

u

r
ðm2

π − uÞ2 ln
�
σðuÞ− 1

σðuÞ þ 1

���
þ 36l7m4

πmdmuðmd −muÞ
f3πfaðmd þmuÞ3

:

ðA2Þ
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APPENDIX B: CONVENTIONS AND DETAILS
OF THE IAM ANALYSIS

The IAM analysis is performed at the level of PWAs,
which requires the relations between ππ states in the isospin
basis, labeled as jII3i for total isospin I and third component
I3, and the charge basis. For the πþπ− final state,

j00i ¼ −
1ffiffiffi
3

p ðjπþπ−i þ jπ−πþi þ jπ0π0iÞ;

j20i ¼ 1ffiffiffi
6

p ð2jπ0π0i − jπþπ−i − jπ−πþiÞ: ðB1Þ

For the π�π0 final state,

j2� 1i ¼ ∓ 1ffiffiffi
2

p ðjπ�π0i þ jπ0π�iÞ;

j1� 1i ¼ ∓ 1ffiffiffi
2

p ðjπ�π0i − jπ0π�iÞ: ðB2Þ

These relations have been used to project the chiral ampli-
tudes (given in the charge basis) onto the isospin basis,
leading to Eqs. (5) and (6).

FIG. 9. Absolute values of the PWAs in the different isospin and angular momentum channels considered in this work. The predictions
in IAM, ChPT at LO, and ChPT at NLO are shown by solid (red), dotted (black), and dashed (blue) lines, respectively. Error bands at 1σ
in the IAM stem from uncertainties in the LECs.

FIG. 10. Cross sections of the aπ0 → πþπ− (left) and aπþ → π0πþ (right) channels predicted by the IAM (solid, red) and in ChPT at
LO (dotted, black), NLO (dashed, blue), and including NNLO pieces (dot-dashed, green). Uncertainties in the IAM predictions are 1σ
CL regions stemming from the errors in the LECs.
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In the following we present additional results comparing
the different amplitudes included in our analysis. In Fig. 9
we show the absolute values of the PWAs in ChPT at LO
(black dotted lines), at NLO (blue dashed lines), and in the
IAM (red solid lines). In turn, in Fig. 10 we show the
contributions to the cross sections in separate channels (in
the charge basis) contributing to the thermal rate. Besides
the results in IAM (red solid lines), we show the ones in
ChPT at LO (black dotted lines), contributing to the cross
section like LO2, NLO (blue dashed lines), also adding to
the latter the LO-NLO interference terms and, finally, also
adding the NNLO contributions to the rates (green dot-
dashed lines).

APPENDIX C: CHPT EXPRESSIONS
OF PHASE SHIFTS

Let us describe a given aπ → ππ PWA (omitting indices
I and J) in ChPT up to NLO as

A ¼ A2 þ ReðA4Þ þ iρT2A2; ðC1Þ

where we have labeled the amplitudes by their chiral order
and ρ≡ ρðsÞ ¼ σðsÞ=32π. Then,

A ¼ eiδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ ReðA4ÞÞ2 þ ρ2T2

2A
2
2

q
¼ A2 þ ReðA4Þ þ iδ2A2 þOðp6Þ: ðC2Þ

Comparing the two equations, we obtain that

δ2 ¼ ρT2: ðC3Þ

A similar calculation can be done for ππ scattering PWAs
that we denote as T. Given the corresponding element of
the S matrix, S ¼ e2iδ ¼ 1þ 2iρT, with

T ¼ 1

ρ
eiδ sin δ: ðC4Þ

By matching its perturbative expansions, T ¼ T2 þ
T4 þOðp6Þ, to δ ¼ δ2 þ δ4 þOðp6Þ, one obtains

δ2 ¼ ρT2; ðC5Þ

δ4 ¼ ρReT4: ðC6Þ

These are the expressions employed to obtain the ChPT
phase shifts in Fig. 1.

APPENDIX D: COMPARISON WITH REF. [85]

A similar approach to treating the aπ ↔ ππ rate below
Tc was followed in Ref. [85] that appeared concurrently
with our work. This analysis uses a different chiral rotation
of the quark fields to transfer the aGG̃ term into the quark
mass matrix in which the derivative axion coupling to the
pion axial current vanishes and the complete axion-pion
interactions are recovered by the rotation of the a − π0

fields to the mass basis.
In this framework it becomes clear that up to chiral-

symmetry-breaking terms ∝ m2
π , one can obtain the

aπ → ππ scattering amplitude by rescaling the strong
π0π → ππ amplitudes with the corresponding mixing
angle θaπ ¼ 3Caπfπ=2fa. Reference [85] then used this
observation to obtain the axion-pion rates implementing
amplitudes stemming from a set of Roy equations and
dispersion-relation constraints calculated in Ref. [86]. In
comparison with a unitarization of the full NLO chiral
amplitude such as the one developed in this paper, this
procedure misses Oðm2

π=sÞ corrections that are expected to
be important only at small energies (or temperatures).
In Fig. 11 we illustrate this by comparing the results

obtained for the different channels using the full NLO
calculation of aπ → ππ in ChPT or using the NLO

FIG. 11. Comparison of the amplitudes and cross sections for the full NLO ChPT calculation of aπ → ππ (amplitude denoted by Aaπ)
and for the NLO ChPT calculation of π0π → ππ rescaled by θaπ (amplitude denoted by Tππ). In the left panel we show the ratio of the
absolute values of the amplitudes, while in the right panel we show a comparison of the cross sections unitarizing the corresponding
perturbative amplitudes with IAM.

LUCA DI LUZIO et al. PHYS. REV. D 108, 035025 (2023)

035025-10



calculation of π0π → ππ scattering [36] multiplied
by the mixing angle θaπ . From the left panel, showing
the ratio of the amplitudes in the two methods, we observe
that the Oðm2

π=sÞ corrections to the aπþ → π0πþ and
aπ0 → π0π0 are quite significant, up to 50–75% forffiffiffi
s

p ≲ 0.5 GeV, while they are small (of order 5% in the
same energy range) for the aπ0 → π−πþ channel.4

However, for
ffiffiffi
s

p ≲ 0.5 GeV, the π0πþ and π0π0 channels
are subdominant with respect to πþπ−, and thus the
differences in the total rate are small.
This is observed in the right panel of Fig. 11 where we

show the total cross sections obtained for the different

channels in the IAM using as perturbative input the full
NLO ChPT calculation or the one derived from NLO ChPT
of π0π → ππ rescaled by θaπ. In Fig. 12 we compare the full
thermal rates in the two approaches, where we show that
they agree within 8% (with higher discrepancy at higher T)
in the temperature range between 40 and 150 MeV. This
translates into a maximum 10% difference in the instanta-
neous decoupling temperature.
One could use different nonperturbative methods that at

low energies recover the chiral expansion up to some order
in ChPT and end up with unitarized PWAs with the correct
analytical properties [28]. A full analysis of the differences
in the prediction of the rate with the IAM method is beyond
the scope of our work. However, let us briefly discuss the
differences stemming from using another popular approach
called the N=D method [67] in meson-meson, meson-
baryon, and baryon-baryon scattering. A figure of merit in
the comparison between IAM andN=D in these cases is the
spread in the central values of the pole positions of the σ
and ρð770Þ resonances at different orders and in different
numbers of flavors of ChPT. For the σ we have a spread in
the real and imaginary parts of the pole position in

ffiffiffi
s

p
of

only 1.2% and 2.4%, respectively. We have taken the pole
positions reported by applying, on the one hand, the IAM
implemented from the NLO SU(2) [46], NNLO SU(2) [87],
and NLO SU(3) ChPT [46,48] and, on the other hand, the
N=D method applied from the NLO SU(2) [69], NNLO U
(3) [88], and tree-level ChPT [89]. Similarly, for the ρð770Þ
pole position in the

ffiffiffi
s

p
plane we find less than 1% and

2.7% of spread for the real and imaginary parts of the pole
positions, respectively. Here we have taken the pole
positions from Refs. [46,48,88]. These variations are
representative of the differences one typically encounters
between different methods to unitarize ChPT and we take
them as indicative of the corresponding uncertainties in our
approach. Note that these estimates are smaller than the
uncertainties due to the variation of the cutoff discussed
in Sec. VI.
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