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The idea that the gravity-induced breaking of global symmetries is encoded in Planck-suppressed
operators is not scale invariant: heavy particles which have nothing to do with the UV completion of gravity
can mediate the breaking and produce low-energy operators (partly) suppressed by their own mass scales.
Such contributions from heavy fields are typically subdominant with respect to the least Planck-suppressed
operators, unless the latter are forbidden, as is usual in solutions to the axion quality problem based on four-
dimensional gauge symmetries. Therefore, with a focus on axion physics, I investigate such situations and
present toy examples where a nonminimal sector of heavy fields coupling to the axion generates operators
whose coefficients are orders of magnitude larger than the naive Planck-suppressed estimates, despite
gravity being the only source of breaking. I also stress that the key features of these toy models, namely
several families of heavy fields with family-dependent gauge charges, are already present in some
nonminimal QCD axion models, using the axiflavon/flaxion and the lighter-than-usual KSVZ axion as
examples. This suggests that gauge-symmetry-based solutions to the axion quality problem, or of any
quality problem really, need to describe complete UV scenarios or make precise UV assumptions.

DOI: 10.1103/PhysRevD.108.035023

I. INTRODUCTION

The idea that quantum gravity violates global sym-
metries [1–3] is widely accepted, and constitutes a recurrent
constraint on particle physics model building: any global
symmetry should be accidental, i.e. the possible sources of
its breaking should be automatically suppressed as a result
of the field and gauge symmetry content of the model. For
QCD axions [4–7], which relax the θ̄ parameter of the
Standard Model (SM) to zero (see Refs. [8,9] for recent
reviews), the restricting power of this statement is espe-
cially clear [10–15]: even a slight breaking of the Peccei-
Quinn (PQ) symmetry can be detected given the sharp
bound on strong CP violation, coming for instance from
electric dipole moment (EDM) measurements [16–20],

jθ̄j≲ 10−10: ð1Þ

Indeed, given a contribution to the axion potential

δVðaÞ ¼ cΛ4
a cos

�
na
fa

þ β

�
ð2Þ

(where Λ4
a ≈ Λ3

QCDmu, fa is the axion decay constant, n an
arbitrary integer, and β and c arbitrary numbers), the PQ
solution to the strong CP problem is spoiled unless

jc sinðβ − nθ̄Þj≲ 10−10: ð3Þ

Similar relations arise for light axionlike particles (ALPs),
when one imposes that (2) be a minor correction to the
potential [21]. Henceforth, I use the words “PQ symmetry”
to refer to the shift symmetry of any ALP.
Assuming a weakly coupled UV completion where the

ALP arises from the phase of a complex scalar field ϕ,
dubbed “PQ scalar” below, at its vacuum expectation value
(vev), ϕ ¼ h faffiffi

2
p ieia=fa , (2) originates from operators of the

form

cUV
ϕn

Λn−4 þ H:c:; ð4Þ

where Λ is a scale of new physics and cUV ≡ c Λ4
aΛn−4

ðfa=
ffiffi
2

p Þn e
iβ.

For values of fa accounting for astrophysical bounds on the
simplest QCD axion models [22], the axion quality
problem then arises because (3) constitutes a strong tuning
on the parameters, even in the fortunate case where no
physics other than gravity breaks the PQ symmetry, i.e.
when one can take Λ ¼ MP in (4). (By gravity, I really
mean any Planck-scale dynamics directly associated to the
UV completion of gravity.)
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Although unjustified in the formulation above, the
tuning of (3) becomes natural when extra ingredients are
introduced. For instance, if gauge symmetries (which are
respected by gravity) enforce n ≫ 1, one gets c ≪ 1 for a
fixed,Oð1ÞcUV. A gauged Zn symmetry, under which ϕ →
e2πi=nϕ with n ¼ Oð10Þ, is the archetypal example [23].
Such a mechanism is at the core of gauge-symmetry-based
solutions to the axion quality problem, where the PQ
symmetry is preserved until operators of very high mass
dimensions are included, as an accidental consequence of
the gauge structure and field content of the model.
Therefore, it is customary to introduce a gauge symmetry
in the UV completion of the axion effective field theory
(EFT) (or better, to make appropriate use of an existing
gauge symmetry).
In this paper, I explore a simple aspect of this treatment

which (to my knowledge) has not been made explicit much
in the literature: one implicitly assumes that, besides
gravity, no dynamics in the full UV completion generates
operators of the form (4). If that does not hold, not all scales
in the denominator of (4) ought to be MP, even when
gravity is the only source of PQ breaking. For instance, the
interaction ϕ3Φ of a complex scalar field Φ with the PQ
scalar respects the PQ symmetry, while gravity could
generate the PQ-breaking operator ϕn−3Φ† for some integer
n, which we can take to be suppressed byMn−6

P . Integrating
out Φ at tree level, one finds, up to order 1 Lagrangian
parameters,

ϕn

Mn−6
P Λ2

h

þ H:c:; ð5Þ

where Λh is the mass of Φ, thereby increasing the tuning
of cUV by a ratio M2

P=Λ2
h, or that of n by one unit if

fa ≲ Λh ∼ 1010 GeV. This simplest example shows that
postulating that all PQ-breaking operators scale with
inverse powers of the Planck mass up to Oð1Þ coefficients
is a scale-dependent statement. This is consistent with the
fact that a single power of MP in the denominator of (4)
suffices for gravity to be the only source of PQ breaking,
while the necessary mass dimension can be accounted for
by powers of the natural cutoff, namely the lowest mass
among all heavy new particles, in line with the logic of
effective field theories (EFTs). Note that gauge-symmetry-
based solutions to the quality problem do not affect that
discussion: for instance, (5) and the ϕ −Φ couplings are
invariant under the aforementioned gauged Zn symmetry.
However, the axion quality problem is strengthened: given
a target such as (3), the order of an appropriate gauged Zn
symmetry is increased. In more complicated models for the
heavy fields, one can even find cases where a few factors of
MP appear in (5), independently of the value of n. Also, the
tuning in (5) is sharper than in (4) even when Λh ≫ fa, as
long as Λh ≪ MP. Consequently, solutions to the axion
quality problem need to refer to all high scales, instead of

being implemented only at the scale (∼fa) where the ALP
EFT is UV completed into a linear theory.
The sensitivity of the axion quality problem to UV

physics has been noted previously, for instance with
respect to heavy QCD axions and UV sources of CP
violation [24–29]. In the present context, one can argue that
the usual evaluation of the tuning persists as long as no new
heavy fields are introduced, hence that one is entitled to
focus on the one source of PQ breaking which we know for
sure, gravity. Here, I choose the (arguably) conservative
viewpoint, namely I assume that any heavy field could exist
(within observational and consistency limits) and consider
models where the problem mentioned above arises. This
approach is motivated by the fact that heavy fields are
already present in any UV-complete QCD axion model, and
are likely to be present in any ALP model to address
puzzles of the SM and cosmology.
In what follows, I first discuss general aspects of the

mediation of gravity-induced PQ breaking by heavy
fields, then I present tree- and loop-level toy examples
which generalize and worsen the scaling of (5). I finally
emphasize that some nonminimal QCD axion models
already include characteristic features of those toy mod-
els, namely several families of heavy fields with family-
dependent gauge charges. Arguably, the generic and
quantitative form that gravity-induced breaking of global
symmetries takes is not known (see Refs. [30,31] and
references therein for recent progress driven by the
swampland program). Throughout the paper, I work with
four-dimensional field theory models and assume that
gravity-induced PQ breaking can be captured by operators
such as (4): this assumes that there exists a scale at which
the PQ symmetry is linearly realized and that the PQ-
breaking effects take the form of local EFT operators
with unsuppressed coefficients (beyond the MP factors).
This does not describe nonlocal breaking in higher-
dimensional models1 [35], where the PQ symmetry can
emerge from a higher-dimensional gauge field [36–40] as
is ubiquitous in the string axiverse [41,42], nor generic
nonperturbative corrections from sources associated with
the UV completion of gravity [41–50]. Nevertheless,
given the predominance of this treatment in the literature
on model building for the axion quality problem, it is very
important to understand what it really entails. I also do not
include all possible gravity-induced EFT operators, but
only sufficiently illustrative subsets, ignoring possible
accidental cancellations. Furthermore, I often use a single
PQ scalar ϕ (with a PQ charge conventionally normalized
to 1) and a gauge Zn to describe the UV completion of the
ALP EFT and the solution to the quality problem, but the
conclusions are more general. For instance, one can

1On the other hand, the present discussion applies when the
breaking proceeds via local operators on 4D branes where the PQ
symmetry is global (see e.g. [32–34]).
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consider an extra Uð1ÞX gauge group in the UV,
and two charged fields ϕ1;2 whose dynamics has an
accidental PQ symmetry, which is realized when their
X charges are coprime numbers p;−q such that pþ q is
large [14]. Then, an equivalent of the scalar example
above is found when introducing couplings ϕq

1Φ and
ϕp
2Φ†, leading to a gauge-invariant PQ-breaking potential

ϕq
1ϕ

p
2=ðMpþq−6

P Λ2
hÞ. Drawing from this example, unless

explicitly specified, ϕn should be interpreted as the
lowest-dimensional gauge-invariant PQ-breaking operator
(and n as its mass dimension), independently of the
details of the PQ sector, of the true nature of the gauge
symmetry (which could be discrete [51–59], continuous
Abelian [60–68] or continuous non-Abelian [69–75]) and
even of whether the ALP EFT is UV completed by a
weakly or strongly coupled theory [76–81].

II. MEDIATED PQ BREAKING
AND COLLECTIVE EFFECTS

As explained in the Introduction, I focus here on the
interplay between gravity-induced PQ-breaking operators
and the existence of heavy fields Ψh at a scale Λh ≤ MP
which mediate this breaking. By gravity-induced PQ
breaking, I mean that the PQ symmetry is exact when
MP → ∞. Of course, the heavy dynamics (such as new
fields or UV instantons) could break the PQ symmetry in
flat space already, in which case one generically expects
Λ → Λh in (4), recovering a similar tuning as for gravity
when fa is not dramatically smaller than Λh. However,
regular field theory respects global symmetries (when non-
anomalous), so, given an ALP model in the IR or at an
intermediate scale and known sources of PQ breaking at
these scales, it is consistent (albeit optimistic) to focus on
gravity as the only additional source of PQ breaking in the
deep UV. Nevertheless, heavy fields remain relevant, for
their couplings could mediate gravity-induced breaking.
Schematically, instead of

Lðϕ; gravityÞ ⊃ LPQðϕÞ þ
fa
MP

LPQðϕ;MPÞ ð6Þ

I consider

LUVðϕ;Ψh; gravityÞ ⟶
E≪Λh LPQðϕ;ΛhÞ

þ fa
MP

L=PQðϕ;MP;ΛhÞ: ð7Þ

Because of the presence of an extra scale Λh, it is natural to
expect (and this indeed happens, as we saw above) that
LPQðϕ;MP;ΛhÞ is less suppressed than (4) with Λ ¼ MP,
even when gauge symmetries are introduced.
An interesting aspect of the breaking mediated by fields

coupling to a PQ scalar is that it is generically collective:
several couplings conspire to break the PQ symmetry,

although they individually respect it.2 In the simplest
complex scalar example of the Introduction, ϕ3Φ (with
arbitrary Wilson coefficient c3) respects the PQ symmetry
for qΦ ¼ −3, but so does ϕn−3Φ† (with arbitrary Wilson
coefficient cn−3) for qΦ ¼ n − 3: only when both couplings
are present is the PQ symmetry broken. In particular, any
PQ-breaking effect is proportional to c3cn−3.
The idea of collective symmetry breaking, relevant for

instance in studies of CP violation (CPV) [82,83] or little
Higgs models [84–86], usually explains why symmetry
breaking is weak: several small factors naturally yield a
much smaller overall expression. However, here, it results
in an increase of the strength of gravity-induced PQ
breaking [for a fixed power n in (4)], for the simple reason
that several couplings imply several heavy field lines in
Feynman diagrams, hence several factors of Λh (and
proportionally fewer factors of MP) in the denominator
of (4). In particular, unlike the case of CPV or little Higgs
models, other channels contributing to PQ breaking with a
lower “degree of collectiveness” (namely, with fewer
couplings conspiring to break the PQ symmetry) contribute
less and are unimportant. One can state the same in terms of
spurions: several Lagrangian terms of low mass dimensions
have Wilson coefficients which can be combined to form a
spurion of high PQ charge and low inverse mass dimension.
Instead, a low degree of collectiveness correlates high PQ
charges and high inverse mass dimensions.
Some comments are required in order to clarify this

claim. First, I insisted on a fixed power n in (4), since I have
in mind that a gauge-symmetry-based solution to the
quality problem is implemented. Without this assumption,
the operators suppressed by a single Planck mass are the
most dangerous, independently of the contributions of
hypothetical heavy fields, and a lower degree of collective-
ness implies fewer couplings in a Feynman diagram, hence
generally fewer external ϕ fields (thus fewerMP factors) or
a smaller loop order. When an appropriate gauge symmetry
is introduced, it forces any set of PQ-breaking couplings of
arbitrary cardinality to generate operators with at least nϕs.
This also explains a second aspect of the claim: fewer
couplings mean that each of them multiplies (on average)
higher powers of ϕ, hence one of them comes with a high
MP suppression. This is due to the fact that, by assumption,
at least one coupling in the PQ-breaking set should be
generated by gravity.3 Finally, I should stress that I assume
that products of couplings do not drastically reduce the

2An exception corresponds to the case of real fields which
cannot be assigned a charge under the PQ symmetry: an example
would be a coupling ϕpS, for S a real scalar, which breaks the PQ
symmetry on its own.

3A previous statement, namely that a single power of MP is
needed for that, is not in contradiction with the claim: other scales
signal even heavier fields, and since we study here the effect of
any heavy field, we should as well include those new ones in the
discussion and iterate.
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strength of the associated collective effects, or at least that
they do not compensate the associated largeMP=Λh ratios.

III. MP COUNTING

In later sections, I discuss explicit examples of the
impact that heavy fields may have on the PQ-breaking
potential. They will realize a generic counting of powers of
MP which I present here (see also [74], where the
same counting was discussed in order to emphasize that
collective PQ breaking is relevant in composite axion
models).
First, one should notice that a nontrivial degree of

collectiveness is required in order to beat the fully grav-
ity-induced potential [i.e., (4) with Λ ¼ MP] [77], dubbed
“gravity potential” for short below. As I argued above, the
simplest collective effect involves two operators of sche-
matic form,

ϕkO

Mkþ½O�−4
P

and
ϕn−kO†

Mn−kþ½O�−4
P

; ð8Þ

where k is an arbitrary non-negative integer and O is an
arbitrary operator of mass dimension ½O�. Only when taken
together do these couplings break the PQ symmetry, hence
at least one insertion of each is required to generate a
PQ-breaking potential, which is therefore suppressed by

(at least) Mn−4þ2ð½O�−2Þ
P , independently of the precise graph

structure or loop order. The suppression is comparable or
larger than that of the gravity potential (Mn−4

P ), except in the
aforementioned case of the complex scalar at tree level
(½O� ¼ 1). In cases where kþ ½O� ≤ 4 (or n − kþ ½O� ≤ 4
if n − k < k), the first (second) operator in (8) is renorma-
lizable and has no reason to be related to the Planck scale.
In that case, the power kþ ½O� − 4 (n − kþ ½O� − 4) is
negative and the size of the operator is overestimated,
nevertheless that does not suffice to overcome the gravity
potential. For nonrenormalizable operators, not all scales
ought to be the Planck scale, but I assume that all heavy
fields are resolved (see footnote 3).
However, this conclusion does not survive complications

of the heavy sector: a higher degree of collectiveness brings
down the minimal suppression to

M
n−4þ

P
i
ð½Oi�−4Þþ4

P ; ð9Þ

where Oi refer to the operators inserted, among which,
given a precise choice for the PQ charges, only one needs to
break the PQ symmetry. The missing scales in order to
saturate the right mass dimension (n − 4) must therefore be
OðΛhÞ, and the more insertions with ½Oi� < 4 the larger the
induced potential. Below, I present weakly coupled
examples which realize this, but the same philosophy is
applicable to composite axions [74]. In that case, ϕk and O
should be interpreted as some composite operators

which respectively do and do not interpolate with the
axion, kþ ½O� − 4 as the dimension of the associated
PQ-breaking spurion and Λh simply as the confining
scale. The latter coincides with the PQ scale, and the
composite operators which do not interpolate with
the axion play the role of the heavy fields. Fields
heavier than the confining scale can be integrated out in
the weakly coupled regime, which is captured by the
present analysis.

IV. TOY EXAMPLES

Toy examples of (9) are built by following a simple
approach: I couple the different operators Oi to ϕ and to
themselves via renormalizable terms, so that their PQ charges
are increasingly large, from k1 to kmax. Then, n − kmax
can be parametrically smaller than n (in the examples
below, kmax scales linearly with the number of heavy fields),
yielding PQ-breaking spurions of high charge but low MP
suppression. As shown below, this can be done at tree or
loop level.

A. Tree level

The scaling in (9) suggests that we should couple ϕ to
operators of mass dimension ≤ 3. The extreme case is again
realized by scalar fields at tree level. Thus, consider m
SM-singlet complex scalar fields Si of similar masses
mi ∼ Λh and Lagrangian

Xm
i¼1

m2
i jSij2 þ

Xm−1

i¼1

�
λiϕ

xS†i Siþ1 þ H:c:
�
þ λ̃1ϕ

2S1; ð10Þ

where x ¼ 1 or 2, and I assume that λ̃1 ∼mi ∼ Λh (∼λi
when x ¼ 1). This preserves the PQ symmetry under which
Si has charge xð1 − iÞ − 2. In addition, gravity is expected
to generate (at least) the following operator:

λPQ
ϕn−½2þxðm−1Þ�S†m
Mn−xðm−1Þ−5

P

þ H:c: ð11Þ

Integrating out the Si, one obtains a PQ-breaking potential
at tree level,

ϕn

Mn−xðm−1Þ−5
P Λxðm−1Þþ1

h

; ð12Þ

up to a factor cUV ¼ λ=PQ
λ̃1
Λh

Q
m−1
i

λi
Λx
h

Q
m
i

Λ2
h

m2
i
, which may be

small for perturbation theory to be a good approximation,
while not being as small as ðΛh=MPÞxðm−1Þþ1. Demanding
that (11) describes a nonrenormalizable operator sup-
pressed by the Planck scale imposes that xðm − 1Þ ≤
n − 6, which, when saturated, leads to a single Planck
mass in (12). In such a case, if fa is close to Λh, the value of
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n matters way less to the axion quality problem: one finds
that cUVð fa

1010 GeVÞ5ðfaΛh
Þn−5 ≲ 10−46.

Note that (12) is the result of collective breaking: all
couplings λi; λ̃1; λ=PQ need to be nonvanishing to break
the PQ symmetry and yield this result. One may object
that the structure of (10) is tuned; it does not even
correspond to the most general Lagrangian compatible
with the PQ symmetry. However, most additional oper-
ators, such as ϕn−2S1, only contribute to the PQ-breaking
potential at fixed n with larger MP or loop suppression
factors. As said above, focusing on a fixed given n can
be imposed by the gauging of a Zn subgroup of the
PQ symmetry of (10), which leaves the above story
unchanged.
I should stress again that the discussion generalizes to

PQ symmetries protected by other gauge symmetries than
their gauged Zn subgroups. For instance, using the Uð1ÞX
symmetry presented in the Introduction, one can choose
that p < q even, x ¼ 2; m ¼ q=2, give a Uð1ÞX charge
−2ip to Si and replace ϕ → ϕ1 in (10), as well as
ϕn−½2þxðm−1Þ� → ϕp

2 in (11). This has the effect of reducing
the Planck suppression of (4) from pþ q − 4 to p − 3.
The gauge symmetry could also be non-Abelian. As an
explicit example, in the construction of [70] one intro-
duces a new SUðNÞ × SUðNÞ gauge group factor, as well
as a PQ scalar Yab̄ in the ðN; N̄Þ representation, such that
the leading PQ-breaking operator is detY (of dimension
N). In such a case, a field S of Zn-charge −k above
translates into a field Sā1…āk;b1…bk , where all indices are
antisymmetrized, and the gauge indices in the equivalent
of (11) are contracted with epsilon tensors, while those in
the equivalent of (10) are contracted with δs. In particular,
the increasingly large Zn charges translate into increas-
ingly large representations.

B. Loop level

I now turn to loop-level examples built along the same
lines. I focus here on fermions coupled to ϕ, in order to
connect to the following sections, but very similar scalar
examples can also be found.
A pair of fermions has mass dimension 3 and is therefore

suitable to alleviate the Planck scale suppression, as seen
in (9). Thus, consider m Dirac fermions ψ i of similar
massesmi ∼ Λh and identical vectorlike SM charges, with a
Lagrangian

Xm
i¼1

miψ̄ iψ i þ
Xm−1

i¼1

ðλiϕψ̄ i;Lψ iþ1;R þ H:c:Þ: ð13Þ

It preserves the PQ symmetry under which ψ has charge
i0 − i for some number i0. In addition, gravity is expected
to generate the following operator:

λPQ
ϕn−ðm−1Þψ̄m;Lψ1;R

Mn−m
P

þ H:c: ð14Þ

In the limit where mi ¼ Λh ∀ i, the one-loop Coleman-
Weinberg potential induced by the ψ i has a compact
expression and contains an operator4

ϕn

16π2Mn−m
P Λm−4

h

; ð15Þ

times a factor 16π2cUV ¼ 2ð−1Þm
ðm−1Þðm−2Þ λ=PQ

Q
m−1
i¼1 λi. Again,

choosing m ¼ n − 1 is compatible with the effective
nature of (14) and makes (15) suppressed by a single
power ofMP (the 16π2 factor clearly does not compensate
the large MP=Λh factors). The other remarks made in the
tree-level case apply here as well. Notice that the model is
vectorlike, hence the fermions would not introduce
any gauge anomaly, were a Zn subgroup of the PQ
symmetry gauged or ϕ charged under an additional Uð1Þ
gauge symmetry. Another consequence of the fact that the
fields have SM vectorlike charges is that the only
couplings from (13) which are linear in the axion field
and violate the PQ symmetry are those which are real
and flavor diagonal in mass basis. In a more general
flavor basis, they are captured by the following flavor
invariants [87]:

Iðk¼0;…;m−1Þ ≡ ReTrð½MM†�kMM̃†Þ; ð16Þ

where m is as above the number of flavors, M is the mass
matrix and M̃ is the matrix of Yukawa couplings to the
axion (both are m ×m complex matrices). Via the
Coleman-Weinberg potential, those invariants, associated
to PQ-breaking couplings linear in the axion field, generate
a tadpole for the axion, and reciprocally: only those
couplings can generate a tadpole. Consequently, the tad-
pole of the PQ-breaking potential must be captured by a
combination of the invariants in (16). This can be explicitly
checked in the model of (13), upon expanding
ϕ ¼ hfaffiffi

2
p ieia=fa ,

Iðk¼0;…;m−2Þ ¼ 0;

Iðm−1Þ ¼ −
ffiffiffi
2

p Λm
h M

n−m
P

fa

�
faffiffiffi
2

p
�

n−1
Im

�
λ=PQ

Ym−1

i¼1

λi

�
:

ð17Þ
The imaginary part is indeed the quantity which generates
an axion tadpole from the Coleman-Weinberg potential of
(15), and the high degree of the nonvanishing invariant

4The fact that gauge-invariant PQ-breaking potential terms
hide within fermion mass matrices has already been noted in [69]:
in this section, we are basically exploring how small the scale
suppressing these terms can be.
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illustrates the collective effect at play: there are
mðthemiÞ þm − 1ðthe λiÞ þ 1ðλ=PQÞ ¼ 2m couplings con-

spiring to break the PQ symmetry and forming cUV, so only
the invariant Iðm−1Þ, which is of polynomial degree 2m, can
feel this collective effect. Had we considered a gravity-
induced operator ϕn−ðj−iÞψ̄ j;Lψ i;R in (14), we would have
witnessed contributions from all invariants of degree
≥ 2ðjj − ij þ 1Þ (with a stronger MP suppression).
Sticking with the same category of models, a lower value

than m ¼ n − 1 can be sufficient to obtain a single MP
suppression, upon using a chiral model. Inspired by the
Froggatt-Nielsen models of [68,88,89], let us consider the
same field content as above with the same SM charges, but
with the following Lagrangian:

Xm
i¼1

yiϕ†ψ̄ i;Lψ i;R þ
Xm−1

i¼1

λiϕψ̄ i;Lψ iþ1;R þ H:c:; ð18Þ

which selects linearly decreasing chiral PQ charges [i0 − 2i
for ψ i;L and i0 − ð2i − 1Þ for ψ i;R]. I assume that λi ≤ yi so
that the masses are mostly determined by the diagonal
terms and Λh ∼ yhϕi. Gravity is now expected to generate
the following operator:

λ=PQ
ϕn−ð2m−1Þψ̄m;Lψ1;R

Mn−2m
P

þ H:c:; ð19Þ

leading to a one-loop Coleman-Weinberg potential which
contains, in the limit yi ¼ y ∀ i,

ϕn−mþ2

16π2Mn−2m
P jyjm−2ϕ†m−2 ; ð20Þ

times a factor 16π2cUV ¼ 2ð−1Þm
ðm−1Þðm−2Þ y

�mλ=PQ
Q

m−1
i¼1 λi, leav-

ing one (two) Planck mass(es) when m ¼ ðn − 1Þ=2 for n
odd (m ¼ n=2 − 1 for n even). Working at fixed n can
again be imposed by an additional gauge symmetry and a
nonvanishing charge for ϕ; notice however that this makes
our model chiral and subject to anomaly cancellation
constraints. For a Zn subgroup of the PQ symmetry,
one requires that [90–93] TGSM

ψ mðmþ 1Þ ¼ 0 mod n,
where TGSM

ψ δab ≡ TrðTa
RðGSMÞT

b
RðGSMÞÞ for RðGSMÞ the rep-

resentation of the ψ i under the factor GSM ¼ SUð3ÞC or
SUð2ÞL of the SM gauge group SUð3ÞC × SUð2ÞL×
Uð1ÞY . This is satisfied for instance when n ¼ 10,
m ¼ 4 and RðGSMÞ is the fundamental representation of
SUð3ÞC or SUð2ÞL.Uð1ÞY charges are free, and Z3

n orZn ×
gravity anomalies can be canceled by SM-neutral chiral
fermions.

V. QCD AXION MODELS

Any QCD axion model can be coupled to ad hoc heavy
modes with the features of our toy examples,5 but the
resulting models are not particularly motivated and their
mere existence may fail to convince the reader (or me) that
they seriously threaten the axion quality. However, non-
minimal well-motivated QCD axion models often include
several heavy fields and, depending on the precise model
building, might already contain the ingredients of our toy
8examples. I illustrate this in the case of axiflavon/flaxion
models [94–97] and of the lighter-than-usual KSVZ
axion model [98–100]. The discussion is more general
(see e.g. [65] for an instance in clockwork-like gauge
models), but it nevertheless relies on precise features of the
models under consideration, on which I comment.

A. Axiflavon/flaxion models

The axiflavon/flaxion scenario [94–97] unifies the PQ
symmetry with a Froggatt-Nielsen (FN) symmetry [101],
so as to solve the strong CP problem and explain the flavor
hierarchies in one go. The FNmechanism postulates aUð1Þ
symmetry in the UV, broken by a small charged spurion ϵ.
Upon choosing appropriately the FN charges of the SM
chiral fermions, the flavor hierarchies arise from the
necessary powers of ϵ which compensate for the FN
charges of the Yukawa couplings. For instance, if the
Higgs is FN neutral [which can always be arranged by
composing with a global Uð1ÞY transformation], the
Yukawa coupling Q̄iujH̃ in the up-quark sector comes

with a coefficient suppressed by ϵjqQi
−quj j, where qQi

(quj) is
the FN charge of the ith (jth) generation left-handed (right-
handed up) quark. In addition, the breaking encoded by ϵ
can be spontaneous, in which case one needs to consider
the associated Nambu-Goldstone boson (NGB). In the
axiflavon/flaxion scenario, one chooses the FN charges
so that the symmetry has an SUð3ÞC anomaly and the NGB
is the QCD axion.
More precisely, in the minimal scenario, one assumes a

spontaneous breaking by the vev of a complex scalar field
hϕi. Then one can write ϵ ¼ j hϕiM j, for a scale M slightly
larger than hϕi. In the up-quark Yukawa sector again, the
couplings (except that of the top) arise from nonrenorma-
lizable operators,

5How this is done can be understood from the simple example
of a single heavy complex scalar. The leading PQ-breaking
operator is a product of fields, and can be (nonuniquely)
decomposed as a product R × R0 of two representations R, R0
of the gauge group. By assumption, that product contains a
singlet representation, so that one can introduce a scalar field ϕ
transforming in the R̄ representation with couplings ϕR and ϕ†R0.
Integrating ϕ out leads again to (5). Decomposing the PQ-
breaking operator as a product of multiple representations, one
can create models as in Sec. IV.
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ỹu;ij

�
ϕ

M

�
qQi

−quj
Q̄iujH̃; ð21Þ

where ỹu;ij ¼ Oð1Þ and ỹu;ijϵ
qQi

−quj is the usual Yukawa
coupling. If qQi

− quj < 0, one uses ϕ† instead.
The scale M signals the presence of additional

heavy FN modes, whose interactions are structured very
similarly to those of (13). Indeed, one can generate (21)
from

aiQ̄iψ1H̃ þ ð13Þ þ bjψ̄mujϕ; ð22Þ

provided m ¼ jqQi
− quj j,

Q
m
i¼1 mi ¼ Mm, aibj

Q
m−1
i¼1 λi ¼

ỹu;ij and the ψ i have the same SM charges as the right-
handed up quarks. In terms of the PQ charges defined in
Sec. IV B, this Lagrangian fixes those of Qi, uj to be
i0 − 1; i0 − ðmþ 1Þ, respectively. Since the model of
Sec. IV B is a subsector of the present UV completion
of the axiflavon/flaxion model, it is subject to the same
limitations when it comes to solving the axion quality
problem via gauge symmetries. For instance, one often
encounters in the literature jqQ1

− qu1 j ¼ 8, in which case
the loop-induced operator (15) overcomes the gravity one
by a factor ðϵMP=faÞ4=ð16π2Þ ≫ 1.
The presence of larger-than-expected PQ-breaking

operators does not rule out the axiflavon/flaxion scenario,
but confirms that a solution to the axion quality problem
needs to include (at least) the full dynamics at scale M.
For instance, focusing on first-generation up quarks

and assuming jqQ1
− qu1 j ¼ 8, one can modify (22) as

follows:

aiQ̄1ψ1ϕþ ð13Þj2 þ λ̃ψ̄4;Lψ5;RH̃ þ ð13Þj1 þ bjψ̄8u1ϕ;

ð23Þ

where ð13Þj2 corresponds to (13) with ψ i¼1;…;4 in the
representation ð3; 2; 1=6Þ of the SM gauge group, while
ð13Þj1 refers to (13) with ψ i¼5;…;8 in the representation
ð3; 1; 2=3Þ. Then, the SM gauge invariance restricts the
appearance of (14) to ψ̄m;Lψ1;R → ψ̄4;Lψ1;R or ψ̄8;Lψ4;R (at
most), which yields a PQ-breaking Coleman-Weinberg
potential comparable or smaller than the gravity one. In
parallel, gravity can generate

λ=PQ
ϕn−6ψ̄8;Lψ1;RH

Mn−6
P

þ H:c:; ð24Þ

which leads to a one-loop potential which differs by a

factor v2M2
P

M4 (where v is the electroweak vev) from the
gravity one. SinceM ≳ hϕi ≳ 1010 GeV due to bounds on
flavor-changing neutral currents, we see that the gravity
potential appropriately captures the order of magnitude of

the full PQ-breaking potential.6 Another option is to stick
with (22) but use the two scalar fields ϕ1;2 charged under
an additional Uð1ÞX, as explained in the Introduction.
By choosing p ¼ Oð1Þ; q ≫ 1 (e.g. p ¼ 1; q ¼ 10), and
jqQi

− quj j ≤ q, one can only use ϕ1 instead of ϕ in (22),
and the gauge symmetry strictly prevents terms such as (14)
from being generated [at the level of ϕ1 alone, the Uð1ÞX
and PQ symmetries are impossible to disentangle7]. This
example highlights the importance of designing explicitly
the UV completion: ifp ¼ 4, q ¼ 7, the gravity potential is
as suppressed as that when p ¼ 1, q ¼ 10, but the former
case allows one to write (14) with ϕn−ðm−1Þ → ϕp

2 and a
Mp−1

P suppression (instead of Mpþq−4
P ). The examples of

this paragraph illustrate the fact that demanding a con-
trolled PQ-breaking potential fixes some of the free
parameters of the models, thereby increasing their
predictivity.

B. Lighter-than-usual KSVZ axion

The (to my knowledge, only) paradigm which produces
a QCD axion lighter than in simplest models makes use of n
copies of the SM and of an axion which realizes nonlinearly
the Zn exchange symmetry between the copies [98–100],

Zn∶ SMi → SMiþ1; a → aþ 2πfa
n

: ð25Þ

In order to respect thisZn symmetry, all gluons must couple
to the axion and have θ parameters shifted by increasing
multiples of 2π

n , which has the effect of reducing the axion
mass by a factor n3=2ðmu=mdÞn with respect to the standard
value (amild 1=n tuning is also needed to correctly solve the
strong CP problem). Several UV completions of this EFT
were presented in [99], and I will focus here on the weakly
coupled one. One introduces n copies of KSVZ quarks ψ i
[102,103] in the fundamental of the strong gauge groups

6I focus in this paper on the one-loop Coleman-Weinberg
potential induced by the heavy fermions. In principle, given the
large hierarchies present here, higher-order corrections, coming
for instance from four-Fermi operators at two loops, should be
considered, but I do not engage in this discussion and simply
stress that model building options exist at one loop.

7In order for the PQ mixed anomalies with the SM not to be
aligned with those of Uð1ÞX , some chiral fermions need to couple
to ϕ2. This could be the case of down quarks, upon choosing that
jqQi

− qdj j are multiples of q. However, such an assignment
generically leaves out Uð1ÞX-SM mixed gauge anomalies, which
should be canceled by additional chiral heavy fermions. Since
extra matter with SM charges is observationally constrained to be
heavy, those additional fields need to obtain a mass from coupling
to ϕ1;2. Therefore, they generically contribute to the PQ anoma-
lies and to the axion couplings to SM gauge bosons, weakening
the predictivity of the axiflavon/flaxion setup. Models without
any additional fermion (beyond those required by the FN
mechanism) can be found by considering chiral FN fields, as
sketched at the end of Sec. IV B [68].
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SUð3ÞC;i, coupled to the same PQ scalar ϕ, so that the Zn

symmetry, which can be gauged, acts as

Zn∶ SMi→SMiþ1; ϕ→e
2πi
n ϕ; ψ i→ψ iþ1; ð26Þ

and the most general Lagrangian reads

Xn
k¼1

ye
2πik
n ϕψ̄k;Lψk;R þ H:c: ð27Þ

The model enjoys a global PQ symmetry under which
ϕ → eiαϕ;ψk;L=R → e�iα=2ψk;L=R. Unlike above, the gauge
symmetry forbids any mixing between different k sectors,
but gravity could generate terms like8

X∞
p¼2

Xn
k¼1

yp
Mp−1

P

e−
2πikp
n ϕ†pψ̄k;Lψk;R þ H:c:; ð28Þ

respecting the Zn but not the PQ symmetry.
One finds that the leading term in the one-loop

Coleman-Weinberg potential is suppressed by a factor

Mðnþ2½n mod 3�Þ=3
P jϕj2ðn−½n mod 3�−6Þ=3, i.e. the power of MP

is roughly reduced by a factor 3 with respect to the gravity
potential, or equivalently the required tuning of n which
achieves a satisfying axion quality is worsened by a factor 3.
For illustration, when n ¼ 0 mod 3 and n ≥ 6, one obtains

cn=3ϕn

16π2M
n
3

Pjϕj
2ðn−6Þ

3

þ H:c:; ð29Þ

where cn=3 ¼ ð−1Þn=354
ðn−6Þðn−3Þ ðyy�2Þn=3jyj

2ð6−nÞ
3 [or −9ðyy�2Þ2 when

n ¼ 6]. The power n=3 of the Planck mass can be under-
stood by a spurion analysis, as follows. The coefficient of
ϕpϕ̄qψ̄k;Lψk;R has a spurious PQ charge 1þ q − p, and is
suppressed byMpþq−1

P , hence it has a “charge toMP-power
ratio” of ð1þ q − pÞ=ðpþ q − 1Þ, which is maximal (and
¼ 3) when p ¼ 0, q ¼ 2. Therefore, the least suppressed
potential is obtained by computing graphs with as many y2
from (28) as possible. When n ¼ 1 mod 3, one insertion of
y3 is needed, when n ¼ 2 mod 3, two insertions of y3 or one
of y4 are needed.
In this model, the realization (25) of the Zn symmetry is

such that gauge multiplets are not its irreducible repre-
sentations. Nevertheless, in order to more easily connect
to the previous sections and pinpoint the collective

PQ-breaking effects, it is convenient to use the Zn
irreducible representations,

χl ≡
Xn
k¼1

e−
2πiðk−1Þl

n ψk; ð30Þ

which are such that χl → e2iπl=nχl under the action of Zn.
They are not representations of the gauge group, but gauge
interactions are irrelevant for the one-loop contribution of
the fermions to the potential of the PQ scalar. In terms
of those χl fields, (27) and (28) resemble the patterns of
couplings of the previous models,

Xn−1
l¼0

�
ỹϕχ̄lþ1;Lχl;Rþ

X∞
p¼2

ỹp
Mp−1

p
ϕ†pχ̄l;Lχlþp;R

�
þH:c:; ð31Þ

where χm ≡ χm mod n; ỹ≡ ye
2πi
n and ỹp ≡ ype−

2πip
n .

As for the axiflavon/flaxion scenario, the present dis-
cussion is not threatening the whole paradigm of the
lighter-than-usual QCD axion, but should simply be seen
as a refined quality constraint when building the UV
completion of the axion EFT.

C. Other models

The two QCD axion models above share the following
features: several families of heavy fields, as well as
unsuppressed flavor-changing couplings between them.
It is then no surprise that (the majority of) models which
do not have those features are immune to the effects
discussed in this paper. With a single family of heavy
fields, with the notable exception of the complex scalar, one
has too few couplings to accommodate large collective
effects. This can be understood from (9): a large collective
effect requires several operators of dimension ≤ 3, but
those are limited for a given number of fields and a given
gauge structure. Moreover, even when there are multiple
families, which may be demanded by anomaly cancellation
when there are fermions, collective effects can turn out to
be heavily Planck suppressed. In particular, it happens in
models where the heavy fields are given family-blind
gauge charges, which is for instance realized in the
aforementioned models of [14,70]. [Note that the family-
independent Uð1ÞX charges crucially differentiate the
former model from that of Sec. IV B.] In such situations,
the renormalizable Yukawa terms can be diagonalized in
flavor space while being expressed in terms of irreducible
gauge multiplets, and any family-changing Lagrangian
term, necessary for a collective effect, is as much con-
strained by the gauge invariance as it would be for a single
family. (Terms which would vanish from permutation
symmetry arguments with a single family may provide
caveats to this claim.) As already anticipated in Sec. VA,
flavor-dependent gauge charges for heavy fermions can be
allowed in specific cases, for instance if they do not permit
to write flavor-changing Yukawa couplings beyond sets of

8I note that a k-independent Dirac mass for all ψk;L=R is
allowed by the gauge and Zn symmetries, while breaking the PQ
symmetry. (Although such a mass term breaks the PQ symmetry
in each k-sector independently, destructive interference between
all sectors is such that the induced Coleman-Weinberg potential is
proportional to ϕn, as dictated by the exact Zn symmetry.) This
term could be induced by physics associated to the UV com-
pletion of gravity (such as new instantons), however I only focus
here on the impact of MP-suppressed EFT operators.
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a few families. Model 1 of [63] provides an example, where
two families are connected at renormalizable level and the
induced Coleman-Weinberg potential is as Planck sup-
pressed as the gravity potential.

VI. CONCLUSION

Accounting for the coupling of particle physics models
with global symmetries to gravity is now standard practice,
especially when the global symmetry should be free of
significant breaking. I focused on the common assumption
that gravity-induced global symmetry breaking manifests
itself as nonrenormalizable operators suppressed by appro-
priate powers of the Planck scale. Despite this treatment
being well known, it is rarely emphasized that Planck-
suppressed symmetry-breaking operators involving several
fields can generate other Planck-suppressed symmetry-
breaking operators, once the heaviest fields are integrated
out. Such contributions, which are suppressed by the heavy
field masses but also by the Planck scale, are subdominant
with respect to the lowest-dimensional Planck-suppressed
operators, unless the latter vanish due to the structure of the
theory. This precisely happens in solutions to the axion
quality problem based on four-dimensional gauge sym-
metries. In such cases, as I illustrated above, the contribu-
tions of heavy fields can easily predominate by several
orders of magnitude over the naive estimates based on a full
MP suppression. Although ad hoc heavy fields can always
be postulated (or at least considered, in an agnostic bottom-
up perspective), I stressed that theymay already be present in
nonminimal models of QCD axions, which I illustrated with
two representative examples, the axiflavon/flaxion and the
lighter-than-usual KSVZ axion. I also argued that the many

models with few families of heavy fields, or with family-
independent gauge charges, are likely not to be concerned.
Consequently, gauge-symmetry-based solutions to the

quality problem need to be implemented at any scale above
the PQ scale, and in any sector which can possibly
communicate with the axion. More generally, this discus-
sion suggests that studies of the axion quality problem
(or really of the fate of any global symmetry coupled to
gravity) in terms of Planck-suppressed operators in an
effective framework at an intermediate (e.g., PQ) scale
should either include explicit UV assumptions (e.g., a
“desert” until the Planck scale or a secluded PQ sector)
or use a conservative MP scaling for the symmetry-break-
ing operators. If one works instead with a full-fledged UV
completion where all heavy fields below MP are specified,
one should nevertheless evaluate all the relevant (classical
or quantum) contributions to the PQ-breaking Lagrangian.
Finally, let me stress that axions arising from higher-
dimensional gauge fields are not concerned by the present
discussion, due to the absence of any local effect that
explicitly breaks the PQ symmetry, and of any intermediate
scale above which it is linearly realized. This further
motivates their consideration.
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