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Gravity’s quantum nature can be probed in a laboratory by witnessing the entanglement between the two
quantum systems, which cannot be possible if gravity is a classical entity. In this paper, we will provide a
simple example where we can probe the effects of higher dimensions, in particular the warped extra
dimension of five-dimensional anti–de Sitter spacetime (AdS5). We assume that the two quantum harmonic
oscillators are kept at a distance d on a 3-brane (our 4D world) embedded in AdS5, while gravity can
propagate in all five dimensions. We will compute the effective potential due to the massless and massive
gravitons propagating in the warped geometry. We will compute the entanglement between position and
momentum states for both static and nonstatic cases. The entanglement enhances compared to the four-
dimensional massless graviton, and it depends now on the AdS5 radius. We will also show that if we would
prepare non-Gaussian superposition states, e.g., spatial superposition of masses of order 10−14–10−15 kg
with a superposition size of Oð20Þ micron, we can yield larger concurrence of order Oð0.1Þ.
DOI: 10.1103/PhysRevD.108.035018

I. INTRODUCTION

Entanglement is a unique quantum feature that cannot be
mimicked by any classical theory [1]. By witnessing the
entanglement between the two quantum objects, authors of
Ref. [2] proposed to probe the quantum nature of gravity
in a laboratory,1 see also [4]. The experiment proposed
by the authors in [2] is known as the QGEM (quantum
gravity-induced entanglement of masses) protocol, where
the idea is to probe the quantum nature of gravity via
spin entanglement. Recently, also a new protocol has been
presented to test the spin-2 nature of gravity in an
entanglement test between a quantum matter and a laser
beam in a cavity [5]. All these protocols rely on a powerful
theorem, known as the LOCC theorem, where LOCC
stands for local operation and classical communication
[6]. The LOCC theorem suggests that if the two quantum
systems are not entangled, to begin with then they will
remain unentangled if the interaction between the two
quantum systems remains classical in nature. Similarly, if
the gravitational interaction is classical then the two quan-
tum systems will never get entangled [7–10]. In a pertur-
bative quantum gravity, one can show this explicitly in a
canonical approach [11], path integral approach [12], and a
very potent tool of axiomatic quantum gravity [13]. The
QGEM protocol utilizes the scheme where the two masses
are kept at a distance in a quantum spatial superposition,

e.g., Schrödinger cat state, for a time τ. The only allowed
interaction is assumed to be solely gravity, it is possible to
mitigate electromagnetic interactions, such as Coulomb,
dipole-dipole, and higher-order interactions, still, they
remain the biggest challenge to mitigate in an experimental
setup [2,14]. Of course, there are many challenges, such as
creating massive quantum superposition [15–22], keeping
the system intact from various sources of decoherence
[23–29], and above all protecting the system from gravity
gradient [30,31], and relative acceleration noise [30].
Despite these challenges, the QGEM experiment is

feasible and it tests the nature of quantum gravity in a
similar spirit as Bell’s test [32]. The crucial observation is
that the quantum correlation/entanglement exists despite
ℏ → 0, as was first illustrated in the two quantum systems
with a large angular momentum [33,34]. Although extrac-
ting the entanglement will become extremely challenging.
In a similar vein, the QGEM protocol can test the quantum
nature of gravity at the lowest order from the Newtonian
potential.
In an effective field theory approach to quantum gravity,

the quantization of spin-2 graviton can be shown to yield
the Newtonian potential, the light bending effect due to the
gravitational potential, and higher order contributions
including the effects of rotation via computing the scatter-
ing amplitude and taking appropriately the nonrelativistic
limit. The quantization of graviton can be followed
either via Gupta’s approach or via path integral approach
by imposing gauge fixing contribution [11,12]. Although
the experiment will never probe graviton directly, very
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indirectly we will probe the graviton’s properties that
will manifest the entanglement, and the equivalence
principle [35].
In this paper, we wish to probe how the entanglement is

developed if we depart from 4D Minkowski spacetime and
assume that there exists a warped extra spatial dimension,
e.g., in five-dimensional (5D) anti–de Sitter (AdS5) space-
time. The search for extra dimensions has been an active
area of research ever since Kaluza-Klein proposed a geo-
metric interpretation of electromagnetism through the
introduction of an extra spatial dimension and this interest
was revived with the development of string theory which
predicts that spacetime is fundamentally a higher dimen-
sional. Ever since this concept was introduced, it has been
studied to explain various pressing issues in particle
physics, ranging from issues related to the resolution of
gauge hierarchy/fine-tuning problem [36], the origin of
neutrino masses [37,38], fermion mass hierarchy [39], and
dark matter to large scale phenomena such as inflation
[40,41], bouncing [42–44] phenomena in cosmology as
well galactic structure [45–47] in astrophysics.
Two extra-dimensional models namely large extra dimen-

sions [48–51] and warped extra dimensions [52–56] became
extremely popular at the beginning of this century. The
testing beds of these models ranged from collider physics
to cosmological/astrophysical scenarios. In the context of
the fine-tuning problem related to the large radiative
corrections to Higgs mass, the warped geometry model
by Randall and Sundrum [55] turned out to be very
successful as it could resolve the problem without intro-
ducing any intermediate scale in theory. Interestingly,
string theory can provide an analog of such a warped
extra-dimensional scenario through a throatlike geometry
[57] and Randall Sundrum model can capture the essential
features of this throat geometry in a simple way so that
possible signatures of extra dimensions in collider Physics
can be estimated through various graviton Kaluza-Klein
(KK)modes [58–60]. So far, we have not seen any signal of
warped extra dimensions in the current runs of LHC up to a
few TeVand gravitational wave data could not rule out tiny
warped dimensions as well [61].
In this work, we wish to look for the signatures of the

Randall Sundrum 5D Braneworld model in low-energy
tabletop experiments by studying the nature of quantum
gravity-mediated entanglement between two masses in the
presence of this warped extra dimension. We will assume
that the experiment is taking place in four dimensions, e.g.
the state preparation and the creation of macroscopic
Schrödinger cat state is on our brane, while gravity can
propagate in all the five dimensions, see Fig. 1. We wish to
know how the entanglement at short distances manifests,
especially when the distance between the two quantum
systems is smaller than the AdS5 radius, i.e., we can probe
the fifth dimension. In the infrared (IR), we will recover the
results of four dimensions, and also the entanglement [62].

First, we shall briefly introduce the 5D Randall Sundrum
(RS) braneworld models [55,56], and eventually will work
in the backdrop of the RS single brane model (RS-2).
We will consider the case when the scale of warping is
lowered in comparison to [56]. This is well motivated from
a phenomenological perspective since the other features of
RS-2 model such as the continuum of KK gravitons do not
lead to any observable collider signatures. Additional
motivation comes from a class of supergravity and string
theories [63] where it can be showed that the RS 3-brane
cannot be identified with any D3-brane [64] but is actually
an effective geometry arising from a stack of negative
tension branes stuck at the orbifold fixed point [65]. In
this case, if we take a sufficiently large stack of these
branes, then the warping scale can be lowered to the
submilimeter regime and hence we should be able to detect
the deviations from Newtonian gravity in the infrared
tests for gravity [66]. Since we have successfully tested
Newtonian Potential up to 52 μm [67], we can use this
result to phenomenologically constraint the warping scale
k−1 ≤ 52 μm. In section two, we perform a KK decom-
position and work out the tensor fluctuations about the
RS-2 background and solve Einstein’s equations. The
resultant equations are analogous to quantum mechanical
Schrödinger equations with the potential famously dubbed
as the “volcano potential.” This potential supports a single-
bound state, which is the massless graviton and we recover
the 4D gravity on the brane. Additionally, we also obtain a
continuum of massive KK graviton modes. Since we are
interested to study the interaction between two matter
particles via the exchange of virtual gravitons, we describe
the structures of graviton propagators in 4D when the
underlying geometry is 5D RS. The gravity on the brane is

FIG. 1. Two particles on the 3-brane interacting via graviton
exchange from the bulk.
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now mediated by both massless and massive gravitons and
we are interested to see how these massive modes can
entangle masses on the 3-brane (our 4D Universe) in the
infrared. We obtain the low energy limit of the tree-level
scattering amplitude whose Fourier transform will yield the
Newtonian potential. In Sec. IV, we then describe the setup
for the matter system-two quantum harmonic oscillators
carrying momentum along the x direction, which will get
entangled due to the quantum gravitational interaction. In
Sec. V, we evaluate the Newtonian potential between two
masses on the brane. We choose concurrence [68–70] as the
entanglement witness, and finally, in Sec. VI, we calculate
the concurrence in this setup and find that the concurrence
now depends upon the radius of AdS5. We will show that
for the harmonic oscillator case, the Gaussian wave packet
entangles but the concurrence is very tiny. To enhance
the concurrence, we show that a spatial quantum super-
position of masses is required, e.g., non-Gaussian state, or
Schrödinger cat state.We endwith a discussion of our results.
Throughout the paper, the metric convention is mostly

negative, and Greek indices α, β run from 0, 1, 2, 3 and
Latin indices a; b; c… denote 5D spacetime and run from 0,
1, 2, 3, 5 where 5 denotes the coordinate for extra dimension.

II. BRIEF REVIEW OF RANDALL
SUNDRUM MODEL

The RS1 model [55] is a 5D warped solution of
Einstein’s equations with two 3-branes of positive tension
(hidden brane) and negative tension (visible brane), respec-
tively, embedded in the AdS5 bulk. The extra dimension is
subject to S1=Z2 compactification with the fixed points
identified. The RS action (in natural units) is

S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p ðM3R − ΛÞ þ
Z

d4x
ffiffiffiffiffiffiffi
−gi

p
Vi; ð1Þ

whereM is the 5D Planck scale, R is the 5D Ricci Scalar, Λ
is the bulk cosmological constant, Vi is the tension of the
ith brane [i ¼ hidðvisÞ] and ημν ¼ ðþ;−;−;−Þ is the 4D
metric. All Standard Model fields are confined on the
visible brane and gravity alone can propagate in the warped
extra dimension.
The solution of Einstein’s equations of motion gives us

the metric:

ds2 ¼ e−2kjyjημνdxμdxν − dy2 ð2Þ

supplemented by a negative bulk cosmological constant
(the bulk is AdS5) Λ ¼ −12M3k2 and brane tensions
Vhid ¼ −Vvis ¼ 12M3k2, where k−1 is the radius of
AdS5. The extra-dimensional coordinate 0 ≤ y ≤ πrc and
rc fixes the size of the extra dimension.
The 4D Planck scale MPl ≈ 1019 GeV can be generated

from M on the visible brane according to the relation [55]

M2
Pl ¼

M3

k
½1 − e−2krcπ�: ð3Þ

The above describes the 2-brane setup.
In [56], it was proposed that it is possible to have a single

3-brane embedded in infinitely large warped extra-dimen-
sion by taking the brane at y ¼ πrc to ∞. In this case, the
Planck/hidden brane of [55] becomes the visible brane, and
this scenario (RS-2) describes an alternative to the standard
KK compactification. The curved background supports the
bound state of the five-dimensional massless graviton
(m ¼ 0), thus reproducing the 4D gravity on the 3-brane
with modifications coming from the continuum of gapless
massive KK graviton modes. We shall work in the back-
drop of RS-2 and in our approach, we treat k and M as
model parameters and constrain them from a phenomeno-
logical perspective.

III. NONRELATIVISTIC SCATTERING
IN RS-2 MODEL

We are interested to study the corrections to Newton’s
law on the 3-brane when the underlying geometry is AdS5.
Since the Newtonian potential is the low energy limit of the
tree-level scattering diagram of off-shell graviton exchange
between two masses, we need to find the structure of the
graviton propagator in this scenario.
To study the nature of gravity in this model, we will need

to perform a KK reduction of the graviton in the AdS5
background. Due to compactification, we expect to see a
graviton zero mode, a vector zero mode and a scalar zero
mode that make up the five degrees of freedom in the 5D
graviton. At the massive level, we expect to see a tower of
massive 4D graviton modes which also makes up for five
degrees of freedom. At the zero mode level of (2), there
would be a massless graviton and a massless scalar field
(modulus field) (vector fields are ruled out due to Z2

symmetry). For our case, we are interested in the tensor
fluctuations, so we can set the scalar fluctuations to zero
with a suitable gauge choice described below.

ds2 ¼ AðyÞ2ðημν þ hμνÞdxμdxν − dy2; ð4Þ

where AðyÞ ¼ e−kjyj. The detailed KK decomposition of
the graviton modes has been worked out in [56,71,72] and
we will only sketch the main ideas here for the sake of
completion.
We will be working in a gauge hμμ ¼ 0 ¼ ∂μhμν (h55 and

ha0 are also zero, thus reducing the independent degrees of
freedom to two). We perform a coordinate transformation,
y → zðyÞ where z ¼ sgnðyÞ 1k ðekjyj − 1Þ. To perform a KK
reduction down to four dimensions, we will separate the
variables hμνðx; yÞ ¼ h̃μνðxÞΦ̃ðyÞ, where Φ̃ðyÞ ¼ A−3

2ΦðzÞ.
Finally, we will require that h̃μνðxÞ be a four-dimensional
mass eigenstate mode □h̃μν ¼ m2h̃μν where □ ¼ ημν∂μ∂ν
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and m is the four-dimensional mass of the KK excitation.
Hence h̃μνðxÞ ¼ eip:x, where, p2 ¼ m2. Finally, the equa-
tion of motion for the KK modes can be recast in a form
analogous to that of Schrödinger equation:

½−∂2z þ VðzÞ�ΦnðzÞ ¼ m2
nΦnðzÞ; ð5Þ

where “n” labels the eigenstates and the effective potential
VðzÞ (volcano potential) is given by

VðzÞ ¼ 15k2

4ð1þ kjzjÞ2 − 3kδðzÞ: ð6Þ

The delta function supports a single normalizable bound
state which will be the 4D massless graviton, and therefore
we recover 4D gravity on the brane. This result is consistent
since we did not break the Poincare invariance in 4D. Since
the potential falls off to zero at infinity, we will also have
continuum modes. Since the height of the potential near the
origin is ∼k2, the modes withm2 < k2 will have suppressed
wave functions, while those with m2 > k2 will sail over the
potential and hence unsuppressed near the origin. The
solution to (5) is given in terms of Bessel functions
JnðxÞ; YnðxÞ of order 1 and 2:

ΦnðzÞ ¼ Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kjzj

p �
Y2

�
mn

k
ð1þ kjzjÞ

�

−
Y1ðmn

k Þ
J1ðmn

k Þ
J2

�
mn

k
ð1þ kjzjÞ

��
; ð7Þ

where Nm is the normalization constant. The solution for
zero modes is given by

Φ0ðzÞ ¼ N0ð1þ kjzjÞ−3=2: ð8Þ

The normalization constants N0 and Nm can be found by
introducing a regulator brane at zr and then taking zr → ∞.
Using delta function normalization [72],

Z
∞

−∞
jΦð0; zÞj2dz ¼ 1;Z

∞

−∞
Φðm; zÞ�Φðm0; zÞdz ¼ δðm −m0Þ: ð9Þ

Consequently, it can be shown that the masses of graviton
KK modes are quantized in the units of π=zr,

mn ≃
nπ
zr

; ð10Þ

where n ¼ 1; 2;…. When zr → ∞, we obtain a gapless
continuum of massive modes. From now on, we can drop
the index n in mn. Finally, we can show

N0 ¼
ffiffiffi
k

p
ð11Þ

and

N2
m ¼ πm

2kzr

�
1þ Y2

1ðmkÞ
J21ðmkÞ

�−1
: ð12Þ

Now that we have laid out the solution of (5) and found
the behavior of massless and massive modes, we want to
see these modes mediate interactions on the 3-brane.
Therefore, we need to know the 5D graviton propagator
and the matter-graviton interaction term. Consider the tree-
level scattering diagram shown in Fig. 2, where q is the
momentum of the off-shell graviton and pA, pB are the
momenta of the incoming spin-0 particles and p0

A, p
0
B that

of the outgoing particles. The off-diagonal quantum stress-
energy tensor for spin-0 particles is [73]

hp0jTμνðqÞjpi ¼
1ffiffiffiffiffiffiffiffiffiffi
4EE0p ðp0

μpν þ p0
νpμ − ημνðp0 · p −m2ÞÞ

ð13Þ

using the normalization hpjp0i ¼ 2Eð2πÞ3δ3ðp − p0Þ.
From now on, we will write hp0jTμνðqÞjpi as TμνðqÞ for
brevity. The propagator for a 5D massless graviton ĥab can
be written as (assuming flat dimensions, we will later see
that this is justified in our case) [74]:

Dð5Þ
abmnðx; y; x0; y0Þ≡ h0jT ðĥabðx; yÞĥmnðx0; y0ÞÞj0i; ð14Þ

where T denotes time ordering. Taking y ¼ y0 ¼ 0 (since
both the particles are on the 3-brane and y=z ¼ 0 is the
location of the 3-brane along the extra dimension)

Dð5Þ
abmnðx; 0; x0; 0Þ ¼

Z
d5q
ð2πÞ5

PabmnðqÞ
q2 þ iϵ

e−iq·ðx−x0Þ; ð15Þ

where

PabmnðqÞ ¼
1

2

�
ηamηbn þ ηanηbm −

2

3
ηabηmn

�
: ð16Þ

We have thus far shown that we can perform a KK
reduction of 5D graviton down to four dimensions.

FIG. 2. Tree-level scattering diagram of one graviton exchange.
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We should therefore be able to express the 5D massless
graviton propagator in terms of the 4D propagator [72].
The picture of a massless graviton propagating in D

dimensions and the picture of massive KK gravitons
propagating in four dimensions are equivalent, and from
now on, we will use the former description in our
discussion. Using the gauge conditions described before,
we obtain

Dð5Þ
μναβðx; 0; x0; 0Þ ¼ jΦð0; 0Þj2Dð4;m¼0Þ

μναβ ðx; x0Þ

þ
X∞
m>0

jΦðm; 0Þj2Dð4;m>0Þ
μναβ ðx; x0Þ; ð17Þ

where Dð4;m¼0Þ
μναβ ðx; x0Þ and Dð4;m>0Þ

μναβ ðx; x0Þ are the propaga-
tors of massless and massive 4D spin-2 gravitons,
respectively,

Dð4;mÞ
μναβ ðx; x0Þ ¼

Z
d4q
ð2πÞ4

PðmÞ
μναβðqÞ

q2 −m2 þ iϵ
e−iq·ðx−x0Þ: ð18Þ

For m ¼ 0,

Pðm¼0Þ
μναβ ðqÞ ¼ 1

2
ðημαηνβ þ ημβηνα − ημνηαβÞ: ð19Þ

The polarization tensor for m > 0 can be obtained by
following the procedure of [74], or from Fierz-Pauli theory
[75]. (The polarization tensor for the massive gravity does
not have a m → 0 limit, and such limit can only be taken at
the level of Lagrangian, which leads to the famous vDVZ
discontinuity [76,77]. See Ref. [78] for a detailed review.)

Pðm>0Þ
μναβ ðqÞ

¼ 1

2
ðημαηνβ þ ημβηνα − ημνηαβÞ

−
1

2m2
ðημαqνqβ þ ημβqνqα þ ηναqμqβ þ ηνβqμqαÞ

þ 1

6

�
ημν þ

2

m2
qμqν

��
ηαβ þ

2

m2
qαqβ

�
: ð20Þ

Finally, we will need to consider the interaction with matter
degrees of freedom. The graviton-matter interaction term in
D ¼ 5 dimensions, is given by

Lint ¼ −
1

2
Tabhab: ð21Þ

Since we assume matter to be confined on a 3-brane, the
graviton-matter interaction term will not have the 55 com-
ponent. Therefore, using M3 ∼ kM2

Pl and hab → M−3=2hab,
the required vertex is

It is well known that the Newtonian potential is the
Fourier transform of low energy limit (i.e., q0 → 0) of the
tree-level scattering amplitude (see Fig. 2 and [73,79]).
There are various ways we can quantize graviton, we can
either use Gupta formalism [80,81], or impose gauge fixing
and ghost degrees of freedom, see Ref. [79]. In either case,
we can compute the change the gravitational energy due to
the exchange of graviton [7,11]. We are interested in this IR
limit to study the nature of graviton-mediated quantum
entanglement between the two particles on the 3-brane.
Using (17)–(21), it can be shown that [72,74]:

VðqÞ ¼ lim
q0→0

X∞
m¼0

jΦðm; 0Þj2 1

kM2
Pl

Tμν
1 ðqÞPðmÞ

μναβðqÞTαβ
2 ðqÞ

jq2 −m2j ;

ð22Þ
Having determined the nature of the gravitational inter-
action, we want to lay out the setup for the matter sources
which will get entangled from a pure state via this quantum-
gravitational interaction.

IV. SIMPLE SETUP FOR MATTER SYSTEM

For simplicity, we will consider two quantum harmonic
oscillators in their respective traps separated by a distance
d. The Hamiltonian is

Ĥmatter ¼
p̂2
A

2m
þ p̂2

B

2m
þ 1

2
mω2

mδx̂2A þ 1

2
mω2

mδx̂2B; ð23Þ

where p̂A, p̂B are the conjugate momenta, ωm is the
frequency of the oscillators, and δx̂A, δx̂B are the quantum
fluctuations around their mean values:

x̂A ¼ −
d
2
þ δx̂A; x̂B ¼ d

2
þ δx̂B: ð24Þ

The mode operators for the harmonic oscillator systems are
given by

δx̂A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s
ðaþ a†Þ; δx̂B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s
ðbþ b†Þ;

ð25Þ

p̂A ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmωm

2

r
ða − a†Þ; p̂B ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmωm

2

r
ðb − b†Þ;

ð26Þ
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with the operators satisfying the usual canonical commu-
tation relations. Thus the Hamiltonian can be written as

Ĥmatter ¼ ℏωmâ†âþ ℏωmb̂
†b̂: ð27Þ

V. ENTANGLEMENT WITNESS

We will assume that the quantum harmonic oscillators
are initially in their ground states. The ground state of this
system can be written as

jΨii ¼ j0Aij0Bi; ð28Þ

where j0Ai; j0Bi denote the number states and the respec-
tive ground states of oscillators A and B. Introduce a
gravitational interaction between the oscillators. This inter-
action results in the oscillators becoming coupled if the
gravitational interaction is quantum in nature, see Ref. [11].
By following the standard perturbation theory procedure,
the perturbed state is given by

jΨfi ¼
1

N

X
n;N

CnN jnijNi; ð29Þ

where N ¼ P
n;N jC2

nN j is the overall normalization factor.
The coefficient of the unperturbed state C00 ¼ 1 from the
above formula, and that of the perturbed state is given by

CnN ¼ λ
hnjhNjĤintj0ij0i
2E0 − En − EN

; ð30Þ

where λ quantifies the strength of the interaction. We have
dropped labels A and B from the states for ease of notation.
We reiterate that if and only if Ĥint is a quantum operator,
only then we will [see Eq. (30)] yield a nontrivial value if
Hint is a classical C number, the coefficients CnN ¼ 0 due
to orthogonality of the states. Nonzero CnN denotes the
entanglement between the two states. Here Ĥint designates
the quantum interaction or the quantum communication,
and it is an operator-valued entity that is compatible with
the LOQC theorem, see Ref. [11].
Since we deal with the bipartite system, it is sufficient to

witness the entanglement with the help of concurrence,
which is defined by [68,69]

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − Tr½ρ2A�Þ

q
; ð31Þ

where ρ̂A is the density matrix of A, computed by tracing
out the B state from the full density matrix.

ρ̂A ¼
X
N

hNjψ fihψ f jNi: ð32Þ

Substituting (32) in (31), we finally obtain

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

X
n;n0;N;N0

Cn;NC�
n0NCn0;N0C�

nN0

�s
: ð33Þ

The larger the concurrence, the more strongly entangled the
subsystems are, where a maximally entangled state gives
the value

ffiffiffi
2

p
and an unentangled state gives the value 0.

VI. EFFECTIVE POTENTIAL

Let us consider the nonstatic case, where we take the
simplest scenario when p0 ¼ p; p02 ¼ p2 ¼ m2 in (13),
where pμ ¼ ðE=c;−pÞ (introducing factors of c), E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p
and ðμ; νÞ ¼ ð0; 1Þ. Let rA ¼ ðxA; 0; 0Þ

and rB ¼ ðxB; 0; 0Þ denote the positions of the two matter
systems in one spatial dimension, assumed to be in the x
direction. While evaluating the effective potential (22), the
polarization tensors (19) and (20) should be used for the
massless and the massive KK modes, respectively.
Separating out the massless and the massive mode con-
tributions, we obtain2

VðqÞ ¼ VðqÞðm¼0Þ þ VðqÞðm>0Þ; ð34Þ

where, after taking the Fourier transform using the results
1=ð2πÞ3 R e−iq:r=q2 ¼ 1=4πr and 1=ð2πÞ3 R e−iq:r=jq2 þ
m2j ¼ e−mr=4πr, we obtain

VðrÞðm¼0Þ ¼ −
G
c4r

�
EAEB þ EB

EA
p2
Ac

2 þ EA

EB
p2
Bc

2

þp2
Ap

2
Bc

4

EAEB
− 4pApBc2

�
; ð35Þ

where r ¼ jrA − rBj, the coupling M−2
Pl ¼ 8πG=c4 and

jΦð0; 0Þj2 ¼ k. Expanding in the powers of 1
c2, up to Oð 1c4Þ

VðrÞðm¼0Þ ¼ −
Gm2

r
−

G
2rc2

½3p2
A þ 3p2

B − 8pApB�

−
G

8rm2c4
½18p2

Ap
2
B − 5p4

A − 5p4
B�: ð36Þ

Contribution from massive modes:

VðrÞðm>0Þ ¼ −
G

c4kr

X
m>0

jΦðm; 0Þj2e−mr½Tμν
A Pðm>0Þ

μναβ Tαβ
B �:

ð37Þ

Here, exponential suppression is a characteristic of forces
mediated by massive particles.

2The momentum-dependent scattering is a new computation to
our knowledge in the context of the RS-2 scenario. Previous
computations concentrated on static scattering diagrams, e.g., static
contributions to the Newtonian potential, see Refs. [56,66,72,82].
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While writing (37), we have used the fact that Tμν
A and

Tαβ
B are conserved matter sources on the brane. Therefore,

TðiÞαβ
;β ¼ 0 for both the oscillators individually for i ¼ A, B.

Note that there are momentum-dependent contributions
in the massive propagator, see Eq. (20). Hence, these
terms will not contribute once we impose the condition
of the conservation of energy-momentum tensor, e.g.,
qαTαβðqÞ ¼ i∂αTαβ ¼ 0. (Here we have replaced the covar-
iant derivativewith a partial derivative since we are working

in a linearized theory.) Therefore, both Pðm¼0Þ
μναβ and Pðm>0Þ

μναβ

are constants and depend only on the combinations of ημν
and not on qα, qβ.
We now turn to evaluate the contribution from the massive

modes for (13). The normalization factor jΦðm; 0Þj2 can be
evaluated using (12) and the sum over m can be converted to
an integral in the limit zr → ∞ (recall that we have
introduced a regulator brane at the conformal distance zr
(see Refs. [56,72]). Using (10),

X
m

fðmÞ →
Z

∞

0

fðmÞ zr
π
dm ð38Þ

and the property

JnðxÞYnþ1ðxÞ − YnðxÞJnþ1ðxÞ ¼ −
2

πx
ð39Þ

(37) becomes

VðrÞðm>0Þ ¼ −
2G
π2r

Z
∞

0

dm
m

e−mr

J21ðmkÞ þ Y2
1ðmkÞ

ðTμν
A Pðm>0Þ

μναβ Tαβ
B Þ: ð40Þ

Wecan divide the integral in (40) into two regimes:m=k ≪ 1
(light modes) andm=k ≫ 1 (heavy modes), and obtain up to
leading order:Z

∞

0

dm
e−mr

J21ðmkÞ þ Y2
1ðmkÞ

≈
Z

k

0

dme−mr m
2π2

4k2
þ
Z

∞

k
dme−mr mπ

2k
; ð41Þ

where for m=k ≪ 1, the Bessel function of second kind Y1

dominates in the denominator and for m=k ≫ 1,

JnðxÞ ≈
ffiffiffiffiffi
2

πx

r
cos

�
x −

nπ
2

−
π

4

�
; ð42Þ

YnðxÞ ≈
ffiffiffiffiffi
2

πx

r
sin

�
x −

nπ
2

−
π

4

�
: ð43Þ

In this limit, the modes asymptote to plane waves.

Therefore, the contribution from the continuum of
massive modes is

VðrÞðm>0Þ ≈ −
G
rc4

�
8

3π2

��
π2

4k2r2
ð1 − e−krðkrþ 1ÞÞ

þ π

2kr
ðe−krÞ

��
EAEB þ 1

2

�
EB

EA
p2
Ac

2

þ EA

EB
p2
Bc

2

�
þ p2

Ap
2
Bc

4

EAEB
− 3pApBc2

�
: ð44Þ

Evaluating (44) for kr ≪ 1 and kr ≫ 1 and expanding in
the powers of 1

c2 up toOð 1c4Þ, we finally obtain up to leading
order

VðrÞðm>0Þ ≈ fðrÞ
�
−
Gm2

r
−

G
rc2

½p2
A þ p2

B − 3pApB�

−
G

8rm2c4
½14p2

Ap
2
B − 3p4

A − 3p4
B�
�
; ð45Þ

where

fðrÞ ¼
(

4
3πkr þOð1Þ; kr ≪ 1

2
3πðkrÞ2 ; kr ≫ 1

: ð46Þ

The overall potential will be obtained by adding the
contributions of the massless and massives modes. The
static part of (36) and (45) is

V0ðrÞ ≈
(
− Gm2

r ½1þ 4
3πkr�; kr ≪ 1

− Gm2

r ½1þ 2
3πðkrÞ2�; kr ≫ 1

: ð47Þ

This result can also be arrived at by following the procedure
of [66]. In the limit kr ≪ 1, the second term dominates in
(47), and gravity behaves as a 5D field with the potential
falling off as 1=r2. In this limit, i.e., r ≪ k−1, the length
scale is smaller than the AdS5 radius, and hence the
spacetime looks almost flat, as is seen by the 1=r2 fall
off of the potential. On the other hand, when kr ≫ 1, it is
the massless mode that dominates, and 4D gravity is
recovered with the KK modes providing corrections
over the 1=r potential. In fact, this correction is above
and beyond what one would expect from a single extra
dimension. This is due to the barrier of the analog quantum
mechanical problem (6) used to find the KK modes that
result in the amplitude suppression of these modes near the
brane. A beautiful description can be found in [83].
Before we move on to the next section, we should

remind that the full potential we have obtained, VðrÞ ¼
VðrÞðm¼0Þ þ VðrÞðm>0Þ see Eqs. (35)–(44), have operator-
valued entities. Since these potentials are obtained by
assuming that the gravity is quantum in nature, e.g.,
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r; pA; pB are all operator-valued entities and notC numbers.
This has already been discussed in [11].

VII. COMPUTING CONCURRENCE

Assume that the particles on the 3-brane are exchanging
graviton via the AdS5 (we are working in the limit kr ≪ 1).
We are interested to study how the entanglement builds up
using concurrence as the entanglement witness, following
the procedure of [11]. We promote (13) to the quantum
mechanical stress-energy tensor for the quantum harmonic
oscillators as per (26) (as per Weyl quantization and
interpret all the expressions in symmetrized ordering)
and now the results should be interpreted as per Sec. IV.
From (35) and (45), we can extract the terms that will
eventually give us the lowest quantum matter-matter
interactions. We are interested in studying the effective
matter Hamiltonian by integrating the graviton degrees of
freedom:

Ĥð0Þ
AB ≈ −

Gm2

r̂

�
1þ 4

3πkr̂
þ
�
þ � � � ; ð48Þ

Ĥð1Þ
AB ≈ 4

Gp̂A

r̂c2

�
1þ 1

πkr̂

�
p̂B þ � � � ; ð49Þ

Ĥð2Þ
AB ≈ −

Gp̂2
A

m2c4r̂

�
9

4
þ 7

3πkr̂

�
p̂2
B þ � � � ; ð50Þ

where HAB are the effective Hamiltonian terms involving
the static part of the potential and the momentum-depen-
dent parts of the potentials. Note that we are just capturing
the leading order contributions here in the perturbation
theory, hence � � � terms, we will be neglecting them. These
higher-order terms will contribute to the concurrence, but
then they will be more suppressed.

A. Contributions from Ĥð0Þ
AB

Here we are capturing the static contribution at the
leading order and see that at distances below the AdS5
radius, the second term dominates the Hamiltonian

Ĥð0Þ
AB ¼ −

Gm2

jx̂A − x̂Bj
�
1þ 4

3πkjx̂A − x̂Bj
�
; ð51Þ

where r̂ ¼ jx̂A − x̂Bj ¼ jdþ ðδx̂A − δx̂BÞj2 [using (24)].
Expanding around δx ¼ jx̂A − x̂Bj ¼ 0:

Ĥð0Þ
AB ¼ −Gm2

�
1

d
−

1

d2
ðδx̂A − δx̂BÞ þ

1

d3
ðδx̂A − δx̂BÞ2

−
4

3πk

�
1

d2
−

2

d3
ðδx̂A − δx̂BÞ þ

3

d4
ðδx̂A − δx̂BÞ2

��
:

ð52Þ

The lowest order quantum matter-matter interaction term is
now given by

Ĥð0Þ
int ≡ 2Gm2

d3

�
1þ 4

πkd

�
δx̂Aδx̂B: ð53Þ

Using mode expansions for δx̂A and δx̂B as per (25), the
above equation becomes

Ĥð0Þ
int ≡ ℏgðâ b̂þâ†b̂† þ â†b̂þ âb̂†Þ; ð54Þ

where we have defined

g≡ Gm
d3ωm

�
1þ 4

πkd

�
: ð55Þ

The first term is the same as obtained in the case of
massless 4D graviton [11] and the second term in the
bracket is the correction to the coupling when we are
probing the AdS5. The oscillators become strongly coupled
in the presence of warped extra dimension.
Following the results in Sec. V, substituting (54) in (30),

the coefficient of the unperturbed state C00 ¼ 1 and that of
the excited state is

C11 ¼ −
g

2ωm
: ð56Þ

The final state, up to the first order in perturbation theory,
simplifies to

jΨfi¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðg=2ωmÞ2
p �

j0iAj0iB−
g

2ωm
j1iAj1iB

�
; ð57Þ

which is an entangled state involving the ground state and
the first excited state of the system of two harmonic
oscillators. Finally, we can compute concurrence (31)

C ≃
ffiffiffi
2

p g
ωm

¼
ffiffiffi
2

p Gm
d3ω2

m

�
1þ 4

πkd

�
ð58Þ

(under the assumption that g=ωm ≪ 1). Since kd ≪ 1, the
second term dominates over the first one and we can
see that concurrence falls off with the quartic power of
the separation between the two oscillators. Therefore, we
again see that in the presence of a quantum gravitational
interaction, an unentangled system has evolved into an
entangled system.
There will be parameters for which we will satisfy

ffiffiffi
2

p
>

C > 0 for witnessing entanglement. In the limit when
m → ∞, the concurrence vanishes, similarly ω → 0, which
means the oscillators are no longer trapped and basically
free, and the concurrence vanishes.
In the IR, gravity has been probed up to 52 μm, see

Ref. [67] and no deviations from Newtonian potential have
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been observed. This sets the cutoff for new physics at below
52 μm. Therefore, to probe the effects of warped extra-
dimensions in future table-top experiments, we can take
AdS5 radius k−1 ≤ (52 μm). By setting this value, we may
consider similar parameter space as that of Ref. [14], e.g.,
mass of order m ∼ 10−15 kg object in a harmonic oscillator
trap, with a frequency of 1 Hz (feasible with diamagnetic
trap [84]). If the underlying geometry is 5D RS-2, then we
should be able to witness 1–2 orders of magnitude enhance-
ment in the concurrence as opposed to the predictions of 4D
Minkowski geometry, see Fig. 3. Note that the concurrence
for kd ≫ 1 becomes similar to that of the 4D scenario.
Although the observed enhancement in concurrence is
extremely small, so it will be extremely hard to witness
this entanglement. One possibility could be to use entan-
glement tomography, by varying time or distance one can
witness such a tiny signal [35,62]. We can allow smaller
trapping frequency, e.g., ωm ∼ 10−3 Hz, the concurrence
would decrease by six orders of magnitude to C ∼ 10−2.
Such a low-frequency trap can be achieved by lowering the
magnetic field gradient, or by lowering the value of
Newton’s constant, such as in a drop tower facility where
the effective Newton’s constant can be made small in a free-
fall scenario.
In fact, we can also increase the mass of the harmonic

oscillators, however, by increasing the mass, the size of the
object will considerably increase, which will be detrimental
for us, sincewe are alreadywithind ∼Oð10Þ μmseparation,
so better the objects of interest must have masses below
micron size, which is feasible for a diamondlike system. We
will discuss this possibility when we discuss spatial super-
positions instead of Gaussian harmonic oscillator states.

B. Contributions from Ĥð1Þ
AB and Ĥð2Þ

AB

We will now compute the concurrence for the lowest

order quantum matter-matter interaction term in Ĥð1Þ
AB,

which will be dominated by the momentum operators
p̂A and p̂B:

Ĥð1Þ
int ¼ 4

Gp̂Ap̂B

c2d

�
1þ 1

πkd

�
: ð59Þ

Writing Ĥð1Þ
int in terms of mode operators (26),

Ĥ1
int ≃ ℏg1ðâ − â†Þðb̂ − b̂†Þ; ð60Þ

where

g1 ¼
2Gmωm

c2d

�
1þ 1

πkd

�
: ð61Þ

Using (61) as the interaction term in (30), we can see that
the only nonzero perturbation coefficient emerges from the
term ∼â†b̂†:

C11 ¼ −
g1

2ωm
: ð62Þ

The final state again is an entangled state involving the
ground and the first excited states of the two harmonic
oscillators:

jΨfi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðg1=2ωmÞ2
p �

j0iAj0iB −
g1

2ωm
j1iAj1iB

�
:

ð63Þ

Using (63) in (31) for g1=ωm ≪ 1, we find the concurrence
to be

C ¼ 2
ffiffiffi
2

p
Gm

c2d

�
1þ 1

πkd

�
: ð64Þ

The concurrence now linearly depends upon the mass of
the quantum oscillators and inversely upon the AdS5 scale
k. There is a 1=c2 suppression and hence the interaction

Ĥð1Þ
int contribution is negligible and beyond the reach of any

prospect of detectability. For a similar set of parameters
as that of the static case, we will get the concurrence of
order Oð10−36Þ. Nevertheless, the trend would remain the
same, the contribution from the massive graviton enhances
the entanglement at short distances below the warped
radius kd ≪ 1.
Similarly, the lowest order quantum matter-matter inter-

action terms in Ĥð2Þ
AB are

Ĥð2Þ
AB ¼ −

Gp̂2
Ap̂

2
B

m2c4d

�
9

4
þ 7

3πkd

�
: ð65Þ

Writing Ĥð2Þ
int in terms of mode operators (26),

Ĥð2Þ
int ∼ −ℏg2ðâ† − âÞ2ðb̂† − b̂Þ2; ð66Þ
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FIG. 3. Concurrence as a function of the separation d between
the two harmonic oscillators, when kd ≪ 1, where we have taken
k−1 ∼ 52 μm, m ∼ 10−15 kg and ωm ¼ 1 Hz.

PROBING MASSLESS AND MASSIVE GRAVITONS VIA … PHYS. REV. D 108, 035018 (2023)

035018-9



where

g2 ¼
Gmℏω2

m

4c4d

�
9

4
þ 7

3πkd

�
: ð67Þ

Using (61) as the interaction term in (30), we can see that
the only nonzero perturbation coefficient emerges from the
term ∼ðâ†Þ2ðb̂†Þ2:

C22 ¼
g2

2ωm
: ð68Þ

The final state is an entangled state involving the ground
and the second excited state of the two harmonic
oscillators.

jΨfi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðg2=2ωmÞ2
p �

j0iAj0iB þ g2

2ωm
j2iAj2iB

�
:

ð69Þ

Using (69) in (31) for g2=ωm ≪ 1, we find the concurrence
to be

C ¼
ffiffiffi
2

p
Gℏωm

4c4d

�
9

4
þ 7

3πkd

�
: ð70Þ

Concurrence depends linearly upon the reduced Planck’s
constant, mass of the oscillators and falls off with the AdS5
scale and square of the separation between the oscillators to
the leading order. There is 1=c4 suppression in this case and
experimentally, the effect of this term can only be detected
for an experimentally impossible large frequency ωm.

VIII. SPATIAL SUPERPOSITIONOF TWOMASSES
AND CONCURRENCE

So far we have discussed the Gaussian state of the
harmonic oscillator. We have seen that the concurrence is
extremely tiny. However, this may change if we were to
take a non-Gaussian state, such as spatial quantum super-
position of masses. This can be achieved by the original
QGEM protocol [2]. Here, we will not delve into exper-
imental challenges but we will consider a parallel setup
discussed in [26,27,62,85]. Such spatial superpositions can
be created in the Stern Gerlach setup with a nitrogen
valence spin embedded in the crystal [2], see Refs. [19,86].
Here we mainly discuss the concurrence in this setup. The
masses are placed in a superposition of size Δx in a parallel
arrangement, shown in Fig. 4.
The joint quantum states of the spins, assuming that the

superposition is created at t ¼ 0 given by a separable state,
see Refs. [2,7,62]

jΨðt ¼ 0Þi ¼ 1

2
½j↑↑i þ j↓↓i þ j↑↓i þ j↓↑i�:

When the system interacts quantum gravitationally for time
τ, the wave function will evolve to an entangled state, given
by [2,7,62]

jΨðt ¼ τÞi ¼ 1

2
½j↑↑i þ j↓↓i þ eiΔϕðd;rÞðj↑↓i þ j↓↑iÞ�;

where the entanglement phase will be now given by
ϕðxÞ ¼ τV0ðxÞ=ℏ. In the RS case, the effective potential
is determined by (53), such that

Δϕðd; rÞ ¼ Gm2τ

ℏ

�
1

r
þ 4

3πkr2
−
1

d
−

4

3πkd2

�
; ð71Þ

where d is the separation between the two masses and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ Δx2

p
. For this setup, the density matrix for

subsystem A can be obtained by tracing out the subsystem
B from the full density matrix ρ̂. Therefore,

ρ̂A ¼ TrB½ρ̂�;

¼ 1

2

�
1 cosΔϕ

cosΔϕ 1

�
; ð72Þ

and hence the concurrence C is given by

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − TrÞ½ρ̂2A�

q
;

¼ ½1 − cos2Δϕ�12: ð73Þ

Form¼10−14kg,Δx¼20μm,d∼40μm,and τ¼1second,
the entanglement phase Δϕðd; rÞ ¼ −0.341635 and the
concurrence C ¼ 0.335028. From Fig. 5, we can see that
this setup results in orders of magnitude enhancement in
concurrence in comparison to the Gaussian state of the
harmonic oscillator setup in Sec. VII A.
If gravity is fundamentally propagating in 4D

Minkowski, then the entanglement phase Δϕðd; rÞ for this
set of parameters would be −0.16704 and the concurrence
C ¼ 0.166265. These results are encouraging, as they may
provide us a possibility to probe the AdS physics if the

FIG. 4. Configuration where the two spatial superpositions with
the splitting Δx are kept parallel to each other separated by
distances r and d. The radius of the crystal is R ¼ ð3m=4πρÞ1=3,
where we have taken ρ ¼ 3.5 g cm−3 for a diamondlike system,
where R ≪ Δx; d, for masses 10−14–10−15 kg objects.
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scale is close to the vicinity of a few hundred microns.
Here, of course, we have taken the AdS scale to be k−1 ∼
52 μm [⇒ M ≈ 107 GeV using (3)], similar to the current
constraints arising from any departure from Newtonian
gravitational potential [67].
We must note that the concurrence computed in this

paper does not include the effect of decoherence. The most
important channels for decoherence are indeed the electro-
magnetic channels, scattering due to ambient particles,
discussed in these papers [2,14,26–28]. The decoherence
rate due to the electromagnetic interaction dominates over
any decoherence due to the gravitational interaction, see
Refs. [87,88]. In particular, the creation of superposition
will create tiny gravitational waves. However, it would
depend on the details of the superposition. To excite
gravitational waves, one will require the time variation
in the quadrupole moment. Hence we will require either
rotation of the diamond or an asymmetric superposition.
The average energy of emitted gravitational waves will be
dimensionally given by Ė ∼ −GI2ω6

m=c2, where I is the
moment of inertia and ωm is the frequency of the trapping
potential (assuming at the zeroth order the creation of
superposition happens in a harmonic trap) [89]. Typically,
for the mass range we are interested in and the smallness of
the superposition size along with the frequency of the
trapping potential (well within 10–100 Hz), it means that
the emission of gravitational waves is really tiny. One can
also roughly estimate the emission rate of massless grav-
itons from the system, which we can dimensionally
estimate to be γ ∼ t2plω

3
m [87]. There is only one relevant

time scale which is the trapping frequency of the super-
position given by Ωm, and the tpl is the Planck time, e.g.,
10−44 seconds. Again for ωm ∼ 10–100 Hz, the emission
rate is tiny, hence decoherence rate will be expected to be
tiny as well. Of course, these numbers may change if we
place the experiment near the black hole, as shown in [88].
All these exercises are of academic interest and devoid of
any experimental consequences.

IX. SUMMARY

In this paper, we have considered a very simple toy model
of warped extra dimension, RS-2 scenario, wherewe probed
the extra dimension via a protocol known as the QGEM.We
have obtained all our results relying only on the effective field
theory of quantum gravity; the effective potential between
the two masses was computed in a scattering theory, and the
correction to the Hamiltonian has been computed up to the
second order in perturbation theory. Both the wave function
calculations and the correction to the Newtonian potential
energy suggest that the quantum interaction between the
graviton and thematter is crucial to obtain any entanglement,
a classical description cannot lead to entanglement. We
computed the entanglement via concurrence and showed that
the concurrence is always positive, although remains very
tiny. We have shown that we will need large spatial splitting
of the wave function, e.g. non-Gaussian state, to create a
significant concurrence. Indeed, a large concurrence would
also mean a significantly improved witness, provided the
challenges of decoherence can be controlled appropriately
[2,14,26–30], and creating large superposition is possible in a
laboratory. Note that the concurrence computed in this paper
does not include the effect of decoherence. The most
important channel for decoherence is indeed the electromag-
netic channels, scattering due to ambient particles, discussed
in these papers [2,14,26–28]. The decoherence rate due to the
electromagnetic interaction dominates over any decoherence
due to the gravitational interaction, see Refs. [87,88].
However, in this paper, we will not include these effects
due to decoherence, and detecting the entanglement witness
will require further analysis of the design of the experiment
along with a detailed study of the decoherence rate. We will
leave these for future studies.
Nevertheless, despite all these challenges our current

study provides new ways of probing the physics beyond the
Standard Model in the gravitational context. We have
shown that for the non-Gaussian state the concurrence is
significantly improved, for m ∼ 10−14 kg quantum system,
kept in a quantum superposition of 20 μm, and separated
by a distance d < k−1 ∼ 52 μm, the concurrence can be
made order C ∼Oð0.1Þ.
Indeed, it is a huge challenge to probe the parameter

space of extra dimensions, which has already been con-
strained by the experiment to test the short-distance
behavior of gravity [67]. Nevertheless, we believe that this
modest approach taken in the current paper provides a
quantum analog of the already existing tests of gravity,
where we can also probe the quantum nature of both
massless and massive graviton.
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FIG. 5. Concurrence as a function of the separation d between
the two spatial superpositions, when kd ≪ 1, where we have
taken k−1 ∼ 52 μm, m ∼ 10−14 kg, τ ¼ 1s and Δx ¼ 20 μm.
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