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The nature of neutrino masses and the matter-antimatter asymmetry of our universe are two of the most
important open problems in particle physics today and are notoriously difficult to test with current
technology. Dirac neutrinos offer a solution through a leptogenesis mechanism that hinges on the smallness
of neutrino masses and resultant nonthermalization of the right-handed neutrino partners in the early
universe. We thoroughly explore possible realizations of this Dirac leptogenesis idea, revealing new
windows for highly efficient asymmetry generation. In many of them, the number of relativistic degrees of
freedom,Neff , is severely enhanced compared to standard cosmology and offers a novel handle to constrain
Dirac leptogenesis with upcoming measurements of the cosmic microwave background. Realizations
involving leptoquarks even allow for low-scale postsphaleron baryogenesis and predict proton decay.
These novel aspects render Dirac leptogenesis surprisingly testable.

DOI: 10.1103/PhysRevD.108.035014

I. INTRODUCTION

Neutrino oscillations have established neutrinos to be
massive particles, albeit much lighter than all other fer-
mions: mν ≲ 0.8 eV [1]. The Standard Model (SM) of
particle physics needs to be extended by additional particles
to accommodate nonzero mν, the simplest extension being
three right-handed neutrinos νR that form massive Dirac
particles together with the familiar νL. This is sufficient to
explain all neutrino data and makes the mass generation for
leptons analogous to that of quarks. The Higgs then couples
to neutrinos with coupling strength mν=174 GeV, too
feeble to be detectable in experiments or even to ever
thermalize the νR in the early universe [2–4], assuming a
vanishing abundance after the big bang. Only an undetect-
ably small νR abundance is created through the Higgs
interactions [5,6].
The tiny νR coupling and consequent nonthermalization

was used to great effect in Ref. [7] for Dirac leptogenesis:
Similar to standard leptogenesis [8,9], a lepton asymmetry
is created in the early universe through the decay of new
heavy particles that is then converted to the observed
baryon asymmetry by sphalerons [10]. Where standard

leptogenesis creates the lepton asymmetry through explicit
lepton number violation, Dirac leptogenesis creates two
exactly opposite lepton asymmetries for left- and right-
handed neutrinos. Since the latter are invisible to the
sphalerons inside the SM plasma, only the left-handed
asymmetry is converted into baryons. The asymmetry
within the νR, and indeed the νR themselves, are seemingly
impossible to observe.
In this article, we provide an exhaustive list of Dirac

leptogenesis realizations and study their phenomenology. By
solving the relevant Boltzmann equations we show that this
mechanism is far more efficient than previously estimated.
Furthermore, we show that large regions of parameter space
are surprisingly testable or already excluded by measure-
ments of Neff in cosmic microwave background (CMB)
experiments, going far beyond earlier estimates [11,12].
Realizations involving leptoquarks do not even require
sphalerons and can thus work at low scales, unavoidably
generating proton decay as a consequence.
The rest of this article is structured as follows: in Sec. II

we describe the ingredients necessary for Dirac lepto-
genesis and describe the mechanism qualitatively. In
Sec. III we study the simplest realization quantitatively
to confirm the qualitative picture from before. Section IV is
devoted to a discussion of qualitatively different Dirac-
leptogenesis realizations that do not require sphalerons and
simultaneously generate proton decay. We conclude in
Sec. V. Some technical details and additional information
have been relegated to the appendix: the details of our Neff
calculation can be found in Appendix A and the full
derivation of our Boltzmann equations in Appendix B.
Appendix C lists the relevant scattering cross sections for
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the model discussed in the main text. We illustrate
some numerical solutions to the Boltzmann equations in
Appendix D.

II. INGREDIENTS FOR DIRAC LEPTOGENESIS

For the simplest Dirac leptogenesis setup, we need several
copies of a heavy new particle X that decays—typically
before sphaleron freeze-out, but at least before big bang
nucleosynthesis—into a nonthermalized νR plus an SM
particle. Since νR is a spin-1=2 gauge singlet, X carries
the same gauge quantum numbers as the SM particle but has
a different spin. Borrowing language from supersymmetry,
X is hence either a slepton, a squark, or a Higgsino.
Consequently, any supersymmetric Dirac-neutrino model
automatically provides the necessary ingredients for Dirac
leptogenesis. The different quantum number assignments for
X are listed inTable I; caseb is the one originally discussed in
Ref. [7]. The same models were identified in Ref. [13] as
interesting additions to Majorana-neutrino leptogenesis. In
all cases we can consistently assign a conserved B − L
quantum number to X, which allows us to protect the Dirac
nature of neutrinos by imposingUð1ÞB−L [14] or a subgroup
[15] either globally or locally.X always has additional decay
modes exclusively into SM particles besides the one into νR.
These are crucial for Dirac leptogenesis because otherwise
we would have an additional global Uð1ÞνR symmetry that
would lead to CP conservation.
Assuming hierarchical X, a CP asymmetry ε in the

decays of the lightest X will create a νR asymmetry

YΔνR ≡
nνR − nν̄R

s

����
today

≡ εη
neqX þ neqX̄

s

����
T≫MX

ð1Þ

for every multiplet component of X, where s ∝ g⋆T3 is the
entropy density and nA the number density of A. The above
corresponds to the standard definition of the efficiency
factor η [16], which is however not restricted to jηj ≤ 1 for
Dirac leptogenesis, although we have jεηj ≤ 1.
Following the νR asymmetry generation through X

decays, the νR will be out of contact with the SM plasma.
Since B − L is conserved in our Dirac-neutrino model,
we have the asymmetry YΔðB−LSMÞ ¼ YΔνR in the SM bath.

There, sphalerons break ΔðBþ LSMÞ ¼ 6, converting the
B − LSM asymmetry into a baryon asymmetry [10,17]

YΔB ¼ 28

79
YΔðB−LSMÞ ¼

28

79
YΔνR ≃ 10−3gXεη; ð2Þ

where in the last equation we have assumed only the SM
degrees of freedom, g⋆ ¼ 106.75, as wewill in all numerical
examples. To obtain the measured baryon asymmetry [9,18]
we thus need gXεη ∼ 10−7. In cases c and d, X decays can
directly produce a baryon asymmetry and can be effective
after sphaleron freeze out; the factor 28=79 then needs to be
dropped and no ΔLSM is generated.
With CP asymmetry ε simply generated at one loop in all

cases, the only quantity left to calculate is the efficiency η.
From Tab. I it is clear that in addition to the desired decay
channels, X unavoidably also has gauge interactions,
which can quickly deplete the number of X at temperatures
T < MX.Naively, thismakes itmore complicated to generate
the baryon asymmetry since it suppresses η. However, in
analogy to scalar-triplet leptogenesis [19] there are ways to
havevery efficient leptogenesis as long as at least some of the
inverse decay reactions are out of equilibrium, as already
observed in [20].
Depending on the hierarchy of rates, different predic-

tions for Neff emerge:
(I) If all decay rates of X are out of equilibrium, we have

to rely on gauge interactions to produce X, assuming
zero initial abundance. Once these scatterings freeze
out, the remaining X eventually decay perfectly out
of equilibrium at a temperature T ≪ MX. The νR
created in this decay then have a large momentum
compared to the SM temperature and thus a poten-
tially large contribution to Neff , reminiscent of the
superWIMP mechanism [21], see Appendix A. This
novel observation severely restricts this region of
parameter space.

(II) If the decay rates involving νR are in equilibrium but
the other ones are not, a large η can be achieved in
complete analogy to scalar-triplet leptogenesis.
Here, the νR are thermalized at T ∼MX, yielding

ΔNeff ≃ 0.14ð106.75=g⋆ðMXÞÞ4=3; ð3Þ

TABLE I. Quantum numbers for particle X whose decay gives Dirac leptogenesis. εwave and εvertex indicate one-loop contributions
from wave-function and vertex renormalization. Case c and d can lead to ΔB ¼ 1 proton decay (last column).

Case SUð3Þ × SUð2Þ ×Uð1Þ Spin gX ðB − LÞðXÞ Relevant Lagrangian terms that induce X decay εwave εvertex ΔB

a ð1; 1;−1Þ 0 1 −2 νReRX̄; LLX̄ ✓ ✗ 0
b ð1; 2; 1=2Þ 0 2 0 H̄X; ν̄RLX; L̄eRX; Q̄LdRX; ūRQLX; X†H†HH ✓ ✓ or ✗ 0
c ð3; 1;−1=3Þ 0 3 −2=3 dRνRX†; uReRX†; QLLX†; uRdRX;QLQLX ✓ ✓ or ✗ 0 or 1
d ð3; 1; 2=3Þ 0 3 −2=3 uRνRX†; dRdRX ✓ ✗ 1
e ð3; 2; 1=6Þ 0 6 4=3 Q̄LνRX; d̄RLX ✓ ✗ 0
f ð1; 2;−1=2Þ 1=2 2 −1 X̄L; ν̄RXH; X̄eRH ✓ ✓ 0
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an amount testable by CMB-S4 [22] unless g⋆ðMXÞ
far exceeds the SM amount [12]. This is the same
contribution as in the ΔL ¼ 4 Dirac-leptogenesis
mechanism of Ref. [23].

(III) If the decay rates involving νR are out of equilibrium
but the other ones are not, we have efficient
asymmetry generation with only a small amount
of νR generated through freeze-in with typical
momenta p ∼ 2.5T [24]. Here, ΔNeff can be unob-
servably small since both abundance and momenta
of νR are small. This freeze-in Dirac leptogenesis
technically differs from the namesake setup of [25].

The above cases allow for large η. Moving away from these
extreme cases lowers η and often pushesΔNeff closer to the
thermal value of Eq. (3). The interactions and decays of
the heavier X copies—required to exist for nonzero ε—will
further increase ΔNeff without contributing to the asym-
metry. Even case (III) could therefore generate a testable
ΔNeff unless the νR couplings of all X are suppressed.
Below we quantify the above points for case a

(cf. Table I), arguably the simplest version of Dirac lepto-
genesis. The other cases give qualitatively similar phe-
nomenology, except for the leptoquark cases c and d, which
are discussed in more detail toward the end.

III. A SIMPLE MODEL

As a simple model that realizes Dirac leptogenesis we
introduce two electrically charged scalars X1;2 ≡ X−

1;2 to the
SM (case a from Table I), in addition to the three right-
handed neutrinos necessary to form Dirac neutrinos. The
Yukawa couplings of νR with the Higgs are minuscule and
play no role in the following. The relevant interactions of
the charged scalars are

L ¼ 1

2
L̄cFiLX̄i þ ēcGiνRX̄i þ H:c:; ð4Þ

assuming, without loss of generality, that the Xi are mass
eigenstates. The matrices F1;2 are antisymmetric in their
flavor indices due to the antisymmetry of the SUð2Þ singlet
contraction L̄c

αLβ ¼ ēcανL;β − ēcβνL;α. The Gi are arbitrary
complex Yukawa matrices. Total lepton number is con-
served by assigning LðXiÞ ¼ 2, but, more importantly, νR
number is explicitly broken by the simultaneous presence
of both Yukawas; this allows for the generation of a νR
asymmetry in the Xi decays.

1

The tree-level decay rates of Xi are given by

ΓðXi → eRνRÞ ≃
Mi

16π
trðGiG

†
i Þ; ð5Þ

ΓðXi → eLνLÞ ≃
Mi

16π
trðFiF

†
i Þ; ð6Þ

summed over all final-state flavors. CPT invariance enfor-
ces ΓðXiÞ ¼ ΓðX̄iÞ≡ ΓXi

and hence

ΓðXi → eR=LνR=LÞ ¼ ΓXi
ðBR=L � εiÞ; ð7Þ

ΓðX̄i → ēR=Lν̄R=LÞ ¼ ΓXi
ðBR=L ∓ εiÞ ð8Þ

in the presence of a CP asymmetry

εi ≡ ΓðXi → eRνRÞ − ΓðX̄i → ēRν̄RÞ
2ΓXi

; ð9Þ

where BL ¼ 1 − BR and BR ≡ ΓðXi → eRνRÞ=ΓXi
. This

definition of εi as the average νR number per Xi decay
immediately implies the absolute upper bound

jεij ≤ minðBL; BRÞ; ð10Þ

although realistic values for εi are far below this limit.
This is in complete analogy to triplet-scalar leptogenesis
[19]. At one loop, we find from the diagrams in Fig. 1:

εi ≃
P

jðM2
j=M

2
i − 1Þ−1ℑ½trðFiF

†
jÞtrðGiG

†
jÞ�

8π½trðGiG
†
i Þ þ trðFiF

†
i Þ�

: ð11Þ

Again: a nonvanishing CP asymmetry unavoidably
requires both decay modes Xi → eLνL and Xi → eRνR.
In the following we will assume a hierarchical Xi

spectrum with X1 ≡ X being the lightest. Any asymmetry
generated by the heavier Xi>1 is expected to be washed out
by the interactions of X; the contribution of the heavier
scalars to the νR density and thus ΔNeff on the other hand
will only increase the final ΔNeff . By neglecting these
contributions here we are being conservative.
Provided all leptons except for νR are in thermal

equilibrium, the Boltzmann equations (derived in
Appendix B) for ΣA ≡ YA þ YĀ and ΔA ≡ YA − YĀ read

dΣX

dy
¼ 1

2
hσviXX̄ðΣ2

X − Σeq
X

2Þ

þ hΓXi
s

�
ΣX − Σeq

X

�
BL þ BR

ΣνR

Σeq
νR

��
; ð12Þ

FIG. 1. Tree-level and one-loop wave-function diagram whose
interference produces the CP-asymmetry εi of Eq. (11).

1These couplings contribute at one-loop level to the Dirac-
neutrino mass matrix, δmν ∼ FmlG�v2=ð16π2M2

XÞ, which is
≪ mν in the region of interest without fine-tuning.
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dΣνR

dy
¼ −

hΓXi
s

BR

�
ΣX − Σeq

X

ΣνR

Σeq
νR

�

þ 1

2
ðhσvisΣeq

eR þ hσvitΣeq
L ÞðΣνR − Σeq

νRÞ; ð13Þ

dΔX

dy
¼ hΓXi

s

�
ΔX − Σeq

X

�
BR

ΔνRðΣeq
eR þ ΣνRÞ

Σeq
νRΣ

eq
eR

−BL
4ðΔX þ ΔνRÞ

Σeq
L

− ε

�
1 −

ΣνR

Σeq
νR

���
; ð14Þ

dΔνR

dy
¼ hΓXi

s

�
−ε

�
ΣX − Σeq

X

ΣνR

Σeq
νR

�

− BR

�
ΔX − Σeq

X

ΔνRðΣeq
eR þ ΣνRÞ

Σeq
νRΣ

eq
eR

��

þ hσvis
2

½ΔνRðΣeq
eR þ ΣνRÞ þ 2ðΔνR þ ΔXÞΣeq

νR �
þ hσvit½ΔνRΣ

eq
L þ ðΔνR þ ΔXÞðΣνR þ Σeq

νRÞ�;
ð15Þ

where d=dy≡ 3Hðds=dxÞ−1d=dx,H is the Hubble rate and
x≡MX=T. Neglecting the Yukawa interactions as well as
couplings in the scalar potential, the relevant thermally
averaged X–X̄ annihilation cross section hσviXX̄ comes
from the hypercharge coupling of X see e.g. Ref. [26]. The
s- and t-channel X-mediated jΔνRj ¼ 1 scatterings such as
eLνL → eRνR are encoded in hσvis;t and are typically
suppressed compared to the (inverse) decays. Details can
be found in Appendix C.
The above set of Boltzmann equations has already been

simplified by setting the linear combinationsΔνR − ΔeR and
ΔνR þ ΔeR þ ΔνL þ ΔeL þ 2ΔX, which are conserved due
to Uð1ÞY ×Uð1ÞL, to zero, and by assuming all Δ to be
suppressed by the small ε. We assume vanishing initial
abundances for both X and νR. For thermalized νR, these
equations are similar to those of triplet leptogenesis [19].
We show some numerical solutions to the Boltzmann
equations in Appendix D to illustrate the evolution of νR
abundance and asymmetry. ΔνRðT → 0Þ gives the νR
asymmetry or efficiency parameter η, while ΣνRðT → 0Þ
is the number of right-handed neutrinos, which gives ΔNeff
when multiplied by the characteristic νR momentum at
production; see Appendix A for more details. Some
numerical solutions are presented in Fig. 2.
In Fig. 2, we can recognize the behavior mentioned

before and can quantify the relations:
(I) For ΓX ≪ H, the X freeze in or out and decay at

T ≪ MX. The efficiency peaks at MX ∼ 1013 GeV
and then falls off like M−1

X [MX logðMX=GeVÞ] for
larger (smaller) masses. Here,

ΔNeff ≃ 0.05BRη=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓXMPl=M2

X

q
ð16Þ

can become arbitrarily large for small ΓX due to
the large νR momentum, leading to strong con-
straints. A freeze-in component ΔNeff ∝ ΓX=M2

X
becomes important for larger ΓX and eventually
leads to thermalization.

(II) For BL ≪ 1 and thermalized X → νR, a large η≲
1=BL can be obtained, although jεηj remains below
1. This is an efficient leptogenesis region with the
simple ΔNeff prediction of Eq. (3).

(III) For BR ≪ 1, we findΔνR ≃ ΣνRε=BR and thus a large
η≲ 1=BR, together with a suppressed ΔNeff .

FIG. 2. Contours of ΔNeff (red, dashed) and η (blue) for BR ¼
0.99 (top) and BR ¼ 0.01 (bottom). In both cases jεj ≤ 10−2 and
we require εη ∼ 10−7 to explain the baryon asymmetry. The dark
red shaded region is excluded by current bounds on ΔNeff [18];
light red shows future reach [22]. The upper-right region has
nonperturbative ΓX > MX. In the lower-left region, X decays
after sphaleron decoupling.
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Numerical examples for other branching ratios are given
in Fig. 3 and confirm the above picture. The qualitative
behavior for the choices BR ¼ 1–10−5 (upper panel), and
BR ¼ 10−5 (middle panel) is similar to that of Fig. 2 and we
can identify the large-η regions already described above.
Notice that in these two examples jεj is restricted to be
below 10−5 from Eq. (10), so jηj has to be larger than 10−2

in order to generate the observed baryon asymmetry.
For ΓX ≪ HðMXÞ, this restricts MX to the region
1011–1015 GeV, but the mass is essentially unconstrained
in regions (II) and (III), i.e. for larger ΓX. Realistically, ε is
actually much smaller than this upper limit of 10−5 and thus
η has to be larger still. Nevertheless, we can have successful
baryogenesis over a wide region of parameter space. In
Fig. 3 (bottom), we show the efficiency for the special case
BR ¼ BL ¼ 1=2. This case is comparably simple because
the lack of hierarchy in X ↔ eRνR vs. X ↔ eLνL precludes
the large-η regions (II) and (III). η can at most be of order
one here, which however is hardly restrictive because jεj
can be as large as 1=2 in principle. Even this case allows
therefore for efficient baryogenesis, with a large portion of
parameter space testable through ΔNeff .
From Figs. 2 and 3 it is clear that Dirac leptogenesis is

very efficient, in part because both X and νR can be out of
equilibrium, allowing for successful baryogenesis even
with tiny ε. Since the sign of η depends on the hierarchy
of rates we find η ¼ 0 contours that delineate these regions,
not found in other leptogenesis mechanisms [16]. Large
regions of the parameter space are already excluded by
ΔNeff constraints and even more can be tested with stage-
IV CMB data [12,22], down to ΔNeff ≃ 0.06.
While we have focused our numerical study on case a,

the other cases of Table I are qualitatively similar. Their
gauge annihilation cross sections will differ somewhat—
and might even require corrections due to Sommerfeld [27]
and bound-state formation [28]—and there are often more
than two relevant decay channels, but the basic picture
from, say, Fig. 2 remains correct. Let us briefly mention
two cases that induce new effects.

IV. PROTON DECAY

Case d (and in general case c) of Table I is special in that
it violates baryon number directly. This makes it possible
to circumvent the use of sphalerons in baryogenesis and
establish low-scale Dirac leptogenesis, sharing similarities
with cloistered baryogenesis [29]. The parameter space
looks similar to Fig. 2, except that the lower-left sphaleron
decay region is now allowed, X only needs to decay before
big bang nucleosynthesis. This enlarges the allowed
parameter space and in particular allows for fairly light
leptoquarks X, which could then lead to detectable particle-
physics signatures. Interestingly, the fact that a nonzero CP
asymmetry ε requires X couplings to both uRνR and dRdR
unequivocally gives rise to proton decay. B − L is con-
served in these proton decays and we unavoidably have

FIG. 3. Same as Fig. 2 but for BR ¼ 1–10−5 (top), BR ¼ 10−5

(middle), BR ¼ 1=2 (bottom).
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final states that contain νR (see also [30]). For case d, we
only have such νR final states, e.g., p → Kþν̄R, while case c
also has fully visible final states such as p → π0eþ.
For case d, we have the following Lagrangian for several

copies of the leptoquark X ∼ ð3; 1; 2=3Þ,

L ¼ d̄cRFidRXi þ ūcRGiνRX̄i þ H:c:; ð17Þ

with implicit contraction of SUð3Þ indices. This leads to the
proton decay rate

Γðp → Kþν̄RÞ ≃
X
i;α

jFi;12Gi;1αj2
6 × 1033 yr

�
2 × 1015 GeV

MXi

�
4

; ð18Þ

using the relevant QCD matrix element from Ref. [31].
Notice that a kaon is produced due to the antisymmetry of
the Fi Yukawa couplings in flavor space. The current limit
on this proton-decay mode is 1=Γ > 6 × 1033 yr [32] and
will be improved in JUNO [33], Hyper-Kamiokande [34]
and DUNE [35]. Baryogenesis does not actually require X
couplings to the first quark generation, seemingly allowing
for an easy way to evade proton decay. However, any
nonzero F andG couplings will together—as required for a
nonzero CP asymmetry—induce proton decay at higher
order in perturbation theory, potentially with more com-
plicated final states [36]. The X masses and couplings
required for baryogenesis can easily lead to testable proton
decay rates (and ΔNeff ).

V. CONCLUSIONS

Massive Dirac neutrinos have Higgs couplings too small
to bring the νR into thermal equilibrium, which allows for
leptogenesis without B − L violation. In this article, we
have shown that there are many simple realizations of this
two-decade-old idea and that each one has a much larger
viable parameter space than anticipated: Dirac leptogenesis
is very efficient. Even more surprisingly, much of this
parameter space is testable through the νR contribution to
Neff , soon to be measured with subpercent accuracy by
CMB stage-IV experiments. A subset of models even
allows for post-sphaleron baryogenesis and predict proton
decay, making them one of the few known models that link
these two baryon number violating observables. With both
baryogenesis and Dirac neutrinos notoriously difficult to
probe, Dirac leptogenesis provides some novel handles for
testability.
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APPENDIX A: COMPUTATION OF ΔNeff

At temperature T, the energy density of the universe can
be written as

ρ ¼
�
1þ 7

8

�
Tν

T

�
4

ðNeff þ ΔNeffÞ
�
ργ þ…; ðA1Þ

where ργ is the energy density of photons, Neff ¼ 3.045
[37] is the SM’s effective number of relativistic degrees of
freedom in the active neutrino sector and

ΔNeff ¼
8

7

�
T
Tν

�
4 ρi
ργ

ðA2Þ

is the respective contribution from an additional relativistic
species i with energy density ρi. In general,

ρi ¼ gi

Z
d3pi

ð2πÞ3 Eifi; ðA3Þ

where gi is the particle’s number of internal degrees of
freedom, Ei its energy and fi its momentum distribution.
For ultra-relativistic particles, Ei ¼ pi and we can express
the energy density as ρi ¼ s4=3hqiiYi, where hqii is the first
moment of the momentum mode, qi ≡ pi=s1=3,

hqii ¼
gi

s4=3Yi

Z
d3pi

ð2πÞ3 pifi; ðA4Þ

and Yi is the comoving number density,

Yi ¼
gi
s

Z
d3pi

ð2πÞ3 fi: ðA5Þ

In the above expressions, s ¼ g�T32π2=45 denotes the
entropy density. Accordingly,

ΔNeff ¼
X
i

hqii
hqνi

Yi

Yν
Neff ; ðA6Þ

where hqνi and Yν are the respective quantities for the
relativistic SM neutrinos:

hqνi ≃ 3.15

�
45

2π2g�ðTν;FOÞ
�

1=3
; ðA7Þ

Yν ¼
X3
j¼1

Yeq
νj ðTν;FOÞ; ðA8Þ

with Tν;FO being the temperature of neutrino decoupling.
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In Eq. (A6), the sum runs over the involved production
modes of right-handed neutrinos with characteristic hqii
for which we employ the results of Ref. [21]. For the
production in the late decay of the mother particle X
(referred to as the superWIMP production mechanism in
[21]) we obtain

hqSWi ¼
451=12π7=12

24=3g1=12�

MXffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓXMPl

p ðA9Þ

in our notation. Early production around x ∼ 1 (via freeze-
in or close-to-equilibrium processes) gives rise to a moment
similar to Eq. (A7). The respective contributions to the
comoving number density, Yi, are obtained from solving
the Boltzmann equations.

APPENDIX B: BOLTZMANN EQUATIONS

In this appendix we derive the Boltzmann equations. For
the individual abundances Y of particles and antiparticles,
the Boltzmann equations read:

dYX

dx
¼ 1

3H
ds
dx

�
hσviXX̄ðYXYX̄ − Yeq

X
2Þ

þ hΓXiðBR þ εÞ
s

�
YX − Yeq

X

YνRYeR

Yeq
νRY

eq
eR

�

þ hΓXiðBL − εÞ
s

�
YX − Yeq

X
YL

2

Yeq
L

2

��
; ðB1Þ

dYX̄

dx
¼ 1

3H
ds
dx

�
hσviXX̄ðYXYX̄ − Yeq

X
2Þ

þ hΓXiðBR − εÞ
s

�
YX̄ − Yeq

X

Y ν̄RYēR

Yeq
νRY

eq
eR

�

þ hΓXiðBL þ εÞ
s

�
YX̄ − Yeq

X
YL̄

2

Yeq
L

2

��
; ðB2Þ

dYνR

dx
¼ 1

3H
ds
dx

�
−
hΓXiðBR þ εÞ

s

�
YX − Yeq

X

YνRYeR

Yeq
νRY

eq
eR

�

þ hσviνReR→LL

�
YνRYeR − Yeq

νRY
eq
eR

Y2
L

Yeq
L

2

�

þ hσviνRL̄→ēRL

�
YνRYL̄ − Yeq

νRY
eq
L

YēRYL

Yeq
eRY

eq
L

��
; ðB3Þ

dY ν̄R

dx
¼ 1

3H
ds
dx

�
−
hΓXiðBR − εÞ

s

�
YX̄ − Yeq

X

Y ν̄RYēR

Yeq
νRY

eq
eR

�

þ hσviν̄RēR→L̄ L̄

�
Y ν̄RYēR − Yeq

νRY
eq
eR

Y2
L̄

Yeq
L

2

�

þ hσviν̄RL→eRL̄

�
Y ν̄RYL − Yeq

νRY
eq
L

YeRYL̄

Yeq
eRY

eq
L

��
; ðB4Þ

dYeR

dx
¼ 1

3H
ds
dx

�
−
hΓXiðBR þ εÞ

s

�
YX − Yeq

X

YνRYeR

Yeq
νRY

eq
eR

�

þ hσviνReR→LL

�
YνRYeR − Yeq

νRY
eq
eR

Y2
L

Yeq
L

2

�

− hσviν̄RL→eRL̄

�
Y ν̄RYL − Yeq

νRY
eq
L

YeRYL̄

Yeq
eRY

eq
L

�

þ SM gauge interactions

�
; ðB5Þ

dYēR

dx
¼ 1

3H
ds
dx

�
−
hΓXiðBR − εÞ

s

�
YX̄ − Yeq

X

Y ν̄RYēR

Yeq
νRY

eq
eR

�

þ hσviν̄RēR→L̄ L̄

�
Y ν̄RYēR − Yeq

νRY
eq
eR

Y2
L̄

Yeq
L

2

�

− hσviνRL̄→ēRL

�
YνRYL̄ − Yeq

νRY
eq
L

YēRYL

Yeq
eRY

eq
L

�

þ SM gauge interactions

�
; ðB6Þ

dYL

dx
¼ 1

3H
ds
dx

�
−2

hΓXiðBL − εÞ
s

�
YX − Yeq

X
YL

2

Yeq
L

2

�

− 2hσviνReR→LL

�
YνRYeR − Yeq

νRY
eq
eR

Y2
L

Yeq
L

2

�

− hσviνRL̄→ēRL

�
YνRYL̄ − Yeq

νRY
eq
L

YēRYL

Yeq
eRY

eq
L

�

þ hσviν̄RL→eRL̄

�
Y ν̄RYL − Yeq

νRY
eq
L

YeRYL̄

Yeq
eRY

eq
L

�

þ gauge int
�
; ðB7Þ

dYL̄

dx
¼ 1

3H
ds
dx

�
−2

hΓXiðBL þ εÞ
s

�
YX̄ − Yeq

X
YL̄

2

Yeq
L

2

�

− 2hσviν̄RēR→L̄ L̄

�
Y ν̄RYēR − Yeq

νRY
eq
eR

Y2
L̄

Yeq
L

2

�

− hσviν̄RL→eRL̄

�
Y ν̄RYL − Yeq

νRY
eq
L

YeRYL̄

Yeq
eRY

eq
L

�

þ hσviνRL̄→ēRL

�
YνRYL̄ − Yeq

νRY
eq
L

YēRYL

Yeq
eRY

eq
L

�

þ gauge int

�
: ðB8Þ

Notice that ð3HÞ−1ds=dx ¼ −s=ðHxÞ for constant rela-
tivistic degrees of freedom. As we will assume the SM
gauge interactions to be fully efficient, we have combined
νL and eL in the above equations by defining YL ¼
YνL þ YeL . Now, we define ΣA ≡ YA þ YĀ and ΔA ≡ YA −
YĀ for any species A and rewrite the Boltzmann equations
accordingly. ΣL and ΣeR are approximated by their
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equilibrium values on account of their efficient SM gauge
interactions, leaving the following six equations:

dΣX

dx
¼ 1

3H
ds
dx

�
1

2
hσviXX̄ðΣ2

X − Σeq
X

2Þ

þ hΓXi
s

�
ΣX − Σeq

X

�
BL þ BR

ΣνR

Σeq
νR

���
; ðB9Þ

dΣνR

dx
¼ 1

3H
ds
dx

hΓXi
s

�
−BR

�
ΣX − Σeq

X

ΣνR

Σeq
νR

�

þ 1

2
hσvisΣeq

eRðΣνR − Σeq
νRÞ þ

1

2
hσvitΣeq

L ðΣνR − Σeq
νRÞ

�
;

ðB10Þ

dΔX

dx
¼ 1

3H
ds
dx

hΓXi
s

�
ΔX − Σeq

X

�
BR

ΣνRΔeR þ Σeq
eRΔνR

Σeq
νRΣ

eq
eR

þBL
2ΔL

Σeq
L

− ε

�
1 −

ΣνR

Σeq
νR

���
; ðB11Þ

dΔνR

dx
¼ 1

3H
ds
dx

hΓXi
s

�
−BR

�
ΔX −Σeq

X

ΣνRΔeR þΣeq
eRΔνR

Σeq
νRΣ

eq
eR

�

− ε

�
ΣX −Σeq

X

ΣνR

Σeq
νR

�
þ 1

2
hσvis

�
ΔνRΣ

eq
eR þΔeRΣνR

− 2ΔLΣ
eq
νR

Σeq
eR

Σeq
L

�
þ 1

2
hσvit

�
ΔνRΣ

eq
L −ΔLðΣνR þΣeq

νRÞ

þΔeRΣ
eq
νR

Σeq
L

Σeq
eR

��
; ðB12Þ

dΔeR

dx
¼ 1

3H
ds
dx

hΓXi
s

�
−BR

�
ΔX −Σeq

X

ΣνRΔeR þΣeq
eRΔνR

Σeq
νRΣ

eq
eR

�

− ε

�
ΣX −Σeq

X

ΣνR

Σeq
νR

�
þ 1

2
hσvis

�
ΔνRΣ

eq
eR þΔeRΣνR

− 2ΔLΣ
eq
νR

Σeq
eR

Σeq
L

�
þ 1

2
hσvit

�
ΔνRΣ

eq
L −ΔLðΣνR þΣeq

νRÞ

þΔeRΣ
eq
νR

Σeq
L

Σeq
eR

��
; ðB13Þ

dΔL

dx
¼ 1

3H
ds
dx

hΓXi
s

�
−2BL

�
ΔX − 2Σeq

X
ΔL

Σeq
L

�
þ 2εðΣX −Σeq

X Þ− hσvis
×

�
ΔνRΣ

eq
eR þΔeRΣνR − 2ΔLΣ

eq
νR

Σeq
eR

Σeq
L

�

− hσvit
�
ΔνRΣ

eq
L −ΔLðΣνR þΣeq

νRÞ þΔeRΣ
eq
νR

Σeq
L

Σeq
eR

��
;

ðB14Þ
where we have only kept terms linear in ε,ΔA and neglected
any asymmetry in the s- and t-channel scattering cross

sections, hσviνReR→LL ≃ hσviν̄RēR→L̄ L̄ and hσviνRL̄→ēRL≃
hσviν̄RL→eRL̄, denoted by hσvis and hσvit, respectively.
Note that dðΔνR þ ΔeR þ ΔL þ 2ΔXÞ=dx ¼ 0 and

dðΔνR − ΔeRÞ=dx ¼ 0 due to conservation of hypercharge
and lepton number, i.e., the set of differential equations is
redundant and we can eliminate two of them by plugging in
the solutions

ΔνR þ ΔeR þ ΔL þ 2ΔX ¼ δ1; ðB15Þ

ΔνR − ΔeR ¼ δ2; ðB16Þ

where δi are initial conditions (set to zero here assuming
vanishing asymmetries in the beginning). We choose to
eliminate Eqs. (B13) and (B14) to obtain the Boltzmann
equations in the main text. When νR is deep in equilibrium
the Boltzmann equations simplify and are structurally
similar to those of triplet leptogenesis [19]. In that region
the equations become symmetric under L ↔ R, ε ↔ −ε;
for every η at ðBR; εÞ there is a solution with −η at
ð1 − BR;−εÞ. This can be observed in the upper-left corners
of the two examples in Fig. 2.

APPENDIX C: INVOLVED CROSS SECTIONS

For case a of Table I, the relevant annihilation cross
sections, summed over final-state spins, are

σðXX̄ → B� → ff̄Þ ¼ ðg0Þ4Y2
f

24πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

s

r
; ðC1Þ

σðXX̄ → B� → ϕϕ̄Þ ¼ ðg0Þ4Y2
ϕ

48πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
X

s

r
; ðC2Þ

σðXX̄ → BBÞ ¼ ðg0Þ4
16πM2

X

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − 1Þy3

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy − 1Þyp

ðy − 1Þy2

þ
ð1 − 2yÞtanh−1


 ffiffiffiffiffiffi
y−1
y

q �
ðy − 1Þy2

#
y¼ s

4M2
X

;ðC3Þ

where B is the hypercharge gauge boson and g0 the gauge
coupling. f is a massless chiral fermion with hypercharge
Yf and ϕ a massless complex scalar with hypercharge Yϕ.
The thermally averaged annihilation rate is approximately

hσviXX̄ ≃
10−4

M2
X

8<
:

3.5ðMX=TÞ2; MX ≪ T;

1.2; MX ∼ T;

5.5; MX ≫ T:

ðC4Þ

The thermally averaged annihilation rate as well as the
decay rates are shown in Fig. 4 relative to the Hubble rate
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�=45

p
T2=MPl. ForMX ≫ 1013 GeV, the hyper-

charge gauge interactions are not sufficient to put X in
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equilibrium; for MX ≪ 1013 GeV, X reaches equilibrium
and freezes out at some temperature T < MX. Decay rates
have a different temperature dependence than annihilations.
The X-mediated ΔνR ¼ 1 scattering cross sections con-

sist of s- and t-channel cross sections,

σsðLαLβ → eR;γνR;σÞ ¼
jFαβG�

σγj2
16π

s
ðs −M2

XÞ2
; ðC5Þ

σtðL̄αeR;γ → Lβν̄R;σÞ

¼ jFαβG�
σγj2

16πM2
X

�yðyþ 2Þ þ 2ðyþ 1Þ logð 1
yþ1

Þ
y2ðyþ 1Þ

�
y¼s=M2

X

: ðC6Þ

The former needs to be properly regulated to subtract the
on-shell region that is already counted in the Boltzmann
equations via (inverse) decays. We follow the procedure
from Ref. [19] (see also Refs. [38,39]) and subtract σs by

jFαβG�
σγj2

16π

πs
MXΓX

δðs −M2
XÞ: ðC7Þ

For the Boltzmann equations we require the thermally
averaged cross sections, summedover initial and final flavors.
The relevant coupling trace can then also be written as

trðFiF
†
i ÞtrðGiG

†
i Þ ≃ BRBLΓ2

X

�
16π

MX

�
2

: ðC8Þ

APPENDIX D: EVOLUTION OF ABUNDANCES

In this appendix we show some numerical solutions to
the Boltzmann equations. Due to our approximations in
Appendix B, all ΔA are proportional to ε so we are
effectively solving for Δ=ε. Depending on the parameters,
some Δ change sign during the evolution.
The two plots in Fig. 5 correspond to case (I), where X

reaches equilibrium and freezes out (left) or freezes in
(right) due to its gauge interactions, then decays at
T ≪ MX. The smaller mass in the left figure results in a
(more) efficient annihilation, cf. Fig. 4, leaving few X to
eventually decay, which results in a suppressed η. In the
right figure, the gauge interactions of X are just too small to
thermalize X but still large enough to copiously produce X
available to decay, resulting in a large η. For even larger
MX, the production rate of X would decrease, decreasing
the abundance of X (and therewith the value of η) again. In
these examples, the largest number of νR is produced in the
final X decay, which also generates these νR with a large
momentum p ∼MX relative to the cooled-down SM bath,
which leads to fairly large ΔNeff in both examples.

FIG. 5. Evolution of ΣX;νR and jΔX;νR=εj for two parameter points together with the resulting η and ΔNeff . The dashed blue line shows
the equilibrium distribution of ΣX. In the right panel, the curves for ΣνR and jΔνR=εj are on top of each other.

FIG. 4. Thermally averaged annihilation rate hσvinγ=H (solid
lines) and inverse decay rate hΓi=H (dashed lines; for unity
Yukawas) compared to the Hubble rate for several X masses.
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Decreasing ΓX, i.e., increasing the X lifetime, would not
change η significantly, but ΔNeff would increase propor-
tional to 1=

ffiffiffiffiffiffi
ΓX

p
due to the increased νR momentum relative

to the SM bath temperature, following Eq. (16). Changing
BR also does not affect η in this region of parameter space,
although it significantly affects ΔNeff ∝ BR.
Case (I), i.e. the parameter space with ΓX ≪ HðMXÞ is

relatively easy to describe since η only depends onMX and
ΔNeff follows from Eq. (16). Once we increase ΓX to values
around HðMXÞ, the Boltzmann equations become more
difficult due to several competing rates.
The two plots in Fig. 6 are for ΓX=HðMXÞ ¼ 10 with

BR ¼ 0.99 (left) and BL ¼ 0.99 (right). In the left plot, the
X ↔ eRνR rates are in equilibrium but the X ↔ eLνL rates
are not [case (II)], whereas the roles are reversed in the right
plot [case (III)]. Similar to triplet leptogenesis, one rate
being out of equilibrium is sufficient for a large η despite X

being virtually in equilibrium. In the left plot, the νR reach
equilibrium and give a thermal ΔNeff [Eq. (3)], whereas the
smaller BR in the right plot suppresses ΔNeff .
Fig. 7 (left) is another illustration of case (II) with even

larger ΓX. Here, the gauge interactions and νR decay rates
are strong, but the X ↔ eLνL rates are just on the verge of
equilibrium: BLΓX=HðMXÞ ¼ 1. This is still sufficient for a
very effective asymmetry generation. Increasing ΓX further
would lead to a decreasing η since the X ↔ eLνL would
thermalize and wash out the asymmetry. Notice that the
large νR rates lead to a ΔNeff that is slightly larger than the
thermal value. The difference is small though, much larger
values for ΔNeff can only be obtained for ΓX=H ≪ 1.
Fig. 7 (right) is again case (II) but has a large MX and

thus a much smaller X annihilation rate, leading to out-of-
equilibrium X. This leads to an even larger jηj, notably with
a different sign than in Fig. 7 (left).

FIG. 7. Evolution of ΣX;νR and jΔX;νR=εj for two parameter points together with the resulting η and ΔNeff . The dotted blue line shows
the equilibrium distribution of ΣX.

FIG. 6. Evolution of ΣX;νR and jΔX;νR=εj for two parameter points together with the resulting η and ΔNeff . Note that ΣX is virtually in
equilibrium in the considered x range.
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