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A number of proposals have been put forward for detecting axion dark matter (DM) with grand
unification scale decay constants that rely on the conversion of coherent DM axions to oscillating magnetic
fields in the presence of static, laboratory magnetic fields. Crucially, such experiments—including
ABRACADABRA—have to date worked in the limit that the axion Compton wavelength is larger than the
size of the experiment, which allows one to take a magnetoquasistatic (MQS) approach to characterize the
detector apparatus and model the axion signal. We use finite element methods to solve the coupled axion-
electromagnetism equations of motion without assuming the MQS approximation. We show that the MQS
approximation becomes a poor approximation at frequencies 2 orders of magnitude lower than the naive
MQS limit frequency commonly defined by the inverse diameter of a lumped-element detector. Radiation
losses diminish the quality factor of an otherwise high-Q resonant readout circuit, though this may be
mitigated through shielding and minimizing lossy materials. Additionally, self-resonances associated with
the detector geometry change the reactive properties of the pickup system, leading to two generic features
beyond MQS: There are frequencies that require an inductive rather than capacitive tuning to maintain
resonance, and the detector itself becomes a multipole resonator at high frequencies. Accounting for these
features, competitive sensitivity to the axion-photon coupling may be extended well beyond the naive
MQS limit.
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I. INTRODUCTION

The quantum chromodynamics (QCD) axion with decay
constant near the grand unification theory (GUT) scale
provides a compelling dark matter (DM) candidate [1–3], a
solution to the strong-CP problem from the nonobservation
of a neutron electric dipole moment [4–7], and may emerge
naturally in ultraviolet theories from string theory [8–11]
and GUT field theories [12–19]. The axion is naturally
realized as the Goldstone boson of aUð1Þ symmetry, called

the Peccei-Quinn symmetry, that is spontaneously broken
at a high energy scale fa [20]. The axion acquires a
nontrivial potential from QCD instantons, allowing it to
solve the strong-CP problem and also leading to an axion
mass ma ≈ 0.57 neVð1016 GeV=faÞ [21].
A number of compelling experiments have been pro-

posed for detecting GUT-scale axion DM in the laboratory
that rely on the coupling of the axion a to electro-
magnetism L ⊃ gaγγaE ·B, with E (B) the electric (mag-
netic) field and gaγγ the axion-photon coupling (see [22] for
a review). Axion DM behaves as a classical wave, whose
time dependence is aðtÞ ≈ a0 cosðmatÞ with amplitude a0
set by the local DM density ρDM: m2

aa20=2 ¼ ρDM [23].
The axion field may convert to electromagnetic waves
with frequency ω ≈ma in the presence of static,
external magnetic fields; for axion masses ma ∼ 5 μeV
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(corresponding to fa ∼ 1012 GeV and Compton wave-
length ∼25 cm), that radiation may then be enhanced in a
resonant cavity of comparable size [24]. The ADMX [25–27]
and HAYSTAC [28–30] experiments, among others [22],
have successfully searched for QCD axion DM in this mass
range using resonant cavities. The problem with using
resonant cavity experiments to search for GUT-scale axion
DM is clear: Probing ma ∼ 0.5 neV would require a cavity
with size ∼2.5 km.
However, in the limit where the axion Compton wave-

length is much larger than the size of the experiment,
the equations of axion electrodynamics can be solved in
the magnetoquasistatic (MQS) approximation, in which
case a static laboratory magnetic field B0 sources an
effective current JeffðtÞ ≈ gaγγ

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
cosðmatÞB0 [31,32].

The effective current oscillates in time, creating a real,
secondary, oscillating magnetic field which can be used
to drive current in a pickup loop via Faraday’s law.
Such detectors, which include ABRACADABRA-10 cm
(ABRA-10 cm) [33–35], SHAFT [36], and ADMX
SLIC [37], are generically referred to as “lumped-element”
detectors, since they are typically characterized through an
equivalent circuit approach as comprised of independent
components, such as inductors and capacitors, placed in
series [22]. In particular, at low frequencies, the detector
behaves as an inductor which may be characterized through
a MQS approximation. This approximation is commonly
assumed to hold for frequencies below the inverse diameter
of the detector, and we refer to this frequency boundary as
the naive MQS limit.
In this paper, we study how detectors designed to operate

in the MQS regime behave when the axion Compton
wavelength approaches the size of the detector. It is clear
that the MQS approximation is applicable for m−1

a ≫ L,
with L the characteristic size of the detector, but it is unclear
precisely where the MQS approximation breaks down and
how this affects the sensitivity of planned lumped-element
detectors. We note that most detector designs to date have
been informed by the MQS calculation at masses up to
m−1

a ∼ L [22,32,38,39]; in this work, however, we show
that the MQS assumption receives important corrections at
much lower frequencies, which provides insights that may
influence the design of future detectors. For example, the
upcoming DMRadio program [22,38,39] will feature both
meter-sized (DMRadio-50 L and DMRadio-m3) and larger
(DMRadio-GUT) experiments using solenoidal and toroi-
dal magnets with LC resonant readouts [40–42] to probe
QCD axion DM across the entire mass range from
∼0.4 neV to nearly 1 μeV.

II. ANALYTIC CONSIDERATIONS PAST
THE MQS LIMIT

We consider a toy detector roughly modeled on the
ABRA proposals in Ref. [32] with resonant readout, as

illustrated in Fig. 1 (see Appendix for solenoidal geometry
and broadband readout results). The inner toroid radius is
rinner, the outer radius is router, the height is h, and the
angular gap size where the readout is located is θgap. We
assume that a constant magnetic field of magnitude B0 fills
the toroid and gap. The toroid is surrounded by a super-
conducting sheath with the exception of the gap; the gap is
connected by a wire as illustrated in Fig. 1. In the middle of
the wire, there is an inductive coupling to the super-
conducting quantum interference device (SQUID) ampli-
fier readout and also additional lumped-element circuit
components tuned to achieve resonance at the frequency
of interest.
In the MQS limit (ma ≪ r−1outer; h−1), the sensitivity of the

detector to gaγγ may be estimated as follows [32]. Let us
assume that there is an axion signal with massma and that a
capacitor has been added to the readout such that there is a
resonance in the LC circuit, with the toroid providing the
inductance, at ω ¼ ma, with quality factor Q≲ 106. Since
the axion signal has a bandwidth δf=f ≲ 10−6, we may
assume for simplicity that the entire signal is within the
FWHM of the LC circuit. (Quality factors larger than 106

would be optimal but introduce additional complications
that are not important for this discussion [40].) Further-
more, we assume that thermal noise at temperature TLC in
the LC circuit and amplifier noise in the dc-SQUID
readout, which is optimally inductively coupled to the
pickup circuit, are the limiting sources of noise. Assuming
a small gap size, the oscillating axion-induced effective
current induces a voltage across the sheath gap, which
in the MQS limit we can model as a series RLC circuit.

FIG. 1. An illustration of our fiducial toroid with inner radius
0.5 m, outer radius 1 m, and height 0.5 m, along with a 5° angular
gap. A 10 T toroidal magnetic field sources an axion effective
current, which generated a magnetic flux that pierces the center of
the toroid, inducing a current that flows along the superconduct-
ing sheath that surrounds the toroid. A lumped-element port is
added to the wire bridging the gap, where the adjustable capacitor
(for achieving resonance) is located along with the inductive
coupling to the SQUID amplifier circuit. The heat map shows the
Poynting vector flux through a surface far from the detector for a
simulation in the unshielded configuration for a f ¼ 50 MHz
signal.
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We refer to the power spectral density (PSD) of the induced
voltage as the source voltage PSD SaVVðωÞ, the mean of
which is given by [23]

SaVVðωÞ ¼ πω2g2aγγB2
0V

2
effρDMfDMðωÞ; ð1Þ

where fDMðωÞ is the DM velocity distribution (e.g., the
standard halo model [23]), translated to a normalized
frequency distribution, and Veff is an effective volume that
depends on the geometry and the pickup system inductance
Lp, with typical value Oð0.1Þ times the physical toroid
volume. Note that fDMðωÞ vanishes for ω < ma and has
only nontrivial support up to ω ∼mað1þ 10−6Þ, given the
Galactic DM velocities. On resonance ðω ¼ maÞ, Eq. (1)
induces a current PSD SaII ¼ SaVV ½Q=ðmaLpÞ�2, with Q the
quality factor of the circuit. In contrast, the current PSD from
thermal noise (at high occupation numbers) and amplifier
noise at resonance with an optimally coupled amplifier
(see [40]) is SnoiseII ≈Qð2TLC þ ηAωÞ=ðπmaLpÞ. Here, ηA
is a factor that parametrizes how far away the amplifier is
from the standard quantum limit (SQL), with ηA ¼ 1 being
at the SQL; in the main paper, we assume ηA ¼ 20, as
targeted by DM Radio-m3 [39], though in Appendix we
show figures with ηA ¼ 1. The precise value of ηA does not
qualitatively affect our discussion.
The signal and noise PSDs may then be incorporated into

a likelihood analysis [23], the result of which is a projected
sensitivity characterized by test statistic Θ ¼ texp=2π ×R
dωðSaII=SnoiseII Þ2 with texp the data-taking time, which

we assume is large enough such that the signal is resolved
by multiple frequency bins. If we are interested in scanning
over, e.g., one decade of possible masses starting at some
lower frequency m0

a with a total exposure time ttot, then,
assuming a scanning strategy where we follow the QCD
band gaγγ ∝ ma, the amount of time texpðmaÞ we spend at a
given frequency ma > m0

a scales with mass as texpðmaÞ ∝
ðm0

a=maÞn, where n ¼ 5 when dominated by thermal noise
and n ¼ 3 when dominated by readout noise [40,41].
As an illustration, we consider throughout this paper a

toroid, which we call our fiducial detector, with dimensions
router ¼ 2rinner ¼ 2h ¼ 1 m, with B0 ¼ 10 T. The pickup
sheath has inductance Lp ≈ πr2inner=h. An adjustable
capacitor is added to the lumped-element port in series
with the pickup circuit, and the resonant frequency is tuned
to search for axion DM starting at an upper frequency that
we call the putative MQS breakdown frequency, fMQS ¼
1=ð4rinnerÞ ≈ 150 MHz, which is the inverse of the diam-
eter of the toroid. For definiteness, we assume one year of
total data-taking time, and we implement a search strategy
where we scan in axion mass from ma ¼ 2πfMQS to lower
masses, maintaining sensitivity to the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) axion [43,44]. The lowest
frequency we reach in this search is f ≈ 17 MHz, as
illustrated in Fig. 2. Note that to simplify the discussion

we assume that at all resonant frequencies the LC circuit
has a quality factor Q ¼ 106. We also assume that TLC ¼
20 mK and the readout noise parameter is ηA ¼ 20.
Going beyond the MQS approximation, we need to solve

Maxwell’s equations coupled to the axion source Jeff with
the boundary conditions specified by the detector. Note that
there are also contributions from axion field gradients, but
such terms are subdominant relative to Jeff by factors of the
DM velocity, so we neglect them in this analysis. The MQS
approximation amounts to neglecting the time-derivative
terms in Maxwell’s equations, as well as any retarded-time
effects.
To begin, we work to leading order in frequency, where

we may still treat the pickup loop circuit in the lumped-
element approximation and neglect finite propagation time
effects. However, an oscillating (effective) current source
will radiate. To keep track of the radiative power losses
(otherwise known as radiation resistance), we first assume
that there is no surrounding shield (in the ultralow-
frequency limit, the shield plays no role in determining
the quality factor). We may describe the radiation power
from the toroid in the dipole approximation. For illustrative
purposes, we assume the toroid has two independent
geometric scales, router ¼ 2rinner ¼ 2r and h independent

FIG. 2. The projected sensitivity of our fiducial toroid to gaγγ at
95% confidence as a function of axion mass ma for the scenario
of a perfectly reflecting, surrounding shield and 10% by volume
lossy material within the toroid. The MQS expectation is shown
hatched, with a scanning strategy that maintains sensitivity to the
DFSZ axion starting from the naive MQS breakdown frequency
fMQS and going to lower masses over a one-year timescale. The
same scanning strategy without the MQS approximation, as
simulated using COMSOL, gives the sensitivity illustrated by
“single pole,” which makes use of a single-pole readout strategy
without inductive tunings. Using the full high-frequency response
at each tuning, accounting for the multipolar response of the
resonant system at high frequencies, yields the sensitivity curve
labeled “multipole,”which extends the mass range of the lumped-
element detector all the way to masses probed by ADMX.

LUMPED-ELEMENT AXION DARK MATTER DETECTION BEYOND … PHYS. REV. D 108, 035009 (2023)

035009-3



of r. Approximating the surface currents on the toroidal
surface by a uniform current density J through the inner
toroidal volume, the time-averaged radiated power is
Prad ¼ m4

aG2J2=ð12πÞ, where G ¼ ð7π=3Þhr3 is a geo-
metric factor. We may then identify a radiation resistance
Rrad by setting Prad ¼ RradI2=2, with I the linear current
through the cross section of the toroid. Then, the total
quality factor of the circuit isQtot ¼ ð1=Qprim þ 1=QradÞ−1,
with Qprim ≈ 106 the original quality factor before radiative
energy loss was accounted for and Qrad ≡maLp=Rrad the
quality factor associated with the radiation resistance. A
straightforward calculation yields

Qrad ¼
54

49

�
1

mah

��
1

mar

�
2

: ð2Þ

Let us now assume that there is a single scale, with h ¼ r.
Then, to avoid diminishing the total quality factor below
106, we need ma ≲ r−1=100. That is, the MQS approxi-
mation breaks down 2 orders of magnitude before ma∼
2πfMQS. For example, for our fiducial toroid (fMQS ≈
150 MHz), radiation-induced Q degradation becomes
important for f ≳ 1 MHz.
As mar increases, the next important effect is that the

toroid pickup sheath stops behaving like a lumped-element
inductor at its first self-resonant frequency (fSRF).
Considering the sheath as a transmission line, we expect
its reactance X to depend on wavelength λ by X ∝
tanð2πlperim=λÞ, where lperim ∼ 4πr is the characteristic
perimeter length of the toroid (assuming router ¼ 2r).
Importantly, this implies that the reactance changes sign
when λ ∼ 4lperim, which occurs for ma ∼ ð4rÞ−1. That is,
the pickup loop behaves like a lumped-element inductor
only for ma ≲ 0.25r−1. For our fiducial toroid, we thus
expect fSRF ∼ 25 MHz, and above this frequency the
lumped-element approximation is not valid. In particular,
the reactance changes sign above fSRF, which means that the
pickup sheath has capacitive reactance and resonance can be
achieved only by adding an additional, tunable lumped-
element inductor to the readout circuit. Extending to even
higher frequencies, the reactance oscillates between capaci-
tive and inductive, and the detector acquires multiple poles.

III. NUMERICAL SIMULATIONS PAST
THE MQS LIMIT

Understanding the response of the detector at frequen-
cies beyond fSRF requires numerical simulations of the
axion-electrodynamics equations. Using the rf module of
COMSOL Multiphysics

® [45], we simulate our fiducial toroid
geometry including 2.5-cm-thick walls and a 5° gap. The
toroid is idealized as a perfect electric conductor, and the
gap is bridged by a perfectly electrically conducting surface
containing a small lumped port, which is then in series with
the macroscopic detector element.

We consider three boundary conditions: boundary con-
ditions at infinity, approximated with perfectly matched
layers; perfectly reflecting (e.g., shielded) boundary con-
ditions a finite distance from the detector; and perfectly
reflecting boundary conditions with the inclusion of a small
amount of absorbing material (plastic) within the detector
volume. The unshielded case with boundary conditions at
infinity does not correspond to a realistic experimental
setup but is useful for illustrating radiation resistance. The
reflecting boundary conditions are implemented through a
cylindrical, fully enclosed superconducting cavity with a
radius of 1.5 m and height of 1 m. In the case where we add
absorbing material, we fill the center of the toroid (in the
volume containing the magnetic field) with 10% by volume
of TACHYON® 100G Ultra Low Loss Laminate and
Prepreg, motivated by ABRA-10 cm [34] in the sense that
some amount of nonsuperconducting support structure is
necessary for the magnet. In Appendix, we show results for
larger absorbing fractions. In addition, nonsuperconducting
material may be present to cool the magnet; ABRA-10 cm,
for example, wrapped the toroid in copper straps to help with
thermalization. Our choice of absorbing material illustrates
how the volume of absorbing material is an important design
parameter for future detectors; it is not meant as a realistic
reflection of the parameters for upcoming experiments such
as DMRadio-m3 [42].
As in the MQS calculation, we characterize the detector

response through an equivalent circuit with the source-
voltage PSD SaVVðωÞ in series with a source impedance ZS
associated with the detector (see [42] for details). To
determine the source impedance, the axion effective current
is turned off and the lumped port is chosen to be a series
frequency-dependent voltage source. A measurement of
the current which flows through the lumped port enables a
direct calculation of the equivalent source impedance of
the detector. To determine the equivalent source voltage, we
restore the axion effective current, remove the lumped port
source voltage, and measure the voltage drop across the
lumped port resistor. The equivalent circuit then gives the
response of the system when in series with an arbitrary load.
In the bottom panel in Fig. 3, we show the quality factors

measured in the simulation for the three different shielding
and absorbing material scenarios. More precisely, we
define the frequency-dependent quantity QB ≡ ω=δω, with
δω the numerically measured FWHM of the response about
resonance. Recall that in the MQS approximation wewould
haveQB ¼ 106 by construction across all frequencies. With
no shield, the quality factor follows the analytic expectation
from dipole radiation derived in Eq. (2). The dipole formula
is expected to break down at fSRF, and this may be clearly
seen in Fig. 3.
Note that at frequencies directly above fSRF (shaded)

achieving resonance requires the addition of an inductive
lumped-element component at the readout port, which may
be difficult to achieve in practice. Above fSRF, the quality
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factor is less than ∼10 at virtually all frequencies with no
shield, due to radiation resistance. The inclusion of a
perfectly reflecting shield restores QB across all frequen-
cies. We note that, with the perfect shield, QB formally
diverges at fSRF. This is because the resistance, which is
added to give finite Q ¼ 106, is added to the lumped port;
at fSRF, there is effectively a zero-resistance LC circuit in
parallel with the lumped port, meaning that the resistance in
the lumped port does not set the quality factor of the
resonator. Next, we keep the perfectly reflecting shield but
add in the lossy material, as described above, to the inside
of the toroid. The quality factor is slightly degraded as a
function of frequency, though it remains ≳104 across all
frequencies shown.
We combine the calculation of the quality factor with that

of the source voltage that is estimated with our numerical
simulations in COMSOL to compute the on-resonance sensi-
tivity to gaγγ, and we compare to the sensitivity estimated in
the MQS approximation (see [42] for further details). This
comparison is made under the assumption of an intrinsic
frequency-dependent resistance such that QB ¼ 106 at all
frequencies in the MQS approximation and with readout
noise (parametrized by ηA) independently tuned tominimize
noise on resonance for each of the scenarios [40]. The
sensitivity ratio gaγγ=g

MQS
aγγ is illustrated in the top panel in

Fig. 3 for our different shielding and loss assumptions (we
do not show the unshielded case above fSRF).
Even in the ideal scenario, with no loss and perfectly

reflecting boundary conditions, at frequencies above fSRF

the sensitivity of the detector is degraded relative to the
expectation under the MQS approximation due to a
decrease in the source voltage relative to the MQS
approximation. Moreover, as illustrated in shaded gray,
much of the frequency range above fSRF requires inductive
tuning. On the other hand, performing capacitive tuning
up to fSRF naturally covers, for free, much of the high-
frequency parameter space, since the response has multiple
poles at high frequency. Note that in Fig. 3 we account for
the fact that when the quality factor drops below 106 the
scanning may be performed more coarsely, which allows
for more integration time per mass point relative to the
MQS strategy. Similarly, when QB ≫ 106, only a fraction
of the signal is amplified.
In Fig. 2, we show the result of our numerical simulation

for our fiducial detector in the shielded but lossy material
scenario (labeled “single pole”). We implement a one-year
scan in which resonant tunings are performed at frequen-
cies with a relative step size δf=f ¼ 1=QMQS

B ¼ 10−6, and
data are collected at each tuning until the sensitivity on
resonance would reach the DFSZ benchmark under the
MQS approximation. (Note that, as shown in Refs. [40,41],
more optimal scanning strategies may extend the range of
masses at which DFSZ benchmark sensitivity may be
achieved.) Unlike in the MQS approximation (hatched
region), some frequencies in the full numerical response
would require an inductive load to achieve resonance; these
frequencies are excluded from our scanning strategy. We
may make use of the full off-resonance and multipolar
resonant response of the high-frequency system (e.g., for a
given capacitive tuning, resonance is achieved simultane-
ously at a single frequency between each inductive zero
crossing). This yields the improved sensitivity illustrated
by “multipole,” which interestingly extends all the way to
masses probed by ADMX.

IV. DISCUSSION

In this paper, we demonstrate that the sensitivity of
lumped-element axion detectors begins to break down
relative to MQS sensitivity at frequencies over 2 orders
of magnitude lower than the naive expectation. In
Appendix, we show that solenoidal geometries give similar
behavior.
High-quality-factor lumped-element detectors remain

promising for probing low-mass axions. For example, an
axion with ma ¼ 0.5 neV would have a decay constant
at the supersymmetry GUT scale and be in range of
DMRadio-GUT [38], where mar≲ 10−2 and, thus, the
effects discussed in this work should not degrade the
sensitivity relative to the expectation under the MQS
approximation. On the other hand, we show that additional
challenges arise in maintaining the sensitivity of lumped-
element detectors approaching their self-resonant frequen-
cies. Methods for mitigating these effects are actively being

FIG. 3. Top: a comparison of the expected sensitivity of our toy
detector geometry for the three boundary conditions considered
in this work relative to the MQS expectation (which is indepen-
dent of assumed boundary conditions). Shaded gray regions
indicate frequency ranges that require an inductive tuning for the
lossy scenario. Bottom: the quality factor QB, which determines
the bandwidth of the single-pole response for the different
scenarios, along with the low-frequency analytic expectation
for QB.
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pursued [42]. Nevertheless, for sufficiently low-loss detec-
tors, the accessible parameter space of lumped-element
experiments may be extended well beyond their originally
targeted frequency ranges.
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APPENDIX A: IMPACT OF READOUT NOISE

The large reactance realized in the vicinity of the self-
resonance poles and the increased resistance associated
with radiative losses have the effect of reducing both the
signal and thermal noise currents in the pickup system,
which scale like 1=ZðωÞ2, compared to the readout noise,
which scales like 1=ZðωÞ. This results in a greater
dependence on the magnitude of readout noise in determin-
ing the axion sensitivity of lumped-element detectors in the

high-frequency regime. To inspect the importance of read-
out noise, we determine the sensitivity of our fiducial
toroidal detector as in Fig. 2, but now for ηA ¼ 1, i.e., for
amplified readout at the standard quantum limit.
In Fig. 4, we show the relative sensitivity of a given

resonant tuning to the axion-photon coupling for readout
noise parametrized by ηA ¼ 1, where the sensitivity is, in
fact, enhanced at low frequencies prior to reaching the first
self-resonant frequency, even for lossy detectors, before the
large-scale trend of decreasing sensitivity with increasing
frequency is restored. In Fig. 5, we determine the sensitivity
of an MQS scanning strategy for ηA ¼ 1 with the high-
frequency response with and without incorporating multi-
polar and off-resonance sensitivity, as in the main paper.

APPENDIX B: IMPACT OF THE LOSSY
MATERIAL FRACTION

To test the impact of the fraction of lossy material within
the toroid inner volume, we double the total lossy volume
so that flossy ≈ 20%. As a reminder, this is the fraction of
lossy material within the toroid volume and not within the
shield volume; the latter fraction is much lower. The
projected sensitivities associated with this increased lossy
volume fraction for both ηA ¼ 20 and ηA ¼ 1 scenarios are
shown in Fig. 6, with the limit-setting sensitivities slightly
reduced.

APPENDIX C: SENSITIVITY WITH A
SOLENOIDAL GEOMETRY

Thus far, we have focused exclusively on detection
sensitivity employing a toroidal geometry. An alternate
geometry is that of a solenoid, which we study along the
lines of our toroid study in this section. The simulated
geometry is shown in detail in Fig. 7 and is taken to be a
cylindrical solenoid with router ¼ 2rinner ¼ 1 m. The

FIG. 4. As in Fig. 3, but for ηA ¼ 1, i.e., with reduced readout
noise.

FIG. 5. As in Fig. 2, but for ηA ¼ 1, i.e., with reduced readout
noise.

BENABOU, FOSTER, KAHN, SAFDI, and SALEMI PHYS. REV. D 108, 035009 (2023)

035009-6



solenoid has height h ¼ 1.5 m, with the circular top gapped
by a 1 cm annulus across which we place our readout
bridge and lumped port. The background 10 T magnetic
field (and, therefore, axion effective current density) is
taken to be uniform within the coaxial solenoid bore and
directed along the solenoid axis. Outside, the field and
axion effective current density are taken to be vanishing. In
the lossy scenario, we line the exterior of the solenoid with
TACHYON® 100G Ultra Low Loss Laminate and Prepreg
with a total volume which is approximately 10% the
volume of the inner region.
In Fig. 8, we depict the relative sensitivity of the

solenoidal detector in the high-frequency regime relative
to the MQS expectations for the lossless, lossy, and
unshielded scenarios, taking ηA ¼ 20. (In the shielded

FIG. 6. As in Figs. 2 (left) and 5 (right), but with an increased lossy volume within the toroid of 20%.

FIG. 7. As in Fig. 1 (left), but for our solenoidal geometry. We additionally depict a side-view cross section of the solenoid (right
panel) with a heat map and arrow plot that illustrates the simple static magnetic field assumed in this work. The magnetic field (red) is
uniform and directed along the solenoid axis (arrows) within the enclosed volume and is zero elsewhere.

FIG. 8. As in Fig. 3, but for a solenoidal geometry.

LUMPED-ELEMENT AXION DARK MATTER DETECTION BEYOND … PHYS. REV. D 108, 035009 (2023)

035009-7



scenarios, the detector is in the middle of a 1.5 m radius and
2.5-m-high cylindrical shield.) As in the case of the toroid,
the signal and thermal current power are suppressed relative
to MQS expectations, making readout noise an important
factor in determining sensitivities at low frequencies that
are beyond the MQS regime. However, even in the ηA ¼ 20
scenario, the onset of high-frequency behavior prior to the
first self-resonant frequency results in a slight enhancement
of axion sensitivity in the lossy case. This is in part because
the solenoid has the advantage of being a less efficient
radiator, given that the dipole moment associated with the
axion-induced current density vanishes.
In Fig. 9, we depict the projected sensitivities of a MQS

scanning strategy for the high-frequency response with and
without incorporating multipolar and off-resonance sensi-
tivity for both ηA ¼ 20 and ηA ¼ 1. Here, we adjust the
scanning time to approximately 5.3 yr so that we achieve
the same frequency coverage between our fiducial toroid
and the solenoid in the ηA ¼ 20 scenario under the MQS
approximation.

APPENDIX D: BROADBAND READOUT
SENSITIVITY

As outlined in Ref. [32], there are two general classes of
readout systems for lumped-element detectors: broadband
and resonant. In this paper, we focus on resonant readout
systems, since they are generically more sensitive [40,41],
especially in the frequency range that will be probed by the
upcoming DMRadio experiments. However, it is interest-
ing to also consider how the sensitivity of a broadband
detector, which does not have additional lumped-element
components added to achieve resonance at a given fre-
quency, is affected by beyond-MQS approximation effects.
Broadband readouts are less affected by going beyond the
MQS approximation, because (i) there is no sense of a
quality factor in the broadband case, which is otherwise

degraded by radiative losses as we have described, and
(ii) since there is no additional lumped-element component
added to the system, the fact that the reactance changes sign
across fSRF does not have practical implications.
In Fig. 10, we show how the sensitivity of our fiducial

toroid is affected, with a broadband readout, when going
beyond the MQS approximation relative to the expectation
from the MQS approximation. We assume quantum-limited
readout noise parametrized by ηa and neglect contributions
of thermal noise. Since we are operating a quantum-limited
readout, we choose the optimal readout configuration, in
which the input coil that inductively couples the SQUID
to the pickup contributes negligibly small impedance to
the system. We operate the quantum-limited readout in the
optimal configuration for broadband measurement in the
MQS regime by taking SBAVV ¼ ω2LP and Simp

II ¼ 1=LP,
where LP is the low-frequency inductance of the pickup.
(See [40] for details.) This figure should be directly
compared to Fig. 3. As described above, relative to the
resonant case, the sensitivity of the broadband readout is
not severely affected by the MQS regime. In particular, the
presence of lossy material does not affect the sensitivity so

FIG. 9. As in as in Figs. 2 and 5, but for our solenoidal geometry.

FIG. 10. A comparison of the expected sensitivity of our
fiducial toroid in broadband readout mode for our three boundary
condition scenarios relative to the MQS expectations.
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long as there is a shield. Note that this implies that the
results of the ABRA-10 cm experiment [33,35], which took
data in broadband mode, are not affected by beyond-MQS
effects. Moreover, there is even a slightly increase in
sensitivity near fSRF, relative to the MQS expectation,
associated with greater noise suppression than signal

suppression at the first self-resonance. On the other hand,
as we show in Figs. 11 and 12 for the toroid and solenoid,
respectively, with different choices of ηA, the broadband
readout still performs worse than the resonant readout,
at most frequencies, even accounting for beyond-MQS
approximation effects.
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