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The vector portal/kinetic mixing simplified model of dark matter, in which thermal dark matter of a mass
ranging from a few MeV to a few GeV can be realized with a dark sector Uð1Þ, relies on a small kinetic
mixing term between this darkUð1Þ and the Standard Model (SM) hypercharge. It is well known that kinetic
mixing of the right magnitude can be generated at one loop by the inclusion of “portal matter” fields which
are charged under both the dark Uð1Þ and the SM hypercharge, and it has been previously argued on
phenomenological grounds that fermionic portal matter fields must exhibit a specific set of characteristics:
They must be vector-like and have the same Standard Model group representations as existing SM fermions.
A natural explanation for the presence of dark Uð1Þ charged copies of SM fermions would be to enlarge the
dark gauge group and embed the SM and the portal matter into a single dark multiplet; however, previous
works in this direction require significant ad hoc additions to ensure that the portal matter fields are vector-
like while the SM fields are chiral, and they rely on complicated dark Higgs sectors to realize the appropriate
symmetry breaking. In this paper, we argue that a model with large extra dimensions can easily generate
chiral SM fermions and vector-like portal matter from a single dark bulk multiplet, while allowing for a far
simpler dark Higgs sector. We present a minimal construction of this “Kaluza-Klein (KK) portal matter” and
explore its phenomenology at the LHC, noting that even our simple realization exhibits signatures unique
from those of more conventional models with large extra dimensions and 4D portal matter. Generically, the
portal matter sector fields will be much lighter than the other KK fields in the model, so the portal matter
sector has the potential to be the first observable experimental signature of an extra dimension.
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I. INTRODUCTION

As the parameter space for popular dark matter (DM)
candidates such as WIMPs [1] and axions [2,3] continues
to narrow under a growing body of null results in searches,
efforts to consider somewhat more exotic DM candidates
have borne a plethora of other DM models in a wide range
of searchable parameter spaces [4,5]. A popular and simple
expansion of the parameter space of the WIMP paradigm
is the so-called vector portal/kinetic mixing class of
models [6–11], in which the dark matter is an SM singlet
charged under a hidden local Uð1ÞD symmetry under
which the SM field content is uncharged. Interaction
between the SM and dark sectors is then achieved by
small kinetic mixing between Uð1ÞD and the SM hyper-
charge parametrized by a coefficient ϵ, appearing in the
action as a term

ϵ

2cw
BμνXμν; ð1Þ

where Bμν is the usual SM hypercharge field strength tensor,
Xμν is the field strength tensor for the dark photon field,
and cw is the Weinberg angle. If the dark photon AD which
carries the Uð1ÞD force attains a mass, then SM fields gain
an interaction strength with AD of ∼ϵeQ, where e is the
electron charge and Q is the electromagnetic charge of a
given SM particle. Assuming the coupling constant asso-
ciated with Uð1ÞD is roughly comparable in strength to
those in the electroweak sector, the relic abundance mea-
sured by Planck [12] will in turn be recreated when both the
dark matter and dark photon attain masses of approximately
0.1–1 GeV, while ϵ ∼ 10−ð3–5Þ, circumventing the Lee-
Weinberg bound on WIMP masses and therefore avoiding
harsh direct-detection constraints from DM-nucleon scatter-
ing searches [13–17].
It has long been known that the small kinetic mixing term

ϵ can be generated at the one-loop level from vacuum-
polarization-like diagrams featuring particles that are
charged under both Uð1ÞD and Uð1ÞY , so-called “portal
matter” [6,7]: the diagram contributing to ϵ in the case of
fermionic portal matter is depicted in Fig. 1. Evaluating this
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diagram for a set of vector-like fermions with masses mi,
SM hyperchargesQYi

, andUð1ÞD chargesQDi
will lead to a

kinetic mixing term,

ϵ ¼ cw
gDgY
12π2

X
i

QYi
QDi

log
m2

i

μ2
; ð2Þ

where gD is the Uð1ÞD coupling, gY is the SM hypercharge
coupling, and μ is some renormalization scale. Inspection of
Eq. (2) indicates that the condition

X
i

QDi
QYi

¼ 0 ð3Þ

will ensure that the renormalization scale μ will drop out of
the calculation and the resultant mixing will be finite and
calculable, as long as the various portal matter fields do not
have perfectly degenerate masses.
Because the portal matter itself might a priori appear at

any high scale, relatively little work was done on probing
its possible phenomenology until quite recently, when the
question was broached in works such as Refs. [18,19]. In
particular, in Ref. [19], the author argued that if the portal
matter is fermionic, then the confluence of phenomeno-
logical constraints ranging from effects on BBN to pre-
cision electroweak measurements suggests that low-scale
portal matter must take on a very specific form: It must
transform as vector-like copies of SM fermion fields. More
formally, a portal matter fermion must have the same
quantum numbers as some SM fermion and be vector-like
with respect to the SM gauge group and the dark Uð1ÞD.
These portal matter fields in turn have a distinctive
phenomenology from more commonly considered vec-
tor-like fermions, decaying primarily via dark photon
emission rather than via the emission of electroweak gauge
bosons, and therefore have unique experimental signatures
and constraints1 [22].

The requirement that portal matter fermions share SM
quantum numbers with some SM fermion naturally suggests
that in a more complete theory, Uð1ÞD might be part of a
larger gauge group GD under which a portal matter fermion
(or fermions) and the analogous SM fermion are part of a
single multiplet. Then, the SM charge assignments of the
portal matter fields are no longer ad hoc, but a natural
consequence of the UV construction. This possibility was
explored, for example, in Refs. [23,24]. In these construc-
tions, however, it was clear that realizing nonminimal
extensions to the framework of Ref. [19] presented signifi-
cant difficulties: In particular, to avoid phenomenological
constraints, the breaking of GD down to Uð1ÞD must be
done at multi-TeV scales or higher, but the breaking of
Uð1ÞD itself must occur at the OðGeVÞ scale in order to
reproduce the observed dark matter relic abundance—this
generally requires enormously complicated dark Higgs
sectors with prodigious amounts of tree-level fine-tuning.
Furthermore, the fact that SM fermions are chiral while
portal matter fermions must be vector-like (at least with
respect to the SM) means that constructions with extended
portal matter sectors require somewhat arbitrary particle
content: An individual multiplet of GD might contain both a
left-handed SM fermion and the left-handed part of a vector-
like portal matter field, but then the right-handed part of the
portal matter field would have to be introduced separately.
Both of these difficulties are substantially exaggerated as the
dark group GD becomes larger, as might be desirable if one
wishes to construct a model in which the dark gauge group
contains some other gauge symmetry beyond the Standard
Model, such as a local flavor symmetry (as considered in
Ref. [24]) or lepton and baryon number.
In four dimensions, these model-building difficulties are

generally unavoidable and present significant challenges. In
this paper, however, we demonstrate how a model with an
extended dark gauge group can elegantly be realized in
models with compactified extra dimensions. In such a
construction, portal matter and SM fields are part of the
same GD multiplet in the bulk, but boundary conditions in
the higher-dimensional theory both break GD down to the
Abelian dark group Uð1ÞD and ensure that portal matter
fermions only appear in the four-dimensional theory as an
infinite tower ofUð1ÞD-charged vector-like copies of an SM
fermion. We construct a minimal 5D model in which such a
setup is realized, and explicitly compute the kinetic mixing
arising at low energies in this model.2 From our computa-
tion of this kinetic mixing, we demonstrate that the same
conditions—in particular, Eq. (3)—that ensure finite and
calculable kinetic mixing in a four-dimensional theory are
also valid in the low-energy limit of a five-dimensional

FIG. 1. The vacuum-polarization-like Feynman graph which
contributes to the kinetic mixing of the dark photon X with the
SM hypercharge gauge boson B.

1We can also contrast these results with those of similar new
fermions in models with a strict unbroken dark Uð1Þ symmetry
[20,21], rather than the broken hidden Uð1Þ we consider here.

2We note that while the computation of kinetic mixing from
Kaluza-Klein modes is not, to our knowledge, well explored in
field theory, it has been the subject of inquiry in string theory—
e.g., Ref. [25].
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theory. Our paper is organized as follows: In Sec. II, we
discuss the process of building a theory of portal matter in
extra dimensions, keeping our discussion as generic as
possible to explore the advantages attained and the diffi-
culties encountered when constructing such a model. In
Sec. III, we then present a construction in this paradigm
with minimal complexity, in order to demonstrate the
feasibility of our program and explore the phenomenology
of a specific model. In Sec. IV, we then analytically compute
the kinetic mixing arising in our model and demonstrate that
the conditions for finite and calculable kinetic mixing in a
five-dimensional theory are analogous to those in a four-
dimensional one, arguing that our results are applicable to a
far broader class of constructions than the minimal model in
which the computation is performed. In Sec. V, we then
explore the phenomenological signatures and constraints of
our model, including searches for SM and dark sector
Kaluza-Klein modes and precision constraints on extra
dimensions. In Sec. VI, we conclude and discuss avenues
for future work.

II. KALUZA-KLEIN PORTAL MATTER: A
GENERIC RECIPE

Before constructing a particular model, it is perhaps more
useful to present a generic framework illustrating how extra
dimensions may be leveraged to produce portal-matter-like
fields. In this section, we shall endeavor to keep our
treatment of the extra dimensions as generic as possible,
to maximally illustrate the utility of this approach in
comparison to analogous constructions in four dimensions.
We remind the reader that our goal is to create a model

with the following characteristics:
(1) The SM gauge group is augmented by some local

symmetry given by the group GD that contains an
Abelian Uð1ÞD symmetry.

(2) At least one species of SM fermion is part of a
multiplet of GD containing both the SM particle,
which is uncharged under Uð1ÞD and remains chiral
until electroweak symmetry breaking, and some
number of portal matter particles, which are identical
to the SM particle under the SM gauge group, but
possess nonzero Uð1ÞD charge and achieve a mass
significantly in excess of the electroweak scale.

(3) At a high (≫ GeV) scale, the symmetry GD is broken
down to Uð1ÞD, while Uð1ÞD remains unbroken
until OðGeVÞ scales.

(4) Uð1ÞD undergoes kinetic mixing with the SM hyper-
charge, mediated at the one-loop level by the portal
matter fields. The portal matter content of the model
must be such that the naive four-dimensional con-
dition for this kinetic mixing to be finite and
calculable [Eq. (3)] is satisfied. In a theory with
compactified extra dimensions, this is, of course, not
a priori sufficient to ensure finite kinetic mixing,
because an infinite number of Kaluza-Klein modes

for each portal matter field will appear in the loop
diagram of Fig. 1; that is to say, the sum in Eq. (2)
now has an infinite number of terms. Nevertheless, it
remains a necessary condition for finite and calcu-
lable mixing, since otherwise it is clear that the
renormalization scale will not drop out of this sum.
We shall demonstrate that an only slightly modified
version of this condition is sufficient to ensure finite
and calculable kinetic mixing at least in a five-
dimensional theory later on. Generalizing this con-
dition to compactifications with two or more extra
dimensions may be of interest, but it is not explicitly
considered in this paper.

The requirements for a heavy GD → Uð1ÞD breaking
scale and a limited set of light chiral fermions accompanied
by much heavier vector-like fermions are reminiscent of
what emerges in a theory with compactified extra dimen-
sions. Specifically, appropriately chosen boundary condi-
tions can preserve the emergence of desirable light states
(massless solutions to the bulk equations of motion, so-
called “zero modes”) in the effective four-dimensional
theory for fields, while ensuring that other fields only have
states with masses on the order of the compactification scale
(and for fermions, are vector-like). Using simple techniques
outlined in, e.g., Refs. [26,27], we can easily achieve a
model of portal matter meeting all of the requirements we
have listed above.
We begin our recipe by reminding the reader of the basic

mechanics of the mechanism of orbifold symmetry breaking
by a discrete Abelian ZN orbifold. We consider a theory3

compactified on some general extradimensional manifold
M, orbifolded by ZN. Reviewing the mechanism of orbifold
symmetry breaking, the symmetry of the full extradimen-
sional theory can be broken down to a subgroup by
imposing an orbifold twist on the bulk gauge fields that
acts nontrivially on different members of multiplets—this
will preserve only the subgroup as a gauge symmetry on the
fixed point(s) of the orbifold twist and, in the effective four-
dimensional theory, correspond to breaking the other
symmetries of the theory at the compactification scale.
Systematically, one may take some Uð1ÞX ⊂ GD, and if we
wish to break GD → G0

D [where G0
D is a subgroup of GD

containing Uð1ÞX], we can impose an orbifold twist under
which different members of the bulk gauge boson multiplet
of GD will acquire a phase proportional to their Uð1ÞX
charge. Formally, if under the decomposition GD → Uð1ÞX,
the adjoint representation A of GD decomposes as

A →
X
i

1QX
i
; ð4Þ

3The value of N one requires will depend on the specifics of
the construction. This value in turn informs our choice of a
manifold M: For example, an S1 manifold allows only N ¼ 2,
while a T2 manifold might accommodate N ¼ 2, 3, 4, 6.
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then under the ZN orbifold twist, A will transform asX
i

1QX
i
→

X
i

expð2πiξQX
i Þ1QX

i
; ð5Þ

where QX
i is the Uð1ÞX charge of some member of A

(denoted by the index i), while ξ is a constant such that
invoking theZN twistN timeswill leaveA invariant—that is,
expðN · 2πiξQX

i Þ ¼ 1 for all indices i. At the fixed point(s)
of the orbifold, the theory will only retain the gauge
symmetry generated by those members of A which are left
invariant under this twist—namely, the subgroup G0

D of GD,
since other gauge fields must vanish at these points. In the
four-dimensional theory, this shall correspond to the sym-
metry GD being broken down to G0

D at the scale of
compactification:G0

D gauge bosonswill havemassless (zero)
modes in their Kaluza-Klein towers corresponding to four-
dimensional gauge bosons, while the broken generators of
GD will lack zero modes, and so all attain masses at the
compactification scale.
The orbifold twist used to break GD → G0

D will also
affect other bulk fields with nontrivial representations
under GD. In particular, if we assume that an SM fermion
Ψ is embedded in a representation ðRSM;RDÞ of the group
GSM × GD [where GSM ⊃ SUð3Þc × SUð2ÞL × Uð1ÞY is
some group that contains the traditional SM gauge sym-
metry], then its decomposition under GD → Uð1ÞX will be

ðRSM;RDÞ →
X
i

ðRSMÞQX
i
; ð6Þ

and its transformation property under the orbifold twist
will beX

i

ðRSMÞQX
i
→ ωΨ

X
i

expð2πiξQX
i ÞðRSMÞQX

i
; ð7Þ

where ξ is the same ξ previously selected for the gauge
multiplet’s orbifold transformation in Eq. (5), and ωΨ is
any constant phase such that applying the ZN orbifold
twist to Ψ N times will leave Ψ invariant—that is,
ωN
Ψ expðN · 2πiξQX

i Þ ¼ 1. As in the case of the gauge
bosons, only members of the Ψ multiplet which are left
invariant under the orbifold twist will have zero modes; the
other states will all be heavy and vector-like. This
observation suggests that orbifold symmetry breaking will
naturally generate the sort of fermion content in the four-
dimensional theory that a model of fermionic portal matter
stipulates: If fermions are embedded in SM representations
and multiplets of a dark gauge group GD, then under
orbifold symmetry breaking of GD we would expect zero-
mode fermions to appear only with certain dark sector
quantum numbers, while there would also emerge vector-
like fermions with identical SM charges but differing
dark sector quantum numbers, compared to these zero
modes. In order to realize a scenario consistent with

our phenomenological expectations of fermionic portal
matter—namely, light SM fermions uncharged under a
dark Uð1ÞD together with heavy vector-like copies of these
fields with nonzeroUð1ÞD charge—we only need to ensure
that for some Uð1ÞD ⊂ G0

D, the only fermions which retain
zero modes have aUð1ÞD charge of 0, while all other fields
vary under the orbifold twist. As an example of this
construction, we might take GD ¼ SUð3ÞD. Then, we
can select our fermion Ψ to be in the 3 of SUð3ÞD and
impose a Z2 orbifold twist (so our parities are þ1 and −1)
that breaks SUð3ÞD → SUð2ÞD ×Uð1Þ0D [do not confuse
Uð1Þ0D, an arbitrary Abelian subgroup of SUð3ÞD, with
Uð1ÞD, the gauge symmetry we identify with the dark
photon], under which the gauge boson decomposes as

A ¼ 8 → 3þ0 þ 1þ0 þ 2−þ3 þ 2−−3 ð8Þ

and Ψ decomposes as

ðRSM; 3Þ → ðRSM; 2Þ−þ1 þ ðRSM; 1Þþ−2; ð9Þ

where the superscript þð−Þ denotes þ1ð−1ÞZ2 parity. We
can identify the zero mode of the ðRSM; 1Þþ−2 Kaluza-Klein
tower with an SM fermion, and we apply a second Z2 twist
with a different fixed point to ensure that this zero mode is
chiral, in the usual manner employed in five-dimensional
orbifold theories4 [29,30]. With only the Z2 orbifolding,
the gauge symmetry of the four-dimensional theory is
SUð2ÞD ×Uð1Þ0D, and because we want our zero-mode
fermion to be uncharged under the dark photon gauge
symmetry Uð1ÞD, we must identify Uð1ÞD with an Abelian
charge embedded in SUð2ÞD.
We can see from the example in Eqs. (8) and (9) that

following our recipe thus far will generally give us a theory
with an unbroken dark gauge group G0

D that is larger than
the dark photon gauge group5 Uð1ÞD. For the vector portal
dark matter parameter space we are considering, we clearly
need Uð1ÞD to be broken at a small OðGeVÞ scale, while
the remaining generators of G0

D must be broken at a much
larger scale in order to ensure phenomenological viability
of the model. In a construction with extra dimensions, we
can encode at least some of these hierarchies in the
geometry of the model: The breaking of Uð1ÞD might
be achieved by small scalar vacuum expectation values

4While such an additional orbifolding to obtain chiral matter is
necessary when the twist is a Z2, it should be noted that there are a
wider variety of strategies which might yield chiral zero modes
with ZN twists for N ≥ 3, including scenarios in which the single
ZN twist used in the orbifold symmetry breaking also preserves
only one chirality of the zero mode [28].

5We note that ZN orbifold breaking cannot by itself reduce the
rank of the symmetry group G0

D [26], so if GD has a rank greater
than 1, some additional brane- or bulk-localized scalars with large
VEVs must be included in the theory to break G0

D → Uð1ÞD.
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(VEVs) localized on the ZN orbifold fixed point(s), while
the breaking G0

D can take place from much larger scalar
VEVs localized in the bulk or on a different brane.
Furthermore, the orbifold construction can allow us con-
siderably more freedom with the group representations of
the Uð1ÞD-breaking scalars: Because only G0

D ⊂ GD is
preserved at the ZN fixed point, any brane-localized scalar
localized there can be a multiplet of G0

D and not the full dark
gauge group GD. For example, in the model of Eqs. (8)
and (9), Uð1ÞD can be broken by a fixed-point-localized
SUð2ÞD doublet. With appropriately chosen (and orbifold-
consistent) boundary conditions for bulk scalars [or relying
solely on scalars localized on different 3-branes from the
small Uð1ÞD-breaking scalars], we might eliminate tree-
level coupling between the large scalar VEVs and the
smaller ones. Such a decoupling between the large and
small VEVs can easily be realized, for example, in Randall-
Sundrum-like models, which might naturally have Planckian
VEVs breaking G0

D → Uð1ÞD on the UV brane [31], while
the orbifold fixed point for the Z2 breaking, at which the
small Uð1ÞD-breaking VEV is localized, is assumed to be
the TeV brane. Of course, if we limit our selection of GD to
rank-1 groups, the problem of additional scalars to break G0

D
becomes moot: We can assume that orbifold symmetry
breaking only preserves the dark photon gauge symmetry
Uð1ÞD and that the entire dark Higgs sector simply consists
of the scalar(s) which breakUð1ÞD localized on the ZN fixed
point(s). Regardless of whether small Uð1ÞD-breaking
VEVs are decoupled from large VEVs by some arrangement
of the model geometry, or if large VEVs simply do not exist,
we can sidestep the need for complicated tree-level fine-
tuning in the Higgs sector, such as what appears in the
prescribed symmetry-breaking pattern in the models of
Refs. [23,24], and instead only confront a loop-level
hierarchy problem not unlike that which is encountered
for the SM Higgs. In fact, provided the compactification
scale is much lower than the Planck scale, this fine-tuning
should generically be far less severe than that which is
encountered in the SM.
It is critical to note that we have assumed that the

orbifold is a fundamental object in our construction (for
example, if some string theory compactification leads to
the M=ZN orbifold we require as a vacuum state), and not
simply the limit of a large brane-localized scalar VEV. As
long as this is the case, we can rely on the orbifold to
achieve all or part of our symmetry breaking without
introducing a complicated or finely tuned Higgs sector. In
this case, there are no additional dynamical scalars other
than those we have discussed above, and we have achieved
a large splitting between the scale of GD and Uð1ÞD
breaking in whole or in part entirely due to geometry. If
instead we were to assume that the boundary conditions
consistent with this orbifold were actually generated by
extremely large brane-localized scalar VEVs (which in 5D

will generate identical boundary conditions to our orbifold
ones as their VEVs are taken to infinity), much of the
simplicity that we have gained by this technique will be
lost—we will need to introduce large-VEV scalars at the
ZN fixed points in order to attain the required boundary
conditions, resulting in a return of the same splitting
problems that we find in 4D portal matter constructions.
The fact that the simplicity gains in this model are
predicated on the idea of the orbifold being a physical
object is, of course, not unique to our construction here—
the same assumption underlies the well-known attempts to
address the doublet-triplet splitting problem in SUð5Þ
theories via orbifold boundary conditions [30,32].
The final task left to be addressed in our general recipe

for portal matter with Kaluza-Klein modes is simply to
ensure that kinetic mixing remains finite and calculable, at
least in our naive four-dimensional intuition, by arranging
our model such that Eq. (3) is satisfied in the effective four-
dimensional theory. A simple means to ensure this is to
embed the SM fermions which have portal matter modes
into sets of SM particles that form multiplets of semisimple
unified groups, such as SUð5Þ [33] or the Pati-Salam group
[34], which contain the SM gauge group. Then, as was
previously argued in Ref. [24], Eq. (3) will automatically
be satisfied for kinetic mixing between anyUð1Þ in the SM
gauge group (or its semisimple extension) and any Abelian
subgroup Uð1Þ ⊂ GD. More generally, we note that in the
event that the SM fermions might be charged under some
Uð1Þ ⊂ GD, care must be taken to ensure that Eq. (3) is
satisfied for kinetic mixing featuring this Uð1Þ. For
example, in the model of Eqs. (8) and (9), it is possible
that if an intermediate stage of symmetry breaking exists in
which Uð1Þ0D remains unbroken, then the fermion we
considered in Eq. (9) will have three infinite massive
Kaluza-Klein towers of vector-like fermions which con-
tribute to kinetic mixing between the SM hypercharge and
Uð1Þ0D: two with a Uð1Þ0D charge of þ1, and one with a
Uð1ÞD charge of −2. Clearly, the infinite Kaluza-Klein
towers satisfy Eq. (3) themselves—this cancellation is
simply a consequence of the fact that SUð3ÞD is semi-
simple, and therefore the sum of the Uð1Þ charges of the
members of any SUð3ÞD multiplet will vanish. The zero
mode with a Uð1Þ0D charge of −2, however, has no þ1

charge fermions with which its contribution to kinetic
mixing will cancel, indicating that this kinetic mixing is
not finite and calculable in the theory, and therefore that a
UV completion likely will require more portal matter states
[although it should be noted here that Uð1Þ0D is entirely
orthogonal to the dark photon gauge group Uð1ÞD, so
perhaps model building to keep the Uð1Þ0D mixing finite
and calculable is of limited phenomenological interest in
this specific model]. While this observation obviously
does not modify the underlying condition of Eq. (3), it
does demonstrate that the chiral zero-mode fermions’
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contribution to any kinetic mixing must cancel independ-
ently of the cancellation that may be present among the
Kaluza-Klein modes, a subtlety not present in the four-
dimensional theory.
The dark matter itself can be realized in several contexts

in this class of constructions. The simplest realization is to
embed the dark matter in a multiplet of the broken group
G0
D on the fixed point where only G0

D is preserved: in the
model of Eqs. (8) and (9), dark matter can be readily
realized as a brane-localized SUð2ÞD doublet scalar or
fermion. A perhaps more intriguing possibility would be to
embed the dark matter as an SM singlet and GD multiplet in
the bulk—in the SUð3ÞD toy model an SUð3ÞD triplet, for
example—and set an intrinsic phase to the field’s orbifold
parity such that the Uð1ÞD-charged components receive a
zero mode and the Uð1ÞD-neutral component is massive.
Such a more complex setup may have intriguing dark
matter phenomenology, but it will be highly model depen-
dent, and as we are focusing on the nature of kinetic mixing
in these extradimensional theories, further discussion on
the dark matter itself will simply be considered beyond the
scope of this work.
There exist significant advantages from a model-building

perspective in using a Kaluza-Klein realization of portal
matter to extend the minimal model in Ref. [19]. First, the
multiplet structure of any model where Kaluza-Klein modes
play the role of portal matter will likely be substantially
simpler than an analogous four-dimensional construction.
There is no need to include additional ad hoc vector-like
partners for each portal matter field, which can become
particularly taxing if one chirality of the portal matter fields
is assumed to be in a dark multiplet with an SM field; rather,
both chiralities of the portal matter fields arise naturally as
part of the same bulk field. Meanwhile, we have seen that
the large hierarchy between the scale of breaking GD →
Uð1ÞD and theUð1ÞD breaking scale does not need to be the
consequence of a complicated and highly tuned Higgs
sector, but it can instead be encoded in the geometry of the
theory; it is in fact entirely feasible that any fine-tuning of
the scalar sector of the model can be relegated to the loop
level if it is present at all. Finally, while in the minimal
model of Ref. [19] the mass scale of the portal matter was
arbitrary (as long as it was high enough to escape existing
experimental constraints), the connection of the GD break-
ing scale to the compactification scale in the extradimen-
sional theory allows us to easily relate the scale of the
portal matter sector to new physics at other phenomeno-
logically interesting scales: As a simple example, we note
that Randall-Sundrum models [35] address the gauge-
gravity hierarchy problem with a single TeV-scale warped
extra dimension and can be naturally stabilized at this
size [36]. Following our model-building recipe in this
construction, then, the scale of the fermionic portal matter
masses in such a model is no longer arbitrary: The new

physics associated with portal matter must emerge at the
TeV scale as well.6

In presenting our recipe in this section, we have been
quite agnostic about the specifics of how a construction of a
model with Kaluza-Klein modes functioning as fermionic
portal matter might look, specifying a simple example only
insofar as it was useful to discuss our general arguments
about this class of models. In an effort to take speculation to
reality, in the following sections we shall present a more
fully realized semi-realistic toy model of such a construc-
tion, where we can hope to address a number of the
questions left unanswered in our general discussion: In
particular, how we might guarantee that kinetic mixing
remains finite and calculable when individual portal matter
modes are replaced by Kaluza-Klein towers, what sort of
phenomenology might be associated with the new portal
matter sector, and how the existence of this sector might
affect other phenomenological constraints on theories of
extra dimensions. We shall therefore move on from the
vague generalities we have addressed up to this point and
into more concrete model building.

III. MODEL SETUP

Our setup begins by embedding the entire SM in a flat
5D theory compactified on an interval of length πR, where
the fifth dimension is parametrized by the coordinate ϕ
ranging from ϕ ¼ 0 to ϕ ¼ π. At this point, we have no
need to specify a scale for R, but in the interest of exploring
the phenomenology of TeV-scale portal matter, we shall
assume a compactification scale of R−1 ∼ TeV here.
Assuming a TeV-scale compactification of a flat extra
dimension does introduce some potentially troubling pit-
falls—in particular, we would require fine-tuning to stabi-
lize R, and the nonrenormalizable effective 5D theory will
break down at a comparatively low scale of ∼10–20 TeV,
requiring a UV completion. A somewhat more complicated
treatment with a warped extra dimension avoids these
pitfalls, allowing the compactification scale to be stabilized
at OðTeVÞ via a Goldberger-Wise field [36] and deferring
the need for a UV completion to an exponentially higher
energy scale, but we shall restrict all of our computations
and most of our discussions in this work to the much
simpler flat case, which will demonstrate the crucial points
of the construction’s phenomenology in either geometry,
and only briefly touch on the potentially more realistic
warped scenario.
Our construction is equivalent to an S1=Z2 × Z0

2 orbifold,
with ϕ ¼ 0 being the Z2 fixed point and ϕ ¼ π being the Z0

2

6There are many other models, dating back to Ref. [27], which
posit TeV-scale extra dimensions for a variety of phenomeno-
logical concerns, such as supersymmetry breaking. As with the
Randall-Sundrum construction, many of these models and the
phenomenological problems they address might be adapted to
incorporate our TeV-scale Kaluza-Klein portal matter paradigm.
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one, and we shall use orbifold arguments to motivate our
boundary conditions and symmetry breaking before tran-
sitioning to the somewhat more convenient interval frame-
work for performing actual calculations. Following our
recipe from the previous section, we shall assume that Z0

2 is
the orbifold twist that will break the dark group GD down to
Uð1ÞD. In order to allow the orbifold twist to perform this
breaking without the need for additional scalars in the bulk
or on either of the branes, we shall take our dark group
GD ¼ SUð2ÞD, a rank-1 group. Our recipe then calls for us
to find a representation RD of SUð2ÞD with at least one
Uð1ÞD-neutral member, into which we can put fermions
that shall become both SM fields and portal matter. The
smallest such nontrivial representation is the adjoint 3 of
SUð2ÞD, which breaks down to Uð1ÞD as

3 → 1−1 þ 10 þ 1þ1: ð10Þ

Following Eq. (7), we see that a fermion in the representa-
tion RD of SUð2ÞD will only have zero modes for its
Uð1ÞD-uncharged state—the QD ¼ �1 states have nega-
tive Z0

2 parity and are therefore not invariant at the Z
0
2 fixed

point. Conveniently, because the bulk SUð2ÞD gauge field
must also transform according to Eq. (7) and is also in the
adjoint representation of SUð2ÞD, we see that the same
orbifolding also only leaves the Uð1ÞD gauge boson with a
zero mode, breaking SUð2ÞD down toUð1ÞD at the Z0

2 fixed
point ϕ ¼ π. Since only the Uð1ÞD dark gauge symmetry
remains at ϕ ¼ π, we can then break Uð1ÞD with a Uð1ÞD-
charged complex scalar ΦD localized at the ϕ ¼ π brane; if
hΦDi ≪ R−1, then the scale of this breaking will be much
lower than that of the compactification-scale breaking of
the SUð2ÞD → Uð1ÞD from the orbifold twist. While
certainly somewhat fine-tuned, the large hierarchy between
the scale of SUð2ÞD → Uð1ÞD breaking and the breaking of
Uð1ÞD is not unreasonable: Breaking SUð2ÞD toUð1ÞD and
then to nothing in a four-dimensional theory would require
substantial tree-level fine-tuning of scalar potential terms to
effect this hierarchy, but here, the VEVof a brane-localized
dark Higgs and the compactification scale have no relation-
ship at tree level.7

We can then use the Z2 parity to eliminate several
phenomenologically undesirable light states, such as sca-
lars associated with the fifth component of gauge fields and
opposite-chirality fermions (in the familiar manner for five-
dimensional theories [29–31]). We have therefore realized
our primary model-building goal: The SM fermions remain
light, but there are now a number of heavy fermions of mass
∼OðR−1Þ with identical SM quantum numbers, but they
are charged under Uð1ÞD—and these conveniently fit the

description of portal matter fields. Furthermore, because
SUð2ÞD is semisimple [and therefore, the trace of the
Uð1ÞD charges of any representation of SUð2ÞD must
vanish] and the chiral zero modes of our fermion
Kaluza-Klein towers have no Uð1ÞD charge, our naive
four-dimensional condition for finite and calculable mixing
in Eq. (3) is automatically satisfied, regardless of what SM
fermion(s) we embed in the bulk in this manner. Of course,
because there is now an infinite tower of pairs of portal
matter particles, this naive condition is not sufficient to
ensure that the kinetic mixing remains finite and calculable;
however, later on we shall demonstrate that that the mixing
remains finite even when the contributions of the entire
Kaluza-Klein towers are included.
Having established the general outlines of our model

(and how it relates to our general strategy for constructing
a model with Kaluza-Klein portal matter fields), we can
move on to specifics, determining the bulk profiles of the
various fermions and gauge bosons appearing in the
construction.

A. Gauge bosons

We shall begin our discussion with an overview of the
gauge sector of the theory, focusing on the new gauge
bosons associated with our dark gauge group SUð2ÞD,
before moving on to the fermionic sector containing
the portal matter fields. For convenience, we shall write
the SUð2ÞD gauge bosons in a basis of Uð1ÞD-charge
eigenstates—under this decomposition, the three new
gauge bosons in our model are the Uð1ÞD gauge boson
X and the two Uð1ÞD-charged states Iþ and I−, with Uð1ÞD
charges of þ1 and −1, respectively. We must translate our
orbifold-inspired discussions above into boundary condi-
tions on the interval which realize our desired gauge mass
spectrum: namely, that the gauge bosons I� will lack zero
modes and hence acquire masses at the compactification
scale R−1, while X will have a light state which is massless
up to contributions from the small VEVof a brane-localized
dark Higgs; we shall identify this light state of X with the
dark photon. In the language of the interval, the orbifold
parities we have identified at the beginning of Sec. III
correspond to differing boundary conditions at the ϕ ¼ 0
and ϕ ¼ π branes: a positive Z2 (Z0

2) orbifold parity
corresponds to a von Neumann boundary condition
∂ϕX; I� ¼ 0 at the ϕ ¼ 0ðπÞ brane, while a negative parity
corresponds to a Dirichlet boundary condition X; I� ¼ 0 at
these branes.8 To have a zero mode in the Kaluza-Klein

7As noted in our general discussions in Sec. II, a hierarchy still
persists between the Uð1ÞD-breaking scale and the compactifi-
cation scale at the loop level, but given that such a difficulty exists
even in the Standard Model, we do not propose to address it here.

8Brane-localized terms, such as the mass terms arising from
the VEV of a brane-localized dark Higgs or brane-localized
kinetic terms, shall modify these boundary conditions; the
modified boundary conditions can be found as usual [37] by
displacing the δ functions that appear in the action from these
terms infinitesimally into the bulk and taking the limit as this
displacement goes to 0.
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spectrum, a field must have von Neumann boundary
conditions (up to modifications from brane-localized terms)
at both branes. In Table I, the boundary conditions of the
various gauge fields (both their four-dimensional vector
components Xμ, I�μ , and their fifth-component scalars
Xϕ, I�ϕ ) are depicted, where we can see that our orbifold-
inspired choices preserve the full SUð2ÞD gauge symmetry
in the bulk and on the ϕ ¼ 0 brane, but on the ϕ ¼ π brane,
only Uð1ÞD is preserved. The fact that only Uð1ÞD, rather
than the full SUð2ÞD, remains unbroken on the ϕ ¼ π brane
is critical: This allows us to assume that the brane-localized
dark Higgs which breaks Uð1ÞD is simply a complex scalar
with charge QH under Uð1ÞD, rather than an SUð2Þ
multiplet—and furthermore, this will allow us to write
SUð2ÞD-violating terms on this brane in our fermionic
action, which shall prove essential to generating nonzero
kinetic mixing.
In the basis of Uð1ÞD eigenstates, the SUð2ÞD gauge

boson action becomes (omitting interactions among the
gauge bosons that we can address specifically later)

S ¼
Z

d4x
Z

π

0

dϕR

�
−
1

4
X2
μν

�
1þ ωX

δðϕÞ
R

þ τX
δðϕÞ
R

�

−
1

2
IþμνI−μν

�
1þ ωX

δðϕÞ
R

�

þ 1

R2
I−ϕμI

þ
ϕμ þ

1

2R2
X2
ϕμ þ

δðϕ − πÞ
R

× ðjð∂μ þ iQHgD5XμÞΦDj2 − VðΦDÞÞ
�
; ð11Þ

where

Xμν ≡ ð∂μXν − ∂νXμÞ; Xμϕ ≡ ð∂μXϕ − ∂ϕXμÞ;
I�μν ≡ ð∂μI�ν − ∂νI�μ Þ; I�μϕ ≡ ð∂μI�ϕ − ∂ϕI�μ Þ; ð12Þ

and ωX and τX are brane-localized kinetic terms [38,39],
which we retain because of their nontrivial influence on the
model phenomenology. Note that both X and I� must have
the same brane-localized kinetic term ωX on the ϕ ¼ 0
brane because SUð2ÞD symmetry is preserved there.9

Furthermore, to avoid the emergence of tachyonic or
ghost-like states in the Kaluza-Klein towers, we shall
assume that all brane-localized kinetic terms are positive—
that is, ωX; τX ≥ 0. For convenience, we have separated the
four-dimensional Lorentz indices (indicated by greek
characters) from the Lorentz index associated with the
five-dimensional coordinate ϕ. Finally, ΦD denotes the
dark Higgs localized on the ϕ ¼ π brane which shall break
the Uð1ÞD gauge symmetry that survives after our boun-
dary conditions are imposed. For clarity, we have written
ΦD’s covariant derivative explicitly here, with gD5 being
the 5D dimensionful gauge coupling constant for SUð2ÞD.
We shall find that gD5 will be related to gD, the effective
four-dimensional gauge coupling for the dark photon in
our model, by the expression

gD5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðπ þ τX þ ωXÞ

p
gD; ð13Þ

up to small Oðm2
DR

2Þ corrections, where mD is the dark
photon mass. Since gD makes far better direct contact with
the measurable physical parameters of our model, we shall
use the dimensionless parameter gD rather than the
dimensionful gD5 throughout the remainder of this work.
We also note that in Eq. (11), while we have left the Uð1ÞD
charge of ΦD, QH, as a free parameter, later phenomeno-
logical considerations in the fermion sector actually con-
strain its choice: We shall find that in order for the portal
matter to mix with SM matter at the tree level and therefore
be short-lived, the dark Higgs ΦD must have a Uð1ÞD
charge equal in magnitude to the Uð1ÞD charge of the
gauge bosons I�. In our charge normalization convention,
we therefore have QD ¼ �1.
As is usual in theories of extra dimensions, our selection

of Z2 parities for the fifth components of the X and I�
vector fields allow us to gauge them away [37,41,42],
setting I�ϕ ¼ Xϕ ¼ 0. Our remaining action is then

S ¼ SXμ
þ SI�μ ; ð14Þ

where

TABLE I. The bulk SUð2ÞD gauge bosons and their boundary
conditions (BCs) on the branes, excluding the effect of the dark
Higgs and any brane-localized kinetic terms. Aþ denotes a von
Neumann BC, while a − denotes a Dirichlet BC. Notably, only
fields which possess a von Neumann (þ) BC on both the ϕ ¼ 0
and ϕ ¼ π branes will have a zero mode. The gauge bosons are
arranged in a basis of charge eigenstates of Uð1ÞD, the gauge
symmetry associated with the gauge boson Xμ that remains
unbroken by the BCs.

Gauge boson ϕ ¼ 0 BC ϕ ¼ π BC

I�μ þ −
I�ϕ − þ
Xμ þ þ
Xϕ − −

9For simplicity, we omit the possibility of ϕ ¼ π brane-
localized kinetic terms for the I� fields. In any case, because
these fields have odd parity at the ϕ ¼ π brane, if such terms are
absent at tree level, they will not be generated radiatively [40].
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SXμ
¼

Z
d4x

Z
π

0

dϕR

�
−
1

4
XμνXμν −

1

2R2
Xμ

∂
2
ϕXμ

þ δðϕ − πÞðπ þ τX þ ωXÞ
Q2

Hg
2
Dv

2
D

2
XμXμ

�
;

SI�μ ¼
Z

d4x
Z

π

0

dϕR

�
−
1

2
ðI−ÞμνIþμν −

1

R2
I−μ ∂2ϕI

þ
μ

−
1

ξ
ð∂μI−μ Þð∂νIþν Þ

�
; ð15Þ

where for brevity we have written hΦDi ¼ vD=
ffiffiffi
2

p
. We can

now perform a Kaluza-Klein decomposition of the gauge
fields, arriving at

Xμ ¼
1ffiffiffiffi
R

p
X
n

χXn ðϕÞXðnÞ
μ ðxÞ;

I�μ ¼ 1ffiffiffiffi
R

p
X
n

χþn ðϕÞðI�μ ÞðnÞðxÞ; ð16Þ

together with the normalization condition

Z
π

0

dϕχX;þn ðϕÞχX;þn ðϕÞ ¼ δnm: ð17Þ

We can now solve for the χX;þn ðϕÞ functions that produce
mass eigenstates in the four-dimensional theory after
integrating over ϕ. Starting with the X gauge boson, we
find that for vD ≪ R−1, the lightest Kaluza-Klein mode of
this field’s Kaluza-Klein tower (which we shall identify
with the dark photon) has a bulk wave function

χX0 ðϕÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

π þ τX þ ωX

s �
1þm2

DR
2

6

�
3ðπ2 − ϕ2Þ − 6ϕωX

þ 2πð−π2 þ 3τXωXÞ
ðπ þ τX þ ωXÞ

�
þOðm4

DR
4Þ
�
; ð18Þ

where mD is the dark photon mass, given by

m2
D ¼ g2Dv

2
Dð1þOðm2

DR
2ÞÞ: ð19Þ

While their large mass and suppressed coupling to SM
states renders them irrelevant to our analysis, for com-
pleteness we note that the more massive Kaluza-Klein
tower modes of the X boson have bulk wave functions
given by

χXn ðϕÞ ¼ NX
n ðcos ðmX

nRϕÞ −mX
nωX sin ðmX

nRϕÞÞ þOðm2
DR

2Þ;

NX
n ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ðmX

n Þ2R2τ2XÞ
πð1þ ðmX

n Þ2R2τ2XÞð1þ ðmX
n Þ2R2ω2

XÞ þ ðτX þ ωXÞð1þ ðmX
n Þ2R2τXωXÞ

s
; ð20Þ

where mX
n is the mass of that mode. The allowed values of mX

n are given as the solutions of the equation

ððmX
n Þ2R2ðτX þ ωXÞ cos ðmX

nRπÞ þmn
XRð1 − ðmX

n Þ2R2τXωXÞ sin ðmX
nRπÞÞ

¼ ðπ þ τX þ ωXÞm2
DR

2ðcos ðmX
nRπÞ −mX

nRωX sin ðmX
nRπÞÞ: ð21Þ

Because of the absence of any brane-localized mass terms,
the bulk wave functions and masses for the members of the
I� Kaluza-Klein tower are somewhat simpler. There is no
light mode for these gauge bosons, and the tower mode of
mass mI

n has the bulk wave function

χInðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πð1þ ðmI
nÞ2R2ω2

XÞ þ ωX

s

× ðcosðmI
nRϕÞ −mI

nRωX sinðmI
nRϕÞÞ; ð22Þ

where the allowed values ofmI
n are given as the solutions to

the equation

cos ðmI
nRπÞ ¼ mI

nRωX sin ðmI
nRπÞ: ð23Þ

Finally, before moving on to the discussing the gauge
sector, it is useful to briefly discuss the analogous bulk
wave functions and mass spectrum for the SM gauge
bosons—in particular, the electroweak sector. For simplic-
ity, we have assumed that the SM gauge fields do not
possess brane-localized kinetic terms. In practice, this
assumption shall have a limited effect on our phenomeno-
logical explorations of the model, since we shall be
focusing on the dark/portal sector; however, we shall
comment on certain cases in which nontrivial brane-
localized kinetic terms for the SM gauge fields may become
relevant.
To avoid phenomenologically undesirable mixing

between the dark scalar ΦD and the SM Higgs, we decide
to localize the SM Higgs field (and hence the W- and
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Z-boson mass terms) on the ϕ ¼ 0 brane.10 Furthermore,
we shall assume that the SM Higgs is a singlet under the
dark gauge group SUð2ÞD, to avoid phenomenological
pitfalls associated with additional SM Higgs multiplets.
Then the W- and Z-boson Kaluza-Klein towers will have
light modes that we shall identify with the corresponding
SM electroweak gauge bosons; these shall have bulk wave
functions given by

χW=Z
0 ðϕÞ ¼ 1ffiffiffi

π
p

�
1þm2

Z=WR
2

�
πϕ −

ϕ2

2
−
π2

3

�

þOðm4
Z=WR

4Þ
�
; ð24Þ

where mW=Z is the mass of the SM W and Z bosons.
Notably, mixing between the zero mode and the heavier
Kaluza-Klein modes of the W and Z gauge boson towers
slightly shift the W- and Z-boson masses from their SM
predictions. The masses are now given by

m2
W ¼ g2L5Rv

2

4π

�
1 −

g2L5Rv
2π

12
þOðm4

WR
4Þ
�
; ð25Þ

m2
Z ¼

ðg2L5þ g2Y5ÞRv2
4π

�
1−

ðg2L5þ g2Y5ÞRv2π
12

þOðm4
ZR

4Þ
�
;

ð26Þ

where v is the SM Higgs VEV, gL5 is the five-dimensional
SUð2ÞL coupling constant, and gY5 is the five-dimensional
Uð1ÞY coupling constant. As is typical in theories with TeV-
scale extra dimensions, this slight shift will result in a small
correction to the electroweak ρ parameter; this shall provide
a significant phenomenological constraint on our model.
Meanwhile, the heavier Kaluza-Klein modes of the W

and Z bosons will have bulk wave functions given by

χW=Z
n ðϕÞ ¼

ffiffiffi
2

π

r
cosðmW=Z

n Rðπ − ϕÞÞ þOðm2
W=ZR

2Þ; ð27Þ

with the Kaluza-Klein mode masses mW=Z
n given by

solutions to the equation

sinðmW=Z
n RπÞ ¼ πm2

W=ZR

mW=Z
n

sinðmW=Z
n RπÞ: ð28Þ

Since mW and mZ are both much smaller than the
compactification scale, we note that to excellent approxi-
mation, we can simply write that the mass of the nth
Kaluza-Klein mode of the W- or Z-boson tower is simply

mW=Z
n ¼ nR−1. From the expressions in Eqs. (25)–(28), we

can in turn straightforwardly derive the analogous results
for the gluon and photon zero modes and Kaluza-Klein
towers, simply by setting mW=Z ¼ 0.
Before moving on, we also note that there will be

occasions in which sums of the form

X
n

χW=Z
n ðϕ1ÞχW=Z

n ðϕ2Þ
p2 − ðmW=Z

n Þ2
ð29Þ

will be useful in calculations—such as computing the
contribution of the exchange of the entire Kaluza-Klein
tower of W gauge bosons to the Fermi constant. As is well
known [45,46], these sums can be computed in closed form
by simply solving for the bulk profile of the gauge field
propagator in the five-dimensional theory. For complete-
ness, we note that the relevant sum in our case is

X
n

χWn ðϕ1ÞχWn ðϕ2Þ
p2 − ðmW=Z

n Þ2
¼

R2
h
pR cosðpRϕ<Þ þ g2L5v

2R
4

sinðpRϕ<Þ
i
½cosðpRðπ − ϕ>ÞÞ�

pR
h
pR sinðpπRÞ − g2L5v

2R
4

cosðpπRÞ
i ; ð30Þ

p≡
ffiffiffiffiffi
p2

q
; ϕ<≡minðϕ1;ϕ2Þ; ϕ>≡maxðϕ1;ϕ2Þ; ð31Þ

with the equivalent sum for the Z boson being given by substituting g2L5 → g2L5 þ g2Y5.
An important phenomenological point to emphasize here is that because of their boundary conditions and their

brane-localized kinetic terms, the gauge bosons I� will invariably be significantly lighter than the lightest SM gauge boson
Kaluza-Klein modes (other than the zero modes). Recalling that the lightest SM gauge boson Kaluza-Klein tower modes will
have a mass given by R−1, in Fig. 2 we depict the ratio of these masses,mI

1R, as a function of the brane-localized kinetic term

10A reader may be concerned that although mixing terms may be absent at tree level, they may still be generated from bulk loops.
Because current constraints, such as those from Refs. [43,44], place limits on the mixing angle of ∼Oð10−4Þ [or ∼Oð10−3Þ for a dark
Higgs mass ≳300 MeV [19]], we have assumed that radiative suppression will be sufficient to keep the mixing between the scalars
within constraints.
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ωX, and we see that for ωX > 0, the lightest I� Kaluza-
Klein state is less than half of the mass of the lightest
Kaluza-Klein state of the SM gauge bosons. While this
ratio can be somewhat ameliorated by the introduction of
brane-localized kinetic terms for the SM gauge bosons,
unless these terms are very large, it is unlikely to make the
SM Kaluza-Klein modes lighter than the portal matter
fields. Nor is this mass difference unique to flat extra
dimensions: Even larger mass splittings between the light-
est portal matter modes and the lightest massive SM gauge
bosons can be attained in warped extra dimensions,
depending on the brane to which the symmetry-breaking
orbifold boundary conditions are applied. This larger mass
splitting will likely increase the branching fraction of these
gauge bosons to portal matter fields and further weaken
constraints from direct searches for Kaluza-Klein gauge
boson searches in these models, even compared to the
robust suppression we observe in our flat case. We shall
find that this mass ordering will also generally hold for the
portal matter fermions, which will have analogous orbifold
boundary conditions11 to those observed for I�. This leads

us to an important point: New physics from the portal
matter-associated sector will generally enter our scenario
at a significantly lower scale than new physics from SM
Kaluza-Klein modes. In turn, we shall see that this has the
potential to allow portal matter sectors from TeV-scale extra
dimensions to probe larger compactification scales than
searches which focus solely on the SM sector of a theory of
large extra dimensions.

B. Fermions

With our gauge sector fully accounted for, we can move
on to discuss our treatment of fermions in the model,
yielding both SM fermions and portal matter. Given our
choice in the previous section to make the SM Higgs an
SUð2ÞD singlet localized on the ϕ ¼ 0 brane, we can
consider the minimal structure of bulk fermions (with
portal matter) necessary to produce a light fermion which
acquires a mass from the SM Higgs mechanism in this
framework. In this section, we shall consider the scenario in
which this minimal set of fields are the only fermionic fields
that propagate in the bulk; the extension to the case with
additional bulk fermions, or to bulk fermions which are not
part of an SUð2ÞD multiplet, is trivial. We find that in order
to arrive at a single massive SM fermion, we require two
bulk fermion fields in the adjoint representation of SUð2ÞD:
An electroweak doublet F and an electroweak singlet f.
Under the SM gauge group, F will be in the representation
of some electroweak doublet SM fermion, while f will be a
corresponding electroweak singlet fermion with which F
forms a Dirac fermion after spontaneous symmetry break-
ing: For leptonic bulk fermions, for example, we could
assume that F is in the representation ð1; 2Þ−1=2 of
SUð3Þc × SUð2ÞL ×Uð1ÞY , while f is in the representation
ð1; 1Þ1 of the gauge group. Notably, because the SM Higgs
is a singlet under SUð2ÞD and is localized at the ϕ ¼ 0

brane, where the full SUð2ÞD symmetry is preserved, it is
essential that both F and f propagate in the bulk: If Fwere a
bulk fermion and f were a chiral fermion localized on the
ϕ ¼ 0 brane, then for the SM Higgs to provide the
appropriate mass term to the component of F with
0Uð1ÞD charge (that is, the SM fermion), either the SM
Higgs or the brane-localized chiral fermion f would have to
be in the adjoint representation of SUð2ÞD. If the former
were the case, we would introduce additional SM Higgs
multiplets into our theory, while if the latter were the case,
the theory would feature extra massless chiral fermions
with nonzero Uð1ÞD and SM charges. Neither of these
outcomes is phenomenologically desirable, so we insist that
both F and f are bulk fermions in the adjoint representation
of SUð2ÞD.
For practical computation, it is the most convenient to

work in the basis ofUð1ÞD charge eigenstates of both F and
f—that is, the three members of each SUð2ÞD triplet can be
written

FIG. 2. The ratio of the mass of the lightest I� boson Kaluza-
Klein state to the compactification scale R−1, as a function of the
brane-localized kinetic term ωX. Note that in our construction, the
lowest-lying heavy Kaluza-Klein modes of the SM gauge bosons
will all have a mass of R−1, up to small corrections from the
SM Higgs.

11Intuitively, this mass splitting is obvious for our flat con-
struction: In the absence of brane-localized kinetic terms, a bulk
wave function with mixed Dirichlet and von Neumann boundary
conditions, like I� or our later fermionic portal matter fields, will
have a sinusoidal solution which contains only half of its total
wavelength on the interval, while a wave function with the same
boundary conditions at both branes must have only sinusoidal
solutions for which the wavelength is entirely contained in the
interval. Since smaller-wavelength solutions correspond to
greater momentum in the fifth dimension and hence greater
Kaluza-Klein mass, it is clear that the mixed boundary conditions
will lead to at least some state that is significantly lighter than any
massive modes emerging from an otherwise equivalent state with
the same boundary conditions on both branes.
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F ¼ ðF0; Fþ; F−Þ; f ¼ ðf0; fþ; f−Þ: ð32Þ

The boundary conditions for F and f are then chosen to be
consistent with the orbifold twist that breaks SUð2ÞD →
Uð1ÞD on the ϕ ¼ π brane, and to preserve light

Kaluza-Klein modes only for those fields which are part
of the SM—that is, a left-handed component of F and a
right-handed component of f, both with 0Uð1ÞD charge.
The appropriate boundary conditions are given in Table II.
We can write the fermionic action of F and f as

Sferm ¼
Z

d4x
Z

π

0

dϕR
�h

iF̄ · =∂ð1þ ωFPL1δðϕÞ þ δðϕ − πÞτFÞFþ if̄ · =∂ð1þ ωfPR1δðϕÞ þ δðϕ − πÞτfÞf
i

−
1

R

h
F̄L · ∂ϕFR − F̄R · ∂ϕFL þ f̄L · ∂ϕfR − f̄R · ∂ϕfL

i
− δðϕ − πÞ vDffiffiffi

2
p ðF̄L ·YF

D · FR þ f̄L ·Yf
D · fR þ H:c:Þ − δðϕÞ

�
yhvffiffiffi
2

p F̄L · fR þ H:c:

��
; ð33Þ

where PLðRÞ is the left- (right-) handed chiral projection operator, and

YF
D ≡

0
B@

0 yFþ yF−
0 0 0

0 0 0

1
CA; Yf

D ≡
0
B@

0 0 0

yfþ 0 0

yf− 0 0

1
CA;

τF ≡ diagðτF0PL; τFþPR; τF−PRÞ; τf ≡ diagðτf0PR; τfþPL; τf−pLÞ: ð34Þ

Here, ωF;f, τF0;Fþ;F−, and τf0;fþ;f− are brane-localized
kinetic terms at the ϕ ¼ 0 and ϕ ¼ π branes, respectively.
Note that we have only included brane-localized kinetic
terms on a given brane for fields which have von Neumann
boundary conditions on that brane, as we did in Sec. III A.
Also following the analogous logic in Sec. III A, we
shall assume that ωF;f; τF0;Fþ;F−; τf0;fþ;f− ≥ 0 to avoid
the emergence of tachyonic or ghost-like states in the
Kaluza-Klein towers. Meanwhile, vD is the dark Higgs
VEV, v is the SM Higgs VEV, and yF;fþ;− and yh are both

brane-localized Yukawa couplings arising from Yukawa
couplings to the dark Higgs ΦD and to the SM Higgs,
respectively—we have absorbed a factor of R into the
dimensionful Yukawa couplings of the five-dimensional
theory in order to render these couplings dimensionless.
We recall that vD ∼Oð1 GeVÞ in order to explore the
region of dark photon parameter space that motivates our
model, and as we have no motivation not to do so, we shall
assume that yF;fþ;− are of Oð1Þ. Since yhv=

ffiffiffi
2

p
corresponds

to the SM fermion’s mass, meanwhile, we can estimate its
magnitude to be approximately equal to the mass of
whichever SM fermion we are embedding in the bulk.
Note that the yh term must respect the SUð2ÞD gauge
symmetry of the theory, since it remains unbroken on the
ϕ ¼ 0 brane, but the yF;fþ;− terms, which emerge from the
dark Higgs which breaks Uð1ÞD on the ϕ ¼ π brane,
clearly do not. Since the yF;fþ;− terms will result in the
mixing between the portal matter states and the SM states,
these mass terms are also phenomenologically necessary
in order to permit the portal matter states to decay; as such,
it is essential that we select the Uð1ÞD charge of the dark
Higgs ΦD such that these terms will appear in the action.
As noted in Sec. III A, this is easily accomplished by
assuming that ΦD has a Uð1ÞD charge equal in magnitude
to that of the portal matter fermions F� and f�—or
equivalently, to that of the Uð1ÞD-charged gauge bosons
I�. Finally, we note that in the interest of simplicity, the
action in Eq. (33) omits fermion bulk mass terms, which

TABLE II. The bulk fermions F and f and their boundary
conditions (BCs) on the branes. Aþ denotes a von Neumann BC,
while a − denotes a Dirichlet BC. Notably, only fields which
possess a von Neumann (þ) BC on both the ϕ ¼ 0 and ϕ ¼ π
branes will have a zero mode. The gauge bosons are arranged in a
basis of charge eigenstates of Uð1ÞD, the gauge symmetry that
remains unbroken by the BCs.

Fermion ϕ ¼ 0 BC ϕ ¼ π BC

F0
L þ þ

F0
R − −

F�
L þ −

F�
R − þ

f0L − −
f0R þ þ
f�L − þ
f�R þ −
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are a priori permitted in this interval theory. Because they
are forbidden in the equivalent orbifold theory (and for our
model to simplify the Higgs sector, we remind the reader
that the orbifold is assumed to be a fundamental object
here), we do not find this assumption unreasonable, and it
significantly simplifies our later computation.12

Before performing a Kaluza-Klein decomposition of the
fields in Eq. (33), we note that the brane mass coupling yh
leads to mixing between the F and f fields, while the yF;fþ;−
couplings mix the Uð1ÞD charge eigenstates. Therefore, in
order to produce a diagonalized Kaluza-Klein tower, all
fermion fields must be considered together. When per-
forming a Kaluza-Klein decomposition, it is most con-
venient to borrow from the treatment of bulk fermions in
Refs. [37,48], which handled generic quark flavor mixing
in a five-dimensional model by solving for the bulk
profiles as vectors in flavor space, and write the bulk
profiles of these fermions as vectors in the space of Uð1ÞD
charge eigenstates. So, we write our Kaluza-Klein decom-
position as

FL¼
1ffiffiffiffi
R

p
X
k

CF
k ðϕÞ ·fðkÞL ðxÞ; FR¼

1ffiffiffiffi
R

p
X
k

SF
k ðϕÞ ·fðkÞR ðxÞ;

fL¼
1ffiffiffiffi
R

p
X
k

Sf
kðϕÞfðkÞL ðxÞ; fR¼

1ffiffiffiffi
R

p
X
k

Cf
kðϕÞfðkÞR ðxÞ;

ð35Þ

where CF;f
k and SF;f

k are three-component vectors in the
space of Uð1ÞD charge eigenstates, given as

CF
k ðϕÞ≡

0
BB@

CF0

k ðϕÞ
cF

þ
k ðϕÞ
cF

−

k ðϕÞ

1
CCA; SF

k ðϕÞ≡

0
BB@

sF
0

k ðϕÞ
SF

þ
k ðϕÞ

SF
−

k ðϕÞ

1
CCA;

Sf
kðϕÞ≡

0
BB@

sf
0

k ðϕÞ
Sf

þ
k ðϕÞ

Sf
−

k ðϕÞ

1
CCA; Cf

kðϕÞ≡

0
BB@

Cf0

k ðϕÞ
cf

þ
k ðϕÞ
cf

−

k ðϕÞ

1
CCA: ð36Þ

The notation we have developed here—in particular, the
bulk profile symbols in Eq. (36)—merits some explan-
ation. First, as stated before, each fermion is expressed as

a three-dimensional vector of bulk profiles with different
Uð1ÞD charges. A bulk profile subject to von Neumann
(þ) boundary conditions on the ϕ ¼ 0 brane is denoted by
a C or a c, while a profile subject to Dirichlet boundary
conditions on this brane is denoted by an S or an s. The
boundary conditions on the ϕ ¼ π brane are indicated by
the case of the letter: A C or an S indicates that the bulk
profile has von Neumann (þ) boundary conditions on the
ϕ ¼ π brane, while a c or an s indicates that the bulk
profile has Dirichlet (−) boundary conditions on this
brane. Table III summarizes these boundary condition
conventions for the convenience of the reader.
Furthermore, we note that the Kaluza-Klein index k treats
the Kaluza-Klein modes arising from the fields F0;þ;− and
f0;þ;− as a single tower of states—to emphasize this fact,
here we have used the letter k to denote the Kaluza-Klein
index rather than our usual choice of n. Later on, it will
benefit us to consider this single tower as a perturbation of
six separate towers (one for each of the three F and f
Uð1ÞD charge eigenstates); when we do so, we shall note
this minor abuse of notation explicitly.
Under this Kaluza-Klein decomposition, a canonically

normalized effective four-dimensional action will be
achieved if

δkl¼
Z

π

0

dϕfCF;f
k ·CF;f

l þSf;F
k ·Sf;F

l þδðϕÞωF;fCF;f
k ·CF;f

l

þδðϕ−πÞCF;f
k ·τF;f0 ·CF;f

l þδðϕ−πÞSf;F
k ·τf;F� ·Sf;F

k g;
ð37Þ

where

τF0;f0≡
0
B@
τF0;f0 0 0

0 0 0

0 0 0

1
CA; τF�;f�≡

0
BB@
0 0 0

0 τFþ;fþ 0

0 0 τF−;f−

1
CCA:

ð38Þ

Meanwhile, the Kaluza-Klein tower modes will be mass
eigenstates if the equations of motion

TABLE III. The ϕ ¼ 0 and ϕ ¼ π boundary conditions for the
different classes of fermion bulk profile symbols used in Eqs. (35)
and (36), as described in the text. As in Tables I and II, a þ (−)
symbol denotes von Neumann (Dirichlet) boundary conditions.

Profile ϕ ¼ 0 BC ϕ ¼ π BC

C þ þ
S − þ
c þ −
s − −

12Fermion bulk mass terms can be reintroduced by mass terms
with a nontrivial parity under the Z2 × Z0

2 orbifold, which can be
introduced by parity-odd bulk scalars, as in, e.g., Ref. [47].
However, because introducing such terms ultimately relies on
introducing these bulk scalars to the model, there is no fine-
tuning issue associated with simply omitting the bulk masses
entirely.
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�
∂ϕ þ δðϕ − πÞ vDRffiffiffi

2
p YF

D

�
· SF

k þ δðϕÞ yhvRffiffiffi
2

p Cf
k ¼ Rmf

kð1þ ωFδðϕÞ þ δðϕ − πÞτF0 Þ ·CF
k ;�

∂ϕ − δðϕ − πÞ vDRffiffiffi
2

p YF†
D

�
·CF

k ¼ −Rmf
kð1þ δðϕ − πÞτF�Þ · SF

k ;�
−∂ϕ − δðϕ − πÞ vDRffiffiffi

2
p Yf

D

�
· Cf

k ¼ −Rmf
kð1þ δðϕ − πÞτf�Þ · Sf

k ;�
∂ϕ − δðϕ − πÞ vDRffiffiffi

2
p Yf†

D

�
· Sfk − δðϕÞ yhvRffiffiffi

2
p CF

k ¼ −Rmf
kð1þ ωfδðϕÞ þ δðϕ − πÞτf0Þ ·Cf

k ð39Þ

are satisfied, where mf
k is the mass of the kth Kaluza-Klein

tower mode. At this point, we shall find it convenient to
define a series of dimensionless quantities to replace the
dimensionful mass scales mf

k , yhv=
ffiffiffi
2

p
, and yF;fþ;−vD=

ffiffiffi
2

p
that arise in Eq. (39). We therefore define

xk ≡mq
kR; μh ≡ yhvRffiffiffi

2
p ; μF;f� ≡ yF;f� vDRffiffiffi

2
p : ð40Þ

Integrating the expressions in Eq. (39) near ϕ ¼ 0 now
gives the boundary conditions

SF
k ð0Þ − xkωFCF

k ð0Þ ¼ −μhC
f
kð0Þ;

Sf
kð0Þ þ xkωfC

f
kð0Þ ¼ μhCF

k ð0Þ ð41Þ

at the ϕ ¼ 0 brane and

sF
0

k ðπÞ þ xkτF0CF0

k ðπÞ ¼ μFþSF
þ

k ðπÞ þ μF−SF
−

k ðπÞ;
cF

þ
k ðπÞ − xkτFþSF

þ
k ðπÞ ¼ −μFþCF0

k ðπÞ;
cF

−

k ðπÞ − xkτF−SF
−

k ðπÞ ¼ −μF−CF0

k ðπÞ ð42Þ

and

sf
0

k ðπÞ − xkτf0C
f0

k ðπÞ ¼ −μfþS
fþ
k ðπÞ − μf−S

f−

k ðπÞ;
cf

þ
k ðπÞ þ xkτfþS

fþ
k ðπÞ ¼ μfþC

f0

k ðπÞ;
cf

−

k ðπÞ þ xkτf−S
f−

k ðπÞ ¼ μf−C
f0

k ðπÞ ð43Þ

at the ϕ ¼ π brane. We may solve the differential equations
in Eq. (39) in the bulk, identify mass eigenstates using
the coupled boundary conditions of Eqs. (41)–(43), and
normalize the result using the conditions of Eq. (37). Of
course, in practice, solving this system exactly will be
cumbersome. However, because the brane mass terms Mh

andMF;f
þ;− are much smaller than the compactification scale

R−1 (or, in other words, μh; μ
F;f
þ;− ≪ 1), finding the exact

solution will be entirely unnecessary—instead, we can
work perturbatively to Oðμh; μF;fþ;−Þ. Because the μh terms

mix electroweak doublet and singlet fields, and the μF;fþ;−
terms mix fields of different Uð1ÞD charges, we see that in
the perturbative limit, the massive modes of the fermion
Kaluza-Klein tower will consist of six separate towers of
vector-like Uð1ÞD and electroweak eigenstates, which are
mixed at Oðμh; μF;fþ;−Þ. For the sake of completeness,
we shall present the results for all six towers of heavy
Kaluza-Klein states, plus the light state that we shall
identify with the SM fermion, up to and including
Oðμh; μF;fþ;−Þ corrections. For convenience, we shall define
the functions

αxðω;ϕÞ≡ xω cosðxϕÞ þ sinðxϕÞ;
βxðω;ϕÞ≡ ðcosðxϕÞ − xω sinðxϕÞÞ: ð44Þ

With these definitions, we can write the approximate
mass eigenstates for the heavy modes of all six of the
fermion Kaluza-Klein towers, which we shall label
based on what electroweak (F for weak isospin doublet
fermions and f for weak isospin singlets) and Uð1ÞD
eigenstate (a superscript of 0, þ, or − for a Uð1ÞD charge
of 0, þ1, or −1, respectively) serves as the dominant
component of the mixed state. For the sake of brevity, here
we shall present only the results for the weak isospin
doublet tower with Uð1ÞD equal to þ1 (in our notation,
Fþ),13 with the results for the full list of towers included in
Appendix A.

13Much like the SUð2ÞD gauge bosons, we find that the SM
fermion Kaluza-Klein towers that lack a zero mode will have a
lowest-lying Kaluza-Klein mode that is significantly lighter than
those which have zero modes, and so the lightest modes of the F�
and f� towers will generally be much more phenomenologically
relevant than those of the F0 and f0 towers.
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Fþ∶

CF
n ¼

0
BB@

μFþ
1þx2nτF0τFþ

1

0

1
CCANFþ

n βxnðωF;ϕÞ; SF
n ðϕÞ ¼

0
BB@

μFþ
1þx2nτF0τFþ

1

0

1
CCANFþ

n αxnðωF;ϕÞ;

Cf
nðϕÞ ¼ −

0
B@

0

1

0

1
CA μhN

Fþ
n αxn ðτfþ;π−ϕÞ

βxn ðωf;πÞ−xnτfþαxn ðωf;πÞ ; Sf
nðϕÞ ¼

0
B@

0

1

0

1
CA μhN

Fþ
n βxn ðτfþ;π−ϕÞ

βxn ðωf;πÞ−xnτfþαxn ðωf;πÞ ;

NFþ
n ¼

�
2ð1þ x2nτ2FþÞ

πð1þ x2nω2
FÞð1þ x2nτ2FþÞ þ ðτFþ þ ωFÞð1þ x2nτFþωFÞ

�
1=2

;

xn such that βxnðωF; πÞ ¼ xnτFþαxnðωF; πÞ: ð45Þ

It is important to note that the expressions in Eq. (45) (and
the others appearing in Appendix A) are predicated on the
assumption that the theory does not possess very near
degeneracy between the weak isospin singlet brane localized
kinetic terms ωf; τ

f
þ;0;− and the weak isospin doublet terms

ωF; τFþ;0;−; otherwise, the mixing between electroweak
singlet and doublet towers will become large, since, for
example, the expression ðαxnðωf; πÞ þ xnτf0βxnðωf; πÞÞ−1
in Eq. (A1) would diverge. In the limit of complete singlet-
doublet brane term degeneracy, the mass eigenstates of the
Kaluza-Klein towers would in fact become equal combina-
tions of SUð2ÞL singlet and doublet fields, with dramatic
implications for the chirality structure of couplings between
Kaluza-Klein tower fermions and the light SM fermions.
While this scenario might have some intriguing phenom-
enological consequences, we do not consider it any further
here, both because the degeneracy must be numerically very
close in order to render our expressions invalid, and because

we shall find that for our particle content, such an exact (or
near-exact) symmetry would also severely reduce the kinetic
mixing generated by the portal matter, thus defeating the
entire purpose of our original model building.
Having found the bulk wave functions for the massive

fermions, we have not yet fully determined the bulk wave
functions for all allowable Kaluza-Klein modes of the
fermion towers—the expressions above only apply for the
Kaluza-Klein modes which have mass in the limit of
μh; μ

F;f
þ;− → 0, but for both F0 and f0, there exists a single

massless mode in the unperturbed system. With the
introduction of the brane mass terms, these two massless
chiral fermions will form a single Dirac fermion with a
mass of OðμhÞ, which serves as our SM fermion. To find
the bulk profiles and the mass of the SM fermion, we can
expand solutions to Eqs. (39) and (41)–(43) in the limit of
small xn and brane mass terms. Up to linear order in μh and
μF;fþ;−, we have

CF
0 ðϕÞ ¼

0
B@

1

−μFþ
−μF−

1
CA 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ ωF þ τF0
p ; SF

0 ðϕÞ ¼

0
B@

1

0

0

1
CA x0ðτF0 þ π − ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ ωF þ τF0
p ;

Cf
0ðϕÞ ¼

0
B@

1

μfþ
μf−

1
CA 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ τf0 þ ωf
p ; Sf

0ðϕÞ ¼

0
B@

1

0

0

1
CA x0ðπ þ τf0 − ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ τf0 þ ωf
p ;

x0 ¼
μhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ τF0 þ ωF
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ τf0 þ ωf
p : ð46Þ

We end our list of useful fermion-related formulas in our model by briefly noting that, much as in the case of the SM
gauge bosons, there will arise computations in our phenomenological explorations that will require summing over entire
Kaluza-Klein towers of fermions. In particular, we shall need to compute the sums over an exchange of a complete tower of
portal matter fields, such as Fþ. In the case of the Fþ tower, we find the sum identities
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X
n

ðNFþ
n Þ2βxnðωF;ϕ1ÞβxnðωF;ϕ2Þ

p2 − x2nR−2 ¼ R2βpRðωF;ϕ<ÞαpRðτFþ; π − ϕ>Þ
pR½−βpRðωF; πÞ þ pRτFþαpRðωF; πÞ�

;

X
n

ðNFþ
n Þ2αxnðωF;ϕ1ÞαxnðωF;ϕ2Þ

p2 − x2nR−2 ¼ R2αpRðωF;ϕ<ÞβpRðτF; π − ϕ>Þ
pR½−βpRðωF; πÞ þ pRτFþαpRðωF; πÞ�

;

X
n

xnR−1ðNFþ
n Þ2βxnðωF;ϕ1ÞαxnðωF;ϕ2Þ

p2 − x2nR−2 ¼
R

�
αpRðτFþ; π − ϕ1ÞαpRðωF;ϕ2Þ; ϕ1 > ϕ2

βpRðωF;ϕ1ÞβpRðτFþ; π − ϕ2Þ; ϕ1 ≤ ϕ2

�
½−βpRðωF; πÞ þ pRτFþαpRðωF; πÞ�

; ð47Þ

with p, ϕ<, and ϕ> defined as in Eq. (30).
Finally, we can conclude with a brief note on the relative

masses of the various fermion Kaluza-Klein tower modes
arising in the model. Just as was the case for the gauge
bosons in Sec. III A, we note that the fermions which lack a
zero mode (the portal matter) will have significantly lighter
lowest-lying massive Kaluza-Klein modes than those with
zero modes (the SM) due to differing boundary conditions.
The situation is now somewhat complicated here, because
both the SM and portal matter modes are permitted to have
brane-localized kinetic terms, but the principle observed in
Sec. III A remains: The portal matter modes will appear at
a significantly lower scale than the Kaluza-Klein modes
associated with the SM.

IV. KINETIC MIXING FROM KALUZA-KLEIN
FERMIONS

With the information in Sec. III, we are now poised to
compute how the Kaluza-Klein fermions contribute to
kinetic mixing. The computation of radiative corrections in
a 5D theory is, of course, highly nontrivial, since the full

theory itself is not renormalizable. Fortunately, for our
purposes we are concerned with the behavior of the theory
at low energies—namely, those which are well below the
compactification scale R−1. In this case, we can work in the
effective four-dimensional theory, and are only concerned
with the mixing of the massless (or in the case of the dark
photon, light) modes of the SM hypercharge and the dark
photon Kaluza-Klein towers—the heavier modes are
inaccessible.14 Assuming that kinetic mixing vanishes at
some high, OðR−1Þ energy (which it should in our model,
because at higher scales the dark gauge symmetry is
restored to SUð2ÞD and therefore cannot mix with the
SM hypercharge), our only task remains to compute the
kinetic mixing between the massless dark photon Xð0Þ and
SM hypercharge boson Bð0Þ emerging from the exchange
of the infinite Kaluza-Klein tower of portal matter
fermions—for example, the Fþ or F− fields in our model.
In performing this computation, we should then be able to
determine if our naive condition for ensuring that kinetic
mixing remains finite and calculable,

P
i QDi

QYi
¼ 0,

remains sufficient if there are an infinite number of portal
matter fermions.
Considering only the kinetic mixing between the

hypercharge and Uð1ÞD massless modes simplifies our
work substantially—in particular, before spontaneous
symmetry breaking, fermion states with different Uð1ÞD
charges do not mix, and both Bð0Þ and Xð0Þ have perfectly
flat profiles in the bulk. As a result, normalization of the
fermion bulk profiles means that for a tower of portal
matter fields with SM hypercharge QY and Uð1ÞD charge
QD, the diagram in Fig. 3 will give a vacuum polarization
contribution of

FIG. 3. The vacuum-polarization-like Feynman graph which
contributes to the kinetic mixing of the dark photon X with
the SM hypercharge gauge boson B, from exchange of the
nth and mth Kaluza-Klein modes of a portal matter fermion,
Fþ or F−.

14Formally speaking, we are working in the limit that
p2 ≪ R−2, where p is the 4-momentum of the external gauge
fields in Fig. 3. In this case, the full 5D theory’s radiative
correction to its propagator will be equivalent to our massless-
mode-only approximation—up to Oðp2R2Þ corrections.
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iΠμνðp2Þ ¼ −4gDgYQYQD

X
n

Z
d4k
ð2πÞ4

ðkþ pÞμkν þ ðkþ pÞνkμ − gμνðk2 þ k · p −m2
nÞ

ððkþ pÞ2 −m2
nÞðk2 −m2

nÞ
þOðp2R2Þ; ð48Þ

where mn is the mass of the nth portal matter Kaluza-Klein
mode, k is a loop 4-momentum, and p is the external
momentum of the gauge bosons. For clarity, we have
included an Oðp2R2Þ term to remind the reader that the
mixing of only zero modes will only remain accurate up to
corrections from the Kaluza-Klein tower modes of higher-
energy gauge bosons. The coupling constants are gD for the

dark photon and gY for the SM hypercharge. We note that as
long as theOðp2R2Þ terms are neglected, the results here are
entirely independent of the specific properties of the bulk
gauge field—in particular, we might have introduced brane-
localized kinetic terms to the gauge fields B or X without
altering Eq. (48). Using Feynman parametrization and a
universal shift of the integration variable, this becomes

iΠμνðp2Þ ¼ −4igDgYQYQD

Z
1

0

dx
Z

dD4lE
ð2πÞD4

X
n

½pμpνuðmnÞ þ gμνwðmnÞ� þOðp2R2Þ;

uðmnÞ≡ −2xð1 − xÞ
ðl2E þm2

n − xð1 − xÞp2Þ2 ; wðmnÞ≡
−
	

2
D4

− 1


l2E þm2

n þ xð1 − xÞp2

ðl2E þm2
n − xð1 − xÞp2Þ2 ; ð49Þ

where lE is a loop momentum (after Wick rotation, so that
the integral is in four-dimensional Euclidean space), and we
have taken the liberty of writing the dimensionality of the
noncompact spacetime as a variable, D4, in anticipation
of our later use of dimensional regularization. We have
also defined the shorthand functions uðmnÞ and wðmnÞ to
represent this integrand. Overall, the expression in Eq. (49)
is simply equivalent to a textbook computation of vacuum
polarization in, for example, QED, albeit in a theory with
a compactified extra dimension. In Eq. (49), there are two
forms of divergence: First, each integral in the sum
diverges, just as in a four-dimensional theory. Second,
the fact that there are an infinite number of fermion Kaluza-
Klein modes over which we are summing adds new
divergences. To regulate these divergences appropriately,
we can turn to a dimensional regularization strategy such as
that outlined in Ref. [49]. In this setup, the infinite sum in
Eq. (49) can be replaced by a contour integral in the
complex plane of p5 over an infinitesimally thin clockwise
contour surrounding the entire real line, using the method
of residues. This yields, for example,

X
n

Z
dD4lE
ð2πÞD4

uðmnÞ ¼ −
1

2

1

2πi

Z
⇌
dp5

Z
dD4lE
ð2πÞD4

Pðp5Þuðp5Þ; ð50Þ

where Pðp5Þ is a “pole function.” The pole function Pðp5Þ
is constructed such that it only has poles at each p5 ¼ mn, it
has the residue 1 at all of its poles, and for p5 → ∞ with a

positive (negative) imaginary part of p5, Pðp5Þ → −ðþÞir,
where r is some constant. Because the initial sum only
includes positive masses, we have introduced an additional
factor of 1

2
when moving to the complex integral over p5 in

Eq. (50)—because the pole function and the functions u
and w that we wish to integrate via this method are
symmetric under p5 → −p5, this factor is equivalent to
ignoring the negative-p5 poles. We should also note that by
invoking the method of residues here, we have implicitly
assumed that the function over which we are summing [in
Eq. (50) uðmnÞ] has no poles on the real line—for some
values of lE [namely l2E < xð1 − xÞp2], this is not the case
for either uðmnÞ or wðmnÞ. In practice, we can introduce a
small parameter δ to displace these poles by �iδ into the
complex plane, and then take the limit as δ → 0 in the end.
We shall not show this displacement explicitly here,
because the specifics of our prescription have no bearing
on our final results.
We can deform the contour above to⊖, which we define

as two counterclockwise semicircles, one in the upper
half-plane (and infinitesimally above the real axis) and the
other in the lower half-plane (infinitesimally below the real
axis)—as long as the integrand vanishes at jp5j → ∞, this
contour integral will be equivalent to our cigar-shaped
contour around the real line. By introducing dimensional
regulators for four-dimensional momentum and p5, we can
make this deformation valid for divergent sum integrals
such as we encounter here, by taking the dimensionality
of the compact and noncompact dimensions to be small
enough. In the end, our computation of the integral in
Eq. (49) will have the form
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iΠμνðp2Þ ¼ −
−4igDgYQYQD

4πi

Z
1

0

dx
Z
⊖
dD5p5

Z
dD4lE
ð2πÞD4

Pðp5Þðuðp5Þpμpν þ wðp5ÞgμνÞ þOðp2R2Þ; ð51Þ

where D4 and D5 are the dimensionalities of the noncompact and compact parts of the spacetime, respectively. When
writing the integral over p5, we note that we have defined

Z
⊖
dD5p5Pðp5Þfðp5Þ≡ πD5=2

ΓðD5=2Þ
Z

∞

−∞
ðfðp5ÞPðp5Þ þ eiD5fðeiπp5ÞPðeiπp5ÞÞ

�
p5

μ5

�
D5−1

dp5; ð52Þ

for any function fðp5Þ. That is to say, when we use the dimensionality of the compact space as a regulator, we tacitly
assume that it is small enough that the contributions from the upper arcs of the semicircles in the contour ⊖ vanish.
We can then evaluate the sum integral of Eq. (51) as long as we appropriately specify our pole function Pðp5Þ to reflect

the mass spectrum of our portal matter states. Consulting the boundary conditions which govern Kaluza-Klein tower masses
in, e.g., Eq. (45) allows us to arrive at

Pðp5Þ ¼ R

�
−p5Rðπðτ þ ωÞ þ 2τωÞ cotðπp5RÞ − ðπð1 − p2

5R
2τωÞ þ τ þ ωÞ

ð1 − p2
5R

2τωÞ cotðπp5RÞ − p5Rðτ þ ωÞ
�

ð53Þ

for a fermion with the boundary conditions of the portal matter states in our model—namely F� and f�, with ω and τ
specifying the ϕ ¼ 0 and and ϕ ¼ π brane-localized kinetic terms for the fermion field. Using the identities

cotðxÞ ¼ −i
�
1þ 2

e−2ix − 1

�
¼ i

�
1þ 2

e2ix − 1

�
; ð54Þ

it is straightforward to verify that as jp5j → ∞ and Imðp5Þ ¼ �ε, for some ε > 0, then Pðp5Þ → ∓ iπR.
Having computed Pðp5Þ, we are now equipped to compute the vacuum polarization integral in Eq. (51). It is convenient

to split Pðp5Þ into pieces which contain different divergences. We define

P�ðp5Þ ¼ ∓ iπRþ σ�ðp5Þ þ ρ�ðp5Þ;

σ�ðp5Þ≡ Rð−ðωþ τÞ � 2ip5RωτÞ
−p5Rðτ þ ωÞ ∓ ið1 − p2

5R
2τωÞ ;

ρ�ðp5Þ≡ 2R

� ðπð1þ p2
5R

2τ2Þð1þ p2
5R

2ω2Þ þ τ þ ωþ p2
5R

2τωðτ þ ωÞÞ
ð�iþ p5RτÞð�iþ p5RωÞðp5Rðτ þ ωÞðe∓2iπp5R − 1Þ ∓ ið−1þ p2

5R
2τωÞðe∓2iπR þ 1ÞÞ

�
; ð55Þ

wherePþðp5Þ is the pole function in the upper half-plane, whileP−ðp5Þ is the pole function in the lower half-plane. We can
now consider the contributions of these pieces of the pole function separately:

iΠμνðp2Þ ¼ gDgYQYQDðIπRμν þ Iσμν þ IρμνÞ þOðp2R2Þ;

IπRμν ≡ −
−4i
4πi

Z
1

0

dx
Z
⊖
dD5p5

Z
dD4lE
ð2πÞD4

ð∓ iπRÞðuðp5Þpμpν þ wðp5ÞgμνÞ;

Iσμν ¼ −
−4i
4πi

Z
1

0

dx
Z
⊖
dD5p5

Z
dD4lE
ð2πÞD4

σ�ðp5Þðuðp5Þpμpν þ wðp5ÞgμνÞ;

Iρμν ¼ −
−4i
4πi

Z
1

0

dx
Z
⊖
dD5p5

Z
dD4lE
ð2πÞD4

ρ�ðp5Þðuðp5Þpμpν þ wðp5ÞgμνÞ; ð56Þ

where we have slightly abused notation to imply that, for example, σ�ðp5Þ denotes a sum over the integral with σþðp5Þ over
the upper half-plane’s contour and σ−ðp5Þ over the lower half-plane’s contour. We shall find that separating our kinetic
mixing into these pieces helps us identify different divergences: IπRμν corresponds to the divergence we would find with an
uncompactified fifth dimension; this is a purely 5D divergence that can be regulated by either D4 or D5. Iσμν meanwhile
corresponds to an additional divergence stemming from the brane-localized kinetic terms. Finally, Iρμν is convergent and will
give only a finite contribution to kinetic mixing.

GEORGE N. WOJCIK PHYS. REV. D 108, 035006 (2023)

035006-18



We now begin our kinetic mixing computation by considering the contribution of IπRμν to the vacuum polarization.
Including the integral along both the upper and lower half-planes, this contribution becomes

IπRμν ≡ −
4iRπðD4þD5Þ=2

Γ
	
D4

2



Γ
	
D5

2



μD4−4
4 μD5−1

5

Z
1

0

dx
Z

∞

0

pD5−1
5 dp5

Z
∞

0

lD4−1
E dlE
ð2πÞD4

ð1 − eiπD5Þðuðp5Þpμpν þ wðp5ÞgμνÞ; ð57Þ

where we have exploited the fact that the entire integrand is symmetric under p5 → −p5 to limit our integral over p5 to the
interval ½0;∞�. Integrating over the loop momenta here eventually yields

IπRμν ¼ ðgμνp2 − pμpνÞIπR;

IπR ≡
Z

1

0

dx
2ið1 − eiπD5ÞπðD4þD5Þ=2

μD4−4
4 μD5−1

5

ðxð1 − xÞðgμνp2 − pμpνÞÞΓð2 − ðD4 þD5Þ=2Þ
ð−xð1 − xÞp2Þð4−D4−D5ÞRD4þD5−5

: ð58Þ

We note that our result for this correction respects a four-dimensional gauge and Lorentz invariance, as it should given our
choice of regulators. As an artifact of dimensional regularization, this expression is actually finite as D4 → 4 and D5 → 1.
This occurs because this divergence is inherently five-dimensional in character: In odd numbers of total dimensions,
dimensional regularization will always yield finite regulated integrals. Next, we consider the contribution of the σ� piece of
the pole function, given by

Iσμν −
−4i
4πi

Z
1

0

dx
Z
⊖
dp5

Z
σ�ðp5Þ

−2xð1 − xÞpμpν þ
		

1 − 2
D4



l2E þ p2

5 þ xð1 − xÞp2


gμν

ðl2E þ p2
5 − xð1 − xÞp2Þ2 ; ð59Þ

where σþðp5Þ is used for the upper half-plane contour and σ−ðp5Þ is used for the lower half-plane contour. It is in principle
possible to use the same dimensionally regularized treatment of the p5 integral that we employed when finding IπRμν , but it is
far simpler here to take the integral over the contour ⊖ when D5 ¼ 1 and regulate the divergence purely four-
dimensionally.15 We can then perform the contour integral over p5 using the method of residues: Examining the integrand,
the upper and lower half-plane contours only enclose a single pole each: p5 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2E − xð1 − xÞp2

p
in the upper half-plane,

and p5 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2E − xð1 − xÞp2

p
in the lower half-plane [as discussed earlier, these poles as written are real when

l2E < xð1 − xÞp2, but by displacing the first pole by þiδ and the second by −iδ, both poles remain inside their respective
contours, and we can take δ → 0 at the end of our computation]. Note that the functions σþðp5Þ and σ−ðp5Þ only have poles
in their respective contours if the brane-localized kinetic terms τ and/orω are allowed to be negative; however, as mentioned
previously, we always assume that these terms are positive to avoid ghost-like or tachyonic instabilities.
Using the method of residues to compute the p5 integral, we can then evaluate the resulting four-dimensional momentum

integral using conventional techniques in loop integration, arriving at

Iσμν ¼ ðgμνp2 − pμpνÞIσ;

Iσ ≡ −
Z

1

0

dx
22−dixð1 − xÞR4−D4

πD4=2μD4−4
4 ð−xð1 − xÞp2R2Þ−D4

2

� τ4Γ
	
2−D4

2



ð−1 − xð1 − xÞp2R2τ2Þ2

�
1þ 1

xð1 − xÞp2R2τ2

�

þ
Γ
	
3−D4

2



τ

ffiffiffi
π

p ð−xð1 − xÞp2R2Þ5=2
�
ðD4 − 1Þ2F1

�
1;
3 −D4

2
;
3

2
;−

1

xð1 − xÞp2R2

�

− 22F1

�
2;
3 −D4

2
;
3

2
;−

1

xð1 − xÞp2R2

��
þ τ → ω

�
; ð60Þ

15We could have actually done this for IπRμν as well, since the expression we found only actually depends on the sum D4 þD5 and
therefore can be regulated byD4 alone. Intuitively, this would just have corresponded to lettingD4 be small enough that after integration
over the four-dimensional momenta, the p5 integrand vanishes at jp5j → ∞ and the arcs of the semicircles do not contribute to the
integral over the contour ⊖. However, it was instructive to consider IπRμν as a purely 5D divergence.
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where 2F1ða1; a2; a3; zÞ is the Gauss hypergeometric function, and analytically continuing to D4 values where this integral
no longer converges. Letting D4 ¼ 4 − 2ε and expanding about ε ¼ 0 then gives

Iσ ¼
Z

1

0

dx
ixð1− xÞ

2π2

�
1

ε
þ
�
γE − 2 logð4πR2μ24Þ þ log

�ð1þR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1− xÞp2

p
τÞ

τ

�
þ log

�ð1þR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1− xÞp2

p
ωÞ

ω

���
;

ð61Þ
where γE is the Euler gamma constant. Finally, we can complete our calculation of the kinetic mixing by finding Iρμν. Unlike
the previous components of the pole function, the Iρμν is convergent and therefore does not require any sort of ultraviolet
regulator. Using the method of residues for the p5 integral again, and setting D4 ¼ 4, we arrive at

Iρμν ¼ ðgμνp2 − pμpνÞIρ;

Iρ ≡
Z

1

0

dx
iðgμνp2 − pμpνÞxð1 − xÞ

2π2

8<
:2πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

q

− log

0
B@e2πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1−xÞp2

p
þ
	
−1þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
τ

	

−1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
ω



	
1þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
τ

	

1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
ω



1
CA
9=
;: ð62Þ

We can combine these results to get the total contribution of a single portal matter Kaluza-Klein tower to the kinetic mixing
of the dark photon and the hypercharge gauge boson. It is straightforward to then find the contribution to kinetic mixing by
an ensemble of different portal matter fermions with dark chargesQDi

, SM hyperchargesQYi
, ϕ ¼ 0 brane-localized kinetic

termsωi, and ϕ ¼ π brane-localized kinetic terms τi. We find that the total contribution of such an ensemble of towers to the
vacuum polarization diagram will be

iΠμνðp2Þ ¼ igDgY
2π2

ðgμνp2 − pμpνÞ
X
i

QDi
QYi

ðIconst þ Ivarðτi;ωiÞÞ þOðp2R2Þ;

Ivar ≡
Z

1

0

dx

�
log

�ð1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
τiÞ

τi

�
þ log

�ð1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
ωiÞ

ωi

�

− log

�
e2πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1−xÞp2

p
þ ð−1þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
τiÞð−1þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
ωiÞ

ð1þ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
τiÞð1þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1 − xÞp2

p
ωiÞ

��
; ð63Þ

where I const is simply a constant independent of the
brane-localized kinetic terms. Then, we see that the usual
four-dimensional condition for finite and calculable kinetic
mixing from portal matter—namely, that

P
i QDi

QYi
¼ 0—

continues to hold in the theory with a compact fifth
dimension and an infinite Kaluza-Klein tower of portal
matter fermions. There is, however, an additional condition
that arises because of our inclusion of brane-localized
kinetic terms. Specifically, we note that I const contains
terms which arise specifically from the divergence com-
puted from Iσ , and we recall that this divergence arises from
the brane-localized kinetic terms themselves. If τi ¼ 0 and/
or ωi ¼ 0 for some field in the portal matter ensemble, all or
part of the contribution of this field to Iconst will also vanish,
and therefore not be canceled in the summation over all
portal matter fields. Careful inspection of the results of
Eqs. (60) and (61) allows us to determine that both the ϕ ¼
0 brane term ω and the ϕ ¼ π brane term τ have an equal
divergent contribution to Iconst. As a result, if one portal

matter field has τi ¼ 0 or ωi ¼ 0, all portal matter fields in
an ensemble such that

P
i QDi

QYi
must also have τi ¼ 0 or

ωi ¼ 0, respectively, in order to ensure a finite and
calculable kinetic mixing.
Having established that our naive condition of Eq. (3) for

finite and calculable kinetic mixing in a four-dimensional
theory only needs to be slightly modified in our five-
dimensional setting, we can now use our vacuum polari-
zation result in Eq. (63) to actually compute the contribution
to the kinetic mixing ϵ defined in Eq. (1). Working in the
limit of p2 ≪ R−2 in turn allows us to compute the kinetic
mixing at low energies, arriving at

ϵ ¼ −
gDgYcw
12π2

X
i

QDi
QYi

ðlogðτiÞ þ logðωiÞÞ; ð64Þ

where we remind the reader that cw is the usual electroweak
Weinberg angle. Our treatment in arriving at Eq. (63),
and therefore the validity of the condition of Eq. (3) in a
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five-dimensional theory, is of course heavily dependent on
the specifics of our model construction. We have only
calculated the kinetic mixing arising from bulk fermions
embedded in a flat extra dimension without any bulk mass
terms (and only negligibly small brane mass terms), and
with specific orbifold parities. Therefore, our calculation
may seem at first blush to be a highly specialized one, with
little broader applicability to more general models in five
dimensions. However, at the risk of losing some rigor, we
can easily argue that while the analytical results for a
computation done with such complicating factors as bulk
and brane masses and a more general five-dimensional
geometry may differ from the result of Eq. (64), our results
suggest that such computations will remain finite and
calculable. Specifically, we note that our naive condition
for finite and calculable kinetic mixing, Eq. (3), will only be
insufficient to guarantee finite and calculable mixing in the
five-dimensional theory if the divergence associated with
the infinite sum over Kaluza-Klein modes is not canceled in
a given construction. Therefore, when determining whether
Eq. (3) remains valid, we only need to reference the
contribution of the Kaluza-Klein modes with masses greater
than some high ultraviolet cutoff—the contribution of
whatever (finite) tower of states lies below that cutoff is,
of course, finite if Eq. (3) is satisfied. However, we know
that at sufficiently high energies, the effect of a bulk mass or
a curvature of the metric shall vanish from the Kaluza-Klein
spectrum, as the mass (or, rather, the 5-momentum) of the
Kaluza-Klein modes greatly exceeds the scales of curvature
and the bulk mass. So, since our toy model in flat space has
precisely the same Kaluza-Klein spectrum in the high UVas
a warped model and/or a model with fermion bulk and brane
masses, we argue that the same cancellation of divergences
occurs for these constructions. A reader may also be
concerned that our results are dependent on the fact that
all fields mediating the kinetic mixing have mixed boundary
conditions—that is, von Neumann at one brane and
Dirichlet at the other, with the different chiralities of the
fermion having both boundary conditions flipped. It is
unclear if the divergences from a Kaluza-Klein tower with
the same boundary conditions at both branes will cancel
with the divergences from a tower with mixed boundary
conditions. However, we note that in realistic constructions
with chiral fermions, the Kaluza-Klein tower for a fermion
with the same boundary conditions at both branes will
produce a chiral zero mode, which is missing from a tower
with mixed boundary conditions. So, as noted briefly in
Sec. II, if the same-boundary-condition fields do not cancel
their contribution among themselves, the theory clearly will
not satisfy Eq. (3) anyway. Meanwhile, sufficiently high up
the tower of Kaluza-Klein states, the Kaluza-Klein spectrum
of towers of fields with the same boundary conditions at
both branes will simply match that of fields with mixed
boundary conditions, albeit displaced by some finite
amount. Since we know that the contribution to kinetic

mixing for mixed-boundary-condition fields is finite and
calculable if Eq. (3) is satisfied, we know that this is also
true for fields with the same boundary conditions at both
branes.
Based on these discussions, therefore, we can posit the

following well-motivated condition for finite and calculable
kinetic mixing in five dimensions: Kinetic mixing mediated
by bulk fermions will remain finite and calculable at one
loop if Eq. (3) is satisfied for each set of fermion fields with
the same boundary conditions, and sources of additional
divergences (such as brane-localized kinetic terms) that are
present in one field contributing to the kinetic mixing are
present in all fields with the same boundary conditions.
These conditions should hold for any construction in five
dimensions.

V. PHENOMENOLOGY

To get a sense of the experimental signatures for Kaluza-
Klein portal matter models, it is useful for us to do a brief
survey of the collider phenomenology of our toy model. In
order to proceed, we must of course specify how we shall
embed the SM into the general model construction of
Sec. III. For simplicity, we assume that all SM fermions
are embedded in the five-dimensional bulk (and therefore,
gauge symmetry demands that we embed all SM gauge
bosons in the bulk as well)—in practical terms, this helps
us evade constraints arising from the physics of the SM in
an extra dimension: Any fermions localized on a brane
would couple to Kaluza-Klein modes of SM gauge bosons
a factor of

ffiffiffi
2

p
more strongly than they would couple to

these gauge bosons’ zero modes; a bulk embedding of the
fermion can avoid this enhancement. Instead, the zero
modes of bulk fermions couple to the SM gauge boson
Kaluza-Klein modes with a strength scaled by

ffiffiffi
2

p ðτF0 þ
ð−1ÞnωFÞ=ðπ þ τF0 þ ωFÞ relative to the four-dimensional
gauge coupling (where n is the Kaluza-Klein tower level of
the gauge boson, or equivalently, nR−1 is the Kaluza-Klein
mode’s mass): It is straightforward to demonstrate that this
scaling factor will always be less than

ffiffiffi
2

p
, and therefore

the bulk fermions will always be less strongly coupled to
the SM gauge boson Kaluza-Klein modes than their brane-
localized counterparts. In fact, we can also see that the bulk
coupling scaling factor here vanishes when τF0 ¼ ωF (up
to small corrections due to the effect of the brane-localized
SM Higgs field on the gauge boson bulk profile); in this
limit, the theory has attained the “KK parity” observed in
theories of universal extra dimensions (UED) [50,51].
In spite of embedding the entire SM fermion content in

the bulk, we do not assume that all SM fermions are part of
SUð2ÞD multiplets that contain portal matter—we can easily
modify the bulk wave function results of Eqs. (A1)–(A6) in
Appendix A and Eq. (46) in Sec. III B for SUð2ÞD singlet
fields by removing theUð1ÞD-charged Kaluza-Klein towers
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from the expressions and setting the brane-localized mass
terms associated with the dark Higgs to 0. To generate our
kinetic mixing, we shall assume subsets of the SM fermions
will be embedded in these portal multiplets such that the
relevant brane mass terms and brane-localized kinetic terms
featured in Sec. III B can be realized—e.g., a weak isospin
doublet quark, a singlet up-like quark, and a singlet down-
like quark might all be promoted to portal matter multiplets.
Finally, in the name of simplicity and in order to avoid
potentially catastrophic flavor constraints, we shall assume
that brane-localized kinetic terms are flavor universal, so
that, for example, the electroweak singlet up, charm, and
top quarks all share the same brane-localized kinetic
terms. The fermion content of the model, along with the

brane-localized kinetic terms for each field, is summarized
in Table IV.
Referencing Eq. (64) and Table IV, we can see that the

kinetic mixing realized in this setup will be

ϵ¼−
gDgYcW
12π2

�
3nQ

�
1

3
log

�
τQþ
τQ−

�
−
2

3
log

�
τuþ
τu−

�

þ1

3
log

�
τdþ
τd−

��
þnL

�
log

�
τeþ
τe−

�
− log

�
τLþ
τL−

���
; ð65Þ

where nQðLÞ is the number of SUð2ÞD triplet quark (lepton)
generations embedded in the bulk, while the various τ
symbols denote the ϕ ¼ π brane-localized kinetic term for
different portal matter fields, as indicated in Table IV.
Our setup can be subject to a number of possible

experimental constraints. Some of these are of secondary
interest to us here: Probes of the underlying sub-GeV dark
matter model are of limited utility here, since kinetic
mixing is only logarithmically sensitive to the brane-
localized kinetic terms, and a sub-GeV dark matter model
with virtually any realistic value of the dark coupling gD ∼
Oð1Þ might be devised to realize the observed relic
abundance, provided that the sub-GeV dark matter param-
eter space is not disallowed completely. As mentioned
briefly in Sec. III A, Higgs invisible decays provide
significant constraints on mixing between the SM Higgs
and the brane-localized dark Higgs that breaks the Uð1ÞD
subgroup of SUð2ÞD; however, by construction, mixing
between these operators is suppressed at tree level. Other
Higgs observables associated with the extra dimension,
such as tree-level modifications to SM Yukawa couplings
and loop-level modifications to the Higgs production rate
from gluon fusion, only enter at second order in vR ≪ 1
and are hence well within current constraints16 [53,54].
Flavor-changing currents are highly suppressed as long as
we assume flavor universality among the brane-localized
kinetic terms and no flavor-dependent fermion bulk masses,
as mentioned earlier in this section. Our setup then has
three major remaining classes of constraints: Collider
searches for Kaluza-Klein modes of SM particles, precision
electroweak constraints from embedding the SM electro-
weak gauge group in an extra dimension, and collider
searches for portal matter fields and SUð2ÞD gauge bosons.
The first two are present in any model with a large extra
dimension, while the third is, of course, purely reliant on
the physics of the new portal matter sector. We shall explore
each of these constraints in turn, and examine how the
phenomenology of the extra dimension is influenced by the
existence of Kaluza-Klein portal matter.

TABLE IV. The bulk fermion content of the model, together
with the brane-localized kinetic terms (BLKTs) for each fermion
field. Note that nQ and nL denote the number of copies of SM
quarks and leptons that are embedded in SUð2ÞD multiplets,
respectively. In total, there must be exactly three generations of
chiral SM fermions in the effective four-dimensional theory, so if
nQðLÞ < 3, then there must be an additional number of bulk
SUð2ÞD singlet fields to arrive at three generations of quarks
(leptons). To avoid flavor constraints, brane-localized kinetic
terms are assumed to be flavor universal; note that this includes
that SUð2ÞD singlet fields must have the same BLKTs as the
Uð1ÞD-neutral component of the SUð2ÞD triplet field with the
same SM representation. This is, of course, artificial, but it might
be enforced via some form of flavor symmetry, especially if all
fermions of a given species are embedded in SUð2ÞD triplets, and
hence in the same representation under GSM × SUð2ÞD.
SUð3Þc × SUð2ÞL
×Uð1ÞY SUð2ÞD Copies QD

ϕ ¼ 0
BLKT

ϕ ¼ π
BLKT

ð3; 2Þ1
6

3 nQ

þ1

ωQ

τQþ
0 τQ0

−1 τQ−

ð3̄; 1Þ−2
3

3 nQ
þ1

ωu

τuþ
0 τu0
−1 τu−

ð3̄; 1Þ1
3

3 nQ
þ1

ωd

τdþ
0 τd0
−1 τd−

ð1; 2Þ−1
2

3 nL
þ1

ωL

τLþ
0 τL0
−1 τL−

ð1; 1Þ1 3 nL
þ1

ωe

τeþ
0 τe0
−1 τe−

ð3; 2Þ1
6

1 3 − nQ 0 ωQ τQ0

ð3; 1Þ−2
3

1 3 − nQ 0 ωu τu0

ð3; 1Þ1
3

1 3 − nQ 0 ωd τd0

ð1; 2Þ−1
2

1 3 − nL 0 ωL τL0

ð1; 1Þ1 1 3 − nL 0 ωe τe0

16It should be noted that this situation may not hold in some
warped constructions of the paradigm, where sizable corrections
to these Higgs observables have been realized in Randall-
Sundrum constructions [48,52].
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A. Conventional extra dimension searches

Because the SM-only constraints are well studied and
frequently harsh [55,56], we shall begin our discussion of
extra dimensions with a brief exploration of “conventional”
signals of extra dimensions featuring only SM states or
their Kaluza-Klein modes. In spite of the absence of portal
matter or dark gauge bosons in the final states, however, we
shall see that some of these signals will be significantly
modified by the presence of the portal sector.
To start, we consider collider searches for SM Kaluza-

Klein particles. In many models of extra dimensions, the
Drell-Yan production of the heavy Kaluza-Klein modes of
the Z boson that then decay into SM leptons can provide a
meaningful constraint on the masses of these modes; it is
straightforward to estimate this constraint here. We note,
however, that even though such searches involve only SM
fields and their Kaluza-Klein modes, the existence of the
portal matter fields will dramatically alter the expected

signals from these results. Specifically, we note that in our
construction, the lightest massive Kaluza-Klein mode of
the Z boson, which we shall refer to as Zð1Þ, will have a
mass of mZ

1 ¼ R−1. However, we find that for any portal
matter fermion with positive ϕ ¼ 0 and ϕ ¼ π brane-
localized kinetic terms, the lightest Kaluza-Klein modes
of its tower will have mass less than R−1=2—the same
mass difference pattern we observed for the I� gauge
bosons relative to the Kaluza-Klein modes of the SM
gauge bosons in Sec. III A. As a result, the Kaluza-Klein Z
boson always has new, non-SM decay channels that do not
appear in a construction of extra dimensions without
portal matter; for a portal matter mode with a Uð1ÞD
charge of �1, a ϕ ¼ π brane-localized kinetic term of τF�,
a ϕ ¼ 0 brane-localized kinetic term of ωF, and a mass of
mF�, the partial width of the lightest Kaluza-Klein Z
boson decaying into a pair of such fermions will be

ΓZð1Þ→F�F̄� ¼ ðg2L þ g2YÞðTF
3 − s2wQFÞ2 R

−1

12π
γZð1Þ→F�F̄� ;

γZð1Þ→F�F̄� ≡ 2ð4ð1þ 4x2FÞωFτF�x2FAτF�AωF
þ 2ðω2

FA
2
τF� þ τ2F�A

2
τF�Þð1 − x2F − 4x4FÞÞ

ð1 − 4x2FÞ
1
2½ðτF� þ ωFÞð1þ x2FτF�ωFÞ þ πAτF�AωF

�2 ;

Aτ ≡ 1þ x2Fτ
2; xF ≡mF�R; ð66Þ

where TF
3 and QF represent the weak isospin and the electromagnetic charge of the portal matter fermion. Note that the

above expression appears to diverge when xF → 1=2—i.e., when the decay width should vanish as the phase space
vanishes. However, this is simply an artifact of the fact that xF, τF�, and ωF are not independent variables: xF is the root of
a transcendental equation governed by the brane-localized kinetic terms. If the limit τF�, ωF → 0 (in which case
xF → 1=2) is taken carefully, the decay width in Eq. (66) will vanish.
The other significant decay channels for Zð1Þ are all into SM particles. For the decay into an SM fermion-antifermion pair,

we arrive at a partial width

ΓZð1Þ→ff̄ ¼
�
ðTF

3 − s2wQFÞ2
�

τF0 − ωF

π þ τF0 þ ωF

�
2

þ s4wðQFÞ2
�

τf0 − ωf

π þ τf0 þ ωf

�
2
� ðg2L þ g2YÞR−1

12π
; ð67Þ

where τFðfÞ0 and ωFðfÞ are the ϕ ¼ π and ϕ ¼ 0 brane-localized kinetic terms for the Uð1ÞD uncharged electroweak doublet
(singlet) fermion field, TF

3 denotes the weak isospin of the electroweak doublet fermion, and QF is the fermion’s
electromagnetic charge. Meanwhile, the diboson decay channels Zð1Þ → WþW− and Zð1Þ → Zh have widths simply given by

ΓZð1Þ→Zh ¼
1

ð2s2w − 1Þ2 ΓZð1Þ→WþW− ¼ ðg2L þ g2YÞR−1

96π
: ð68Þ

In Fig. 4, we display the cross section for Drell-Yan production of a Zð1Þ which subsequently decays into a dilepton final state,
either eþe− or μþμ−, for a variety of choices of model parameters, with the 95% C.L. exclusion limit from a search of
139 fb−1 of data at the

ffiffiffi
s

p ¼ 13 TeV LHC [57] depicted for comparison.17 In Fig. 5, we depict the same cross sections, but
assuming

ffiffiffi
s

p ¼ 14 TeV and with the limits expected from a null result with 3 ab−1 at the HL-LHC [58]. We first note that

17We should note that if our parameter choices in Fig. 4 are taken seriously, then the universality of the brane-localized kinetic terms
would mean that kinetic mixing would vanish—this is in precise analogy to the vanishing of kinetic mixing for degenerate-mass portal
matter fields in four dimensions. However, this universality is useful in exploring the numerics of our model constraints, since the
essential features of the total cross sections are not altered if the universality conditions are relaxed.
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the partial width of the Zð1Þ in portal matter fields signifi-
cantly reduces the branching fraction of this particle into
dilepton final states, and hence the cross section for the
process sought in these searches: For example, if every SM
field is part of an SUð2ÞD triplet (so nQ ¼ nL ¼ 3, with nQ

and nL defined as in Table IV), the relevant cross section for
this search is reduced by as much as 2 orders of magnitude
from the prediction when nQ ¼ nL ¼ 0—that is, when there
are no portal matter fields in the model. We can also see that
our choice of the SM fermion brane-localized kinetic terms

FIG. 4. Predicted LHC cross sections with a center-of-mass energy of
ffiffiffi
s

p ¼ 13 TeV for Drell-Yan production of Zð1Þ, with the choice
of the number of quark and lepton portal matter generations (nQ and nL, respectively, as defined in Table IV) and the ϕ ¼ π brane-
localized kinetic term for the portal matter fields denoted by a plot label. For the solid lines, SM fermion brane-localized kinetic terms
are assumed to be ðωF; τF0Þ ¼ ð1=2; 1Þ (red), ð1=2; 3=2Þ (orange), ð1=2; 2Þ (green), ð1; 3=2Þ (blue), (1,2) (magenta), and ð3=2; 2Þ
(purple) for all SM fields. For simplicity, a high degree of universality is assumed among the brane-localized kinetic terms: In reference
to the brane-localized kinetic terms in Table IV, we have assumed τF� ¼ τQ;u;d;L;eþ ¼ τQ;u;d;L;e−, τF0 ¼ τQ;u;d;L;e0, and ωF ¼ ωQ;u;d;L;e.
Dashed lines denote the same SM brane term choices, but with ωF and τF0 exchanged—these lines are absent in the nQ ¼ nL ¼ 0 case
(that is, the case without any portal matter fields), since the cross section and branching fraction is symmetric under this interchange
here. The black line denotes the 95% C.L. exclusion limit from Ref. [57].
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has a tremendous effect on the expected Drell-Yan cross
section—this is to be expected, since we have previously
noted that the zero-mode fermions will couple to Zð1Þ with a
strength scaled by

ffiffiffi
2

p ðτF0 − ωFÞ=ðπ þ τF0 þ ωFÞ relative
to the four-dimensional gauge coupling, so we would
naively expect the Drell-Yan cross section to scale as the
square of this factor. Even without a finely tuned degeneracy
between ωF and τF0, we see that this scaling can alter our
predicted cross sections by more than an order of magni-
tude: If ðωF; τF0Þ ¼ ð3=2; 2Þ, the expected cross section is
approximately 100 times smaller than the result if
ðωF; τF0Þ ¼ ð1=2; 2Þ, translating to a lower limit on the

compactification scale R−1 of ∼2.2 TeV in the former case
and∼4 TeV in the latter, with the effects of the portal matter
fields on the Zð1Þ → ll branching fraction ignored.
While the results of Figs. 4 and 5 hardly represent a

comprehensive probe of the model parameters, it is useful
to note that there certainly exist broad regions of parameter
space for which this constraint is very weak indeed. Even
without fine-tuning of the brane-localized kinetic terms,
there are choices of these terms such that the constraint on
R−1 for these searches is below 1 TeV; these anemic
constraints stem in large part because the additional decay
channels of Zð1Þ into portal matter dramatically reduce the

FIG. 5. As in Fig. 4, but depicted for a center-of-mass energy of
ffiffiffi
s

p ¼ 14 TeV and with the black line depicting the expected
95% C.L. exclusion limit from a null result for Drell-Yan production of a heavy spin-1 resonance given in Ref. [58].
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branching fraction of Zð1Þ into dileptons. While the exclu-
sion limits can be significantly improved by null results
from the HL-LHC, it is clear in Fig. 5 that even if these
constraints are realized, there still exist significant regions
of parameter space in which a null result does not exclude
the theory, even for compactification scales under 2.5 TeV.
Because these decay channels (or similar ones) will remain
open for any massive Kaluza-Klein mode of an SM gauge
boson, we can expect similar effects in other searches, such
as those for a Kaluza-Klein W boson decaying leptonically
or for Zð1Þ decaying to an SM Z and a Higgs. By
introducing brane-localized kinetic terms to the SM gauge
fields, which will reduce the mass of the Kaluza-Klein
modes relative to the compactification scale R−1, it is
possible to kinematically disallow some of these decay
channels, but only if these terms are large for the SM gauge
fields and small for the portal matter fermions. Given the
sheer number of portal matter fields introduced in the
model [even if only a single generation of quarks is
embedded in an SUð2ÞD triplet, the model will feature
eight color triplet portal matter fields], in the absence of an
underlying mechanism keeping all portal matter brane
terms small while allowing large SM gauge boson brane
terms, it is unlikely that all of the portal matter fermions
will have appropriate brane-localized kinetic terms to
disallow decay of Zð1Þ into them. Furthermore, as men-
tioned in Sec. III A, the mass splitting that leads to this
suppression is not unique to a flat extradimensional
geometry, and may in fact be more severe in a warped
context.
While the constraints on the compactification scale from

conventional searches for Kaluza-Klein gauge bosons are
severely weakened in our portal matter scenario, the same
cannot be said for constraints arising from precision low-
energy measurements. It therefore behooves us to at least
estimate the severity with which these measurements might
constrain our model. As our model, with its arbitrarily
imposed flavor universality and flat geometry, is meant
only to be a semirealistic construction, it is likely not
especially useful, and certainly beyond the scope of this
paper, to do a global fit to electroweak and Higgs precision
measurements in this setup.18 Instead, we may get a feel for
the limits imposed from these constraints by simply
considering the expected ρ-parameter shift that our model
of extra dimensions might generate. To compute this, we
can adapt the techniques of Ref. [59] to integrate out
the heavy Kaluza-Klein modes of the theory and express
the new physics as effective dimension-6 operators. In the

Warsaw basis [60] of dimension-6 operators, the ρ param-
eter is then given by [61,62]

ρ − 1 ¼ −
2swcw
c2w − s2w

v2R2

4

�
cw
sw

CHD þ sw
cw

ð4Cð3Þ
Hl − 2CllÞ

þ 4CHWB

�
; ð69Þ

using the operator definitions of Ref. [61]. In Appendix B,
we find that in our construction, the operators in Eq. (69)
are given by

CHD ¼ −
g2Yπ

2

6
; Cð3Þ

Hl ¼
g2Yπ

2ðτL0 − 2ωLÞ
6ðπþ τL0 þωLÞ

;

Cll ¼ −
g2Lπ

2ðτ2L0 − τL0ωL þω2
LÞ

12ðπþ τL0 þωLÞ2
; CHWB ¼ 0; ð70Þ

where ωL and τL0 are the ϕ ¼ 0 and ϕ ¼ π brane-localized
kinetic terms for the SM charged lepton fields, respectively,
as in Table IV. Additional contributions to these operators
from the massive Kaluza-Klein tower modes of the fermion
fields are ignored here, since these will be severely sup-
pressed for light fermions [specifically, they should only
emerge at Oðm2

e;μR2Þ for these measurements]. These
results give us the expression

ρ − 1 ¼ g2Y
ðg2L − g2YÞ

g2Lv
2R2π2

12ðπ þ τL0 þ ωLÞ

×

�
2π − 4τL0 þ 8ωL −

π2 − 3τL0ωL

π þ τL0 þ ωL

�
; ð71Þ

or in terms of the observables GF, mZ, and αðm2
ZÞ,

ρ − 1 ¼ mZ2R2π3α

3
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GFm2

ZðGFm2
Z − 2

ffiffiffi
2

p
παÞ

q
×

�
2π − 4τL0 þ 8ωL

ðπ þ τL0 þ ωLÞ
−

π2 − 3τL0ωL

ðπ þ τL0 þ ωLÞ2
�
: ð72Þ

We can then compare the result in Eq. (72) to the current
global fit constraint19 [66]:

18In our simple construction, the fact that all bulk fermions
share universal vanishing bulk masses means that the usual harsh
constraints from flavor-changing four-fermion operators—e.g.,
those considered in Ref. [55]—are severely suppressed, for
example.

19This global fit does not account for the recent CDF II result
[63], which claims significant tension between a direct meas-
urement of the W-boson mass and the prediction of the SM.
While it is clear that our toy construction here might explain
this discrepancy, the recency of the result and the tension with
existing ATLAS [64] and LHCb [65] measurements of the
W-boson mass leads us to err on the side of caution and refrain
from considering how this measurement might influence our
model phenomenology. A detailed exploration of the utility of
extra dimensions to explain the W-boson mass shift may be of
interest, but it is beyond the scope of this paper.

GEORGE N. WOJCIK PHYS. REV. D 108, 035006 (2023)

035006-26



ρ ¼ 1.00038� 0.00020: ð73Þ

In Fig. 6, we depict the minimum compactification scale
R−1 in order to stay within 2σ of the fit value given in
Eq. (73) as a function of the brane-localized kinetic terms
τL0 and ωL. We can see that the constraints on R−1

stemming from the ρ parameter are usually significantly
stronger than the corresponding constraints from Drell-Yan
production of Zð1Þ. While Zð1Þ production yields constraints
no stronger than R−1 ≳ 4 TeV, and it generally gives results
that are much weaker, the ρ parameter offers constraints that
can be as severe as R−1 ≳ 6 TeV. This is unsurprising,
given the substantial suppression of the Zð1Þ → ll cross
section due to the existence of portal matter states. In fact, of
the benchmark τF0 and ωF values considered in Fig. 4, we
find that the current constraint on R−1 from Zð1Þ production
only outperforms the ρ-parameter constraint in one region of
parameter space: When τF0 is large and ωF is small.
[Among our benchmark points, ðωF; τF0Þ ¼ ð1=2; 3=2Þ
and ð1=2; 2Þ are the only points for which the Zð1Þ constraint
is the harsher one. Only the projected future HL-LHC
constraint might add the point ðωF; τF0Þ ¼ ð1; 2Þ to this list,
depending on the number of generations with portal matter
modes.] Of course, we should note that because ωF and τF0
in Figs. 4 and 5 are artificially assumed to take on universal
values for all SM fermion fields, while ωL and τL0 only
apply to the SUð2ÞL doublet leptons, any attempt to naively
consider these constraints in combination must be greeted
skeptically at best. Given that our constraint from the ρ
parameter merely acts as an estimate of the constraints from
a global electroweak fit, this skepticism is especially
merited. Ignoring caution and naively requiring our choices
of brane-localized kinetic terms to satisfy both the Zð1Þ
search and the ρ parameter constraint, however, we find that
in the corners of parameter space where the ρ constraint is
exceptionally weak (≲3 TeV), the Zð1Þ constraints will
invariably be near their harshest, limiting the parameter

space to R≳ 3 TeV. We can roughly estimate, then, that
constraints stemming from “conventional” SM-only probes
of extra dimensions will generally lead to constraints
of R−1 ≳ 3.0–6.0 TeV.

B. Portal matter and SUð2ÞD bosons: Decay

Having addressed the constraints arising in our con-
struction from familiar probes of extra dimensions, it is now
of interest to consider how states associated with portal
matter and the SUð2ÞD gauge sector will appear exper-
imentally. Before moving into production mechanisms
specifically, we will discuss what new states are most
likely to be phenomenologically important and discuss the
dominant decay channels for them. In addition to the
familiar SM particles, our construction has a number of
new exotics. At the low GeV scale, the simplified kinetic
mixing portal dark matter model we have extended requires
a dark photon AD, a dark Higgs hD, and some sort of dark
matter particle (about which we have remained vague, since
it has limited influence on the phenomenology we wish to
explore in this work). In our model, AD is simply the
lightest state of the Kaluza-Klein tower of the gauge boson
field X described in Sec. III A—because this field plays the
role of the dark photon, from here on out we will refer to
this zero mode with the suggestive name AD. The dark
Higgs hD, meanwhile, is simply the real scalar field
emerging from the brane-localized scalar ΦD in Sec. III A.
The collider signals associated with these fields will be

more or less identical to that which has already been
discussed for analogous particles in other portal matter
papers such as Refs. [19,23]. The specifics of the likely
decay channels for the dark photon and the dark Higgs,
which we shall find might be copiously produced in
collider experiments, are heavily dependent on the relative
values of low-energy parameters in the model (specifically
the relative masses of the dark photon, the dark Higgs, and
the dark matter) which have no significant numerical effect
on either the production or decay of the heavier exotic

FIG. 6. Left: Minimum compactification scale R−1 in order for the ρ parameter to stay within 2σ of the global fit value [66] given in
Eq. (73), plotted as a function of ωL for various choices of τL0 (defined as in Table IV). From the top down, τL0 ¼ 1=2, 1, 3=2, 2. Right:
Same as left, but with the constraint plotted as a function of τL0 for various choices of ωL. From the top down, ωL ¼ 2, 3=2, 1, 1=2.
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states on which this work focuses. As such, we shall limit
our discussion to simply summarizing that depending on
the selection of low-energy parameters, the dark photon
will generally either decay invisibly (or be long-lived),
leaving only missing ET at the LHC, or it will decay into a
pair of light SM fermions—for example, eþe−. The dark
Higgs, meanwhile, will likely decay promptly into a pair of
dark photons (one or both of which might be virtual), and
from there leave only missing energy or sets of fermion
pairs, depending on the decay properties of the dark photon
itself.
At the TeV scale, we have introduced a much broader

range of exotics: There are Kaluza-Klein modes for all SM
fields, plus those associated with portal matter and the
SUð2ÞD gauge bosons. Because of the portal matter and the
I� bosons’ boundary conditions in the bulk, these fields’
lightest Kaluza-Klein modes are overwhelmingly likely to
be the least massive TeV-scale exotic particles appearing
in the model—they must have masses less than half the
compactification scale R−1, and so barring very large brane-

localized kinetic terms for the SM fermions, the dark
photon, or the SM gauge bosons, I� and portal matter
will dominate our low-TeV-scale phenomenology. In
Refs. [19,23], it was found that portal matter fermions,
in contrast to vector-like fermions with no additional dark
charge, will overwhelmingly decay into SM fermions via
the emission of a dark photon AD or a dark Higgs hD, rather
than via the emission of an SM gauge boson. This
preference occurs because, while the coupling of a dark
photon to a portal matter field and an SM fermion is
exceptionally weak [in our setup, OðvDRÞ≲ 10−3, where
vD is the small brane-localized dark Higgs VEV and R is
the compactification scale], the longitudinal mode of AD
will, because of the dark photon’s small mass, enhance this
interaction strength by a factor roughly canceling the
suppression of the coupling. We find that in our construc-
tion, the partial width of a fermion with Uð1ÞD charge þ1
and brane-localized kinetic terms ωF and τFþ and a mass
mFþ to an SM fermion f plus a dark photon AD or a dark
Higgs hD will be given by

ΓFþ→ADf ¼ ΓFþ→hDF ¼ ðỹFþÞ2
32π

xFR−1; xF ¼ mFþR; ỹFþ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2Fω

2
F

1þ x2Fτ
2
Fþ

s
NFþyFþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π þ τF0 þ ωF
p ;

NFþ ≡
�

2ð1þ x2Fτ
2
FþÞ

πð1þ x2Fω
2
FÞð1þ x2nτ2FþÞ þ ðτFþ þ ωFÞð1þ x2FτFþωFÞ

�
1=2

; ð74Þ

where τF0 is the ϕ ¼ π brane-localized kinetic term for the
SM fermion F, and all small masses (those of the SM
fermion, the dark photon, and the dark Higgs) have been
allowed to trend to 0. The parameter ỹFþ is a more physical
normalization of the brane-localized Yukawa coupling yFþ
first described in Eqs. (33) and (34)—physically, ỹFþ=

ffiffiffi
2

p
is

the Yukawa coupling between the lightest Kaluza-Klein
mode of the portal matter field Fþ and its corresponding

SM fermion f. The expression in Eq. (74) is trivially
generalizable to any other portal matter field in the model,
simply by substituting analogous parameters. If the lightest
mode of the I� field is lighter than a given portal matter
field, there is an additional possible decay channel for the
portal matter—namely, by emitting an Iþ or I− gauge
boson, depending on the Uð1ÞD charge of the portal matter
itself. We find that the width for this process is

ΓFþ→Iþf ¼ g2D
16π

�
π þ τX þ ωX

π þ τF0 þ ωF

�
2λ2ðNFþÞ2

πð1þ x2Iω
2
XÞ þ ωX

x2I
x3F

R−1ðx2F þ 2x2I Þ;

λ≡
�
ðωX − ωFÞ þ

xF
xI

τFþ
ð1þ x2Iω

2
XÞð1þ x2Fω

2
FÞ

πð−1þ x2FτFþωFÞ
sinðπxFÞ sinðπxIÞ

�
; xI ¼ mIR; ð75Þ

where gD is the effective four-dimensional coupling con-
stant of the dark photon,mI is the mass of the I� boson, and
ωX and τX are the brane-localized kinetic terms for the
SUð2ÞD gauge boson fields, defined in Sec. III A. The
parameters xF, τFþ, ωF, and NFþ

n are defined here just as
they were in Eq. (74). The portal matter decay via a dark
photon or dark Higgs emission has been well explored in,

e.g., Refs. [19,22,23]; however, here the presence of
another channel—namely, decay via I� emission—may
complicate our analysis. It therefore behooves us to
consider if the branching fraction for portal matter into
an I� boson might be significant in any regime of the
parameter space we consider. In Fig. 7, we depict the
branching fraction of a given portal matter field to either a
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dark photon or a dark Higgs field for different choices of
the various fermion and gauge boson brane-localized
kinetic terms. Notably, the parameter space of choices of
Oð1Þ brane-localized kinetic terms such that the I� boson is
lighter than the portal matter fields is somewhat narrow; of
the benchmark values ωX ¼ 1=2, 1, 3=2, 2 we consider,
only ωX ¼ 3=2 and 2 have choices of other brane terms
with ðτFþ;ωFÞ ≥ 1=2 such that the decay Fþ → IþF is
kinematically accessible. This is unsurprising, given the
fact that there are two brane terms, τFþ and ωF, which both
reduce the mass of the portal matter field as they get larger,
but only one such term, ωX, which accomplishes the same
for I�. Of course, our assumption that the brane-localized
kinetic terms for these fields must all be Oð1Þ and random
is an arbitrary choice, so it is entirely feasible that some
underlying mechanism in the UV theory might favor ωX

to be significantly larger than τFþ and ωF; since the region
of parameter space where the portal matter can decay via
on-shell I� is narrow, but not absurdly finely tuned, we
cannot realistically conjecture about the probability of this
arrangement of particle masses emerging.
Second, we note that, at least in the parameter space we

have considered for our broad phenomenological survey,
the branching fraction for portal matter decay via an I�

boson is usually subdominant to the decay via dark photon/
dark Higgs emission, but for particularly small ỹFþ, it can
compete with the more dominant decay channel—for
ỹFþ ¼ 1=4, we see in some regions of parameter space in
Fig. 7 that the decay via I� will account for as much as
∼50% of portal matter decays. In contrast to the case of
dark photon and dark Higgs emission, however, it does not
appear terribly feasible to arrange a scenario in which
the I� emission decay dominates the portal matter decay
width, without either assuming that some of the fermion

brane-localized kinetic terms are much smaller than Oð1Þ
or that the dark gauge boson brane-localized kinetic terms
are much larger—even if ỹFþ ¼ 1=4 and τFþ;ωF ¼ 0, the
branching fraction of Fþ → f þ AD=hD remains at least
10% as long as ωX ≲ 7 (assuming, as we have in Fig. 7, that
gD ¼ gL). Hence, depending on the decay properties of the
I� boson, there exist regions of parameter space where the
decay channel Fþ → IþF can be large enough to poten-
tially yield an interesting collider signature from portal
matter production (especially if, for example, I� decays
entirely visibly and therefore permits reconstruction of its
mass), but engineering a scenario in which this portal
matter decay channel overwhelmingly dominates over dark
Higgs and dark photon emission—and hence, the more
familiar portal matter collider signatures discussed in
Refs. [19,22,23] might be rendered inapplicable—likely
requires unnatural parameter choices.
Meanwhile, the I� gauge bosons’ dominant decay

channels closely follow the phenomenology of the dark-
charged gauge bosons discussed in Ref. [23], referred to in
that work as WI . In particular, if kinematically accessible,
the overwhelmingly dominant decay channels will decay
into an SM fermion and one of its corresponding portal
matter fields. For the decay of Iþ into a positively Uð1ÞD-
charged portal matter field Fþ and the corresponding SM
antifermion f̄, the partial width is (again ignoring the mass
of the SM fermion)

ΓIþ→Fþf̄ ¼
λ2g2D
24π

�
2ðNFþÞ2

πð1þ x2Iω
2
XÞ þ ωX

��
π þ τX þ ωX

π þ τF0 þ ωF

�

×

�
1þ x2F

2x2I

�
xIR−1; ð76Þ

FIG. 7. Left: The branching faction of a portal matter fermion field Fþ with brane-localized kinetic terms ωF at ϕ ¼ 0 and τFþ at
ϕ ¼ π for decay via emission of a dark Higgs or a dark photon with brane-localized kinetic terms ωX at ϕ ¼ 0 and τX at ϕ ¼ π,
computed from the partial widths given in Eqs. (74) and (75) as a function of ωF for various choices of other brane-localized kinetic
terms. In all cases, we assume that gD ¼ gL, τX ¼ 1, and ỹFþ ¼ 1, where ỹFþ=

ffiffiffi
2

p
is the dark Higgs Yukawa coupling between Fþ and the

SM fermion with which it mixes. Choices of other brane-localized kinetic terms are ðτFþ;ωXÞ ¼ ð1=2; 3=2Þ (red), (1=2; 2) (magenta),
(1, 2) (red). Right: Same as left, but with ỹFþ ¼ 1=4. Note that in both cases, the charts are invariant under the interchange τFþ ↔ ωF.
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where all symbols are defined as in Eqs. (74) and (75), and
the generalization to a decay to the antiparticle of portal
matter with negative Uð1ÞD charge and an SM fermion is
trivial, as is the generalization to decays of the I− field. In
the regime in which this class of decay channel is
kinematically accessible for any portal matter field, the
branching fraction of I� to portal matter–SM fermion pair
states will be close to 100%—this is because the other
possible tree-level decay channels are either suppressed by
tiny portal matter–SM fermion mixing (in the case of
Iþ → f̄f) or suppressed by three-body phase space (in the
case of Iþ → ADf̄f from an intermediate virtual heavier
Kaluza-Klein mode of a portal matter fermion field). If

there are no portal matter fields light enough for this decay
channel to be kinematically accessible, then much like the
WI field in Ref. [23], the dominant decay channel will be a
three-body decay, Iþ → ADf̄f, via the exchange of a
virtual portal matter field. Care must be taken to properly
compute this decay width, because the virtual portal matter
field exchange will involve an exchange over the field’s
entire Kaluza-Klein tower, and so during the computation
we must invoke the infinite sums given in Eq. (47). We
arrive at the partial width for a given SM fermion species f
given by (ignoring the mass of the SM fermions and the
dark photon or dark Higgs)

ΓIþ→f̄fAD
¼ ΓIþ→f̄fhD ¼ xIR−1

192π3

�
π þ τX þ ωX

πð1þ x2Iω
2
XÞ þ ωX

�Z
x2I

0

dx23

Z
x2I−x23

0

dx12F Iþ→f̄fAD
;

F Iþ→f̄fAD
≡

�
1 −

x23 þ x12
x2I

þ x12x23
2x4I

��
1

ðπ þ τf0 þ ωfÞ2
�

yf−
x23 − x2I

Gf−ðx23Þ −
yfþ

x12 − x2I
Gfþðx12Þ

�
2

þ f → F

�
;

Gf;F�ðxijÞ≡ xIðωX − ωf;FÞ þ ð1þ x2Iω
2
XÞ sinðπxIÞð− cosðπ ffiffiffiffiffiffixij

p Þ þ ffiffiffiffiffiffixij
p

ωf;F sinðπ ffiffiffiffiffiffixij
p ÞÞ

ð−1þ ffiffiffiffiffiffixij
p

τf�;F�ωf;FÞ cosðπ ffiffiffiffiffiffixij
p Þ − ffiffiffiffiffiffixij

p ðτf�;F� þ ωf;FÞ sinðπ ffiffiffiffiffiffixij
p Þ ; ð77Þ

where yfðFÞ� , τfðFÞ�, and ωfðFÞ denote the brane-localized
dark Higgs Yukawa couplings, the ϕ ¼ π, and ϕ ¼ 0

brane-localized kinetic terms, respectively, for the
SUð2ÞL singlet (doublet) portal matter fields corresponding
to the SM fermion f [note that for the sake of brevity, when
writing this expression we have not used the normalized
Yukawa couplings ỹf;F� used in Eq. (74) here], while τX and
ωX denote the ϕ ¼ π and ϕ ¼ 0 brane-localized kinetic
terms for the SUð2ÞD gauge fields. The integration variable
x12 (x23) corresponds to the invariant mass of the combined
4-momentum for the final-state SM fermion (antifermion)
with the dark photon or dark Higgs.
With our knowledge of the dominant decay channels of

both the lightest I� and portal matter modes, we can now
comment holistically about the possible collider signals of
both particles. For a given portal matter particle F�, the
signature present over all of the model parameter space
will feature decay into a corresponding SM fermion f via
the emission of a dark photon or a dark Higgs. As
discussed in detail in, e.g., Refs. [19,22,23], this decay
features a single high-pT SM fermion (or, for color-triplet
portal matter, a jet) of the SM species that the portal matter
mixes with, plus either missing energy or a highly boosted
lepton jet, depending on the preferred decay channel of the
dark photon and dark Higgs. In the event that the I� boson
is less massive than the portal matter field in question, it is
feasible that an Oð1Þ fraction of portal matter produced
will decay via emission of the heavy I�. The I� field will

then decay (either via intermediate emission of a real
portal matter field, if one exists that is lighter than the I�,
or by virtual portal matter exchange if not) into a dark
photon or dark Higgs and a particle-antiparticle pair of SM
fermions of some species q, which may or may not be
the same species as f—the decay chain will therefore take
the form

F� → I� þ f → AD=hD þ f þ qq̄: ð78Þ

This signature may be quite atypical and distinctive: For
color-triplet f and q, we might anticipate a single portal
matter field to produce a dark photon/dark Higgs (and
hence either missing energy or a highly collimated pair of
light SM fermions) plus multiple jets. Given that scenarios
in which an Oð1Þ fraction of portal matter decays might
occur through this channel, a detailed study of such a
decay channel and its signal may be merited.
On its own, the signal of a promptly produced I� boson

will closely match the behavior of theWI boson described
in Ref. [23], producing either an on-shell portal matter
field (which in turn would decay into a dark Higgs or dark
photon plus an SM fermion) or proceeding in a three-body
decay to produce a dark Higgs or dark photon plus a
particle-antiparticle pair of the same species of SM
fermions.
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C. Portal matter and SUð2ÞD bosons: Production

Having addressed how the most phenomenologically
relevant TeV-scale exotics—namely, portal matter and I�
bosons—decay in our model, we can move on to a survey
of the various collider production mechanisms for these
fields.
Perhaps the most obvious channel, portal matter pair

production from either QCD (in the case of color-triplet
portal matter) or electroweak interactions (for leptonic
portal matter), has been well explored in the perfectly
analogous scenarios of Refs. [19,22,23,67,68] and summa-
rized well in Ref. [69], so we see no need to perform the
analysis again here—we shall simply quote some results
and comment on their relevance in our context. In both the
leptonic and quark-like portal matter cases, the pair pro-
duction cross sections scale quite strongly with the portal
matter mass [19,67], so for pair production searches we are
especially concerned with the very lightest portal matter
states that are present, even in the event of a large ensemble
of portal matter states in the model, as long as there areOð1Þ
differences in brane-localized kinetic terms [and henceOð1Þ
proportional differences in masses] between portal matter
states. In the event that the dark Higgs and dark photon
decay invisibly (or are long-lived enough to decay outside
of the detector), direct contact can be made with squark and
slepton searches for jets or leptons and missing energy to
find these lightest portal matter particles. For color-triplet
portal matter, these results generally constrain the portal
matter massmQ� ≳ 1.3–1.5 TeV [19,22], while for the case
of leptonic portal matter the searches of Refs. [67,68] yield
constraints on leptonic portal mass of mL

� ≳ 0.9–1.1 TeV,
provided that the portal matter mixes with first- or

second-generation charged leptons. Critically, because por-
tal matter fields will be much lighter than SM Kaluza-Klein
tower modes, even these general results can offer constraints
on our model parameter space comparable to or even
exceeding those we have found from more conventional
extra dimension probes in Sec. VA. To get a (very rough)
sense of this, in Fig. 8 we depict the constraint on R−1

assuming that a portal matter field with ϕ ¼ 0 and ϕ ¼ π
brane-localized kinetic terms of ωF and τF�, respectively,
must be constrained to a mass of ≥ 1.3 TeV.
The constraints on R−1 arising from Fig. 8 are clearly

numerically comparable to those emerging from the con-
straint on the ρ parameter, and depending on relative
choices of the brane-localized kinetic terms for the
color-triplet portal matter and the SUð2ÞL doublet SM
fermions that contribute to the tree-level ρ correction, in
many regions of parameter space these constraints can be
stronger.20 Furthermore, we note that the constraints
depicted here would come from the lightest color-triplet
portal matter fields in the model, and hence can imply
global constraints on brane-localized kinetic terms for all
quark-like portal matter fields, since larger brane terms will
invariably decrease the mass of a given Kaluza-Klein mode.
Of course, our model construction involves a far broader
range of possible production mechanisms for the states
associated with the portal matter sector than simple quark
and lepton pair production. We shall now further explore
some of these.
In contrast to portal matter pair production, the remain-

ing collider production mechanisms we consider for portal
matter states and I� bosons will involve SUð2ÞD gauge
interactions, and will therefore be much more model
dependent. Many of the production mechanisms we con-
sider will be familiar to readers of Ref. [23] for that model’s
portal matter and itsWI boson. However, the multiplicity of
portal matter fields in our construction, combined with the
fact that many process amplitudes are significantly modi-
fied by the effects of embedding the theory in an extra
dimension, make it worthwhile to reevaluate these proc-
esses within our new model. We begin with a look at
production of a single portal matter field and a dark photon
or a dark Higgs. In the limit where the dark photon/dark
Higgs mass can be ignored, we find a leading-order cross
section of

FIG. 8. The minimum compactification scale R−1 assuming that
a portal matter field is constrained to have mass greater than
1.3 TeV, plotted as a function of the portal matter’s ϕ ¼ 0 brane-
localized kinetic term ωF, for various choices of the ϕ ¼ π brane-
localized kinetic term τF�. From the top down, τF� ¼ 2, 3=2, 1,
1=2. Note that the mass spectrum of the portal matter modes is
invariant under the exchange ωF ↔ τF�.

20Of course, a true global fit to various precision measurements
would be sensitive to a wider variety of SM fermion brane-
localized kinetic terms than simply those of the isodoublet
leptons. However, since we note that a wide variety of a priori
uncorrelated brane-localized kinetic terms would enter this
analysis, of which only the ϕ ¼ 0 brane-localized kinetic terms
are shared by any portal matter fields, there are presumably
analogous regions of parameter space in a more robust analysis
for which the portal matter searches will be the stronger
constraint.
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σðqg → Q�ADÞ ¼
ðỹQ�Þ2αsðs −m2

Q�Þ
192s2

F qg→Q�AD
;

F qg→Q�AD
≡

Z
d cos θ

�
−2m2

Q�

�
1

s
þ 1

u0

��
1þm2

Q�
u0

�
−

t2

su0

�
;

t ¼ ðm2
Q� − sÞsin2

�
θ

2

�
; u0 ¼ −m2

Q� þ ðm2
Q� − sÞcos2

�
θ

2

�
; ð79Þ

wheremQ� is the mass of theQ� portal matter field, and ỹQ�
is defined as ỹFþ in Eq. (74). Notably, this amplitude
depends explicitly only on the coupling constant ỹQþ and
the portal matter mass—all explicit dependence on the
brane-localized kinetic terms in the model are simply
absorbed into the definition of ỹQ�. The only change in
the physics that occurs when the brane-localized kinetic
terms of the theory are adjusted for a fixed portal matter
mass, and ỹQ� is the relationship between the portal matter

mass and the compactification scale of the extra dimension.
In Fig. 9, we depict the total cross section for the single
production of a given portal matter mode that mixes with
various SM fermions at

ffiffiffi
s

p ¼ 13 TeV and
ffiffiffi
s

p ¼ 14 TeV.
Notably, for Oð1Þ selections of the portal matter’s brane-
localized kinetic terms, large compactification scales can
still produce production cross sections for this process as
high as the multi-fb level. In fact, referencing the results of
Refs. [19,23], we see that for reasonableOð1Þ values of ỹF�,
the production cross section for single portal matter fields is

FIG. 9. The total scattering cross section for the process qg → Q�AD=hD at the LHC at
ffiffiffi
s

p ¼ 14 TeV (solid) and
ffiffiffi
s

p ¼ 13 TeV
(dashed), assuming ỹQ� ¼ 1, where ỹQ� is defined as ỹF� is in Eq. (74). Cross sections are given from the top down assuming the portal
matter field is coupled to the u (orange), d (red), s (green), c (blue), and b (magenta). Brane-localized kinetic terms for the portal matter
field are listed on the chart, and the compactification scale R−1 is depicted on the upper x axis of the chart—note that our subscript Q
implies that we are considering a weak isospin doublet portal matter field (see Table IV), but these results are agnostic to whether the
quark in question is an isospin doublet or singlet.
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actually comparable to that of the QCD production of portal
matter pairs, albeit heavily dependent on which SM field
the portal matter mixes with. It is possible, then, that
comparable limits on the portal matter parameter space
might be placed using monojet searches at the LHC,
assuming dark photons and dark Higgses will decay
invisibly or outside of the detector. Furthermore, as in
the case of the portal matter pair production, the low mass
of the portal matter fields relative to the compactification
scale in turn allows for relatively mild limits on the portal

matter field masses to translate to much more robust limits
on R−1, albeit the precise relationship between these two
mass scales is heavily dependent on the brane-localized
kinetic terms.
Much like Ref. [23], there are further signals in the

model which stem from the production of the new gauge
boson I�. The simplest of these is merely the analogue of
the gq → Q�AD=hD process discussed above, with an I�
boson produced instead of a dark photon or dark Higgs.
The production cross section for these events is given by

σðqg → Q�I∓Þ ¼ g2DαsβQIðs −m2
Q� −m2

I Þ
96s2

ðC�
QIÞ2F qg→Q�I∓ ;

F qg→Q�I∓ ≡
�
2þm2

Q�
m2

I

��
2Δm2

�
1

s
þ 1

u0

��
1þm2

Q�
u0

�
−
2m2

IΔm2

su0
−
ðm2

I − tÞ2
su0

þ 4m2
I

ðm2
Q� þ 2m2

I Þ
�
;

Δm2 ≡m2
Q� −m2

I ; βQI ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Q�m

2
I

ðs −m2
Q� −m2

I Þ2
s

;

u0 ≡ −m2
Q� −

ðs −m2
Q� −m2

I Þ
2

ð1þ βQI cos θÞ; t≡ −
ðs −m2

Q� −m2
I Þ

2
ð1 − βQI cos θÞ; ð80Þ

where mI is the mass of the lightest I� boson. The dimensionless constant C�
QI is simply the coupling constant of the I∓

boson to a vertex featuring q and Q� in units of the four-dimensional dark photon coupling gD. It depends on the bulk
profiles of the I∓ boson and the Q� portal matter fermion, and is given by

C�
QI ¼

ffiffiffi
2

p
NQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πð1þ x2Iω
2
XÞ þ ωX

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π þ τX þ ωX

π þ τQ0 þ ωQ

s
m2

I

Δm2
C�QI;

C�QI ≡
�
ðωX − ωQÞ −

mQ�τQ�
mI

�ð1þm2
IR

2ω2
XÞð1þm2

Q�R
2ω2

QÞ
ð1 −m2

Q�R
2τQ�ωQÞ

�
sinðπmQ�RÞ sinðπmIRÞ

�
; ð81Þ

where ωX and τX denote the ϕ ¼ 0 and ϕ ¼ π and brane-
localized kinetic terms for the SUð2ÞD gauge fields, and ωQ

denotes the ϕ ¼ 0 brane-localized kinetic term for the
fermion Q, and τQ�ð0Þ denotes the brane-localized kinetic
term for the portal matter (SM) fermion Q. NQ� is defined
in exact analogy to NFþ in Eq. (74). In spite of its
complicated form, the constant C�

QI in Eq. (81) plays only
a limited role in altering the value of the cross section in
Eq. (80), because its numerical magnitude is invariably
within ∼25% of unity for Oð1Þ selections of brane-
localized kinetic terms.
We depict the total cross section for the process qg →

Q�I∓ in Figs. 10 and 11 at the LHC with
ffiffiffi
s

p ¼ 13 TeV
and

ffiffiffi
s

p ¼ 13 TeV. As we can see in these figures, the cross
section for this process depends modestly on selections of
brane-localized kinetic terms—varying by as much as an
order of magnitude for different choices in parameter space.
It should be noted, however, that this variation is almost
entirely due to the variation in the relationship between the

I boson and the portal matter masses—as we discussed
previously, the effective coupling constant between the I
bosons, portal matter, and an SM fermion depends only
quite weakly on the choice of brane-localized kinetic terms.
If there is a kinematically accessible two-body decay for

the I� gauge boson into a portal matter–SM fermon pair,
then the experimental signature for this process can closely
resemble that of portal matter pair production21—with the
exception that the two portal matter fields produced may be
associated with different SM fields, and if I� decays
hadronically, there will be an extra jet associated with the
I� decay.22 For example, if the I� boson decays into
leptonic portal matter and the dark photons/dark Higgses

21If not, then the dominant decay channel for the I bosons will
be a three-body decay via an off-shell portal matter field, leading
to the same possible final states as decay through on-shell portal
matter.

22As noted in Ref. [23], this might easily be mistaken for QCD
ISR.
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decay invisibly or outside of the detector, the final state
might consist of an electron-positron or muon-antimuon
pair, a jet (which, depending on the identity of the promptly
produced portal matter field, might be b-tagged or t-tagged),
and missing energy. In the event that the dark photons and/
or dark Higgses emitted by the decaying portal matter and
I� decay visibly, it may be possible to reconstruct the I�
mass peak, which, as noted in Ref. [23], can drastically
reduce backgrounds. A detailed study of the experimental
constraints on this channel is far beyond the scope of this
paper, but may be of interest, especially given the fact that
both this work and Ref. [23] predict production of this type
when simple extensions to the minimal model of portal
matter presented in Ref. [19] are constructed.
In addition to being produced with a single portal matter

field, there are two processes by which I� bosons might be
produced without a prompt portal matter field, either as an
IþI− pair or in association with a single dark photon or dark
Higgs. We shall consider pair production first. In contrast to

the analogous process in Ref. [23] (pair production of WI
bosons, in their notation), IþI− pair production receives
contributions from t-channel exchanges of the entire tower
of Kaluza-Klein portal matter states; as a result, the
expression for the cross section becomes quite complicated.
Another interesting distinction between the IþI− production
process in our model and that of the analogous WI boson
pairs in Ref. [23] stems from how the cross section
maintains unitarity: In the case of the model in Ref. [23],
the amplitude of WI pair production from the s-channel
exchange of a heavy Uð1ÞD-neutral gauge boson, ZI ,
interfered destructively with the amplitude contribution
from t-channel exchange of portal matter fermions. In
our construction, however, the amplitude contribution from
the s-channel exchange of the only suitable gauge bosons in
the model, AD and its associated Kaluza-Klein tower, are
negligibly small due to the heavy suppression of AD ’s
coupling to SM fermion pairs (taking place at leading
order only through kinetic mixing). Instead, unitarity is

FIG. 10. The total scattering cross section for the process qg → Q�I∓ at the LHC at
ffiffiffi
s

p ¼ 14 TeV (solid) and
ffiffiffi
s

p ¼ 13 TeV
(dashed), assuming gD ¼ gL and ωX ¼ 1=2. Cross sections are given from the top down assuming the portal matter field is coupled to
the u (orange), d (red), s (green), c (blue), and b (magenta). Brane-localized kinetic terms for the portal matter and I fields are listed on
the chart, and the compactification scale R−1 is depicted on the upper x axis of the chart. The brane-localized kinetic terms τX and τQ0, as
appearing in Eq. (80), only multiplicatively rescale the cross sections by a factor ðπ þ τX þ ωXÞ=ðπ þ τQ0 þ ωQÞ ∼ 1 [assuming Oð1Þ
brane terms], so they are assumed to be 0 here.
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maintained by destructive interference between the different portal matter fields which mix with a given SM fermion: Those
with a Uð1ÞD charge of þ1 and those with a Uð1ÞD charge of −1 interfere and prevent the cross section from growing
uncontrollably. We arrive at the expression

σðqq̄ → IþI−Þ ¼ g4D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

I
s

q
128πs

Z
d cos θF qq̄→IþI− ;

F qq̄→IþI− ≡
�
π þ τX þ ωX

π þ τQ0 þ ωQ

�
2
�
ðA2

Q þ 2B2
Q þ 2C2

QÞ
�
tu
m4

I
− 1

�
þ 4s
m2

I
ðA2

Q − B2
Q þ C2

QÞ
�
þQ → q;

AQ;q ≡ tHQ;q−ð
ffiffiffiffiffiffiffi
tR2

p
Þ − uHQ;qþð

ffiffiffiffiffiffiffiffi
uR2

p
Þ; BQ;q ≡m2

I ðHQ;q−ð
ffiffiffiffiffiffiffi
tR2

p
Þ −HQ;qþð

ffiffiffiffiffiffiffiffi
uR2

p
ÞÞ;

CQ;q ≡m2
I ðHQ;q−ð

ffiffiffiffiffiffiffi
tR2

p
Þ þHQ;qþð

ffiffiffiffiffiffiffiffi
uR2

p
ÞÞ ð82Þ

for the IþI− pair production cross section, where the subscript Q (q) refers to brane-localized kinetic terms associated with
the weak isospin doublet (singlet) SM; the portal matter fields s, t, and u are the Mandelstam variables; θ is the center-of-
mass scattering angle; and the function HQ;q� is given by

FIG. 11. As in Fig. 10, but for different brane-localized kinetic term choices. The total scattering cross section for the process
qg → Q�I∓ at the LHC at

ffiffiffi
s

p ¼ 14 TeV (solid) and
ffiffiffi
s

p ¼ 13 TeV (dashed), assuming gD ¼ gL and ωX ¼ 2. Cross sections are given
from the top down assuming the portal matter field is coupled to the u (orange), d (red), s (green), c (blue), and b (magenta). Brane-
localized kinetic terms for the portal matter and I fields are listed on the chart, and the compactification scale R−1 is depicted on the
upper x axis of the chart.

KINETIC MIXING FROM KALUZA-KLEIN MODES: A SIMPLE … PHYS. REV. D 108, 035006 (2023)

035006-35



HQ;q�ð
ffiffiffiffiffiffiffi
tR2

p
Þ≡

�
1

t −m2
I
þ 2ð−2m2

I þ tÞð−ωX þ ωQ;qÞ
ðt −m2

I Þ2ðπð1þm2
IR

2ω2
XÞ þ ωXÞ

þ 2m2
I

ðt −m2
I Þ2

H̃Q;q�ð
ffiffiffiffiffiffiffi
tR2

p
Þ
�
;

H̃Q;q�ð
ffiffiffiffiffiffiffi
tR2

p
Þ≡ Aþ Bα ffiffiffiffiffi

tR2
p ðτQ;q�; πÞ þ Cβ ffiffiffiffiffi

tR2
p ðωQ;q; πÞ

tR2ðπð1þ x2Iω
2
XÞ þ ωXÞ½

ffiffiffiffiffiffiffi
tR2

p
τQ;q�α ffiffiffiffiffi

tR2
p ðωQ;q; πÞ − β ffiffiffiffiffi

tR2
p ðωQ;q; πÞ�

;

A≡ 2xItR2ð1þ x2Iω
2
XÞðωQ;q − ωXÞ sinðπxIÞ; B≡ x2I ðωQ;q − ωXÞ2; C≡ tR2τQ;q�ð1þ x2Iω

2
XÞ; ð83Þ

where the functions α and β are defined in Eq. (44), in
Sec. III B, and xI ≡mIR. The total production cross section
for this process at the LHC at

ffiffiffi
s

p ¼ 13 TeV and
ffiffiffi
s

p ¼
14 TeV is depicted for various choices of brane-localized
kinetic terms and different generations of quarks embedded
in portal matter multiplets in Fig. 12. In contrast to the
W†

IWI production process described in Ref. [23], we find
that the cross sections for pair production of this form are
comparable to the results from production of a single I�

associated with a portal matter field (likely because the
absence of an s-channel amplitude in our setup signifi-
cantly alters the cross section computation), but lack a
region of parameter space in which there might be a
resonant enhancement of the production rate. Instead, we
see that selecting differing brane-localized kinetic terms
can have at most an Oð1Þ effect on the predicted cross
section. It is also interesting to note that for larger ωX, the
cross section for this process is reduced, but the compacti-

FIG. 12. The production cross section for the process qq̄ → IþI− at the LHC at
ffiffiffi
s

p ¼ 13 TeV (top) and
ffiffiffi
s

p ¼ 14 TeV (bottom). Only
one generation of quarks at a time is assumed to be in portal matter multiplets: either the first (solid), the second (dashed), or the third
(dotted). The fermion brane-localized kinetic terms are assumed to be degenerate between all species, so that in reference to Table IV,
we have assumed τQ0;þ;− ¼ τu0;þ;− ¼ τd0;þ;− and ωQ ¼ ωu ¼ ωd. Different choices of brane-localized kinetic terms are depicted,
with ðωQ; τQþ; τQ−

Þ ¼ ð1=2; 1=2; 1=2Þ (red), ð2; 1=2; 1=2Þ (magenta), (1=2; 1=2; 2) (blue), (2; 1=2; 2) (green), (1=2; 2; 2) (orange), and
(2, 2, 2) (yellow), while the choice of ωX is depicted on the chart. We assume τQ0 ¼ τX ¼ 0, since these parameters simply rescale the
amplitude by an ∼1 factor, and gD ¼ gL.
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fication scale R−1 associated with a given value of mI

increases. Hence, at
ffiffiffi
s

p ¼ 13 TeV, if we assume that the
entire first generation of quarks takes on universal brane-
localized kinetic terms of ðωQ; τQþ; τQ−Þ ¼ ð2; 1=2; 2Þ, a
constraint on this channel of ≤ 1 fb would translate to a
bound mI ≳ 1.3 TeV if ωX ¼ 1=2, but only mI ≳ 1.2 TeV
if ωX ¼ 2. However, these bounds translate to a constraint
of R−1 ≳ 3.1 TeV for ωX ¼ 1=2 and R−1 ≳ 3.8 TeV for
ωX ¼ 2, making the weaker constraint on mI the stronger
constraint on the compactification scale. Assuming the
decay of I� into on-shell portal matter is open, the signal
for IþI− pair production can closely match the signals for
single Iþ production in association with a portal matter
field or portal matter pair production, albeit with additional
jets and/or high-pT leptons, depending on whether the I�

bosons decay hadronically or leptonically. As before, if the
dark photons or dark Higgses decay visibly, it may be
possible to reconstruct the I� mass peaks and therefore
drastically reduce backgrounds for these searches.
The final process which we consider is another diboson

signal—in this case, the production of a single I� boson
and a dark photon or dark Higgs. As in the case for IþI−
pair production, we see here that the contribution to the
amplitude from t-channel exchanges of portal matter must
include exchanges of all Kaluza-Klein modes of the portal
matter fields. Unlike the pair production cross section,
however, here there does exist a significant s-channel
amplitude that contributes to the cross section—specifically,
an s-channel exchange of an I� boson. For the total cross
section, we arrive at the expression

σðqq̄ → I�ADÞ ¼ σðqq̄ → IþhDÞ ¼
g2Dðs −m2

I Þ
128πs2

ðπ þ τX þ ωXÞ
ðπð1þ x2Iω

2
XÞ þ ωXÞ

Z
d cos θF qq̄→I�AD

;

F qq̄→I�AD
≡ ð2m2

I sþ tuÞ
ðπ þ τQ0 þ ωQÞ2

�
yQþ

ðt −m2
I Þ
J Qþð

ffiffiffiffiffiffiffi
tR2

p
Þ − yQ−

ðu −m2
I Þ
J Q−

ð
ffiffiffiffiffiffiffiffi
R2u

p
Þ
�
þQ → q;

J Q�ð
ffiffiffiffiffiffiffi
tR2

p
Þ≡ xIðωX − ωQÞ − ð1þ x2Iω

2
XÞ sinðxIπÞβ ffiffiffiffiffi

tR2
p ðωQ; πÞffiffiffiffiffiffiffi

tR2
p

τQ�α ffiffiffiffiffi
tR2

p ðωQ; πÞ − β ffiffiffiffiffi
tR2

p ðωQ; πÞ
; ð84Þ

where s, t, and u are still the Mandelstam variables, and θ is
the center-of-mass scattering angle. The subscripts and
superscripts Q (q) again denote brane-localized kinetic
terms and Yukawa couplings associated with the weak
isospin doublet (singlet) fermion fields—in the notation of
Table IV, the sub- or superscript q will denote either d or u,
depending on whether the initial-state quarks of the process
are up-like or down-like. It is critical to note that the brane-
localized Yukawa couplings in Eq. (84) are the unnormal-
ized Yukawa couplings first defined in Eq. (34), and not
the parameters ỹQ;q

� , which first appear in Eq. (74) and
correspond to the Yukawa couplings of a dark Higgs with a
single portal matter field and its corresponding SM field.
We have used the unnormalized yQ;q

� in Eq. (84) solely for
the sake of brevity, since using the normalized quantities
would needlessly complicate our expression, but in our
numerical computations of the cross sections, we shall use
the normalized quantities ỹQ;q

� defined as in Eq. (74) for the
sake of consistency with our earlier results.
In Figs. 13 and 14, we depict the LHC cross section

for the IþAD production process for a variety of selections
of brane-localized kinetic terms at

ffiffiffi
s

p ¼ 13 TeV andffiffiffi
s

p ¼ 14 TeV. The signal associated with this process will
again depend heavily on the decay properties of the I�
boson and the dark photon/dark Higgs, but if we assume
that the dark photon and dark Higgs decay invisibly, then
the expected dominant decay channels of the Iþ suggest

that constraints on this channel might arise from a monojet
or mono-Z0 search, depending on whether the Iþ decays
into an SM quark or leptonic final state. Interestingly, we
find that this channel can represent the largest production
cross section featuring I� gauge bosons of those we have
considered so far, outpacing both the production associated
with a single portal matter field and the IþI− pair
production—we can see in Fig. 14 that for some regions
of parameter space when the first generation is embedded in
a portal matter multiplet, we might anticipate thousands of
signal events at the HL-LHC for compactification scales as
high as R−1 ≈ 8 TeV. It is also interesting to note that the
cross section is somewhat dependent on the relative values
of the brane-localized Yukawa couplings ỹQþ and ỹQ− (and
their equivalents for weak isospin singlet fields, ỹqþ and ỹq−).
In particular, we see that the cross section is generally
diminished by an Oð1Þ factor when we assume ỹQþ ¼ ỹQ− ,
indicating that the differently Uð1ÞD-charged portal matter
states are interfering destructively with one another. In
general, however, we see that the brane-localized kinetic
terms and Yukawa couplings have a fairly muted effect on
the total cross section; we do not see any set of parameter
choices affording more than an order one enhancement/
suppression of the predicted cross section for a given value
of mI. The primary effect of the brane-localized kinetic
terms is altering the mass spectrum of the I bosons with
respect to the compactification scale, which can have a
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profound effect on whether a constraint from a search in
this channel might compete with or dominate over more
conventional extradimensional searches as discussed in
Sec. VA.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have aimed to emphasize the utility of
generating phenomenologically feasible portal matter for
kinetic mixing/vector portal dark matter models using extra

FIG. 13. The total scattering cross section for the process qq̄ → IþAD=hD at the LHC at
ffiffiffi
s

p ¼ 13 TeV, assuming gD ¼ gL,
τQ;u;d0 ¼ τX ¼ 0, degeneracy between weak isosinglet and isodoublet brane-localized kinetic terms (as in Fig. 12) and Yukawa

couplings, and with the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðỹQ;u;d

þ Þ2 þ ðỹQ;u;d
− Þ2

q
normalized to unity. Portal matter brane-localized kinetic terms are assumed to

be ðωQ; τQþ; τQ−Þ ¼ ð1=2; 1=2; 1=2Þ (red), (2; 1=2; 1=2) (magenta), (1=2; 1=2; 2) (blue), and (2; 1=2; 2) (green). Only one generation of
quarks at a time is assumed to be embedded in portal matter multiplets: either the first generation (solid), the second generation (dashed),
or the third generation (dotted).
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dimensions. First, we noted that if a generic dark gauge
group GD is broken by orbifold boundary conditions, then
we would expect that a bulk fermion embedded in a
representation of GD will be split into Kaluza-Klein towers
featuring a chiral zero mode and those with only heavy
vector-like states, and that these two classes of towers will
differ in their quantum numbers under GD. We proceeded to
discuss the techniques one might employ to construct a
model with the vector-like modes acting as portal matter to
facilitate kinetic mixing between the SM hypercharge and a

dark Uð1ÞD ⊂ GD in generic terms, before specializing to a
specific minimal model.
In our minimal model, SM fermions are embedded in

multiplets of a dark gauge group SUð2ÞD in a single flat
extra dimension. Orbifold boundary conditions then break
SUð2ÞD down to the dark photon’s gauge group Uð1ÞD,
while simultaneously projecting out light chiral states for
portal matter fermions. We have demonstrated that this
construction will lead to finite and calculable kinetic
mixing in the low-energy limit of the theory, and further

FIG. 14. Same as Fig. 13, but with the center-of-mass energy assumed to be
ffiffiffi
s

p ¼ 14 TeV.
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posited the conditions for such finite and calculable kinetic
mixing in any five-dimensional theory. We then proceeded
to consider the phenomenological signatures and con-
straints of our minimal construction. Notably, we found
that the portal matter and dark sector gauge bosons in our
model will have dramatically lighter lowest-lying massive
Kaluza-Klein modes than those of the SM fields. In our flat
setup, we can intuitively see this mass splitting as a
consequence of these fields having different boundary
conditions at the two branes in the model: In the absence
of brane-localized kinetic terms, bulk fields that satisfy
Dirichlet or von Neumann boundary conditions at both
branes have as their lowest-lying Kaluza-Klein modes
fields with sinusoidal bulk wave functions with a wave-
length equal to the size of the extra dimension, leading to a
mass equal to the compactification scale R−1, while those
that satisfy Dirichlet boundary conditions on one brane and
von Neumann boundary conditions on the other will have a
lightest Kaluza-Klein mode with a bulk wave function such
that the extra dimension spans only half of its wavelength,
and hence a mass of R−1=2. As a result of this mass
splitting, we find that searches for new TeV-scale particles
associated with the portal matter sector will offer compa-
rable or even more stringent constraints than the searches
for SM Kaluza-Klein modes or low-energy precision
experiments which normally characterize probes of extra
dimensions. We therefore find that in our model, it is
entirely feasible that the first experimental evidence which
might emerge of an extra dimension would be the portal
matter sector. Furthermore, we have argued that a similar,
even exaggerated mass splitting between the portal matter
sector and the SM Kaluza-Klein modes will remain in a
much broader class of five-dimensional constructions
within this paradigm, including models with a warped
extra dimension, so the harshest constraints on compacti-
fication scales emerging from portal matter rather than
SM searches is a fairly robust prediction of setups with
Kaluza-Klein portal matter: It is purely a consequence of
geometry.23

There are a variety of directions in which this work might
be continued. Perhaps the simplest extension of our
construction here would be to recreate the model in a
warped context. As mentioned in Sec. III, a warped
realization of this paradigm would resolve both the problem

of stabilizing the bulk at the TeV scale and the low scale at
which the flat-space model requires UV completion, at the
expense of considerably more complicated bulk profiles for
all involved fields. Fully realizing this construction in a
warped bulk would present other challenges as well. First,
because our orbifold boundary conditions are exhausted in
breaking SUð2ÞD and generating chiral fermions, we would
be unable to relax significant constraints from electroweak
precision parameters by proposing a bulk custodial sym-
metry as in Ref. [48], unless we were to assume that the
custodial symmetry was broken entirely by trans-Planckian
VEVs localized on the UV brane. Furthermore, in contrast
to our flat-space construction, the difference in the natural
mass scales at the two branes in a warped setup would
require us to localize both the SMHiggs and the dark Higgs
on the same brane, suggesting a moderate Oð10−ð3–4ÞÞ
tuning of the mixing parameter between the two fields to
satisfy phenomenological constraints. The warped scenario
would also introduce qualitatively similar but still some-
what intriguing phenomenology compared to our flat setup.
As noted in Sec. II, in the likely event that SUð2ÞD is
broken on the TeV brane in such a construction, the mass
splitting between the lightest portal matter and dark gauge
boson Kaluza-Klein modes and those of SM fields is
substantially more pronounced than in the flat case. In
the absence of brane-localized kinetic terms, the I� bosons
in our model would have a mass only ∼1=10 that of the
lightest SM Kaluza-Klein gauge bosons. In principle, such
a mass splitting could allow the portal matter sector to be
probed even for exceptionally large compactification
scales: If, for example, we assume that the Kaluza-Klein
gluons must have a mass of ≳21 TeV, as would be
expected in RS models without some sort of flavor
protection and bulk masses motivated by the SM fermion
mass hierarchy [70], the fields associated with the portal
matter sector might still provide new resonances at the scale
of only Oð1–2 TeVÞ. A more careful exploration of how to
realize our construction in an RS context may be merited, to
see if these optimistic speculations are borne out.
Outside of repeating this work in a warped extra

dimension, the other most obvious extension to the model
presented here would be to expand the dark gauge group
SUð2ÞD, which could allow it to encompass other possible
BSM gauge symmetries, such as flavor. As noted in Sec. II,
enlarging this gauge group would present novel model-
building difficulties which are conveniently sidestepped in
the minimal construction—in particular, how to reduce the
rank of the dark gauge group. Although we conjecture
briefly on solutions to these issues, addressing these
difficulties explicitly in a model which incorporates a
larger dark gauge group—in particular, one which includes
another well-motivated BSM gauge symmetry—would
represent an interesting continuation of our work here.
Finally, apart from extending the model-building work

presented here, it would also be useful to consider the

23A reader may notice that in the construction of Ref. [24], it
was also found that the portal-matter-sector particles would be
significantly lighter than the other extended gauge symmetry
incorporated with it, an SUð3Þ flavor symmetry. In this case,
however, such a splitting was simply a consequence of the large
mass and mixing hierarchies present in the quark flavor sector
forcing the characteristic scales of different heavy particles
associated with the flavor sector to large values—and the
assumption that the portal matter fields would acquire masses
at the TeV scale. In our extradimensional construction here, the
mass splitting we observe between the portal matter sector and
the SM Kaluza-Klein towers is a much more generic prediction.
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phenomenology of the heavier Kaluza-Klein modes, such as
the massive modes of the Uð1ÞD-neutral fermion towers,
which we have glossed over here. While their immediate
phenomenological consequences will be more muted than
those of particles associated with the portal sector, it would
be of interest to consider in detail the production modes,
branching fractions, and expected mass spectra of these
fields, since their appearance could be enormously valuable
in experimentally differentiating between a four-dimensional
portal matter construction and various realizations of
Kaluza-Klein portal matter.
As it stands, the use of Kaluza-Klein modes to generate

kinetic mixing is a natural, but up until now seldom

explored, avenue in which phenomenologically feasible
portal matter might be generated. In addition, such con-
structions demonstrate novel and distinct phenomenology
from both conventional theories with large extra dimen-
sions and minimal constructions of portal matter, meriting
further exploration into the capabilities, limits, and distinc-
tive signatures of this class of models.
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APPENDIX A: FERMION KALUZA-KLEIN TOWERS

Here, we present the complete set of fermion Kaluza-Klein towers using the notation discussed in Sec. III B:
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n βxnðωF;ϕÞ; SF
n ðϕÞ ¼

0
BBB@

μF−
1þx2nτF0τF−

0

1

1
CCCANF−

n αxnðωF;ϕÞ;

Cf
nðϕÞ ¼ −

0
B@

0

0

1

1
CA μhN

F−
n αxnðτf−; π − ϕÞ

βxnðωf; πÞ − xnτf−αxnðωf; πÞ
; Sf

nðϕÞ ¼

0
B@

0

0

1

1
CA μhN

F−
n βxnðτf−; π − ϕÞ

βxnðωf; πÞ − xnτf−αxnðωf; πÞ
;

NF−
n ¼

�
2ð1þ x2nτ2F−Þ

πð1þ x2nω2
FÞð1þ x2nτ2F−Þ þ ðτF− þ ωFÞð1þ x2nτF−ωFÞ

�
1=2

;

xn such that βxnðωF; πÞ ¼ xnτF−αxnðωF; πÞ; ðA3Þ

f0∶

CF
n ðϕÞ ¼ −

0
B@

1

0

0

1
CA μhN

f0
n βxnðτF0; π − ϕÞ

αxnðωF; πÞ þ xnτF0βxnðωF; πÞ
; SF

n ðϕÞ ¼

0
B@

1

0

0

1
CA μhN

f0
n αxnðτF0; π − ϕÞ

αxnðωF; πÞ þ xnτF0βxnðωF; πÞ

Cf
nðϕÞ ¼ −

0
BBB@

1
μfþ

1þx2nτfþτf0

μf−
1þx2nτf−τf0

1
CCCANf0

n βxnðωf;ϕÞ; Sf
nðϕÞ ¼

0
BBB@

1
μfþ

1þx2nτfþτf0

μf−
1þx2nτf−τf0

1
CCCANf0

n αxnðωf;ϕÞ;

Nf0
n ¼

�
2ð1þ x2nτ2f0Þ

πð1þ x2nτ2f0Þð1þ x2nω2
fÞ þ ðτf0 þ ωfÞð1þ x2nτf0ωfÞ

�
1=2

xn such that αxnðωf; πÞ ¼ −xnτf0βxnðωf; πÞ; ðA4Þ

fþ∶

CF
n ðϕÞ ¼

0
B@

0

1

0

1
CA μhN

fþ
n αxnðτFþ; π − ϕÞ

βxnðωF; πÞ − xnτFþαxnðωF; πÞ
; SF

n ðϕÞ ¼

0
B@

0

1

0

1
CA μhN

fþ
n βxnðτFþ; π − ϕÞ

βxnðωF; πÞ − xnτFþαxnðωF; πÞ
;

Cf
nðϕÞ ¼

0
BBB@

μfþ
1þx2nτfþτf0

−1
0

1
CCCANfþ

n βxnðωf;ϕÞ; Sf
nðϕÞ ¼

0
BBB@

−μfþ
1þx2nτf0τfþ

1

0

1
CCCANfþ

n αxnðωf;ϕÞ;

Nfþ
n ¼

�
2ð1þ x2nτ2fþÞ

πð1þ x2nω2
fÞð1þ x2nτ2fþÞ þ ðτfþ þ ωfÞð1þ x2nτfþωfÞ

�
1=2

;

xn such that βxnðωf; πÞ ¼ xnτfþαxnðωf; πÞ; ðA5Þ
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f−∶

CF
n ðϕÞ ¼

0
B@

0

0

1

1
CA μhN

f−
n αxnðτF−; π − ϕÞ

βxnðωF; πÞ − xnτF−αxnðωF; πÞ
; SF

n ðϕÞ ¼

0
B@

0

0

1

1
CA μhN

f−
n βxnðτF−; π − ϕÞ

βxnðωF; πÞ − xnτF−αxnðωF; πÞ
;

Cf
nðϕÞ ¼

0
BBB@

μf−
1þx2nτf−τf0

0

−1

1
CCCANf−

n βxnðωf;ϕÞ; Sf
nðϕÞ ¼

0
BBB@

−μf−
1þx2nτf0τf−

0

1

1
CCCANf−

n αxnðωf;ϕÞ;

Nf−
n ¼

�
2ð1þ x2nτ2f−Þ

πð1þ x2nω2
fÞð1þ x2nτ2f−Þ þ ðτf− þ ωfÞð1þ x2nτf−ωfÞ

�
1=2

;

xn such that βxnðωf; πÞ ¼ xnτf−αxnðωf; πÞ: ðA6Þ

APPENDIX B: COMPUTING THE SMEFT
OPERATORS FROM THE EXTRA DIMENSION

This appendix provides more detail on how we deter-
mined the value of the dimension-6 operators in Eq. (70)
arising from the extradimensional physics in our model that
affect the electroweak ρ parameter.
Referencing our work in Sec. III A to compute the SM

gauge boson bulk profiles, as well as using the expression
of Eq. (46) for the fermion zero mode profile, it is

straightforward to compute the effective action for the
SM gauge bosons and their interaction terms with the
SUð2ÞL doublet light leptons by integrating over the extra
dimension. Ignoring the effects of heavy fermion Kaluza-
Klein modes [since for the light SM leptons we consider
here, these will only enter at Oðm2

e;μR2Þ, which will be
subdominant to the Oðm2

W;ZR
2Þ effects of the gauge boson

Kaluza-Klein modes], we arrive at an effective four-dimen-
sional action,

S ¼ −
1

4
Z2
μν −

1

2
Wþ

μνW−
μν −

1

4
A2
μν þ

g2Lv
2

4

�
1 −

g2Lv
2R2π2

12

�
Wþ

μ W−
μ þ ðg2L þ g2YÞv2

8

�
1 −

ðg2L þ g2YÞv2R2π2

12

�
Z2
μ

þ ðg2L þ g2YÞ12ðTF
3 − s2wQFÞJZL

μ Zμ

�
1þ ðg2L þ g2YÞv2R2π2ðτL0 − 2ωLÞ

24ðπ þ τL0 þ ωLÞ
�

þ gLðJWþ
μ Wþ þ H:c:Þ

�
1þ g2Lv

2R2π2ðτL0 − 2ωLÞ
24ðπ þ τL0 þ ωLÞ

�
þ Cllððμ̄LγρeLÞðν̄μγρνeÞ þ H:c:Þ; ðB1Þ

where v is the SM Higgs VEV, JZL and JW
þ
are the usual

currents for left-handed fermion couplings to the SM Z
boson and the Wþ boson, respectively, and gLðYÞ denotes
the SUð2ÞLðUð1ÞYÞ four-dimensional coupling defined in
terms of the dimensionful five-dimensional couplings as
gL;Y ¼ gL5;Y5=

ffiffiffiffiffiffi
πR

p
, and ωL and τL0 are the ϕ ¼ 0 and ϕ ¼

π brane-localized kinetic terms for the SM charged lepton
fields, respectively. Most four-fermion operators have been
omitted in Eq. (B1), since they are not relevant to our
analysis; however, we will have to compute coefficient of
the four-fermion operator contribution to the Fermi con-
stant, Cll. To evaluate this coefficient, we simply need to
compute the Fermi constant in the five-dimensional model,
which experiences tree-level contributions from the
exchange of the entire W-boson Kaluza-Klein tower.
Using Eq. (30) to compute the contribution of the entire
tower of Kaluza-Klein modes in closed form, we arrive at

GF ¼ 1ffiffiffi
2

p
v2

�
1þ g2Lv

2R2π2ðπ2 þ 3πτL0 þ 3τ2L0Þ
12ðπ þ τL0 þ ωLÞ2

�
: ðB2Þ

Subtracting the contribution of the SM W boson, we then
obtain that the operator coefficient

Cll ¼ −
g2LR

2π2ðτ2L0 − τL0ωL þ ω2
LÞ

12ðπ þ τL0 þ ωLÞ2
ðB3Þ

will reproduce the Fermi constant expression in Eq. (B2).
We can now make direct contact with Warsaw basis
operators by following the procedure of Ref. [59].
Specifically, by redefining the SM Higgs VEV as

v → v

�
1þ g2Lv

2R2π2

24

�
; ðB4Þ
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the action in Eq. (B1) becomes [up to negligible Oðv4R4Þ corrections]

S ¼ −
1

4
Z2
μν −

1

2
Wþ

μνW−
μν −

1

4
A2
μν þ

g2Lv
2

4
Wþ

μ W−
μ þ ðg2L þ g2YÞv2

8

�
1 −

g2Yv
2R2π2

12

�
Z2
μ

þ ðg2L þ g2YÞ12ðTF
3 − s2wQFÞJZL

μ Zμ

�
1þ ðg2L þ g2YÞv2R2π2ðτL0 − 2ωLÞ

24ðπ þ τL0 þ ωLÞ
�

þ gLðJWþ
μ Wþ þ H:c:Þ

�
1þ g2Lv

2R2π2ðτL0 − 2ωLÞ
24ðπ þ τL0 þ ωLÞ

�
þ Cllððμ̄LγρeLÞðν̄μγρνeÞ þ H:c:Þ: ðB5Þ

As was noted in Ref. [59], this action is recreated in the Warsaw basis with

CHD ¼ −
g2Yπ

2

6
; Cð3Þ

Hl ¼
g2Yπ

2ðτL0 − 2ωLÞ
6ðπ þ τL0 þ ωLÞ

; Cll ¼ −
g2Lπ

2ðτ2L0 − τL0ωL þ ω2
LÞ

12ðπ þ τL0 þ ωLÞ2
; CHWB ¼ 0; ðB6Þ

where we extract CHD from the Z-boson mass shift, Cð3Þ
Hl from theW-boson coupling shift, and Cll is read directly from our

action. The operatorCHWB in SMEFTwill simply yield kinetic mixing between the photon and the Z boson, and so is absent
here. This is, of course, the same result we quote in Eq. (70).
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