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The recent measurement of the CP asymmetry in the decay D → KþK− by LHCb, combined with
ΔACP, evidences a sizable CP asymmetry in the decay D → πþπ−, which requires a dynamical
enhancement of standard model higher-order contributions over tree-level ones by a factor of 2. The
data furthermore imply huge U-spin breaking, about 4–5 times larger than the nominal standard model
one of ≲30% in charm. Enhanced breakdown of the two approximate symmetries points to models that
violate U-spin and CP and disfavors flavor singlet contributions such as chromomagnetic dipole
operators as explanations of the data. We analyze the reach of flavorful Z0 models for charm CP
asymmetries. Models generically feature explicit U-spin and isospin breaking, allowing for correlations
with D → π0π0 and Dþ → πþπ0 decays with corresponding CP asymmetries at similar level and sign as
D → πþπ−, about Oð1 − 2Þ × 10−3. Experimental and theoretical constraints very much narrow down
the shape of viable models: Viable, anomaly-free models are leptophobic—or at least electron- and
muophobic—with light Z0 belowOð20Þ GeV and can be searched for in low mass dijets at the LHC or in
ϒ and charmonium decays, as well as dark photon searches. A Z0 around ∼3 or ∼ð5–7Þ GeV can relieve
the tensions in the J=ψ → πþπ− and ψ 0 → πþπ− branching ratios with pion form factor values from fits to
BABAR and JLab data and simultaneously explain the charm CP asymmetries. Models can also feature
sizable branching ratios into light right-handed neutrinos or vectorlike dark fermions, which can be
searched for in eþe− → hadronsþ invisibles at Belle II and BESIII. Because of the low new physics
scale, dark fermions can easily induce an early Landau pole, requiring models to be UV completed near
the TeV scale.
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I. INTRODUCTION

The LHCb Collaboration measured the CP asymmetry
in D0 → KþK− decays [1],

ACPðKþK−Þ ¼ ð6.8� 5.4� 1.6Þ × 10−4; ð1Þ

where the first and second errors are statistical and
systematic, respectively. Together with the previous
LHCb measurement [2]

ΔACP ¼ ACPðKþK−Þ − ACPðπþπ−Þ
¼ ð−15.4� 2.9Þ × 10−4; ð2Þ

LHCb performed a fit determining both direct CP asym-
metries [1],

adK−Kþ ¼ ð7.7� 5.7Þ × 10−4;

adπ−πþ ¼ ð23.2� 6.1Þ × 10−4; ð3Þ

with a correlation ρðadK−Kþ ; adπ−πþÞ ¼ 0.88 and leading to
3.8σ evidence of CP violation in D0 → πþπ− decays. This
is puzzling for two reasons: First, the CP asymmetry adπ−πþ
is larger than jΔACPj. Therefore, a standard model (SM)
interpretation of the former needs even more dynamical
enhancement of higher-order contributions h over the tree-
level amplitude t to compensate the Cabibbo-Kobayashi-
Maskawa (CKM) suppression adSMπ−πþ ∼ 2 · ImðV�

cbVub=
ðV�

cdVudÞÞh=t ∼ 1.2 × 10−3h=t, with data (3) pointing to
h=t ∼ 2. Here an order one strong phase is assumed, and the
enhancement is even bigger if the latter is suppressed,
see Appendix A for details. Second, the new result implies
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a violation of U-spin symmetry, that is, violation of
adK−Kþ ¼ −adπ−πþ , at the level of 2.7σ [1]. Two approximate
symmetries of the SM are thus being challenged. While it is
too early to draw firm conclusions given the significant
hadronic uncertainties in D decays, the recent data make
new physics (NP) searches with rare charm decays just
more interesting—this could be a hint for flavorful physics
beyond the SM.
This interplay of the CP asymmetries is illustrated in

Fig. 1. The small value of ACPðKþK−Þ, combined with
ΔACP (green-shaded area), implies a sizable CP asym-
metry in πþπ−, together with substantial U-spin breaking,
which has also been pointed out in [3]. Predictions in the
U-spin limit (red dashed line) and ≲30% SM-like break-
ing (red-shaded cones) are indicated. The LHCb fit
(orange-shaded area) is two sigmas outside of this cone.
The U-spin splitting in the D → πþπ− and D → KþK−

branching ratios is very well known [4] and can be
explained within the SM with ≲30% breaking, for

instance, [5–7]. Roughly speaking, because ð1þ1=3Þ2
ð1−1=3Þ2 ¼ 4

an assumed 33% contribution to both decays of opposite
sign is more than enough to explain the enhancement
of BðD → KþK−Þ=BðD → πþπ−Þ ≃ 2.8, with or without
considering the different phase space or factorizable flavor
breaking from, e.g., decay constants and form factors [8].
The splitting in the leading SM decay amplitudes suggests
a modified U-spin relation, see Appendix A,

adK−Kþ

adπ−πþ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD → πþπ−Þ
BðD → KþK−Þ

s
; ð4Þ

also indicated in Fig. 1 (dotted red line). Even though this
effect slightly alleviates the anomaly, it still leaves the
bulk of it unaltered, and the quest for models to explain it
remains open.
Enhanced chromomagnetic dipole operators such as

from supersymmetric loops are flavor singlets, feature
therefore SM-like symmetries, and are not able to account
for the significant U-spin breaking. Models that generically
break flavor beyond the SM are Z0 models with generation-
dependent charges. Their impact on CP asymmetries in
charm has been studied in [10].
In this work, we analyze the new data (3) within flavorful

Uð1Þ0 extensions of the SM. Interestingly, due to empirical
constraints it turns out that the Z0 mass has to be below the
weak scale to induce a per-mill level CP asymmetry in
charm. This is an important finding and we plan to derive it
step by step in the paper: Z0 models and constraints from
charm processes are discussed in Sec. II, pointing to a low
mass Z0 ofOð10Þ GeV. In Sec. III, we work out constraints
applicable to this mass range from searches in dilepton
and dijet signatures and quarkonium decays. In Sec. IV,
we analyze the high energy behavior, including Landau
poles. In Sec. V, we conclude. SM decay amplitudes and
observables are parametrized in Appendix A. Details on the
estimation of hadronic parameters are given in Appendix B.
Charges for leptophobic, anomaly-free models with van-
ishing one-loop kinetic mixing are derived in Appendix C,
and their higher-order kinetic mixing is studied in
Appendix D.

II. FLAVORFUL Z0 MODELS

We consider the SM extended by an Abelian gauge
group, with generation-dependent charges to fundamental
fermions. We present the model setup in Sec. II A and work
out constraints from charm in Sec. II B. In Sec. II C,
predictions for CP asymmetries in D → π0π0 and
Dþ → πþπ0 are given.

A. Z0 model setup

We denote theUð1Þ0 charges of the SM fermions ψ ¼ Q,
U, D, L, E and possibly also right-handed neutrinos νR as
Fψ i

, where i ¼ 1, 2, 3 corresponds to the generation label.
The charges are subject to anomaly cancellation conditions
(C1)–(C6). The SM Higgs is uncharged under the Uð1Þ0
to avoid mixing with the electroweak sector. The theory has
a rescaling invariance with a constant k as Fψ → kFψ ;
g4 → g4=k, where g4 denotes the Uð1Þ0-gauge coupling. It
is therefore useful to consider rescaling invariant quantities
such as Fψg4; Fψ=Fψ 0 , or dg4=g4. Here we choose to show
integer charges for notational convenience.

FIG. 1. The U-spin-CP anomaly in charm, showing bounds (2)
from LHCb on ΔACP (green-shaded area), bounds from (3) on
ACPðKþK−Þ, and ACPðπþπ−Þ ¼ ð12� 14Þ × 10−4 from the
Heavy Flavor Averaging Group (HFLAV) [9] (gray-shaded
areas). Values of adK−Kþ and adπ−πþ from (3) are shown with
correlation at 68% and 95% CL [1] (orange-shaded). Also shown
is the U-spin limit (red dashed line) together with ≲30% SM-like
breaking (red cones), and the modified U-spin relation (4) (red
dotted line). Thick straight lines relate to the new benchmark
models of this work: BM I (magenta), BM II (teal), BM III (for
G ¼ 0), and BM IV (both brown), see Table I.
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The Z0 induces D0 → πþπ− and D0 → KþK− at tree
level, as illustrated in Fig. 2. Contributions to the CP
asymmetries in (3) can be parametrized as [10]1

adK−Kþ ¼ g24
M2

Z0
ΔF̃R½cKFQ2

þ dKFd2 �;

adπ−πþ ¼ g24
M2

Z0
ΔF̃R½cπFQ1

þ dπFd1 �; ð5Þ

where cπ;K; dπ;K are hadronic parameters (see Appendix B)
and

ΔF̃R ¼ sin θu cos θuðFu2 − Fu1Þ ð6Þ

stands for the right-handed c → u flavor-changing neutral
current (FCNC) coupling. As apparent, it requires nonuni-
versal charges Fu2 ≠ Fu1 , as well as mixing between first
and second generation right-handed up quarks, described
by the angle θu. We treat θu as a free parameter and adjust it
accordingly. We assume that the corresponding angle in the
down sector is sufficiently small to avoid kaon constraints.
For the same reason, we consider only models with
FQ1;2

¼ 0.2 Explaining a sizable adπ−πþ and near or even
SM-like adK−Kþ poses a challenge to beyond the standard

model (BSM) building. To estimate the maximal reach, we
assumed in (5), which arises from interference between the
SM and the Z0 amplitudes, that the relative strong and CP
phases are maximal. Having the latter near π=2 also evades
constraints from CP violation in D mixing, see [10] for
details.
The efficiency of the BSM model in explaining data (3)

is determined by the hadronic parameters dK;π; cK;π [10],
of which here only dπ, dK matter. They include the
leading-order renormalization group (RG) running of
Wilson coefficients in the weak effective theory from
MZ0 to the charm mass scale, as well as the hadronic
matrix elements. The latter are subject to sizable hadronic
uncertainties [10–13], see Appendix B for details. The
resulting CP asymmetries serve rather as an indication of
what is achievable in Z0 models.
To construct models, that is, identify suitable charge

assignments, which account for the new LHCb results on
CP violation in charm (3), we follow similar lines as [10]:
Our starting point is the cancellation of gauge anomalies,
decoupling from kaons FQ1;2

¼ 0, inducing an c → u FCNC
Fu2 ≠ Fu1 and explicitU-spin breaking Fd2 ≠ Fd1 . Absence
of one-loop-induced Z − Z0 mixing is preferred. In the
following, the models are further narrowed down. We
discuss the theoretical and experimental constraints that
arise and the corresponding selection criteria for charge
patterns, which lead to the benchmark models, Table I.
Let us also ask about the mass scale one would generically

expect to address (3) from Z0-tree-level exchange. Very
roughly, assuming order one couplings, g24ΔF̃RFd1 ∼ 1, this
gives a Z0 mass around

MZ0 ∼ ð3
ffiffiffi
2

p
GFV�

cdVudadπ−πþÞ−1=2 ∼ 7 TeV; ð7Þ
where RG effects in dπ reduce this to the few TeV range,
see (5), Appendix B, and [10] for details. In the next section,
we learn that the constraints from D mixing require sup-
pressed couplings and a significantly lighter Z0 than (7).

B. Charming constraints

We discuss constraints from charm CP asymmetries,
D-meson mixing, D0 → μþμ−, and on ūcþ c̄u → lþl−,
l ¼ e, μ, τ from Dell-Yan production, as well as charm to
invisibles.

1. Charm CP asymmetries

Using Eqs. (3) and (5) with FQ1;2
¼ 0, the ratio between

Fd2 and Fd1 is fixed,

Fd2

Fd1

¼ dπadK−Kþ

dKadπ−πþ
≃ −0.42þ0.83

−0.13 ; ð8Þ

resulting in a large hierarchy jFd2 j ≪ jFd1 j. The uncerta-
inty in Eq. (8) is computed from the χ2 function

FIG. 2. Contributions of the Z0 boson to D0 → πþπ− (top
diagram) and D0 → KþK− (bottom diagram) amplitudes.

1The Z0 induces also annihilation-type contributions to the
D0 → πþπ− and D0 → KþK− amplitudes. Annihilation contri-
butions are power suppressed and require gluon exchange;
however, the actual size of suppressions in D decays is within
wider ranges [11]. We, therefore, refrain from including them in
the numerical analysis, as we are focusing on the reach of models
addressing data (3). In addition, note that contributions induced
by Fu1 do not break U-spin.

2This is also the reason why we do not consider scalar singlet
mediators contributing predominantly to D0 → πþπ− decays:
They would couple to left-handed (and right-handed) down
quarks, and after CKM mixing induce d̄s-FCNCs, which are
severely constrained.
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χ2ðadπ−πþ ; adK−KþÞ with correlations included. This function
can be expressed in terms of adπ−πþ (or adK−Kþ) and the ratio
adK−Kþ=adπ−πþ . We extract the uncertainty imposingΔχ2 ¼ 1

and scanning adπ−πþ (or adK−Kþ) within its 1σ range. The
nonparabolic behavior results in asymmetric uncertainties.
Similar results were obtained in Ref. [3].
Note that renormalization group equation (RGE) effects

cancel in the ratio dπ=dK ¼ −aK=aπ ≃ −1.27� 0.10 [10],
therefore Eq. (8) is independent of the Z0 mass, and only a
parametric dependence with the quantities aπ;K extracted
from measured D0 → πþπ− and D0 → KþK− branching
ratios survive [10]. Given the order of magnitude of adK−Kþ ,
within the ballpark of SM estimations, we also consider
models with Fd2 ¼ 0.

2. D-meson mixing

D-meson mixing constrains right-handed up-quark
couplings as

g4ΔF̃R

MZ0
< 7.1 × 10−4 TeV−1ð95%C:L:Þ; ð9Þ

where the right-hand side of this equation depends mildly
on the Z0 mass from RGE effects (it is a few percent for
MZ0 ∈ ½10; 104� GeV.) The limit (9) takes into account the
recent update from HFLAV Collaboration [9] where the
new D-mixing experimental data from LHCb have been
included [14]. The bound for heavy Z0 masses is somewhat
stronger than the previous one, 8 × 10−4 TeV−1 [10].
The available parameter space is presented in Fig. 3 in a

way that is independent of the Uð1Þ0 charge normalization.
Shown are curves in g4Fd1=MZ0 versus ΔF̃R=Fd1 that
explain adπ−πþ , with uncertainties from data (3) which have
been increased with an additional 30% of uncertainty to
account for hadronic effects. Roughly,

g4Fd1=MZ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔF̃R=Fd1

q
∼ 0.16 TeV−1: ð10Þ

In addition, the excluded 95% C.L. region by D
mixing (9) is shown in red. Thus, ΔF̃R=Fd1 ≪ 1 via
small mixing θu is instrumental to generate sizable CP
asymmetries while simultaneously avoiding D-mixing
constraints. We recall that ΔF̃R (6) contains the mixing
angle θu which can be freely adjusted. We provide other
(central) values of adπ−πþ as black dashed lines. We learn
that the minimal value of g4Fd1=MZ0 with current data is
around ∼30 TeV−1, suggesting a low, subelectroweak
Z0 mass.

TABLE I. Benchmarks for anomaly-freeUð1Þ0—extensions of the SMþ 3νR. BM I, II, and IVavoid Z − Z0 mixing at one loop, while
BM III does not. Note, jG=Fj ≪ 1 due to (8), and G ¼ 0 is also possible. BM IV may or may not contain right-handed neutrinos, in
which case Fν ¼ 0. It also can feature integer charges with hierarchy jFej ≪ jFuj; jFdj, in which case it becomes leptophobic, see
Appendix C for details and construction. Because of sizable couplings to electrons or muons, the BMs I and II are excluded (34) by
Z0 → ee; μμ searches for a light Z0. While, in general, the ordering of generations is arbitrary due to permutation invariance, we use the
ordering as stated here (the ith entry corresponds to the ith generation). Note, BM III with only the charges in the right-handed up sector
swapped, Fu1 ¼ −F; Fu2 ¼ G, is equally viable; we refer to it as BM III-s.

Model FQi
Fui Fdi FLi

Fei Fνi

BM I 0 0 0 9 −16 7 20 −11 −9 15 −6 −9 −16 0 16 6 12 −18
BM II 0 0 0 −19 9 10 20 −8 −12 4 1 −5 15 2 −17 8 2 −10
BM III 0 0 0 G −F 0 F −G 0 0 0 0 0 −G F 0 G −F
BM IV 0 0 0 −Fu Fu 0 Fd 0 −Fd 0 0 0 Fe 0 −Fe Fν −Fν 0

FIG. 3. g4Fd1=MZ0 as a function ofΔF̃R=Fd1 and dπ≃0.1TeV2.
The red area represents the excluded 95% C.L. region by D
mixing (9). The parameter space of models BM I, II, and III
(with G ¼ 0) from Table I accounting for the experimental
results of ΔACP and adπ−πþ within its 1σ range are shown in
magenta, teal, and brown, respectively. BM IV has the same
parameter space as BM III (with G ¼ 0). The shaded bands
include an additional 30% of hadronic uncertainty. The
semianalytical expressions of these regions are g4Fd1=MZ0 ¼
cðΔF̃R=Fd1Þ−1=2 with factor c¼0.160�0.012TeV−1 (magenta),
0.149�0.015TeV−1 (teal), and 0.133�0.003TeV−1 (brown).
The black dashed lines illustrate different values of adπ−πþ .
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3. Charm dilepton and invisibles data

Concerning charming dilepton processes, the constraints
from branching ratios of (semi)muonic D decays read
[15,16]

g24jΔF̃Rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L2

þ F2
e2

q
≲ 0.02

�
MZ0

TeV

�
2

; ð11Þ

g24jΔF̃RðFL2
− Fe2Þj ≲ 0.02

�
MZ0

TeV

�
2

: ð12Þ

Here, we employed the recent LHCb measurement [15],

BðD0 → μþμ−Þ < 2.9 × 10−9ð90%C:L:Þ; ð13Þ

which is a factor 2 stronger than the previous one. For
l ¼ e, τ Drell-Yan constraints [17] are stronger than those
from rare decays,

g24jΔF̃Rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L1

þ F2
e1

q
≲ 0.06

�
MZ0

TeV

�
2

; ð14Þ

g24jΔF̃Rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L3

þ F2
e3

q
≲ 0.12

�
MZ0

TeV

�
2

: ð15Þ

Using the relation (10) imposed by adπ−πþ, displayed in
Fig. 3, the dilepton bounds are satisfied if

jFL2
− Fe2 j;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L2

þ F2
e2

q
≲ 0.8jFd1 j; ð16Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L1

þ F2
e1

q
≲ 2.3jFd1 j; ð17Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L3

þ F2
e3

q
≲ 4.7jFd1 j; ð18Þ

that is, couplings to the leptons should not be excessive
compared to the ones to the quarks.
We also work out limits from data on c → u plus missing

energy. Missing energy can stem from right-handed
neutrinos ν and/or vectorlike dark BSM fermions χ
charged under the Uð1Þ0 only, with mass not exceeding
mD=2 ≈ 0.9 GeV. We start with D0 → π0 þ invisibles,
whose branching ratio is constrained by BESIII data [18]

BðD0 → π0 inv.Þ < 2.1 × 10−4ð90%C:L:Þ: ð19Þ

Neglecting finitemχ corrections, the branching ratio can be
written as [19,20]

BðD0 → π0νν̄; χχ̄Þ ≈ 2π2Aþ
G2

Fα
2
e

�
g24ΔF̃RFν;χ

M2
Z0

�2

; ð20Þ

where Aþ ¼ 9 × 10−9 [19,20], and the sum over all flavors
of the ν and the χ is understood. Following the previous
analysis for the charged lepton constraints, we obtain

jFν;χ j≲ 110jFd1 j: ð21Þ

Note the bound can be stronger if more than one kind or
flavor contributes.
The upper limit on D0 → invisibles by Belle [21],

BðD0 → inv.Þ < 9.4 × 10−5ð90%C:L:Þ; ð22Þ

is, in principal, beneficial for massive invisibles (respecting
minv < mD=2), however, does not constrain decays to
fermions with purely vectorial coupling to the Z0, such
as g4Fχ χ̄γμχ.

4. Synopsis charm constraints and benchmarks

Charm constraints imply further selection criteria on the
model charges: U-spin breaking and hierarchy Fd1 ≫ Fd2
(8), on lepton couplings (16)–(18), and on invisible and
neutrino couplings (21). All benchmarks (BMs) I–IV given
in Table I pass these constraints. Note that the BSM
benchmarks from [10] are disfavored by the new data.
BMs I and II are obtained by scanning integers. BMs III
and IV are targeted toward more minimal models, with
BM IV designed to have no one-loop kinetic mixing.
BMs III and IV pass the additional constraints that arise from
light Z0 searches discussed in the next Sec. III, while BMs I
and II fail to do so. BM III-s, a variant of BM III with the
charges between first and second generation up-type quark
singlets swapped, Fu1 ¼ −F, Fu2 ¼ G is equally viable. It
has a different phenomenology than the other BMs, as it does
not couple necessarily directly to charm quarks.
Indeed the main impact from D mixing is that the mass

of the Z0 is light, below the weak scale. Using Eq. (5) with
FQ1

¼ 0 and the D-mixing bound, we obtain a useful
relation

g4Fd1

MZ0
∼

1

0.025 TeV
×
jadπ−πþj
0.002

; ð23Þ

indicating a low NP mass scale, significantly lower than
the naive estimate (7) due to the severe constraints from
Eq. (9). The ratio of coupling over mass required to explain
ΔACP alone [10] is approximately a factor of a few smaller
than the one from adπ−πþ (3), due to the smaller value of the
CP asymmetry and cooperating contributions from both
KK and ππ asymmetries at least for modest U-spin
breaking. The contribution of the flavorful Z0 to four-quark
operators ūcq̄q, q ¼ d, s is about 2–3 orders of magnitude
smaller than the one induced in the SM by W exchange.
Therefore, the Z0 contribution is irrelevant for the
D → πþπ− and D → KþK− branching ratios.
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We observe that the anomaly-free models feature U-spin
breaking and also isospin breaking, see Table I. This
implies signal in other two-body charm CP asymmetries,
such as πþπ0 and π0π0, see [10] and, recently, [22]. We
work out predictions in Sec. II C.

C. ACPðπ0π0Þ and ACPðπ +π0Þ
Flavorful Z0 models for ΔACP also induce CP asymme-

tries in theD → π0π0 andD → πþπ0 decays [10]. They are
of similar size,

ACPðπ0π0Þ
ACPðπþπ0Þ

¼ dπ0
dπ0

≃ 1.08� 0.10; ð24Þ

and we recall that ACPðπþπ0Þ requires isospin violation to
be finite. Using Fd2 ≪ Fd1 , we find that all CP asymme-
tries involving pions are generically correlated as

ACPðπþπ0Þ ≃
dπ0

dπ0
ACPðπ0π0Þ ≃ −

dπ0

dπ

�
1 −

Fu1

Fd1

�
ΔACP:

ð25Þ

Since all dπ’s are roughly of the same size, and noting that
viable benchmarks obey jFu1 j < jFd1 j (see Table I and
Sec. III), the Z0-induced CP asymmetries are at the level of
ΔACP, which is a per mill. We also note the opposite sign
of ΔACP with respect to the others, hence ACPðπ0π0Þ and
ACPðπþπ0Þ are positive in our models. Since Fu1=Fd1 can
have either sign, the relative factor ð1 − Fu1=Fd1Þ can be
bigger or smaller than 1. Concretely, it is 1 for BM III (with
G ¼ 0), 2 for the twisted BM III-s (withG ¼ 0), and within
1 ∓ 1=

ffiffiffi
2

p
for BM IV, depending on charges. For the BM

IV solution given by Eq. (C30), we obtain a factor 1.7.

III. A FLAVORFUL Z0 OF THE ORDER 10 GeV?

Because of their strong impact on the viable mass range
of the Z0, we begin analyzing constraints from couplings to
quarks in Sec. III A. The scale required to explain charm
data (23) points to a light Z0. Searches forUð1Þ0 extensions,
including dark photons, B–L and B models in dileptons
provide severe constraints in the 1–100 GeV range, in
particular, in couplings to electrons and muons [23].
Consequently, couplings to electrons and muons, or leptons
altogether, should be suppressed, much stronger than
in (16) and (17). As such, BM I and II become excluded
and will not be considered any further. We quantify this and
constraints in Sec. III B, also working out couplings of the
leptons that are induced by kinetic mixing. This effect is
larger in BM III, as kinetic mixing arises here already at
one loop. We analyze this and its impact in Sec. III C. In
Sec. III D, we work out branching ratios of the Z0.

A. Mass constraints from qq̄

Constraints arise from dijets. For 10≲MZ0 ≲ 50 GeV,
the strongest constraints are from CMS [24] and their dijet
plus initial state radiation search (ISR) [25]. Using their
results, approximately g4Fd1 ≲ 0.5, together with the con-
straint from charm (3) and (23), we arrive at the allowed
mass range

10 GeV≲MZ0 ≲ 20 GeV: ð26Þ

Around and below 10 GeV, constraints depend on the
benchmark models. Strong constraints fromϒ → jj decays
exist [26] around 10 GeV. They apply to BM IV due to its
Uð1Þ0 charge to b quarks: If one were to charge sR instead
of bR, the model would induce too large contributions to
D → KþK− decays. Using Ref. [27], we obtain the allowed
regions for BM IV with (C30) from ϒð1sÞ decays respect-
ing CP data (3) and (23) as

MZ0 ≲ 7 or MZ0 ≳ 15 GeV ðBM IVÞ: ð27Þ

On the other hand, BM III and BM III-s have no Z0
coupling to b’s and hence evade the ϒ limits.
Charmonium decays provide additional constraints

below 10 GeV on BM III and BM IV, but not on the
“swapped” model BM III-s, as it does not couple to charm
(for G ¼ 0). BM III-s with mass below (26) can be probed
in low energy hadronic processes involving first generation
quarks and invisibles. Because of (23) the Z0 below a GeV
interacts feebly. A detailed assessment of constraints and
opportunities for forward facilities [28] is beyond the scope
of this work.
We work out the constraints on BM III and BM IV from

ψ i → Z0� → πþπ− decays, ψ i ¼ J=ψ ;ψ 0, with contribu-
tions illustrated in Fig. 4. Following [29], we obtain for the
branching ratios normalized to the ones into electrons,

Bðψ i → πþπ−Þ
Bðψ i → eþe−Þ

4

jFπðmψ i
Þj2 ¼ j1þ AZ0=Aγj2; ð28Þ

AZ0

Aγ
¼ m2

ψ i

m2
ψ i
−M2

Z0 þ iMZ0ΓðZ0Þ
3g24Fu2ðFu1 − Fd1Þ

8παe
; ð29Þ

which depend on the ratio of the Z0-induced amplitude AZ0

to the SM-photon one Aγ and the pion form factor Fπ. The
left-hand side of Eq. (28) is defined in such a way that by

FIG. 4. Contribution of the Z0 to ψ → πþπ− amplitudes.
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switching off the NP amplitude it equals 1. We employ the
values of the pion form factor jFπðmJ=ψÞj ¼ 0.056,
jFπðmψ 0 Þj ¼ 0.04 from [30], which uses data on eþe− →
πþπ− and pion-electron scattering as input. As our models
are electrophobic, we can safely assume that these data are
not affected by the Z0. The Z0 width ΓðZ0Þ is obtained
from (44).
The constraints on BM III are shown in Fig. 5 (top) and

for BM IV with (C30) (bottom). The gray line denotes the
SM prediction corresponding to the ratios in (28) being
equal to 1. One notices that the NP contribution decouples
very slowly for larger Z0 masses; the reason is the growth of
coupling with mass by means of (23). We also include the
experimental uncertainties from the CP data (3). The main
difference between the models BM III and BM IV is
stemming from the γ − Z0-interference term, which has
opposite sign but similar size. We observe for BM III that
Z0 masses around [2.3, 2.8] and [3.2, 3.5] GeV are
consistent with both the J=Ψ data (red horizontal bands)
and the charm anomalies (red curves). The ranges obtained
using ψ 0 data (blue horizontal bands), which have larger
uncertainties, are [1.9, 3.3] or [3.9, 4.5] GeV. BM IV can

explain charm CP data and J=ψ → ππ decays for masses
within [2.8, 3.0] GeVor starting from 3.6 GeV until the ϒ
limit (27) kicks in, at about 7 GeV. The corresponding
ranges from the ψ 0 data read [3.1, 3.5] or [4.6, 7] GeV.
Assuming compatibility with both charmonia [31], ϒ and
charm CP data determine the Z0 mass, depending on the
model, as

MZ0 ∼ ½2.3; 2.8� or ½3.2; 3.3� GeV ðBM IIIÞ;
MZ0 ∼ ½4.6; 7� GeV ðBM IVÞ: ð30Þ

With these parameters, our models provide an opportunity
to resolve the longstanding tension between Fπ extracted
from J=ψ decays assuming the leading photon-exchange
contribution and QCD, e.g., [32]. Note that the explanation
of charmonia in BM III is a resonant effect, while in BM IV
it is in the tails.
We recall that our results are subject to sizable uncer-

tainties: the weak effective theory is challenged since a Z0
as light as a few GeV is close to the charm scale, in addition
to the uncertainties from hadronic matrix elements. We also
neglect G-parity-violating contributions in the SM to the
charmonia decays, e.g., [33], noting that the tension is
significant, 7σ for the J=π and 1.8σ for the ψ 0. As such, we
consider the phenomenology and formal constraints also in
wider viable regions of MZ0 .
For BM III, additional constraints from charmonia to

taus or invisibles exist. Using a similar computation as in
(28), we find that Bðψ 0 → τþτ−Þ [31] gives the allowed
mass ranges MZ0 ≲ 2.2 GeVor within 4.0 − 4.8 GeV, very
close to the windows implied by the pion form factor (30).
In view of the large uncertainties further analyses are
promising and desirable. Furthermore, Bðψ → nothingÞ <
7 · 10−4 [31] requires either MZ0 ≲ 0.7 GeV, which is in
conflict with (30), or the BSM neutrino which couples to
the Z0 to be heavier than half the ψ mass to forbid the decay
kinematically. This suggests that this benchmark solution to
the charm CP-data can be probed in charmonium decays.

B. Z0 → ee and μμ bounds

We work out constraints from Z0 → eþe−; μþμ− decay
searches. First, we study models where the Z0 couples
directly to electrons or muons [34,35], such as BM I–III
(with G ≠ 0) and IV,

g4Fei;Li
¼

ffiffiffiffiffiffiffiffiffiffi
8παe

p
ε ≈ 0.4ε: ð31Þ

The experimental search limits are given in terms of the
mixing parameter ε, defined as Lε ¼ −εeJμZ0

μ, where Jμ is
the electromagnetic current of SM fermions. For the range
of interest (40), the current experimental limit on ε both for
electrons and muons is [23,36]

jεðMZ0 Þj≲ 10−3: ð32Þ

1 2 3 4 5 6 7 8

0

2

4

6

8

1 2 3 4 5 6 7 8

0

2
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FIG. 5. Constraints from charmonium decays. Horizontal red
(blue) bands denote the left-hand side of (28) from 1 sigma
ranges of J=ψ data with jFπðmJ=ψ Þj ¼ 0.056 [ψ 0 decays with
jFπðmψ 0 Þj ¼ 0.04]. Values of the pion form factor are from [30].
Curves correspond to the predictions [right-hand side of (28)]
in BM III with F ≫ G (top) and BM IV with (C30) (bottom)
using (23), including experimental uncertainties from (3). The
SM prediction via photon exchange is shown by the gray line.
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Combining Eq. (31) with (32), one gets

g4Fe1;2;L1;2
≲ 4 × 10−4: ð33Þ

Inspecting Fig. 3, we observe that g4Fd1 ≳ 0.3 for
MZ0 ≳ 10 GeV, which in combination with Eq. (33) leads
to a strong suppression of electron and muon couplings
over the down-type quark one,

Fe1;2;L1;2

Fd1

≲ 1

750
; ð34Þ

significantly stronger than the rare D decay and Drell-Yan
constraints (16) and (17). Note that Eq. (34) directly
excludes BM I and II and dictates a strong quark and
lepton charge hierarchy in BM III (as jGj≲ 1.3 × 10−3jFj)
and IV.
Next, we study effects from kinetic mixing. If the Z0 does

not couple directly to electrons and muons as in BM III
with G ¼ 0, one can still induce a small coupling ε to Lε

from Z0 − γ gauge-kinetic mixing,

L ⊃ −
1

4
FμνFμν −

1

4
Z0μνZ0

μν −
η

2
FμνZ0

μν; ð35Þ

which yields

ε ¼ −
ηffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p : ð36Þ

Note that gauge-kinetic mixing is, in general, not techni-
cally natural and cannot be switched off at more than one
scale. It is also related to the gauge-kinetic mixing between
the Z0 and the hypercharge field B before electroweak
symmetry breaking via η ¼ ηB−Z0 cos θW . This implies
Z − Z0 mass mixing, generating a correction δMZ to the
unmixed tree-level mass of the Z boson, which affects the ρ
parameter ρ−1 ¼ ðMZ þ δMZÞ cos θW=MW,

�
ρ − ρSM

ρ

�
¼ −

ε2 tan2 θW
2ð1þ ε2Þ

�
MZ0

MZ

�
2

þO
�
MZ0

MZ

�
4

; ð37Þ

which for light Z0’s is negative, but vanishes quadratically
with ε. Here, ρSM denotes the ρ parameter’s SM value,
which is close to 1. The global fit of electroweak precision
parameters [31] suggests a relative NP contribution as

�
ρ − ρSM

ρ

�
¼ ð3.8� 2.0Þ × 10−4: ð38Þ

Thus, the light Z0 contributes with the opposite sign.
However, the correction is within 2σ of (38) if

jεðMZÞj ≲ 4 × 10−1 ð7 × 10−2Þ; ð39Þ

for a Z0 mass above 3 GeV (15 GeV). This has to be
compatible with the constraint (32) at the MZ0 scale. As
the running of ε is, in general, not technically natural,
avoiding both constraints may result in highly nontrivial
conditions of all Uð1Þ0 charges for a light Z0. In the
following section, we discuss benchmark models that are
feasible in this regard.

C. Viable scenarios

We consider the benchmarks BM III and BM IV, see
Table I, which allow for sizable couplings to quarks but not
leptons (34). Note that in these models the top quark has
no direct coupling to the Uð1Þ0. This is also beneficial in
suppressing contributions from kinetic mixing.
(A) BM IV follows the constructions of Appendix C,

with jFej ≪ jFu;dj. The kinetic mixing is natural in
this model and can be switched off or made feebly
small, see Appendix D.

(B) BM III is electron- and muophobic. It has couplings
to taus and νR. The RG evolution of the kinetic
mixing parameter reads

εðμÞ ¼ εðμ0Þ − δε ln

�
μ

μ0

�
þ 2-loop; ð40Þ

δε ¼
eg4F
3π2

þOðεÞ: ð41Þ

As

g4ðMZ0 ÞF ≳ 30MZ0

TeV
; ð42Þ

see Fig. 3, we roughly find a running

jεðMZÞ − εðMZ0 Þj≳ 10e
π2

MZ0

TeV
ln

�
MZ

MZ0

�
≳ 10−3 ð43Þ

between the Z0 and the electroweak scale, where in
the last line of (43) we used MZ0 ≳ 3 GeV. Thus,
the running can accommodate both ρ parameter and
Z0 → ll constraints (32) and (39) if jεðMZÞj∼
Oð10−2Þ. Using the four-loop running [37,38], we
verified that the approximation (40) holds well for
the lower end of (42). Larger values of g4ðMZ0 ÞF
may result in (43) increasing in the order of
magnitude, eventually spoiling compatibility with
the kinetic mixing constraints.

To summarize, bounds from ee and μμ can always be
evaded: In BM IV, the hierarchy between quark and lepton
charges can simply be chosen larger. In BM III, while
kinetic mixing induces couplings to SM fermions that are
uncharged before going to the gauge boson mass basis, the
impact of this can be avoided by tuning with the contri-
bution at the matching scale (40), at the level of 0.1.
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If experimental dilepton constraints on ε improve in the
future, this can be accommodated with an increase of
tuning at similar level. Of course, in a UVmodel this choice
is not possible, therefore, models of type BM III can be just
around the corner and show up in the next round of dilepton
searches.

D. Z0 decay

In this section, we work out branching ratios of the light
Z0 boson. The partial decay width of the Z0 to fermions ψ
with mass mψ < MZ0=2 is given as [35]

ΓðZ0 → ψψ̄Þ

¼ Nψ
Cg

2
4

24π
MZ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
ψ

M2
Z0

s

·

�
F2
ψL

þ F2
ψR

−
m2

ψ

M2
Z0
ðF2

ψL
− 6FψL

FψR
þ F2

ψR
Þ
�
;

ð44Þ

with color factor Nψ
C ¼ 3 for quarks and Nψ

C ¼ 1 otherwise.
FψLðRÞ denotes the Uð1Þ0 charge of the left-handed (right-
handed) fermion ψ . Because of the low mass of the Z0 (26)
decay channels into the SM electroweak gauge bosons or
the Higgs are kinematically forbidden. For low MZ0 ≲
few × GeV, also the fermionic decays Z0 → bb̄; cc̄; τþτ−
can be either kinematically forbidden or severely phase
space suppressed. In the limit m2

ψ=M2
Z0 ≪ 1, on the other

hand, the branching ratios are simply given by

BðZ0 → ψψ̄Þ ¼ Nψ
CðF2

ψL
þ F2

ψR
ÞP

ψ 0Nψ 0
C ðF2

ψ 0
L
þ F2

ψ 0
R
Þ
: ð45Þ

Numerical results for branching ratios in BM III, III-s,
and IV are shown in Table II for different MZ0 . In BM III
and III-s, results are given in the limit G ≪ F where
dimuon bounds are avoided. For MZ0 ¼ 20, 10, and
3 GeV using (23) in BM III we obtain the width
ΓðZ0Þ ¼Pi ΓðZ0 → ψ iψ̄ iÞθðMZ0 − 2mψiÞ ¼ 1.8, 0.2 and
4 × 10−3 GeV, respectively. Very similar values for
ΓðZ0Þ are found in BM III-s and IV. We note that for
the lower masses Eq. (44) is not accurate as hadronic
final states should rather be taken into account. In BM IV,
results depend on the charge assignments Fu;d;e;ν.
However, dilepton bounds suggest suppression of lepton
couplings (34). When setting jFej; jFνj ≪ jFu;dj we
asymptotically approach a leptophobic model, with decays
only to b, c, and jets, i.e., light quarks. We also provide
branching ratios for the concrete scenario (C30) in Table II.
All benchmark models lead to a promptly decaying Z0.
Another possibility to suppress branching ratios to

quarks and charged leptons is jFνj ≫ jFu;d;ej. In this case,

the Z0 boson decays mostly invisibly to right-handed
neutrinos. The same effect can also be achieved in all
BMs by adding a light and dark vectorlike BSM fermion χ
with Uð1Þ0 charge Fχ . Because of its vectorlike nature, χ
does not contribute to any gauge anomalies and it can have
a simple Dirac mass term. Assuming mχ < 2MZ0 as well as
jFχ j ≳ jFψ j for ψ ¼ Q; u; d; L; e; ν, the Z0 will decay
predominantly invisibly as Z0 → χχ̄, see (45). For a heavy
Z0 this possibility has already been explored in the context
of the B anomalies [35]. The Z0 can be radiated off
quarks, which in the above scenario leads to characteristic
signatures such as hadrons in association with invisibles,
i.e., missing energy, see Fig. 6. Unfortunately, to our
knowledge, in the mass range of our interest, there is
no experimental analysis for this process available.
However, an invisibly decaying Z0 radiated off final state
hadrons would be the smoking gun signature of this
scenario at eþe− machines, potentially giving rise to tight

TABLE II. Tree-level branching fractions in percentage for the
different Z0 decay modes to fermion-antifermion pairs. Results
for BM III and BM III-s are given in the limit G ≪ F. In BM IV,
branching ratios depend on the different charge assignments
Fu;d;e;ν, see main text for details. The branching ratios shown in
this table are obtained from Fu ¼ 985, Fd ¼ 1393, Fe ¼ 1 in
(C30), and Fν ¼ 0. Branching ratios in all BMs differ perceptibly
between the low and high MZ0 windows, (26) and (30), as the
decays Z0 → bb̄; cc̄; τþτ− are kinematically forbidden or sup-
pressed in the few GeV range. Corrections to branching ratios
from kinetic mixing are generically ≲10−7.

Model Light quarks b c e μ τ νR

BM IIIjMZ0 ¼2.5 GeV 75 0 0 0 0 0 25
BM IIIjMZ0 ¼15 GeV 38 0 37 0 0 12 13
BM III-sjMZ0 ¼2.5 GeV 86 0 0 0 0 0 14
BM III-sjMZ0 ¼15 GeV 75 0 0 0 0 12 13
BM IVjMZ0 ¼5 GeV 79 0 21 0 0 0 0
BM IVjMZ0 ¼15 GeV 54 28 18 0 0 0 0

FIG. 6. Smoking gun signature of benchmark models at eþe−
machines for jFν=χ j ≳ jFψ j where ψ ¼ Q; u; d; L; e; ν. A qq̄ pair
is produced via an s-channel photon and radiates of a Z0 invisibly
decaying to χχ̄ or νν̄, leading to a final state containing hadrons in
association with missing energy.
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bounds on Fν;χ . This is in contrast to bounds from existing
searches for eþe− → γISR þ ðZ0 → χχ̄Þ [39–41], where
cross sections are suppressed by tiny factors ε2 or F2

e even
if BðZ0 → χχ̄Þ ≃ 100%. However, note that Fν;χ cannot be
arbitrarily large, as by adding additional Uð1Þ0-charged
matter we always increase the RG growth of g4, which
finally might give rise to a low energy Landau pole,
see Sec. IV for details. There are also constraints (21)
on the charges from rare decays for fermions lighter
than mD=2.
We comment on corrections to the Z0 decay rate to SM

fermions from kinetic mixing. As discussed in III B,
the Z0 thus couples to the electromagnetic current Jμ via
Lε ¼ −εeJμZ0

μ, where the kinetic mixing parameter ε is
defined in (35) and (36). The corresponding partial decay
width can be obtained from (45) by replacing g4 → εe
and the Uð1Þ0 charges with electric ones, FψL;R

→ qψ .
Experimentally, kinetic mixing is constrained by (32) to
be small. Thus, decays via kinetic mixing are suppressed in
comparison to unmixed decays by a tiny factor,

κ ∼
P

ψð2Nψ
Cq

2
ψ Þε2e2P

ψN
ψ
CðF2

ψL
þ F2

ψR
Þg24

∝
ε2e2

g24
; ð46Þ

where we rescaled theUð1Þ0 charges and coupling such that
maxðFψL=R

Þ ¼ 1. Then, to create the desired value (3) of

adπþπ− , it follows from (23) that g4 ≳Oð1Þ for the Z0 mass
range given by (26). Putting everything together, we obtain
κ ≲ 10−7. This provides an order of magnitude estimate for
the branching ratios into Uð1Þ0-uncharged fermions.

IV. HIGH ENERGY BEHAVIOR

Let us investigate the consequences of (23) for the
consistency of the Uð1Þ0 gauge group at higher energies.
We by begin asking about perturbativity. Using

g4Fψ ≲ 4π; ð47Þ

for all SM fields ψ the Z0 mass gets bounded from above,

MZ0 ≲ 400 GeV: ð48Þ

Next, we investigate the occurrence of Landau poles
(LPs). Neglecting kinetic mixing effects, the scale μLP of
the Uð1Þ0 pole can be estimated as

μLP ¼ μ · exp

� ð4πÞ2
g24ðμÞB4

�
; ð49Þ

with the one-loop coefficient in the beta-function

B4 ¼
X
ψ

4

3
d2ðψÞd3ðψÞF2

ψ ; ð50Þ

counting over all Weyl fermions ψ . The corresponding
gauge coupling g4 is fixed by data, e.g., (23), at the scale of
NP μ ¼ MZ0. One obtains schematically

g4ðMZ0 Þ
MZ0

¼ 1ffiffiffiffiffiffi
B4

p
m0

; ð51Þ

withm0 being a characteristic mass scale. Thus, the scale of
the Landau pole is around

μLP ¼ MZ0 · exp

�ð4πÞ2m2
0

M2
Z0

�
: ð52Þ

For large-Z0 masses MZ0 ≫ 4πm0 this implies μLP ¼ MZ0 .
Nearby Landau poles can hence only be avoided if
MZ0 ≪ 4πm0.
In Fig. 7, the location of the Landau pole with respect to

MZ0 is illustrated for BM III, where B4 ¼ 32
3
F2 and (42)

imply m0 ≈ 10 GeV. Shown are the central value for μLP
(blue line), a 30% uncertainty band for adπ−πþ in (23),
consistent with (3) (blue-shaded area), and the shifted
central value due to a dark fermion (with Fχ ¼ 4F, solid
green line).3 The red-shaded area (μLP ≤ MZ0) is excluded.
We observe that the Landau pole may be beyond the
Planckian regime (yellow band) only for very light Z0

FIG. 7. Scale of the Landau pole μLP via the estimate (52) for
BM III (blue), depending on the MZ0 mass. An uncertainty of
30% is considered for adπ−πþ in (23), consistent with (3) (blue-
shaded area). The shifted central value is also shown if one dark
fermion Fχ ¼ 4F is included (solid green line). The red-shaded
area is excluded, as μLP ≤ MZ0 . The preferred mass range (26)
of MZ0 is shaded in green. The yellow band indicates the μLP
regime an order of magnitude around the Planck scale.

3WithNχ additional vectorlike,Uð1Þ0-charged dark fermions χ,
see Sec. III D, B4 increases by δB4 ¼ 8

3
F2
χNχ.
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(MZ0 ≲ 20 GeV, green-shaded area) and sub-Planckian
otherwise. Increasing MZ0 , the Landau pole decreases
toward a TeV-ish minimum (whereMZ0 ≳ 81 GeV), imply-
ing an upper bound for MZ0. For MZ0 beyond the electro-
weak scale, the Landau pole stays exponentially close to
MZ0 , indicating that the theory is strongly coupled. Finally,
we note that the addition of extraUð1Þ0 charge carriers, e.g.,
a dark fermion, shifts the Landau pole toward lower values
and more substantially so for low MZ0.
This overall pattern is in sharp contrast to the situation

observed in rare b decays, where the anomalies indicateffiffiffiffiffiffi
B4

p
m0 ≃ 40 TeV and a TeV-size Z0 is vastly separated

from the Landau pole. This permits the introduction of
additional BSM interactions to evade the Landau pole and
to secure Higgs stability all the way up to the Planck scale
(and possibly beyond) [35].
Finally, we emphasize that a sub-TeV-ish Landau pole is

avoided as long as

MZ0 ≲ few × 10 GeV; ð53Þ

consistent with search limits (26) and qq̄ data (27) and (30).

V. CONCLUSIONS

The recent data on charm CP violation (1), taken at
face value, together with the measurement of ΔACP (2),
require one to accept a huge amount of U-spin breaking
or NP below the weak scale. Explaining Eq. (3) indeed
poses a challenge to model building, given the low NP
scale and the severe constraints from rare decays, mixing,
and searches for BSM bosons in dilepton and dijets
channels.
We obtain viable explanations of data (3) from a light Z0

boson, MZ0 < few × 10 GeV, with novel, characteristic
patterns in couplings to fermions: successful model bench-
marks, see Table I, accidentally couple only to right-handed
fermions and are leptophobic (BM IV) or do not haveUð1Þ0
charges to electrons or muons (BM III). The latter is subject
to kinetic mixing at one loop, which requires a nonexces-
sive tuning of the mixing parameter at the level of 10%.
The former is a novel benchmark using a Diophantine
construction to maintain anomaly freedom and the absence
of one-loop kinetic mixing, since it couples mostly to
quarks without introducing new matter fields, derived in
Appendix C.
Models do not couple to top quarks, allowing for the top

Yukawa to be written down directly. BM III allows also the
bottom Yukawa at tree level. We stress that we are not
addressing the origin of flavor, which is beyond the scope
of this work. Models can also include a dark sector, which
can significantly speed up the running such that low scale
Landau poles arise that point to a UV completion as low as
a TeV, see Fig. 7. However, in view of the “the lighter, the

safer” rule, a sufficiently light Z0, with details depending on
the dark sector, can avoid this.
Model frameworks BM III and BM IV are unique, as

they are minimal models passing the very many theoretical
and experimental constraints. Together with viable variants
obtained by swapping charges within one species, such as
BM III-s, they are indeed the only, minimal options,
inducing CP violation in the c̄RuR current and an enhanced
d̄RdR current, but it cannot be ruled out that further, highly
tuned scenarios with crosstalk between species may be
constructed. Another intriguing feature of the models is that
they can simultaneously explain the charm CP data (3)
and the J=ψ → πþπ−, ψ 0 → πþπ− branching ratios for a Z0
around ∼3 GeV (BM III) or ∼ð5–7Þ GeV (BM IV),
see Sec. III A, providing a NP explanation to the long-
standing pion form factor puzzle.
Models can be searched for in low mass dijets along the

lines of [24] or ϒ and J=ψ or ψ 0 decays and related dark
photon searches. The dominant Z0 branching ratios are
given in Table II. Signatures include enhanced production
in πþπ−, orDD, and ττ in BM III. If dark fermions are also
present, signatures as in Fig. 6 with hadrons and invisibles
are promising smoking guns. We stress that BM III-s, a
variant of BM III with the charges between first and second
generation up-type quark singlets flipped, Fu1 ¼ −F,
Fu2 ¼ G is equally viable. It has a different phenomenol-
ogy than the other benchmark models, as it does couple
essentially to first generation quarks, the τ, and neutrinos,
hence evades charmonium limits and could be as light as
OðGeVÞ or possibly below.
All viable models further predict isospin violation and

pattern in the CP asymmetries in hadronic charm decays,
see (25), in addition to ACPðD → KSKSÞ, which also
requires U-spin breaking [11]. Models are tightly con-
strained by D mixing and Z0 searches into electrons and
muons. They can hence signal NP in the next round of data.
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APPENDIX A: AMPLITUDES AND
OBSERVABLES IN SM

The SM decay amplitudes of D → πþπ− and its con-
jugate decay can be written in terms of reduced amplitudes
t, h with relative strong phase δ as

A ¼ AðD0 → πþπ−ÞSM ¼ Σtþ V�
cbVubheiδ; ðA1Þ

Ā ¼ AðD̄0 → πþπ−ÞSM ¼ Σ�tþ VcbV�
ubhe

iδ; ðA2Þ

where Σ ¼ ðV�
cdVud − V�

csVusÞ=2 and V�
csVus ≃ −V�

cdVud

due to CKM unitarity up to a negligible V�
cbVub. The

amplitude t is predominantly induced by tree-level W
exchange, whereas h originates from higher-order contri-
butions including penguin loops or final state interactions.
Using standard formulas, one obtains for the direct CP
asymmetry of D → πþπ− decays in the SM,

adSMπ−πþ ¼ jAj2 − jĀj2
jAj2 þ jĀj2 ≃ 2 · Im

�
V�
cbVub

V�
cdVud

�
h
t
sin δ; ðA3Þ

where we neglected contributions of higher order in
CKM ratios V�

cbVub=ðV�
cdVudÞ ∼ 10−3. This approximation

implies also that the CP-averaged branching ratio is
dominated by the term with the leading CKM factor
Σ, BðD → πþπ−Þ ∝ jAj2 þ jĀj2 ∝ jΣj2t2.
Expressions for D → KþK− decays are analogous,

AðD0 → KþK−ÞSM ¼ −Σts þ V�
cbVubhseiδs ; ðA4Þ

AðD̄0 → KþK−ÞSM ¼ −Σ�ts þ VcbV�
ubhse

iδs : ðA5Þ

In the U-spin limit, the phase and reduced amplitudes
are universal, such as t ¼ ts ¼ t̄ and so on. The observed
U-spin breaking in the branching ratios BðD → KþK−Þ=
BðD → πþπ−Þ ≃ 2.8 can be explained with a flavor-
dependent correction δt, as ts ¼ t̄þ δt, t ¼ t̄ − δt at the
nominal level of flavor breaking, δt=t̄ ≃ 30% [6]. This
U-spin breaking in the branching ratios and correspond-
ingly between the leading contributors to the amplitudes
t; ts implies a shift in the CP asymmetries, e.g., (A3) and
leads to the modified U-spin relation (4).

APPENDIX B: RGE AND HADRONIZATION

NP effects in charm decays are described within

the effective weak Hamiltonian HjΔcj¼1
eff ⊃ GFffiffi

2
p
P

i C̃
ð0Þ
i Q̃ð0Þ

i .

Operators relevant to a Z0-boson coupling to right-handed
quarks read

Q̃0
9 ¼ ðūcÞVþA

X
q

Fui;diðq̄qÞVþA; ðB1Þ

Q̃0
10 ¼ ðūαcβÞVþA

X
q

Fui;diðq̄βqαÞVþA; ðB2Þ

where (V � A) refers to the Dirac structures γμð1� γ5Þ,
q ¼ u, c, d, s, b, and α, β are color indices.
In the following, we address the evolution of the Wilson

coefficients at the Z0 mass scale,

C̃0
9ðMZ0 Þ ¼

ffiffiffi
2

p

GF
ΔF̃R

g24
4M2

Z0
eiΦR ; C̃0

10ðMZ0 Þ ¼ 0; ðB3Þ

down to the charm mass scale at leading order in αs,
see [10] for details. The CP violating phase is ΦR ∼ π=2.
Using the anomalous dimension given by Eq. (B1) in
Ref. [10] and integrating out degrees of freedom at the
ðZ0; t; bÞ scales, one obtains

C⃗ðμÞ ¼ Uðμ;MZ0 ÞC⃗ðMZ0 Þ; ðB4Þ

where Uðm1; m2Þ is the evolution matrix from scale m2 to
scale m1. Using Eqs. (B3) and (B4), we obtain

C̃0
9ðmcÞ ¼

1

2

�
R

1
2 þ R−1

�
C̃0
9ðMZ0 Þ; ðB5Þ

C̃0
10ðmcÞ ¼

1

2

�
R

1
2 − R−1

�
C̃0
9ðMZ0 Þ; ðB6Þ

where

R ¼
 
αð4Þs ðmbÞ
αð4Þs ðmcÞ

!12
25

 
αð5Þs ðmtÞ
αð5Þs ðmbÞ

!12
23

 
αð6Þs ðMZ0 Þ
αð6Þs ðmtÞ

!4
7

; ðB7Þ

for MZ0 > mt, while

R ¼
 
αð4Þs ðmbÞ
αð4Þs ðmcÞ

!12
25

 
αð5Þs ðMZ0 Þ
αð5Þs ðmbÞ

!12
23

; ðB8Þ

for mb ≤ MZ0 ≤ mt.
For the computation of theD0→KþK− andD0 → πþπ−

hadronic matrix elements, we employ factorization of
currents,

hPþP−jQijD0i
¼ hPþjðq̄1Γ1q2Þj0ihP−jðq̄3Γ2q4ÞjD0iBPþP−

i ; ðB9Þ

with P ¼ π, K, Qi ¼ ðq̄1Γ1q2Þðq̄3Γ2q4Þ is a four-quark
operator, and Γ1;2 represent Dirac and color structures,
while qj denote quarks. The factor BPþP−

i parametrizes the
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deviation of the true hadronic matrix element from its naïve
approximation, BPþP−

i jnaïve ¼ 1. Including these effects, the
CP asymmetries become

adK−Kþ ∝ Fd2

�
C̃0
9ðmcÞ
NC

BK−Kþ
9 þ C̃0

10ðmcÞBK−Kþ
10

�
;

adπ−πþ ∝ Fd1

�
C̃0
9ðmcÞ
NC

Bπ−πþ
9 þ C̃0

10ðmcÞBπ−πþ
10

�
; ðB10Þ

where we have already used FQ1;2
¼ 0. Furthermore,

dK ¼ 1

aK
rK2 ðmc;MZ0 Þ; dπ ¼ −

1

aπ
rπ2ðmc;MZ0 Þ; ðB11Þ

with

rP2 ðmc;MZ0 Þ ¼ BPþR1=2 − BP
−R−1ffiffiffi

2
p

GFλs
; ðB12Þ

and

BP
� ¼ 1

2

�
BPþP−

10 � 1

NC
BPþP−

9

�
: ðB13Þ

In naïve factorization, BPþ ¼ 2=3 and BP
− ¼ 1=3, recovering

Eq. (D2) from Ref. [10]. In the large-NC limit BP
� ¼

ð1=2ÞBPþP−

10 . We show dπ against MZ0 in Fig. 8. In naive
factorization (red lines) dπ exhibits a strong cancellation
around ∼40 GeV stemming from the numerator of
Eq. (B12). Comparing with the large-NC limit (green
lines), we observe that this cancellation is only effective
in the naïve factorization limit. Taking into account that
naïve factorization suffers from sizable uncertainties, blue
lines illustrate 30%, in our analysis for light Z0 masses we
use dπ ≃ 0.1 TeV2.

APPENDIX C: ANOMALY CANCELLATION

The gauge anomaly cancellation conditions (ACCs)
read [42,43]

2hFQi − hF ui − hF di ¼ 0; ðC1Þ

3hFQi þ hFLi ¼ 0; ðC2Þ

hFQi þ 3hFLi − 8hF ui − 2hF di − 6hF ei ¼ 0; ðC3Þ

6hFQi þ 2hFLi − 3hF ui − 3hF di − hF ei − hF νi ¼ 0;

ðC4Þ

hF 2
Qi − hF 2

Li − 2hF 2
ui þ hF 2

di þ hF 2
ei ¼ 0; ðC5Þ

6hF 3
Qi þ 2hF 3

Li − 3hF 3
ui − 3hF 3

di − hF 3
ei − hF 3

νi ¼ 0:

ðC6Þ

In addition, avoiding Z0 − Z kinetic mixing at one loop
requires [10,44]

hFQi − hFLi þ 2hF ui − hF di − hF ei ¼ 0: ðC7Þ
Here, we use the notation hXi ¼ TrðXÞ and FA ¼
diagðFA1

; FA2
; FA3

Þ with A ¼ Q; u; d; L; e; ν. First, we
focus on those equations that are linear with trace charge
matrices, which are Eqs. (C1)–(C4) and (C7). Solving
them, we find

hFQi ¼ −hF ui ¼
1

3
hF di ¼ −

1

3
hFLi ¼ −hF ei ¼ −

1

5
hF νi:

Setting FQ1;2;3
¼ 0, we avoid kaon constraints and for the

BMs III and IV couplings to the top, and arrive at the
simple condition

hFQi ¼ 0; ðC8Þ

FIG. 8. dπ as a function ofMZ0 as in (B11) and (B12). The red
line is obtained for Bπþπ−

9;10 ¼ 1, that is, the naïve factorization
approach. Here, dπ crosses zero around 40 GeV. Blue lines
account for a deviation of 30% from the naïve factorization
limit, that is, Bπþπ−

9;10 ¼ 1� 0.3. The green line represents the
large-NC limit.
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and therefore from Eq. (C8) to

hF ui ¼ hF di ¼ hFLi ¼ hF ei ¼ hF νi ¼ 0: ðC9Þ

Let us work on the remaining ACCs, Eqs. (C5) and (C6).
The nonlinear behavior of these equations makes it chal-
lenging to solve them. We have already some information
about the trace of these matrices; they are zero (C9). To
solve the problem, mathematical relations between hFAi,
hF 2

Ai, and hF 3
Ai would be helpful. Noting that for 3 × 3

matrices holds

hF 3
Ai −

3

2
hF 2

AihFAi þ
1

2
hFAi3 ¼ 3 detðFAÞ; ðC10Þ

and detðFAÞ ¼ FA1
FA2

FA3
, it follows from hFAi ¼ 0 that

hF 3
Ai vanishes if one charge vanishes, for instance,

FA3
¼ 0; then Eq. (C6) is fulfilled. In general, the charge

matrices FA can then be written as

FA ¼ FA

0
B@

þ1 0 0

0 −1 0

0 0 0

1
CA; A ¼ u; d; L; e; ν; ðC11Þ

where FA are integers. Note that the order of ðþ1;−1; 0Þ
can be changed for each species A independently. It
remains to solve Eq. (C5), which now simply reduces to

F2
d þ F2

e ¼ F2
L þ 2F2

u: ðC12Þ

We can start exploring this equation by setting Fe ¼ FL.
This solution is motivated from the phenomenological
point of view because we need small values of lepton
charges as well as being disconnected from quark charges.
However, in this case, the system has only the trivial
solution Fu ¼ Fd ¼ 0 because F2

d ¼ 2F2
u can not be

fulfilled for integers. Let us simplify (C12) by setting
FL ¼ 0, which is motivated by the strong constraints on
lepton couplings. We obtain

F2
d þ F2

e ¼ 2F2
u: ðC13Þ

Two aspects are worth noting from this equation:
(a) For any Pythagorean triple ðm; n; pÞ, i.e., integers that

solve the Pythagoras equation m2 þ n2 ¼ p2, one
can find integer triples ðFd; Fe; FuÞ, which solve
Eq. (C13) by substituting Fd ¼ mþ n, Fe ¼ m − n,
and Fu ¼ p.

(b) Any solution ðFd; Fe; FuÞ to Eq. (C13) can be para-
metrized by integers ðp; q; rÞ,

Fd ¼ p2 þ ð−4rþ 2qÞpþ 2r2 − q2; ðC14Þ

Fe ¼ p2 − 2r2 − q2 − 2pqþ 4qr; ðC15Þ

Fu ¼ p2 þ 2r2 þ q2 − 2pr − 2qr: ðC16Þ

The first nontrivial solutions ðFd; Fe; FuÞ are found
to be

ðFd; Fe; FuÞ ¼ ð1; 1; 1Þ; ð7; 1; 5Þ; ð17; 7; 13Þ;…;

ðC17Þ

and so on, and integer multiples thereof. Note that
each term can also have either sign, and that permu-
tations between Fd and Fe are permitted.

Although Eq. (C13) gets fully solved by Eqs. (C14)–(C16),
in the following, we illustrate a more practical approach
that allows us to run directly into those solutions that
accommodate the constraint given by Eq. (34). Let us
rewrite (C13) as

hFjJ jFi ¼ F2
e; ðC18Þ

with jFi ¼ ðFu; FdÞ and

J ¼
�
2 0

0 −1

�
: ðC19Þ

For illustration, we start with the trivial solution
ðFd; Fe; FuÞ ¼ ð1; 1; 1Þ. Using Eq. (C18), we obtain

hF0jJ jF0i ¼ 1; ðC20Þ

with

jF0i ¼ ð1; 1Þ: ðC21Þ

Now, the question we should ask is whether there are more
solutions, such as Fe ≪ Fu; Fd. One possibility is if a
transformation

J → J 0 ¼ UTJU ¼ J ; ðC22Þ

by a 2 × 2 matrix with integer entries U, leads invariant
Eq. (C20) so that we can generate recursively solutions,

jFii ¼ ðUÞijF0i; ðC23Þ

which could get enlarged while keeping Fe fixed to 1 for
this particular case. This matrix needs to satisfy

�
U11 U12

U21 U22

�T� 2 0

0 −1

��
U11 U12

U21 U22

�
¼
�
2 0

0 −1

�
:

ðC24Þ

The solution of this system in terms of U22 is
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U11 ¼ η11U22; ðC25Þ

U12 ¼ η12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þU2

22

2

r
; ðC26Þ

U21 ¼ η21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−1þU2

22Þ
q

; ðC27Þ

with four solutions ðη11; η12; η22Þ ¼ ð−1;−1;þ1Þ,
ð−1;þ1;−1Þ, ðþ1;−1;−1Þ, and ðþ1;þ1;þ1Þ. The small-
est integer solution reads

U ¼
�
η113 η122

η214 η223

�
: ðC28Þ

We then find the solutions (C23) for any integer i > 0.
Using η12 ¼ η22 ¼ η11 ¼ η21 ¼ þ1 leads to

jF1i ¼ ð5; 7Þ;
jF2i ¼ ð29; 41Þ;
jF3i ¼ ð169; 239Þ;
jF4i ¼ ð985; 1393Þ;
jF5i ¼ ð5741; 8119Þ;

..

. ðC29Þ

We learn that, in order to avoid electron and muon
constraints of Eq. (34), we need solutions jFii with
i ≥ 4. Note that we could have also used a different setup
for η11;… to get different solutions. In addition, we can
also find more solutions by choosing another initial integer
triple ðFd; Fu; FeÞ.
In the phenomenological analysis, we considered the

solution i ¼ 4 for BM IV,

ðFd; Fe; FuÞ ¼ ð1393; 1; 985Þ; ðC30Þ

with zero neutrino charges Fν ¼ 0.

APPENDIX D: KINETIC MIXING

In this appendix, we discuss the naturalness of the gauge-
kinetic mixing, occurring due to the parameter η as in (35)
between the Z0 and the photon or, equivalently, the Z0 and
hypercharge gauge boson before electroweak symmetry
breaking. Ideally, one would like the RG evolution of this
parameter to be technically natural, which means

dη
d ln μ

∝ η: ðD1Þ

This would imply that kinetic mixing can naturally be
switched off at all scales or made to remain arbitrar-
ily small.
For theories with the charge configuration (C11), as well

as the Higgs not carrying a Uð1Þ0 charge, kinetic mixing is
natural at one-loop order. If only gauge contributions are
taken into account, the naturalness remains intact even at
higher loops, which is the result of the symmetry implied
by (C11). We have verified that this is the case until four
loops, using the results of [37,38].
Starting at two-loop order, Yukawa interactions violate

the naturalness (D1), unless they retain certain flavor
textures. If the top quark does not carry Uð1Þ0 charge as
in BM IV, the naturalness-violating terms do not feature the
top Yukawa coupling at two loops and are either suppressed
by the other much smaller Yukawas and/or loop factors.
Thus, these terms are negligible for the running of η, which
becomes effectively natural.
However, the naturalness is broken at one loop below the

scale where the first field carrying Uð1Þ0 charge is inte-
grated out, i.e., the bottom quark in BM IV.
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