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We formulate the path integral of two- and three-flavor Wilson fermion in two dimensions as a
multilayer Grassmann tensor network by the matrix product decomposition. Thanks to this new
description, the memory cost scaling is reduced from OðeNf Þ for the conventional construction to
OðNfÞ. Based on this representation, we develop a coarse-graining algorithm where spatially or temporally
adjacent Grassmann tensors are converted into a canonical form along a virtual direction before we carry
out the spacetime coarse-graining. Benchmarking with the lattice Gross-Neveu model at finite density, we
see that the Silver Blaze phenomenon in the pressure and number density is captured with relatively small
bond dimensions.
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I. INTRODUCTION

The tensor network method has been widely applied in
many fields including condensed matter physics, informa-
tion science, and particle physics [1–6]. In the context of
the quantum many-body problem, the tensor network
method can be classified namely by two streams. One is
the method based on the Hamiltonian formalism, where we
express a quantum state as a certain form of tensor
contraction and try to optimize each tensor by some
variational methods, such as the density matrix renormal-
ization group (DMRG) [7,8]. The other is based on the
Lagrangian formalism, where we represent the path integral
as a tensor contraction and approximately perform the
contraction employing a variant of the real-space renorm-
alization group method, such as the Levin-Nave tensor
renormalization group (TRG) [9]. One of the most remark-
able aspects of the latter approach is that several TRG
algorithms enable us to deal with an infinitely large lattice
even in higher dimensions if systems are translationally
invariant on a lattice [10–12]. Since the usual bottleneck
part of the higher-dimensional TRG calculation is the
tensor contraction, parallel computation techniques play
a significant role in the practical applications [13,14].

So far, the TRG approach has been applied to several
four-dimensional lattice theories [15–18].
When we try to apply the TRG approach to systems with

larger internal degrees of freedom, however, one encounters
several difficulties. The size of each tensor in its tensor
network representation increases and a larger memory
space is required in the numerical calculation. The bond
dimension, which characterizes the maximal size of the
tensor under the tensor network method, may have to be
enlarged to reduce an approximation to the original
representation as much as possible. To resolve these issues,
one of the promising approaches is to find an efficient
expression for such systems in the language of tensor
networks. Typical examples are non-Abelian lattice gauge
theories, where naive derivations of their tensor network
representation, particularly in four dimensions, requires
extremely large memory costs. Recently, several attempts
have been made for two-dimensional theories [19–22] and
the three-dimensional SUð2Þ pure gauge theory [23]. These
works have successfully demonstrated the applicability of
the TRG approach for lattice theories with non-Abelian
degrees of freedom. On the other hand, one also encounters
a difficulty originating from larger internal spaces when
flavor degrees of freedom are introduced to lattice fer-
mions. This can be another challenging issue because we
have to deal with a local tensor, whose size scales
exponentially with respect to Nf, the total number of
flavors. So far, single-flavor lattice fermions have been
usually employed in the previous TRG studies [16,24–29].1
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1Recently, the loop-TNR algorithm [30] has been applied to
the two-flavor lattice Gross-Neveu model on a small lattice in
Ref. [31].
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Therefore, how to deal with finite-Nf systems with the
TRG approach needs to be addressed, particularly for its
future application toward the (2þ 1)-flavor quantum
chromodynamics (QCD) on a lattice, for instance. To this
aim, we are going to apply a tensor network decomposition
for the Grassmann tensor network representation [32] from
the beginning and formulate its coarse-graining procedure.
The main idea is based on the so-called matrix product
decomposition, which has been very familiar as the matrix
product state (MPS) [33,34] within the Hamiltonian for-
malism.2 We numerically test our algorithm, employing the
Gross-Neveu model [40] at finite density with the two- and
three-flavor Wilson fermions.3 Using the matrix product
decomposition, the model with Nf ¼ 2 and Nf ¼ 3 can be
described as two- and three-layer Grassmann tensor net-
work whose bond dimension is equal to four. Thanks to this
new description, the memory cost scaling is reduced from
OðeNfÞ for the conventional construction to OðNfÞ. Based
on this description, we develop a coarse-graining pro-
cedure, by which we calculate pressure and number density
to verify whether the Silver Blaze phenomenon [43] can be
captured or not.
This paper is organized as follows. In Sec. II we

introduce the matrix product decomposition of the

Grassmann tensor for the lattice Gross-Neveu model with
the Wilson fermion. Based on this representation, we
propose a coarse-graining procedure, taking advantage of
matrix product decomposition, particularly of canonical
form. In Sec. III, we first check the efficiency of the matrix
product decomposition for the initial Grassmann
tensor network. We secondly perform free field compu-
tation, where the free-energy density as a function of
volume is calculated by our method and a naive TRG
application, and show our method successfully reproduces
the exact solution. Thirdly, we present numerical results of
pressure and number density as functions of chemical
potential with the finite coupling constant. As the
validation, we also employ the bond-weighted TRG
(BTRG) [44] to evaluate the original tensor network
representation. Section IV is devoted to summary and
outlook.

II. ALGORITHM

To explain our algorithm, we consider the Gross-Neveu-
Wilson (GNW) model with Nf ¼ 3 at finite density on a
square lattice Λ2 ¼ fn ¼ ðn1; n2Þjnν ∈Z; ν ¼ 1; 2g. The
lattice action is

S ¼ −
1

2

X
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X
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n ψ ðfÞ

n

�
2

−
g2π
2Nf

X
n

�X
f

ψ̄ ðfÞ
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; ð1Þ

where ψ ðfÞ
n and ψ̄ ðfÞ

n describe the Wilson fermions, labeled
by the flavor index f, which are two-component Grass-
mann-valued fields. g2σ and g2π are coupling constants.M, μ,
and r represent mass, chemical potential, and the Wilson
parameter, respectively. In this study, we always assume
that these parameters do not depend on f. In addition, we
always set r ¼ 1 and employ the Pauli matrices to represent
the two-dimensional γ-matrix via γ1 ¼ σx, γ2 ¼ σy, and
γ5 ¼ −iγ1γ2 ¼ σz. We regard ν ¼ 1ð2Þ as the spatial
(temporal) direction, assuming the (anti-)periodic boundary
condition.

A. Matrix product decomposition at initial stage

According to Ref. [32], the tensor network representa-
tion of the path integral Z generated by the lattice action (1)
is expressed in the form of

Z ¼ gTr

� Y
lattice site

T
�
; ð2Þ

where T is a Grassmann tensor, which is a multilinear
combination of Grassmann numbers.4 The size of the
Grassmann tensor is determined by the lattice geometry
and the hopping structure in Eq. (1). We have four
adjacent sites for each site on the square lattice Λ2 and
forward and backward hopping terms in each direction,
for each flavor. Therefore, T is written in the following
way:

2Generalization of the MPS toward higher-dimensional sys-
tems has been actively attempted [35–38], including an applica-
tion to the four-dimensional lattice quantum electrodynamics at
finite density [39].

3The model has been employed to benchmark the world line
and fermion bag approaches [41] and quantum simulation [42],
recently. See also the references therein.

4TRG approach for fermions was firstly introduced in
Refs. [45,46].
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where T is referred to as the coefficient tensor of T whose
indices take 0 or 1 and we set
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ηðfÞi , ξðfÞi , η̄ðfÞi , ξ̄ðfÞi (i ¼ 1, 2) are single-component
auxiliary Grassmann numbers. Note that the ordering
of Grassmann numbers in Eq. (6) [Eq. (7)] is different
from Eq. (4) [Eq. (5)]. These orderings help us to
integrate auxiliary Grassmann numbers in Eq. (2)
under the coarse-graining procedure [32]. The explicit
form of coefficient tensor in Eq. (3) can be straight-
forwardly obtained by the procedure explained in
Ref. [32].
Since the coefficient tensor T consists of 44Nf elements,

the size of the Grassmann tensor in Eq. (3) increases
exponentially with respect to Nf. We now decompose the
coefficient tensor into the lower-rank tensors, each of which
is related to each flavor’s degree of freedom. Firstly, we
rearrange indices of T and auxiliary Grassmann numbers in
Eq. (3) as
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where we have assumed that an extra sign factor coming
from the rearrangement of Grassmann numbers is included
in T. Φ describes
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Defining an eight-bit string If as

If ¼ xðfÞ1 xðfÞ2 tðfÞ1 tðfÞ2 xðfÞ
0

1 xðfÞ
0

2 tðfÞ
0

1 tðfÞ
0

2 ; ð10Þ

we consider the matrix product decomposition for T in
Eq. (8), which is easily obtained by repeating the singular
value decomposition (SVD) of T twice,

TI1I2I3 ¼
Xχ
α1¼1

UI1α1ðσα1V�
I2I3α1

Þ

¼
Xχ
α1¼1

Xχ
α2¼1

UI1α1Uα1I2α2σα2V
�
I3α2

: ð11Þ

Note that U’s and V’s are isometries and σ denotes the
singular value. Throughout this paper, we distinguish
tensors by their subscripts. χ is referred to as the flavor
bond dimension. The right-hand side of Eq. (11) is known as
the canonical form, where all tensors in the matrix product
decomposition satisfy some orthogonality conditions. In
case of Eq. (11), we have orthogonality conditions such that

X
I1

UI1α1U
�
I1α01

¼ δα1α01 ;

X
I2;α1

Uα1I2α2U
�
α1I2α02

¼ δα2α02 ;

X
I3

V�
I3α2

VI3α02
¼ δα2α02 :
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In the tensor network calculation based on the Hamiltonian
formalism, one uses the MPS with its canonical form to
represent a state vector. One of the advantages of the
canonical form is that one can calculate physical quantities
on a larger system just via some local manipulations. For a
detailed explanation of the canonical form, see Ref. [47], for
instance. In the following, we will see that the canonical
form enables us to calculate some reduced density matrices
easily and to develop a coarse-graining procedure of the
Grassmann tensor network via some local operations with
respect to each flavor. The matrix product decomposition of
Eq. (11) can be rewritten as

TI1I2I3 ¼
Xχ
α1¼1

Xχ
α2¼1

ΓI1
α1σα1Γ

I2
α1α2σα2Γ

I3
α2 ; ð12Þ

where ΓI1
α1 ¼ UI1α1 , Γ

I2
α1α2 ¼ σ−1α1 Uα1I2α2 , and ΓI3

α2 ¼ V�
I3α2

.
The right-hand side of Eq. (12) is a different type of
canonical form which was first proposed in Ref. [48], in
the context of the classical simulation of the quantum
computations based on the Hamiltonian formalism. In this
canonical form, singular values exist explicitly between allΓ
tensors. For Eqs. (11) and (12) to hold, a naive choice of χ is
χ ¼ 28. If we have the vanishing singular values, however,
we have a chance to compress original coefficient tensors
by expressing the right-hand sides of Eqs. (11) and (12).
We will see later that χ ¼ 4 is sufficiently large for these
equations to hold.

Obviously, the matrix product decomposition of the
coefficient tensor can be interpreted as that of the corre-
sponding Grassmann tensor. Equation (12) provides us
with

T ¼
Xχ
α1¼1

Xχ
α2¼1

Aα1σα1Bα1α2σα2Cα2 ; ð13Þ

where Aα1 , Bα1α2 , and Cα2 are the Grassmann tensors,
defined by contracting If (f ¼ 1, 2, 3) with corresponding
Grassmann numbers in Eq. (8), labeled by some extra
indices, α1, α2. Figure 1 schematically shows Eq. (2) with
Nf ¼ 3 and its matrix product decomposition of Eq. (13).
We can understand that Eq. (13) has introduced a virtual
direction for the original two-dimensional Grassmann
tensor network. Notice that the contractions parallel to
the original two-dimensional plane are the Grassmann
contractions, but those along the virtual direction are
normal tensor contractions.

B. Coarse-graining procedure

Our method is basically similar to the algorithm of
higher-order TRG (HOTRG) [10]. At each coarse-graining
step, however, we convert two adjacent coefficient tensors,
along the spatial or temporal direction, into a canonical
form along the virtual direction before we carry out the
spacetime coarse-graining, doing the same with the
HOTRG. A schematic picture is shown in Fig. 2. In

FIG. 1. Schematic illustration of Eq. (2) with Nf ¼ 3. (a) Original description of Eq. (2). Yellow square symbols show the Grassmann
tensor defined by Eq. (3). (b) Equation (2) generated by Eq. (13). Green square symbols showAα1, Bα1α2 , and Cα2 in Eq. (13). Diamond
symbols correspond to σα1 and σα2 in Eq. (13). Contractions parallel to the original two-dimensional plane are given by the Grassmann
contractions. On the other hand, contractions along the virtual direction are given by normal tensor contractions. (c) Diagrammatic
representation of Eq. (13).
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addition to the flavor bond dimension χ, we also introduce
the spacetime bond dimensionD to decimate the degrees of
freedom under the coarse-graining. Let q be an integer to
specify the iteration number of coarse-graining. Then the
algorithm sequentially defines a coarse-graining transfor-
mation from two adjacent T ðqÞ’s to T ðqþ1Þ, where

T ðqÞ ¼
Xχ
α1¼1

Xχ
α2¼1

AðqÞ
α1 σ

ðqÞ
α1 B

ðqÞ
α1α2σ

ðqÞ
α2 C

ðqÞ
α2 : ð14Þ

The coarse-grained tensor T ðqÞ is defined on a lattice with
2q sites. T ð0Þ is given by Eq. (13). In other words, repeating
this coarse-graining procedure q times, 2q numbers of T ð0Þ
are approximately contracted. We shall start with the
coarse-graining along the temporal direction, so we have
2k sites in the spatial direction and 2kþ1 sites in the temporal
direction when q ¼ 2kþ 1 (k ¼ 0; 1;…).
To obtain the canonical form with the fixed flavor bond

dimension χ, we derive several squeezers (flavor squeezers)
as explained in Appendix A 1. The SVD carried out by

these flavor squeezers updates σðqÞα1 and σðqÞα2 . On the other
hand, the spacetime coarse-graining is given by different
squeezers (spacetime squeezers) with the spacetime bond

dimension D as explained in Appendix A 2. By these
spacetime and flavor squeezers, AðqÞ, BðqÞ, and CðqÞ are
updated. We emphasize that the canonical form allows
us to perform the spacetime coarse-graining for each flavor
segment, AðqÞ, BðqÞ, CðqÞ, separately. Furthermore, this
coarse-graining scheme can be straightforwardly extended
to arbitrary Nf, keeping the number of local tensors needed
to describe the Grassmann tensor network constant, Nf, at
all coarse-graining steps.

III. NUMERICAL RESULTS

We provide several benchmark results in the lattice
GNW model at finite density. In the following, we set g2 ¼
g2σ ¼ g2π for simplicity. The lattice volume is denoted by V.
Firstly, we check the efficiency of the matrix product
decomposition at the initial stage; How large should χ in
Eq. (12) be to restore the original coefficient tensor?
Secondly, we compute the path integral with Nf ¼ 3

and g2 ¼ 0. This computation allows us to verify our
coarse-graining procedure via a comparison of the numeri-
cal result and the exact solution. Then, we employ the
current algorithm to calculate the GNW model with g2 ≠ 0
in the finite chemical potential regime.

(a) (b)

(c)

FIG. 2. Schematic illustration of our coarse-graining procedure. (a) Two adjacent T ðqÞ’s along the temporal (spatial) direction are
transformed into a canonical form along the virtual direction with the finite flavor bond dimension χ. (b) Spacetime coarse-graining
decimates the degrees of freedom along the spatial (temporal) direction with the finite spacetime bond dimension D. (c) Since the
resulting network has the same geometry as it did, we can repeat the procedure.
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A. Matrix product decomposition at initial stage

To check the efficiency of the matrix product decom-
position at the initial stage, we define

RpðχÞ ¼ jjTð0Þjj−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXχ
αp¼1

σ2αp

vuut ; ð15Þ

with p ¼ 1, 2. jjTð0Þjj denotes the Frobenius norm of the
initial coefficient tensor and σαp ’s are the singular values in
Eq. (12). By definition, RpðχÞ is always less than or equal
to 1. Obviously, Rpð28Þ ¼ 1 holds. Figure 3 shows RpðχÞ
as a function of g2, varying χ. We setM ¼ 0 and μ ¼ 0. We
can see that χ ¼ 4 < 28 is sufficiently large to make
Eq. (12) hold. This means that the two-dimensional
GNW model with Nf ¼ 3 can be exactly expressed as
the three-layer Grassmann tensor network, whose bond
dimension is four, as shown in Fig. 1(b). This can be
attributed to the fact that although each Ij (j ¼ 1, 2, 3) in
Eq. (12) describes 28 patterns of combinations of auxiliary
Grassmann numbers, most of them have vanishing con-
tribution due to the Grassmann nature. Therefore, we
expect that this kind of matrix product decomposition is
efficient not only for the GNW model but also for other
pure fermionic systems.
We can predict that the effect of truncation by flavor

squeezers in the coarse-graining procedure should depend
on g2 because Fig. 3 tells us the singular value spectrum
depends on the coupling constant. Note that g2 ¼ 0 is a
special point: when g2 ¼ 0, Eq. (12) holds just with χ ¼ 1,
because the coefficient tensor for Nf-flavor free fermions is
given by the direct product of the Nf number of coefficient
tensors for the single-flavor free fermion.

B. Free field computation

Next, we calculate three-flavor Wilson fermions with the
vanishing interaction. As mentioned previously, there is no
truncation error coming from the finite flavor bond dimen-
sion, because we just need χ ¼ 1, so we can focus on the
finite-D effect originating from the spacetime squeezers.
Figure 4 shows the free energy density with M ¼ 1 and
μ ¼ 0 as a function of q, the iteration number of the coarse-
graining introduced in Eq. (14). It shows that the numerical
result by our algorithm with D ¼ 16 successfully repro-
duces the exact solution. At V ¼ 220, the relative error of
the free energy is Oð10−7Þ. We also have naively employed
the HOTRG algorithm with D ¼ 64, to evaluate the
original Grassmann tensor network generated by
Eq. (3).5 Although the relative error becomes Oð10−5Þ at

V ¼ 220, the small volume results are inconsistent with
exact ones. Note that we have to take D ≥ 64 to avoid an
extra approximation for the initial tensor itself in the naive
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FIG. 3. RpðχÞ as a function of g2 with χ ¼ 1, 2, 3, 4. M and μ
are set to be zero.

5The HOTRG calculations in Figs. 4 and 5 are performed not
by isometries but by spacetime squeezers. Note that this type of
algorithmic extension has already appeared in Refs. [11,49–51].
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computation. Since the path integral of the free field theory
with multiflavors is given by the product of free field
theories with one flavor, the HOTRG can achieve much
higher accuracy if one applies it to the single-flavor theory.
However, such a treatment is available only for free field
theories.
Similarly, Fig. 5 shows the free energy density with

M ¼ 0 and μ ¼ 0. The relative error at V ¼ 220 is Oð10−4Þ
by our method. Again, we have naively employed the
HOTRG algorithm with D ¼ 64 and D ¼ 70 to evaluate
the original Grassmann tensor network. Their coarse-
graining histories suggest that there is little hope to restore
the exact solution by the naive HOTRG computations for

massless Wilson fermions. On the other hand, our method
enables us to exactly carry out the tensor contractions up to
V ¼ 22 regardless of M, and to evaluate the path integral
in the thermodynamic limit. Therefore, these numerical
results imply that our algorithm could achieve better
performance in multiflavor fermion models with relatively
small bond dimensions compared with conventional TRG
algorithms.

C. Interacting fermions at finite density

We now move on to the benchmark calculation with
g2 ≠ 0 at finite density. We evaluate pressure P and number
density n on a lattice, whose size is V ¼ 220, as functions of
chemical potential. In this work, the latter is calculated by
the forward differentiation of the pressure such that

n ¼ ∂PðμÞ
∂μ

≈
Pðμþ ΔμÞ − PðμÞ

Δμ
ð16Þ

with Δμ ¼ 0.1. We consider massive fermions withM ¼ 1
in order to observe a clear signal of the Silver Blaze
phenomenon, which is a characteristic feature at finite
density; bulk observables in the thermodynamic and zero-
temperature limits do not depend on chemical potential up
to a certain value μc [43]. We choose g2 ¼ 10 as a
representative. We always set D ¼ 20 and vary the flavor
bond dimension χ. Since we have observed the Oð10−7Þ
relative error in the free field computation with M ¼ 1, we
guess that D ¼ 20 is sufficiently large to suppress the
finite-D effect. We also calculate the same quantities by the
BTRG [44] based on the two-dimensional Grassmann
tensor network generated by Eq. (3) for validation.6

Since the accuracy of the BTRG is higher than that
of HOTRG at the same bond dimension [44], it would
provide us with a good reference for massive fermion
calculations.
Figures 6 and 7 show pressure and number density with

Nf ¼ 2 as functions of the chemical potential μ. To see
χ-dependence, we have varied it as χ ¼ 4, 6, 8. Note that
the GNW model with Nf ¼ 2 can be described as the two-
layer Grassmann tensor network, whose bond dimension is
equal to four. The results obtained by our algorithm are
consistent with those of the BTRG, where the Silver Blaze
phenomenon is clearly observed. Since we are considering
the lattice Wilson fermion with Nf ¼ 2, the behavior of
number density is also reasonable. The endpoint of the
Silver Blaze phenomenon seems around μc ∼ 1.7.
The calculations with χ ¼ 4, 6 in Fig. 7 suggest that the
finite-χ effect is more pronounced in the Silver Blaze
regime.
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FIG. 4. Free energy of the three-flavor Wilson fermion with
M ¼ 1 and μ ¼ 0, as a function of the iteration number q. Circles
show the exact solution. Triangles are the result of naive HOTRG
with D ¼ 64. The result obtained by our algorithm is shown as
cross symbols. When q is odd, it corresponds to the coarse-
graining along the temporal direction.
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FIG. 5. Free energy of the three-flavor Wilson fermion with
M ¼ 0 and μ ¼ 0, as a function of the iteration number q. Circles
show the exact solution. Triangles are the results of naive
HOTRG with D ¼ 64 (green) and D ¼ 70 (brown). The result
obtained by our algorithm is shown as cross symbols. When q is
odd, it corresponds to the coarse-graining along the temporal
direction.

6In the following, the hyperparameter k in the BTRG algorithm
is always set as k ¼ −0.5, which is the optimal choice also in the
case of lattice fermion, as shown in Ref. [52].
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We make a similar comparison between our algorithm
and the BTRG in the case of Nf ¼ 3. In Fig. 8, we see that
results obtained by both methods are consistent and capture
the signal of the Silver Blaze phenomenon. As shown in
Fig. 9, the maximal number of fermions per site should be 3
because of Nf ¼ 3. Again, we find that the finite-χ effect
is more pronounced in the Silver Blaze regime. However,
the computation is stabilized with χ ¼ 8 and the plateau of
n ¼ 0 is restored. The endpoint of the Silver Blaze
phenomenon seems around μc ∼ 1.6 with Nf ¼ 3.

IV. SUMMARY AND OUTLOOK

Using the matrix product decomposition, we have shown
that the lattice Gross-Neveu model with Nf ¼ 2, 3 can be
described as the two- and three-layer Grassmann tensor
network, whose bond dimension is four. Based on this
multi-layer representation, we have developed the coarse-
graining procedure, where we convert two adjacent coef-
ficient tensors into a canonical form along the virtual
direction before we carry out the spacetime renormaliza-
tion. Thanks to the canonical form, we can obtain reduced
density matrices easily and develop the coarse-graining
procedure of the Grassmann tensor network via local
operations with respect to each flavor. With vanishing
interaction, our algorithm automatically reduces the three-
flavor computation into the single-flavor one. This feature
suggests that our algorithm show better performance,
particularly in weak-coupling regime with lighter mass,
compared with conventional TRG algorithms. As a bench-
mark, we have calculated pressure and number density as
functions of chemical potential on the lattice with V ¼ 220.
Although the finite-χ effect tends to be more pronounced in
the Silver Blaze regime, the phenomena have been clearly
observed with relatively small χ and D.
There are several future research directions. If we could

have the right-hand side of Eq. (12) analytically in advance,
not via the SVD of the left-hand side of Eq. (12)
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FIG. 8. Pressure as a function of chemical potential with
Nf ¼ 3, g2 ¼ 10, and M ¼ 1. Square and diamond symbols
correspond to computations with our algorithm setting χ ¼ 6, 8,
respectively. The spacetime bond dimension is set as D ¼ 20 in
all cases. Circles show the BTRG calculations, setting D ¼ 80.
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numerically, the memory cost is reduced from OðeNfÞ to
OðNfÞ. Since local Grassmann tensors are usually sparse, it
can be expected that the geometry of the network can be
rigorously deformed in other fermionic systems, not only
the GNW model. It seems very interesting to extend this
study to four-dimensional lattice fermions with two and
three flavors because they are necessary ingredients of the
lattice quantum chromodynamics. In addition, since our
coarse-graining algorithm for d-dimensional lattice fer-
mions is similar to the (dþ 1)-dimensional HOTRG, we
can reduce the computational cost by considering the
(dþ 1)-dimensional anisotropic TRG (ATRG) [11].
Moreover, the coarse-graining of the Γ tensor for each
flavor [as shown in Eqs. (A43)–(A45)] can be done
separately for each flavor, which is also compatible with
parallel computation. As another future work, we are also
planning to investigate the Grassmann tensor network
formulation for the spin-S system with S ¼ 1=2 or
S ¼ 1. We expect that the current coarse-graining pro-
cedure is promising to study such a system with the TRG
approach.
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APPENDIX: ALGORITHMIC DETAILS OF
COARSE-GRAINING PROCEDURE

We demonstrate how to perform a single coarse-graining
transformation. We omit the iteration number q as shown in
Eq. (14) from all tensors.

1. Conversion to the canonical form
using flavor squeezers

Let us rewrite Eq. (12) as

TX1T1X0
1
T 0
1
X2T2X0

2
T 0
2
X3T3X0

3
T 0
3

¼
Xχ
α1¼1

Xχ
α2¼1

ΓX1T1X0
1
T 0
1

α1 σα1Γ
X2T2X0

2
T 0
2

α1α2 σα2Γ
X3T3X0

3
T 0
3

α2 : ðA1Þ

We now introduce binary functions on these subscripts
such that7

fIðIÞ ¼
�
0 if I corresponds to the Grassmann even combination

1 if I corresponds to the Grassmann odd combination
; ðA2Þ

with I ¼ Xf; Tf; X0
f; T

0
f for f ¼ 1, 2, 3. These binary

functions are helpful to restore the Grassmann calculus
just within coefficient tensors [54]. Let us focus on
adjacent coefficient tensors along the temporal direction
and set

TX̂1T̂1X̂
0
1T1X̂2T̂2X̂

0
2T2X̂3T̂3X̂

0
3T3

¼
Xχ
α̂1¼1

Xχ
α̂2¼1

ΓX̂1T̂1X̂
0
1T1

α̂1
σα̂1Γ

X̂2T̂2X̂
0
2T2

α̂1α̂2
σα̂2Γ

X̂3T̂3X̂
0
3T3

α̂2
ðA3Þ

be a coefficient tensor on a lattice site nþ 2̂, and

TX̌1T1X̌
0
1Ť

0
1X̌2T2X̌

0
2Ť

0
2X̌3T3X̌

0
3Ť

0
3

¼
Xχ
α̌1¼1

Xχ
α̌2¼1

ΓX̌1T1X̌
0
1Ť

0
1

α̌1
σα̌1Γ

X̌2T2X̌
0
2Ť

0
2

α̌1α̌2
σα̌2Γ

X̌3T3X̌
0
3Ť

0
3

α̌2
ðA4Þ

on a site n (Fig. 10). Integrating out auxiliary Grassmann
variables on the link ðn; nþ 2̂Þ, which are shared by these
two tensors, we have a new Grassmann tensor whose
coefficient tensor is given by

FIG. 10. Illustration of temporally adjacent coefficient tensors.
Square and diamond symbols are Γ’s and σ’s, respectively, in
Eqs. (A3) and (A4).

7When q ¼ 0, all the upper subscripts in Eq. (A1) are the
two-bit strings defined via Xf ¼ xðfÞ1 xðfÞ2 , Tf ¼ tðfÞ1 tðfÞ2 ,

X0
f ¼ xðfÞ

0
1 xðfÞ

0
2 , and T 0

f ¼ tðfÞ
0

1 tðfÞ
0

2 with f ¼ 1, 2, 3.
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ðTTÞX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3 ¼

Xχ
α̂1¼1

Xχ
α̂2¼1

Xχ
α̌1¼1

Xχ
α̌2¼1

X
T1;T2;T3

ð−1ÞfT1 ðT1ÞþfT2 ðT2ÞþfT3 ðT3Þ

× ΓX̂1T̂1X̂
0
1T1

α̂1
σα̂1Γ

X̂2T̂2X̂
0
2T2

α̂1α̂2
σα̂2Γ

X̂3T̂3X̂
0
3T3

α̂2
ΓX̌1T1X̌

0
1Ť

0
1

α̌1
σα̌1Γ

X̌2T2X̌
0
2Ť

0
2

α̌1α̌2
σα̌2Γ

X̌3T3X̌
0
3Ť

0
3

α̌2
: ðA5Þ

Note that ð−1ÞfT1 ðT1ÞþfT2 ðT2ÞþfT3 ðT3Þ is resulting from the
integration over auxiliary Grassmann variables on the
link ðn; nþ 2̂Þ.
Let us convert Eq. (A5) into a canonical form along the

virtual direction. A naive way is to directly carry out the
SVD of Eq. (A5), but here we consider an indirect way,
which requires less memory space. Setting

A
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

α̂1α̌1
¼

X
T1

ð−1ÞfT1 ðT1ÞΓX̂1T̂1X̂
0
1T1

α̂1
ΓX̌1T1X̌

0
1Ť

0
1

α̌1
; ðA6Þ

B
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α̂1α̌1

¼
X
α̂2;α̌2

X
T2;T3

ð−1ÞfT2 ðT2ÞþfT3 ðT3Þ

× ΓX̂2T̂2X̂
0
2T2

α̂1α̂2
σα̂2Γ

X̂3T̂3X̂
0
3T3

α̂2
ΓX̌2T2X̌

0
2Ť

0
2

α̌1α̌2
σα̌2Γ

X̌3T3X̌
0
3Ť

0
3

α̌2
; ðA7Þ

we introduce an invertible matrix R such that

X
α̂1;α̌1

A
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

α̂1α̌1
R−1
α̂1α̌1β

¼ Q
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

β ; ðA8Þ

where Q satisfies the following condition,

X
X̂1;X̌1;T̂1;X̂

0
1;X̌

0
1;Ť

0
1

Q
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

β Q�X̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

β0 ¼ δββ0 : ðA9Þ

To derive R, it is useful to construct a reduced density
matrix from A,

ρα̂1α̌1α̂01α̌01 ¼
X

X̂1;X̌1;T̂1;X̂
0
1;X̌

0
1;Ť

0
1

A
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

α̂1α̌1
A�X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

α̂0
1
α̌0
1

;

ðA10Þ

whose eigenvalue decomposition (EVD) provides us with
R via

Rα̂1α̌1β ¼ Uα̂1α̌1β

ffiffiffiffiffi
λβ

q
; ðA11Þ

where U diagonalizes the reduced density matrix in
Eq. (A10) and λβ is the eigenvalue. Similarly, we can find
an invertible matrix L such that

X
α̂1;α̌1

L−1
γα̂1α̌1

B
X̂2���Ť 0

3

α̂1α̌1
¼ Q

X̂2���Ť 0
3

γ ; ðA12Þ

with the following orthogonality condition,

X
X̂2;…;Ť 0

3

Q
X̂2���Ť 0

3
γ Q�X̂2���Ť 0

3

γ0 ¼ δγγ0 : ðA13Þ

Again, the reduced density matrix constructed from B
provides us with a possible choice of L. Defining

Mβγ ¼
X
α̂1;α̌1

Rα̂1α̌1βσα̂1σα̌1Lα̂1α̌1γ; ðA14Þ

whose low-rank approximation is

Mβγ ≈
Xχ
α1¼1

Uβα1σα1V
�
γα1 ; ðA15Þ

we can introduce three-leg tensors,

Wα̂1α̌1α1 ¼
X
β

R−1
α̂1α̌1β

Uβα1 ; ðA16Þ

Xα1α̂1α̌1 ¼
X
γ

V�
γα1L

−1
γα̂1α̌1

: ðA17Þ

Using W and X, we can indirectly obtain

ðTTÞX̂1���Ť 0
1X̂2���Ť 0

2X̂3���Ť 0
3≈

Xχ
α1¼1

X
β;γ

Q
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

β Uβα1σα1V
�
γα1

×Q
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

γ ; ðA18Þ

which is the SVD of Eq. (A5). We refer to these three-leg
tensors as flavor squeezers. The above procedure to derive
W and X are diagrammatically summarized in Fig. 11.8

8So far, R and L have been written as if they are of three legs.
However, one can also regard them as four-leg tensors and Fig. 11
is based on the later description.
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Next, setting

C
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α̂2α̌2

¼
X
α̂1;α̌1

X
T2

ð−1ÞfT2 ðT2Þσα1Xα1α̂1α̌1Γ
X̂2T̂2X̂

0
2T2

α̂1α̂2
ΓX̌2T2X̌

0
2Ť

0
2

α̌1α̌2
;

ðA19Þ

D
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α̂2α̌2
¼
X
T3

ð−1ÞfT3 ðT3ÞΓX̂3T̂3X̂
0
3T3

α̂2
ΓX̌3T3X̌

0
3Ť

0
3

α̌2
; ðA20Þ

we consider invertible matrices R0 and L0 such that

X
α̂2;α̌2

C
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α̂2α̌2
R0−1

α̂2α̌2β
¼ Q

X̂2X̌2T̂2X̂
0
2X̌

0
2Ť

0
2

α1β
; ðA21Þ

X
α̂2;α̌2

L0−1
γα̂2α̌2

D
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α̂2α̌2
¼ Q

X̂3X̌3T̂3X̂
0
3X̌

0
3Ť

0
3

γ ; ðA22Þ

with orthogonality conditions

X
α1;X̂2;X̌2;T̂2;X̂

0
2;X̌

0
2;Ť

0
2

Q
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1β
Q�X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1β
0 ¼δββ0 ;

ðA23Þ

X
X̂3;X̌3;T̂3;X̂

0
3;X̌

0
3;Ť

0
3

Q
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

γ Q�X̂3X̌3T̂3X̂
0
3X̌

0
3Ť

0
3

γ0 ¼ δγγ0 : ðA24Þ

Constructing a reduced density matrix from C (D), one can
find R0 (L0) in the same way with Eq. (A11) satisfying
Eqs. (A21) and (A23) [Eqs. (A22) and (A24)]. Introducing

M0
βγ ¼

X
α̂2;α̌2

R0
α̂2α̌2β

σα̂2σα̌2L
0
α̂2α̌2γ

; ðA25Þ

whose low-rank approximation is

M0
βγ ≈

Xχ
α2¼1

Uβα2σα2V
�
γα2 ; ðA26Þ

we can derive flavor squeezers,

(a) (b)

(d)(c)

(e) (f)

FIG. 11. Illustration of how to derive flavor squeezers W and X. (a) Diagrammatic representation of Eq. (A5). Tensor contraction
surrounded by a red dotted curve on the left shows (a) in Eq. (A6). That surrounded by a red dotted curve on the right shows (b) in
Eq. (A7). (b) Inserting RðL) and its inverse to the right(left) of (a)[(b)]. (c) Tensor contraction in red dotted curve corresponds with the
right-hand side of Eq. (A14). (d) Carrying out the contraction in (c), we haveM in the left-hand side of Eq. (A14). (e) Truncated SVD of
M with the flavor bond dimension χ. Tensor contraction in a red dotted curve on the left defines the flavor squeezer W in Eq. (A16).
Similarly, tensor contraction in a red dotted curve on the right defines the flavor squeezer X in Eq. (A17). (f)W and X indirectly give us
the SVD-based low-rank approximation of Eq. (A5).
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Y α̂2α̌2α2 ¼
X
β

R0−1
α̂2α̌2β

Uβα2 ; ðA27Þ

Zα2α̂2α̌2 ¼
X
γ

V�
γα2L

0−1
γα̂2α̌2

: ðA28Þ

Note that these flavor squeezers Y and Z enable us to
indirectly carry out the SVD of

X
α̂2;α̌2

C
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α̂2α̌2
σα̂2σα̌2D

X̂3X̌3T̂3X̂
0
3X̌

0
3Ť

0
3

α̂2α̌2
; ðA29Þ

whose singular value is σα2 in Eq. (A26). Figure 12
summarizes how to derive Y and Z.

2. Spacetime coarse-graining

Using flavor squeezers, W, X, Y, and Z derived pre-
viously, we can express Eq. (A5) in the canonical form of

ðTTÞX̂1���Ť 0
1X̂2���Ť 0

2X̂3���Ť 0
3 ≈

Xχ
α1¼1

Xχ
α2¼1

ΓX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

α1

×σα1Γ
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α2 σα2Γ
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α2 ;

ðA30Þ

where σα1 , σα2 are given in Eqs. (A15) and (A26),
respectively, and

ΓX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

α1 ¼
X
α̂1;α̌1

A
X̂1X̌1T̂1X̂

0
1X̌

0
1Ť

0
1

α̂1α̌1
Wα̂1α̌1α1 ; ðA31Þ

σα1Γ
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α2 ¼
X
α̂2;α̌2

C
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α̂2α̌2
Y α̂2α̌2α2 ; ðA32Þ

ΓX̂3X̌3T̂3X̂
0
3X̌

0
3Ť

0
3

α2 ¼
X
α̂2;α̌2

Zα2α̂2α̌2D
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α̂2α̌2
: ðA33Þ

Note that the flavor squeezer X has been employed to
define C as in Eq. (A19).
Thanks to orthogonality conditions in Eqs. (A9), (A13),

(A23), and (A24), we are allowed to carry out the HOTRG-
like spacetime coarse-graining “locally” with respect to

(a) (b)

(c) (d)

(e) (f)

FIG. 12. Illustration of how to derive flavor squeezers Y and Z. (a) Tensor contraction surrounded by a red dotted curve on the left
shows (c) in Eq. (A19). That surrounded by a red dotted curve on the right shows (d) in Eq. (A20). (b) Inserting R0ðL0Þ and its inverse to
the right(left) of (c)[(d)]. (c) Tensor contraction in a red dotted curve corresponds with the right-hand side of Eq. (A25). (d) Carrying out
the contraction in (c), we haveM0 in the left-hand side of Eq. (A25). (e) Truncated SVD ofM0 with the flavor bond dimension χ. Tensor
contraction in a red dotted curve on the left defines the flavor squeezer Y in Eq. (A27). Similarly, tensor contraction in a red dotted curve
on the right defines the flavor squeezer Z in Eq. (A28). (f) Y and Z indirectly give us the SVD-based low-rank approximation of
Eq. (A29).
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each flavor segment. For example, let us consider the
following density matrix,

ρX̂1X̌1
˜̂X1

˜̌X1 ¼
X

T̂1;X̂
0
1;X̌

0
1;Ť

0
1

X
X̂2;…;Ť 0

2

X
X̂3;…;Ť 0

3

ðTTÞX̂1X̌1���Ť 0
1X̂2���Ť 0

2X̂3���Ť 0
3ðTTÞ� ˜̂X1

˜̌X1���Ť 0
1X̂2���Ť 0

2X̂3���Ť 0
3 :

ðA34Þ

Using the orthogonality condition of Eq. (A13) and the
approximation of ðTTÞ in Eq. (A18), one can calculate

ρX̂1X̌1
˜̂X1

˜̌X1 as

ρX̂1X̌1
˜̂X1

˜̌X1 ¼
X

T̂1;X̂
0
1;X̌

0
1;Ť

0
1

X
α1

ΓX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

α1 σα1Γ
� ˜̂X1

˜̌X1T̂1X̂
0
1X̌

0
1Ť

0
1

α1 σα1 :

ðA35Þ

One can define ρX̂2X̌2
˜̂X2

˜̌X2 and ρX̂3X̌3
˜̂X3

˜̌X3 in the same way
with Eq. (A34). Using orthogonality conditions of
Eqs. (A23) and (A24) and the approximation of ðTTÞ in
Eq. (A30), one obtains these reduced density matrices via

ρX̂2X̌2
˜̂X2

˜̌X2 ¼
X

T̂2;X̂
0
2;X̌

0
2;Ť

0
2

X
α1;α2

σα1Γ
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α2

σα2σα1Γ
� ˜̂X2

˜̌X2T̂2X̂
0
2X̌

0
2Ť

0
2

α1α2 σα2 ; ðA36Þ

ρX̂3X̌3
˜̂X3

˜̌X3 ¼
X

T̂3;X̂
0
3;X̌

0
3;Ť

0
3

X
α2

σα2Γ
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α2 σα2Γ
� ˜̂X3

˜̌X3T̂3X̂
0
3X̌

0
3Ť

0
3

α2 :

ðA37Þ

A similar discussion provides us with reduced density
matrices such that

ρX̂
0
1X̌

0
1
˜̂X
0
1
˜̌X
0
1 ¼

X
X̂1;X̌1;T̂1;Ť

0
1

X
α1

ΓX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

α1 σα1Γ
�X̂1X̌1T̂1

˜̂X
0
1
˜̌X
0
1Ť

0
1

α1 σα1 ;

ðA38Þ

ρX̂
0
2X̌

0
2
˜̂X
0
2
˜̌X
0
2 ¼

X
X̂2;X̌2;T̂2;Ť

0
2

X
α1;α2

σα1Γ
X̂2X̌2T̂2X̂

0
2X̌

0
2Ť

0
2

α1α2

× σα2σα1Γ
�X̂2X̌2T̂2

˜̂X
0
2
˜̌X
0
2Ť

0
2

α1α2 σα2 ; ðA39Þ

ρX̂
0
3X̌

0
3
˜̂X
0
3
˜̌X
0
3 ¼

X
X̂3;X̌3;T̂3;Ť

0
3

X
α2

σα2Γ
X̂3X̌3T̂3X̂

0
3X̌

0
3Ť

0
3

α2 σα2Γ
�X̂3X̌3T̂3

˜̂X
0
3
˜̌X
0
3Ť

0
3

α2 :

ðA40Þ

Since the current Grassmann tensor network is translation-
ally invariant on a lattice, these reduced density matrices
and their EVDs followed by the SVD give us squeezers for

the spatial direction. Denoting spacetime squeezers as E for
the forward subscript X̂fX̌f, and F for the backward
subscript X̂0

fX̌
0
f, we have

EX̂fX̌fXf ¼
X
xf

ðR−1ÞX̂fX̌fxfUxfXf
ffiffiffiffiffiffiffi
σXf

p
; ðA41Þ

FX̂0
fX̌

0
fX

0
f ¼

X
x0f

ffiffiffiffiffiffiffi
σX0

f

p ðV�Þx0fX0
fðL−1ÞX̂0

fX̌
0
fx

0
f ; ðA42Þ

with f ¼ 1, 2, 3. Note that R and L can be obtained from
the EVDs of reduced density matrices and U, V�. σ’s in
Eqs. (A41) and (A42) are given by the SVD of RL. Unlike
the flavor squeezers, we always take the square root of the
singular values and they are assigned for each pair of
squeezers equally. We refer to them as spacetime squeezers,
whose derivation is similar to that of flavor squeezers,
explained previously. Note that when we derive spacetime
squeezers, we need to carry out EVDs of reduced density
matrices under their block diagonalized forms, which are
helpful to update binary functions fX in Eq. (A2). See
Ref. [54] for detail. The spacetime coarse-graining of Γ’s
are accomplished by

ΓX1T̂1X0
1
Ť 0
1

α1 ¼
X

X̂1;X̌1;X̂
0
1;X̌

0
1

ΓX̂1X̌1T̂1X̂
0
1X̌

0
1Ť

0
1

α1 EX̂1X̌1X1FX̂0
1X̌

0
1X

0
1 ; ðA43Þ

ΓX2T̂2X0
2
Ť 0
2

α1α2 ¼
X

X̂2;X̌2;X̂
0
2;X̌

0
2

ΓX̂2X̌2T̂2X̂
0
2X̌

0
2Ť

0
2

α1α2 EX̂2X̌2X2FX̂0
2X̌

0
2X

0
2 ; ðA44Þ

ΓX3T̂3X0
3
Ť 0
3

α2 ¼
X

X̂3;X̌3;X̂
0
3;X̌

0
3

ΓX̂3X̌3T̂3X̂
0
3X̌

0
3Ť

0
3

α2 EX̂3X̌3X3FX̂0
3X̌

0
3X

0
3 ; ðA45Þ

where the size of Xf with f ¼ 1, 2, 3 is fixed up to D,
which is referred to as the spacetime bond dimension.
Although the spacetime coarse-graining is apparently
carried out for each Γ, each flavor, separately, this provides
us with a possible coarse-graining of ðTTÞ in Eq. (A5). This
is a direct benefit of constructing canonical forms for ðTTÞ
employing flavor squeezers. Redefining Tf ¼ T̂f, T 0

f ¼ Ťf

for f ¼ 1, 2, 3, we obtain the coarse-grained coefficient
tensor, whose form is completely same with the right-hand
side of Eq. (A1) (see Fig. 13). Thus, the procedure
explained above can be easily repeated under the fixed
flavor bond dimension χ and the spacetime bond dimension
D. At each coarse-graining step, the number of Grassmann
tensors in Eq. (2) is reduced to half. Repeating the coarse-
graining procedure alternately along the temporal and
spatial directions, as the HOTRG does, one can evaluate
the path integral of Eq. (2) on the thermodynamic lattice.
Although our explanation has assumed Nf ¼ 3, the pro-
cedure is easily applicable for the case with Nf ¼ 2.
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Finally, we summarize the computational cost of the
current coarse-graining procedure, which consists of three
tasks, (i) to derive the flavor squeezers, (ii) to derive the
spacetime squeezers, and (iii) the tensor contraction
with these squeezers. Suppose we apply the method
to the d-dimensionalNf-flavor lattice theory. The computa-
tional cost of (i), dominated by tensor contraction to obtain
reduced density matrices, scales with Oðχ4Dmaxð2dþ1;2Nf−2ÞÞ

with the Oðχ2D2ðNf−1ÞÞ memory cost. The computational
cost of (ii), also dominated by tensor contraction to obtain
reduced density matrices, scales with Oðχ4D2dþ2Þ with the
Oðχ4D4Þmemory cost. The computational cost of (iii) scales
with Oðχ4D4d−1Þwith the Oðχ2D2dÞmemory cost. The task
of (iii) is similar to the coarse-graining in the (dþ 1)-
dimensional HOTRG. Therefore, the computational cost of
(iii) should scale with Oðχ4D4d−1Þ.
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