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We discuss the chiral fermion in the Hamiltonian formalism of lattice gauge theory. Although the naive
chiral charge operator does not commute with the Hamiltonian, the commutable one can be defined for the
overlap fermion. The eigenvalues of the energy and the chiral charge can be defined simultaneously. We
study how the eigenvalue spectrum reflects chiral properties of systems, such as a chiral chemical potential
and the axial anomaly. We also show that the Wilson fermion is a chiral fermion in one dimension.
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I. INTRODUCTION

The Hamiltonian lattice gauge theory, i.e., the canonical
formalism of lattice gauge theory, has a long history. It
started at the dawn of lattice gauge theory [1,2].
Afterwards, however, the path integral formalism [3]
became mainstream due to its theoretical simplicity and
computational advantage. The Hamiltonian lattice gauge
theory was left behind and not fully developed. Nowadays,
there is a revival of the Hamiltonian lattice gauge theory
from the viewpoint of quantum computation and tensor
network theory to simulate lattice gauge theory without
suffering from the notorious sign problem [4,5]. It would be
time to restart the development of the Hamiltonian lattice
gauge theory.
In this paper, we focus on the chiral fermion in the

Hamiltonian lattice gauge theory. The Nielsen-Ninomiya
no-go theorem prohibits the existence of naive chiral
symmetry on the lattice [6,7]. The solutions to this
problem, the so-called chiral fermion, are well-established
in the path integral formalism. A famous one is the overlap
fermion [8]. It satisfies the Ginsparg-Wilson relation [9]
without approximation and holds the chiral symmetry on
the lattice. The overlap fermion is used for the lattice study
of chiral phenomena, such as the axial anomaly [10–12]
and the index theorem [13–17]. Since the overlap fermion
respects the Ginsparg-Wilson relation exactly, we can
investigate the chiral properties without any ambiguity.
The discussion at the same level must be possible in the

Hamiltonian formalism. So far, however, we have only
limited knowledge of the chiral fermion in the Hamiltonian
lattice gauge theory [18–21]. We need to investigate its
property in more detail.
This paper is organized as follows. We start with the

definition of the chiral charge operator in the Hamiltonian
lattice gauge theory in Sec. II. We introduce the overlap
fermion in Sec. III and analyze its eigenvalue spectrum on
the three-dimensional lattice in Sec. IV. Finally, we com-
ment on the one-dimensional case in Sec. V.

II. HAMILTONIAN LATTICE GAUGE THEORY

We consider a d-dimensional lattice (d ¼ 1 or 3) with
periodic boundary conditions. We use the lattice unit and
eliminate the lattice spacing in the following equations. On
the lattice, the fermion creation and annihilation operators
satisfy the canonical anticommutation relation

n
ψ̂αðxÞ; ψ̂†

βðxÞ
o
¼ δαβ: ð1Þ

The indices α and β run over flavor, color, and spinor
spaces. The Hamiltonian of a massless Dirac fermion is
written in a shorthand notation

Ĥ ¼ ψ̂†γ0D̂ ψ̂ ; ð2Þ

where the coordinate indices, as well as flavor, color, and
spinor indices, are implicitly contracted. Note that D̂ is the
Dirac operator on the d-dimensional space, not on the
(1þ d)-dimensional spacetime. We put a hat symbol on D̂
to emphasize that it contains the quantum link variable
operator ÛkðxÞ ðk ¼ 1;…; dÞ. We use D without a hat
symbol when it is a classical matrix.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 034511 (2023)

2470-0010=2023=108(3)=034511(5) 034511-1 Published by the American Physical Society

https://orcid.org/0000-0002-0716-1216
https://orcid.org/0000-0003-0270-8523
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.034511&domain=pdf&date_stamp=2023-08-29
https://doi.org/10.1103/PhysRevD.108.034511
https://doi.org/10.1103/PhysRevD.108.034511
https://doi.org/10.1103/PhysRevD.108.034511
https://doi.org/10.1103/PhysRevD.108.034511
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The Nielsen-Ninomiya no-go theorem says that chiral
symmetry is violated on the lattice under several condi-
tions: absence of doublers, translational invariance, Hermi-
ticity, and locality [6,7]. In the language of the Hamiltonian
lattice gauge theory, the lattice fermion cannot satisfy the
commutation relation,

½Ĥ; Q̂naive� ≠ 0; ð3Þ

with the naive chiral charge operator

Q̂naive ¼ ψ̂†γ5ψ̂ : ð4Þ

As suggested in a pioneering work [18], the definition of
the chiral charge operator should be modified by adding a
higher-order term of lattice spacing as

Q̂ ¼ ψ̂†γ5
�
1 −

R
2
D̂

�
ψ̂ ð5Þ

with a real number R. The modified chiral charge operator
is required to satisfy the commutation relation

½Ĥ; Q̂� ¼ 0 ð6Þ

or equivalently �
γ0D̂; γ5

�
1 −

R
2
D̂

��
¼ 0: ð7Þ

This commutation relation defines the notion of the “chiral
fermion” in the Hamiltonian lattice gauge theory.

III. OVERLAP FERMION

The Hamiltonian formulation of the overlap fermion is
constructed by the Dirac operator

D̂ ¼ 1

R

8<
:1þ D̂WðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D̂†
WðmÞD̂WðmÞ

q
9=
; ð8Þ

[19]. The kernel is the Wilson-Dirac operator with a
negative mass

D̂WðmÞ ¼ 1

2

Xd
k¼1

n
γkðb∇k þ b∇†

kÞ − b∇†
k
b∇k

o
−m ð9Þ

with the lattice covariant derivative

b∇kψ̂ðxÞ ¼ ÛkðxÞψ̂ðxþ ekÞ − ψ̂ðxÞ; ð10Þ

b∇†
kψ̂ðxÞ ¼ ψ̂ðxÞ − Û†

kðx − ekÞψ̂ðx − ekÞ; ð11Þ

where ek is the unit lattice vector in the xk direction.
The explicit values of R and m are not essential here
and a typical choice is R ¼ m ¼ 1. The overlap Dirac
operator (8) satisfies the four relations

γ5D̂þ D̂γ5 ¼ RD̂γ5D̂; ð12Þ

γ0D̂þ D̂γ0 ¼ RD̂γ0D̂; ð13Þ

γ5D̂ ¼ D̂†γ5; ð14Þ

γ0D̂ ¼ D̂†γ0: ð15Þ

The first one (12) is the d-dimensional version of the
Ginsparg-Wilson relation, the second one (13) is the
additional relation in the Hamiltonian formalism, the third
one (14) is called γ5-Hermiticity, and the fourth one (15) is
the Hermiticity of the Hamiltonian. These equations ensure
that the overlap fermion satisfies the commutation rela-
tion ½Ĥ; Q̂� ¼ 0.
It is known that the locality of the overlap fermion is

ensured only for the admissible (i.e., smooth) gauge
configuration in the path integral [22]. In the Hamiltonian
formalism, the Dirac operator D̂ is a quantum operator
acting on the Hilbert space of the gauge field. When the
basis is taken to diagonalize the link variable operators,
the matrix is block diagonal and the number of blocks is the
number of all possible gauge configurations in the Hilbert
space. The Hilbert space contains not only smooth gauge
configurations but also peaky gauge configurations. Thus
the locality is not ensured in the full Hilbert space. How
harmful the nonlocality is depends on the problem to solve;
for example, it will be harmless for the vacuum property,
where low-energy states are dominant, but harmful for real-
time dynamics, where all the states are equally relevant.

IV. EIGENVALUE SPECTRUM

Because of ½Ĥ; Q̂� ¼ 0, the Hamiltonian and the chiral
charge are simultaneously diagonalizable. Diagonalizing
these operators in the full Hilbert space is computationally
expensive. In this paper, we analyze two cases; the free
fermion and the fermion coupled with classical background
gauge fields. In both cases, the fermion-fermion interaction
mediated by quantum gauge fields is absent. All we want to
know is the eigenvalue spectrum of the one-particle states
jψni, such that

N ¼ hψnjψ̂†ψ̂ jψni ¼ 1; ð16Þ

because an arbitrary multiparticle state is given by a
superposition of the one-particle states. The one-particle
Hilbert space fjψnig is much smaller than the full Hilbert
space, which contains all the particle number sectors
N ¼ 0; 1;…; ðdþ 1ÞLd. The eigenvalues
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Ĥjψni ¼ εnjψni; ð17Þ

Q̂jψni ¼ qnjψni; ð18Þ

are easily obtained by diagonalizing the classical matrices
γ0D and γ5ð1 − R

2
DÞ, respectively. From Eqs. (12) to (15),

we can derive the operator equality�
R
2
γ0D̂

�
2

þ
�
γ5
�
1 −

R
2
D̂

��
2

¼ 1 ð19Þ

and show that the eigenvalues align on a unit circle

R2

4
ε2n þ q2n ¼ 1: ð20Þ

for all n [19]. This means that the energy and the chirality
are correlated on the lattice, while they are independent in
the continuous Dirac fermion.
In Fig. 1, we show the eigenvalue spectrum of the free

overlap fermion on the three-dimensional lattice with
spatial volume L3 ¼ 163. We obtained the eigenvalues
by numerical diagonalization. The chirality depends on the
energy. Four zero-energy eigenstates are exactly chiral,
qn ¼ �1, and other eigenstates are not. In the vacuum, all
the negative-energy eigenstates are occupied, and their
chirality cancels out because of the inversion symmetry
qn ↔ −qn. To understand how many zero-energy eigen-
states are occupied in the vacuum, we first introduce
nonzero mass to Eq. (8) and then take the massless limit.

The nonzero mass mixes two left-handed and two right-
handed modes, and splits into four linear combinations with
zero chirality; two have positive energy and the other two
have negative energy. The latter two are occupied in the
vacuum. Therefore, the total chirality of the vacuum is zero
as expected. The chirality can be externally imbalanced by
a chiral chemical potential μ5 [23]. Since Q̂ is defined as a
conserved charge, the spectrum is obtained by shifting as
Ĥ − μ5Q̂ (not by changing the kernel [24]). The chiral
chemical potential tilts the Fermi surface as drawn in Fig. 1,
and makes the total chirality nonzero. This mimics the
dynamical generation of the chirality from the axial
anomaly [25,26].
We next investigate how the spectrum is changed by the

classical background of the electromagnetic field. The
classical electromagnetic field is introduced by the c-number
link variable

UkðxÞ ¼ expfieAkðxÞg; ð21Þ

where e denotes the electric charge.

A. Magnetic field

Let us consider the uniform magnetic field B in the x3
direction. It can be implemented by setting A1ðxÞ ¼ −BLx2
at x1 ¼ L and A2ðxÞ ¼ Bx1 [27]. The results are shown in
Fig. 2. The spectral gap increases as Δε ∼

ffiffiffiffiffiffi
eB

p
because of

the Landau quantization. The zero-energy chiral modes still
exist but they are different from those in the free case.

FIG. 1. Eigenvalue spectrum of the free overlap fermion with
various chiral chemical potential μ5. We set R ¼ m ¼ 1 and used
the 163 lattice with periodic boundary conditions. Occupied
(unoccupied) states are shown by solid (open) circles. For
visibility, the radii of circles are rescaled by hand.

FIG. 2. Eigenvalue spectrum of the overlap fermion with
various external magnetic field B. We set R ¼ m ¼ 1 and used
the 163 lattice with periodic boundary conditions. Occupied
(unoccupied) states in the vacuum are shown by solid (open)
circles. To see the gap of the Landau levels clearly, only the
p3 ¼ 0 modes are shown. For visibility, the radii of circles are
rescaled by hand.
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They are the lowest Landau level; the spin is polarized and
the degeneracy is eBL2=ð2πÞ. The magnetic field conserves
parity, so the inversion symmetry qn ↔ −qn remains.

B. Electric field

Let us consider the uniform electric field E in the x3
direction. It can be implemented by the time-dependent
gauge field A3ðxÞ ¼ Et. The electric field can be rewritten
as the momentum shift p3 ¼ 2πl=L → 2πl=Lþ eEt
(l ¼ 1;…; L). When eEt ¼ 4π=L, the shift just moves
one momentum to the next-to-next momentum. Since
momentum space is periodic on the lattice, the global
spectrum does not change but which states are occupied
changes in time. The occupied states before and after the
adiabatic evolution are shown in Fig. 3. Two degenerate
branches (i.e., two spins) differently evolve in t > 0. Left-
handed modes are favored in one branch and right-handed
modes are favored in the other branch. They are symmetric,
so the total chirality is conserved.

C. Both electric and magnetic fields

When electric and magnetic fields exist parallelly, a
nontrivial thing happens, as shown in Fig. 4. Since the
spin of the lowest Landau level is polarized along the
magnetic field, the chirality locks the direction of motion;
for e > 0, right-handed modes move to the þx3 direction

and left-handed modes move to the −x3 direction. In short,
one branch in Fig. 3 is missing. This breaks the inversion
symmetry qn ↔ −qn and generates nonzero net chirality.
This is nothing but dynamical chirality generation by the
axial anomaly. The resultant spectrum is indeed similar to
the Fermi surface tilted by the chiral chemical potential
in Fig. 1. (Strictly speaking, this is not the “genuine”
anomaly originating from the ultraviolet divergence.
The lattice gauge theory is regularized and the ultra-
violet divergence appears only in taking the continuum
limit. A great benefit of the overlap fermion is that the
“would-be” anomaly can be seen on the regularized
spectrum.)
The above investigation can be extended to the case of

the quantum gauge field. When the gauge field is a
quantum operator, there are two important differences.
One is that the total Hamiltonian is given by the sum of the
gauge field Hamiltonian and the fermion Hamiltonian. The
chiral charge Q̂ commutes with the fermion Hamiltonian
but does not commute with the gauge field Hamiltonian due
to the canonical commutation relation of the gauge field;
e.g., ½ÊkðxÞ; ÛkðxÞ� ¼ eÛkðxÞ in the U(1) lattice gauge
theory. The conservation of the chiral charge is anoma-
lously violated. The unit circle relation (20) hold for the
eigenstates of the fermion Hamiltonian, but not for the
eigenstates of the total Hamiltonian. The other is computa-
tional cost. The Dirac operator D̂ is a quantum operator

FIG. 3. Spectral flow by external electric field A3 ¼ Et. We set
R ¼ m ¼ 1 and used the 163 lattice with periodic boundary
conditions. Occupied (unoccupied) states under the adiabatic
evolution are shown by solid (open) circles. To see the spectral
flow clearly, the two-fold degenerate states after the adiabatic
evolution are lifted by hand, which are actually on the same circle
with radius one. Only the p1 ¼ p2 ¼ 0 modes are shown for
visibility. Net chirality is not induced solely by the external
electric field.

FIG. 4. Spectral flow by external electric and magnetic fields,
eA3 ¼ eEt ¼ 4π=L and eB ¼ 2π=L. We set R ¼ m ¼ 1 and
used the 163 lattice with periodic boundary conditions. Occupied
(unoccupied) states at the initial state are shown by solid (open)
circles, and those after the adiabatic evolution under external
electric and magnetic fields are shown by solid (open) squares. To
see the spectral flow clearly, the initial and final states are lifted
by hand, which are actually on the same circle with radius one.
Net chirality is dynamically induced by E · B.
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acting on the Hilbert space of the gauge field. Its matrix
dimension is so huge (exponentially large) that the com-
putational cost exceeds the limit of our current resource. We
have to rely on drastic approximation or wait for techno-
logical evolution.

V. ONE DIMENSION

Finally, we comment on the one-dimensional case,
which will be important for benchmark tests of quantum
computation and tensor network calculation [4,5].
The above formulation of the chiral fermion is possible,
but there is a more simplified formulation. Surprisingly
enough, the Wilson fermion is equivalent to the
overlap fermion [18]. In one dimension, the Wilson-Dirac
operator is

D̂WðmÞ ¼ 1

2

n
γ1ðb∇1 þ b∇†

1Þ − b∇†
1
b∇1

o
−m ð22Þ

and the gamma matrices fγ0; γ1; γ5g are the Pauli matrices.
We can straightforwardly show D̂†

Wðm¼1ÞD̂Wðm¼1Þ¼1

and then

D̂ ¼ 1þ D̂Wðm ¼ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂†

Wðm ¼ 1ÞD̂Wðm ¼ 1Þ
q

¼ D̂Wðm ¼ 0Þ: ð23Þ

The massless Wilson-Dirac operator is equal to the overlap
Dirac operator with R ¼ 1. Thus it satisfies the commu-
tation relation�

γ0D̂Wðm ¼ 0Þ; γ5
�
1 −

1

2
D̂Wðm ¼ 0Þ

��
¼ 0 ð24Þ

or ½Ĥ; Q̂� ¼ 0. This is a specialty of the Hamiltonian lattice
gauge theory. In the path-integral formalism, the lowest
nontrivial dimension of gauge theory is 1þ 1 dimension
and the (1þ 1)-dimensionalWilson fermion is not equivalent
to the overlap fermion. In the one-dimensional Hamiltonian
lattice gauge theory, the Wilson fermion is a chiral fermion.
This might be counterintuitive because theWilson fermion is
usually said to violate chiral symmetry. We can study the
chiral phenomena of theWilson fermion just by replacing the
naive chiral charge Q̂naive by the modified chiral charge Q̂.
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