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In this study, we extend the HAL QCD method to a case where a total momentum of a two-particle
system is nonzero and apply it to the I ¼ 2 S-wave ππ scattering in order to confirm its validity. We
derive a fundamental relation of an energy-independent nonlocal potential defined in the center of mass
frame with Nambu-Bethe-Salpeter wave functions in a laboratory frame. Based on the relation, we
propose the time-dependent method to extract potentials, often used in practice for the HALQCDmethod
in the center of mass frame. For numerical simulations in the I ¼ 2 ππ system, we employ (2þ 1)-flavor
gauge configurations on a 323 × 64 lattice at the lattice spacing a ≈ 0.0907 fm and mπ ≈ 700 MeV. Both
effective leading order (LO) potentials and corresponding phase shifts obtained in laboratory frames
agree with those obtained in the center-of-mass frame by the conventional HAL QCD method within
somewhat larger statistical errors. In addition, we observe a consistency in scattering phase shifts
between ours and results by the finite-volume method as well. The HAL QCD method with nonzero total
momenta, established in this study, brings more flexibility to the HAL QCD method, which enables us to
handle systems having the same quantum numbers with a vacuum or to access energy regions prohibited
in the center of mass frame.
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I. INTRODUCTION

A first-principle determination of hadron interactions
in quantum chromodynamics (QCD) is one of the most
important challenges for understanding the nature of
hadronic resonances observed in experiments. In recent
years, hadron interactions have been actively studied in
lattice QCD by employing two methods: the finite-volume
method [1–3] and the HAL QCD method [4–7].
Theoretically, both methods rely on the Nambu-Bethe-
Salpeter (NBS) wave function, which links to the scattering
S matrix in QCD. The finite-volume method gives a
formula relating finite-volume energy spectra to scattering
phase shifts in the infinite volume, by considering behav-
iors of NBS wave functions in an asymptotic region. In the
HAL QCD method, on the other hand, one directly extracts
energy-independent nonlocal potentials through spatial

dependences of NBS wave functions in an interacting
region and then calculates scattering phase shifts by solving
Schrödinger equations with these potentials in the infinite
volume. Armed with the time-dependent method [7] and
the multichannel extension [8], the HAL QCD method has
been successfully applied to two-baryon systems with
various pion masses (see Ref. [9] and references therein
for the recent status). Recently, resonance studies such as
the ρ meson have become possible thanks to rapid
improvements in calculation techniques of all-to-all quark
propagators [10–13].
In the finite-volume method, not only the center

of mass frame but also laboratory frames with nonzero
total momenta [2] are employed for calculations of two
hadron spectra, in order to access different finite-volume
energies as many as possible for a given volume,
which provide energy dependences of scattering observ-
ables precise enough for determinations of resonance
parameters [14,15].
In the HAL QCD method, on the other hand, all

calculations so far have been made in the center of mass
frame, since the time-dependent HAL QCD method [7]
does not require isolation of an energy eigenstate but
utilizes all elastic states below inelastic thresholds at some
degree. The recent ρ resonance study, however, reveals
that P-wave scattering phase shifts can not be determined
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precisely in a low-energy region not accessible in the
center-of-mass frame due to nonzero relative momenta
of the P wave [16]. Thus, the HAL QCD method in
laboratory frames with nonzero momenta will provide a
better alternative for a more precise determination of
P-wave scatterings. In addition, the HAL QCD method in
laboratory frames is mandatory to investigate hadron
resonances having the same quantum numbers with a
vacuum such as the I ¼ 0 S-wave ππ interaction corre-
sponding to the σ resonance, since a large mixing to a
vacuum state in the center of mass frame is much reduced
in a laboratory frame.
An extraction of HAL QCD potentials using laboratory

frames with nonzero total momenta has been theoretically
formulated and briefly reported in [17]. Applications of
the method to hadron systems in lattice QCD, however,
require numerically demanding calculations of all-to-all
quark propagators, which are employed to construct
appropriate source operators with nonzero total momenta.
As already mentioned, recent algorithmic improvements
make it possible to calculate all-to-all propagators with
reasonable numerical costs in the HAL QCD method.
We thus apply the method of HAL QCD potentials in
laboratory frames to one of the simplest two hadron
systems, the I ¼ 2 S-wave ππ system at mπ ≈ 700 MeV,
in order to see how the theoretical formulation works in
actual lattice QCD simulations. Since the I ¼ 2 S-wave ππ
system does not have quark annihilation diagrams, its
interaction has been studied extensively and has been
known to be repulsive at low energy [10,13,18–25].
Employing a time-dependent method reformulated for
correlation functions in laboratory frames, we extract
effective leading order (LO) potentials successfully from
correlation functions with total momenta jPj ¼ 2π=L and
4π=L for the first time. We then calculate physical
observables such as scattering phase shifts using poten-
tials obtained in laboratory frames, which are compared
with results obtained not only from the conventional
HAL QCD potential in the center of mass frame but also
by the finite volume method through finite volume
spectra. We confirm a consistency among all results,
which validates our new method to extract HAL QCD
potentials with nonzero total momenta both theoretically
and numerically.
This paper is organized as follows. In Sec. II,

we formulate a procedure to extract HAL QCD potentials
from correlation functions in laboratory frames, using a
transformation property of NBS wave functions under
Lorentz transformation. In Sec. III, we present numerical
results on potentials and scattering phase shifts in the I ¼ 2
ππ system. We give summary and discussion in Sec. IV.
A detailed analysis on systematic errors associated with
laboratory frame calculations is given in the Appendix.
Preliminary results in this study have been already reported
in the conference proceedings [26].

II. HAL QCD POTENTIAL FROM THE NBS WAVE
FUNCTION IN THE LABORATORY FRAME

A. Lorentz transformation of the NBS wave function

Let us consider two scalar particles with same mass m
in Minkowski spacetime. The corresponding NBS wave
function in a general frame of reference is defined as

ψk1;k2ðx1; x2Þ ¼ h0jTfϕðx1Þϕðx2Þgjk1; k2i; ð1Þ

where ϕðxÞ is a scalar field operator and jk1; k2i is an
asymptotic in–state of two particles with four-momenta
k1 and k2. Explicitly, ki ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki

2 þm2
p

;kiÞ for i ¼ 1, 2.
Lorentz transformation acts on field operators and asymp-
totic states as

UðΛÞϕðxÞU−1ðΛÞ ¼ ϕðx0Þ; ð2Þ

UðΛÞjk1; k2i ¼ jk01; k02i; ð3Þ

where UðΛÞ is a unitary operator which implements
Lorentz transformation on the states and prime symbols
represent transformed objects, for example, x0μ ¼ Λμ

νxν.
Using Eqs. (1)–(3), we can derive a relation between two
NBS wave functions in different frames as

ψk1;k2ðx1; x2Þ ¼ ψk0
1
;k0

2
ðx01; x02Þ: ð4Þ

Furthermore, a relation ϕðxÞ ¼ eiP̂·xϕð0Þe−iP·x, where P̂ is
an energy-momentum operator and P̂ ·x¼ημνP̂

μxν, implies
that the NBS wave function is factorized into a center-of-
mass plane wave and a relative wave function, φk1;k2ðxÞ, as

ψk1;k2ðx1; x2Þ ¼ φk1;k2ðxÞe−iWX0þiP·X; ð5Þ

where W¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1þm2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2þm2

p
and P ¼ k1 þ k2 are

total energy and total momentum, respectively. A center-of-
mass coordinate X and a relative coordinate x are
defined by

X ¼ x1 þ x2
2

; x ¼ x1 − x2: ð6Þ

Since ημνPμXν ¼ WX0 − P ·X is Lorentz invariant,
Eqs. (4) and (5) give a relation between relative wave
functions in different frames as

φk1;k2ðxÞ ¼ φk0
1
;k0

2
ðx0Þ: ð7Þ

The HAL QCD potential is defined in the center of mass
(CM) frame, whose total energy and momentum satisfy

W� ¼ γðW − vPÞ; P� ¼ γðP − vWÞ ¼ 0; ð8Þ
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where quantities with and without � refer to those in the
CM and laboratory (lab) frames, respectively, and a boost
factor γ is defined by γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p . The CM condition P� ¼ 0

implies

v ¼ P=W; ðW�Þ2 ¼ W2 − P2; γ ¼ W
W� : ð9Þ

With these v and γ, relative coordinates in CM and lab
frames are related as

x�0 ¼ γðx0 − v · xkÞ; x�
k ¼ γðxk − vx0Þ; x�⊥ ¼ x⊥; ð10Þ

where k and ⊥ mean vectors parallel and perpendicular
to v, respectively.

B. HAL QCD potential from the NBS wave function
in the laboratory frame

We now move on to Euclidean spacetime, in which
actual lattice simulations are carried out. In Euclidean
coordinates, Eq. (10) reads

x�4¼ γðx4− iv ·xkÞ; x�
k ¼ γðxkþ ivx4Þ; x�⊥¼x⊥: ð11Þ

In the CM frame, the relative NBS wave function at fixed x�4
satisfies the Helmholtz equation at large separation as

ð∇�2 þ k�2Þφk�
1
;k�

2
ðx�; x�4Þ ¼ 0ðr� ¼ jx�j > RÞ; ð12Þ

where R is an interaction range and k� ¼ jk�j for a relative
momentum k� ¼ k�

1 ¼ −k�
2 in the CM frame, and its radial

part with an angular momentum l behaves as [5,27]

φl
k�
1
;k�

2
ðr�;x�4Þ≈Alðx�4;k�Þeiδlðk�Þ

sinðk�r�− lπ=2þδlðk�ÞÞ
k�r�

;

ð13Þ

where Alðx�4; k�Þ is an overall factor and δl is the
scattering phase shift, which is equal to the phase of S
matrix in the scalar field theory. We construct an energy-
independent nonlocal potential through the Schrödinger-
type equation as

1

2μ
ð∇�2 þ k�2Þφk�

1
;k�

2
ðx�; x�4Þ

¼
Z

d3y�Ux�4ðx�; y�Þφk�
1
;k�

2
ðy�; x�4Þ; ð14Þ

where μ ¼ m=2 is the reduced mass. A subscription x�4 of
U indicates that the potential depends on a relative time
separation x�4 of the NBS wave function. Such a depend-
ence is referred to as the scheme dependence of the
potential [10,28]. In a general case, the potential depends
on a choice of hadron operators (relative time separation,

smearing, etc.) in the NBS wave function, but physical
observables extracted from potentials in different schemes,
of course, agree with each other by construction.
In practice, we introduce the derivative expansion to treat

the nonlocality of the potential as

Ux�4ðx�; y�Þ ¼
X
i

Vi
x�4ðx�Þð∇�2Þiδðx� − y�Þ; ð15Þ

where Vi
x�4ðx�Þ are local coefficient functions in the

expansion.1 Thus, the effective leading-order (LO) poten-
tial is simply given by

VLO
x�4 ðx�Þ ¼ ð∇�2 þ k�2Þφk�

1
;k�

2
ðx�; x�4Þ

2μφk�
1
;k�

2
ðx�; x�4Þ : ð16Þ

Now we are ready to construct an interaction potential
from the NBS wave function in the lab frame. According to
Eqs. (7), (11), and (15), the relative NBS wave function in
the lab frame satisfies

1

2μ
ð∇2⊥ þ γ2ð∇k þ iv∂x4Þ2 þ k�2Þφk1;k2ðx; x4Þ

¼
X
i

Vi
γðx4−iv·xkÞðx⊥; γðxk þ ivx4ÞÞ

× ð∇2⊥ þ γ2ð∇k þ iv∂x4Þ2Þiφk1;k2ðx; x4Þ: ð17Þ

To extract a meaningful potential from this equation, we
have to set x4 ¼ 0 in order to avoid that x�⊥ ¼ γðx⊥ þ ivx4Þ
becomes complex. We also need to fix xk in order to
specify x�4, the scheme of the potential, since x�4 depends
on xk. In this paper, choosing xk ¼ 0, we extract a potential
in the equal-time scheme. As a result, the LO potential in
the equal-time scheme is given by

VLO
x�4¼0

ðx�⊥Þ

¼ ð∇2⊥ þ γ2ð∇k þ iv∂x4Þ2 þ k�2Þφk1;k2ðx; x4Þ
2μφk1;k2ðx; x4Þ

����
x4¼0;xk¼0

;

ð18Þ

where we set x4 ¼ 0 and xk ¼ 0 after taking derivatives in
the right-hand side.
In lattice simulations, we put a system in a box of size

L × L × L with periodic boundary conditions in the lab
frame. We define a correlation function of the target
two-hadron system as

Fϕϕ;Pðx1; x2Þ ¼ hTϕðx1Þϕðx2ÞJ ϕϕðP; 0Þi; ð19Þ

1We do not include terms with odd powers of ∇ here. This
choice can be also regarded as a scheme of the potential.
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where J ϕϕðP; 0Þ creates two-particle states with total
momentum P at X4 ¼ 0, which is quantized as P ¼
2π
L ntotalðntotal ∈ Z3Þ. This correlation function can be
written as

Fϕϕ;Pðx1;x2Þ ¼ eiP·X
X
n

BnφWn
ðxÞe−WnX4

þðinelastic contributionsÞ ð20Þ

→eiP·XBminφWmin
ðxÞe−WminX4

; ðX4≫1Þ; ð21Þ

where

Wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þm2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q
; k1 þ k2 ¼ P; ð22Þ

Bn ¼ hk1; k2jJ ϕϕðP; 0Þj0i;

k01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þm2

q
; k02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q
: ð23Þ

Wmin is the minimum value among Wn, and corresponding
Bn and φn denote Bmin and φmin, respectively. Therefore,
we can extract the NBS wave function of the lowest
energy state through this correlation function at a large
CM time X4. Note that these relative NBS wave functions
have a periodicity depending on P ¼ 2π

L ntotal as

φWðxþmL; x4Þeiπntotal·m ¼ φWðx; x4Þ ðntotal;m ∈ Z3Þ;
ð24Þ

which can be derived from Eq. (5), together with the
periodicity of coordinates xi (i ¼ 1, 2). Calculations of
derivatives (e.g., ∇k at xk ¼ 0) are implemented by taking
this periodicity into account. In summary, we can extract
the effective LO potential from Fϕϕðx1; x2Þ at sufficiently
large X4 through Eq. (18) in lattice simulations.

C. Time-dependent method in the laboratory frame

Since correlation functions generally become noisier
at larger X4 in lattice QCD simulations, it is difficult to
achieve Eq. (21) within good precision. To overcome this
difficulty, we have introduced the time-dependent method
for an extraction of potentials in the CM frame [7], which
does not require a single state dominance in Fϕϕ such as
Eq. (21). This method enables us to extract interaction
potentials at smaller X4 with less statistical fluctuations.
We here discuss how we extend the time dependent method
to the lab frame.
A key quantity in the time-dependent method is a

normalized correlation function R (we call it “R correlator”),
which is defined in the lab frame as

Rðx; x4; X4Þ ¼ Fϕϕ;Pðx; x4; X4Þ
Fϕ;1ðX4ÞFϕ;2ðX4Þ ; ð25Þ

where

Fϕϕ;Pðx; x4; X4Þ
¼

X
X

e−iP·XhTϕðX þ x=2ÞϕðX − x=2ÞJ ϕϕðP; 0Þi;

ð26Þ

Fϕ;iðX4Þ ¼
X
x;y

eipi·ðy−xÞhϕðx; X4Þϕ†ðy; 0Þi: ð27Þ

A summation over the CM coordinateXwith a factor e−iP·X

in Eq. (26) removes the unnecessary plane wave factor eiP·X

in Eq. (19) and reduces statistical fluctuations. In general,
a normalization of the R correlator, namely the choice of
two-point functions in the denominator in Eq. (25), is not
unique. One natural choice is a normalization using
the lowest energy in a noninteracting system. For example,
if a source operator is given by J̄ ϕϕðP; 0Þ ¼P

x;y e
ip1·xeip2·yϕ̄ðx; 0Þϕ̄ðy; 0Þ with P ¼ p1 þ p2, we then

take Fϕ;1ðTÞ ¼
P

x;y e
ip1·ðy−xÞhϕðx; TÞϕ̄ðy; 0Þi and

Fϕ;2ðTÞ ¼
P

x;y e
ip2·ðy−xÞhϕðx; TÞϕ̄ðy; 0Þi in Eq. (25).

Alternatively, we may choose hadron masses measured
in the center-of-mass frame for the normalization. While
such a difference in normalizations does not affect
final results of potentials in the continuum limit, it
may produce some systematic uncertainties in potentials
due to discretization errors at finite lattice spacings. Since
meson energies in the laboratory frame suffer from larger
discretization effects due to nonzero momenta, it is
important to keep such effects under control in our
numerical simulation, which will be investigated in the
Appendix. In the rest of our paper, we employ the
normalization using the lowest energy in the noninteract-
ing system.
At a moderately large X4 where inelastic contributions

can be neglected, Rðx; x4; X4Þ behaves as

Rðx; x4; X4Þ ≈
X
n

B0
nφWn

ðx; x4Þe−WnX4

; ð28Þ

where B0
n ¼ Bn

C1C2
; and

Fϕ;iðX4Þ¼Cie
−

ffiffiffiffiffiffiffiffiffiffiffi
m2þp2

i

p
X4 þðinelastic contributionsÞ: ð29Þ

By considering Eqs. (17) and (28), we can show that
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1

m
½∇2⊥Gðx; x4; X4Þ þ ð−ð∂X4 −W0;freeÞ∇k þ iP∂x4Þ2Rðx; x4; X4Þ�

þ 1

4m
½∂2X4 − 2W0;free∂X4 þW2

0;free − P2 − 4m2�Gðx; x4; X4Þ
���
x4¼0;xk¼0

≈
X
n

B0
nW2

CM;n
1

m
½∇2⊥ þ γ2nð∇k þ ivn∂x4Þ2 þ k�2n �φWn

ðx; x4Þe−ðWn−W0;freeÞX4
���
x4¼0;xk¼0

¼
X
j

Vj
x�4¼0

ðx�⊥Þ
X
n

B0
nW2

CM;nð∇2⊥ þ γ2nð∇k þ ivn∂x4Þ2ÞjφWn
ðx; x4Þe−ðWn−W0;freeÞX4

���
x4¼0;xk¼0

≈
X
j

Vj
x�4¼0

ðx�⊥Þðð∇�2ÞjGðx; x4; X4ÞÞ;
���
x4¼0;xk¼0

; ð30Þ

whereW0; free ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2

p
is a noninteract-

ing energy level used in the normalization and γ2n ¼ W2
n

W2
CM;n

,

and we introduce a short-hand notation Gðx; x4; X4Þ as
Gðx; x4; X4Þ ¼ ðð∂X4 −W0;freeÞ2 − P2ÞRðx; x4; X4Þ: ð31Þ
Note that we can move Vj outside a summation over n
for elastic states in Eq. (30) only at x�4 ¼ 0, since a scheme
of the potential depends on n through γn unless x�4 ¼
γnðx4 − ivn · xkÞ ¼ 0. The effective LO potential in the
time-dependent method is given by

VLO
x�4¼0

ðx⊥Þ¼
ðL⊥þLkþmEÞðx;x4;X4Þ

mGðx;x4;X4Þ
����
x4¼0;xk¼0

; ð32Þ

where we introduce new notations L⊥; Lk for the Laplacian
part and E for the energy part as

L⊥ðx; x4; X4Þ ¼ ∇2⊥Gðx; x4; X4Þ; ð33Þ
Lkðx; x4; X4Þ ¼ ð−ð∂X4 −W0;freeÞ∇k þ iP∂x4Þ2Rðx; x4; X4Þ;

ð34Þ

Eðx; x4; X4Þ ¼ 1

4m
½∂2X4 − 2W0;free∂X4 þW2

0;free

− P2 − 4m2�Gðx; x4; X4Þ; ð35Þ

for later convenience. This procedure is more complicated
than the conventional time-dependent method [7], since we
need to sum over n without knowing not only k�2n but also
Lorentz factor γ2n and velocity vn for each n, by combining
several terms as shown above.

III. NUMERICAL RESULTS
IN THE I = 2 ππ SYSTEM

A. Calculation of correlation functions

Let us consider the I ¼ 2 ππ S-wave scattering as an
explicit example. We define correlation functions of this
system as

Fπþπþ;Pðx; x4; X4Þ
¼

X
X

e−iP·XhTπþðX þ x=2ÞπþðX − x=2ÞJ πþπþðP; 0Þi;

ð36Þ

Fπþ;iðX4Þ ¼
X
x;y

eipi·ðy−xÞhπþðx; X4Þπ−ðy; 0Þi; ð37Þ

where the positively (negatively) charged pion operator is
constructed in terms of up and down quark fields uðxÞ and
dðxÞ as πþðxÞ ¼ d̄ðxÞγ5uðxÞ [π−ðxÞ ¼ ūðxÞγ5dðxÞ]. Total
momenta are chosen as P ¼ ðPx; Py; PzÞ ¼ 2π

L ð0; 0; nÞ
(n ¼ 0, 1, 2), and corresponding source operators are
given by

J πþπþðP ¼ ð0; 0; 0Þ; 0Þ ¼ π̄þs ðp1 ¼ 0; 0Þπ̄þs ðp2 ¼ 0; 0Þ;
ð38Þ

J πþπþðP ¼ ð0; 0; 1Þ; 0Þ
¼ π̄þs ðp1 ¼ ð0; 0; 1Þ; 0Þπ̄þs ðp2 ¼ 0; 0Þ; ð39Þ

J πþπþðP ¼ ð0; 0; 2Þ; 0Þ
¼ π̄þs ðp1 ¼ ð0; 0; 1Þ; 0Þπ̄þs ðp2 ¼ ð0; 0; 1Þ; 0Þ; ð40Þ

where all momenta are given in unit of 2π=L, and we keep
this notation in the remaining of this paper. A pion creation
operator with momentum is defined as

π̄þðp; 0Þ ¼
X
y

π−ðy; 0Þeþip·y; ð41Þ

and a subscript s indicates that quark fields in operators
are smeared to suppress inelastic contributions at earlier
imaginary time, as will be explained in Sec. III B. As
already mentioned, we also consider another normalization
of the R correlator to study systematic uncertainty. We
find that this systematic uncertainty affects the potential
fitting and scattering phase shift (for example, see Fig. 16).
Detailed analysis can be found in the Appendix.
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For calculations of correlation functions defined above, we
employ the one-end trick [29], which enables us to evaluate
a combination of two all-to-all propagators with spatial
summation by a single stochastic estimator.

B. Simulation details

We employ 2þ 1 flavor full QCD configurations gen-
erated by CP-PACS Collaborations [30] on a 323 × 64
lattice with the Iwasaki gauge action [31] at β ¼ 1.90 and
the nonperturbatively improved Wilson-clover action [32]
at cSW ¼ 1.7150, which corresponds to the lattice spacing
a ¼ 0.0907 fm. Hopping parameters ðκud; κsÞ ¼ ð0.13700;
0.13640Þ lead to the pion mass mπ ≈ 700 MeV. A periodic
boundary condition is employed in all spacetime
directions. Correlation functions with P ≠ 0 (P ¼ 0) are
evaluated by 399 gauge configurations × 64 time slices
(399 gauge configurations × 16 time slices), and we esti-
mate statistical errors by the jackknife method with a
bin-size 21 in all cases. We label results with P ¼ ð0; 0; nÞ
(n ¼ 0, 1, 2) as CM, case 1, and case 2, respectively.
Hereafter dimensionful quantities without corresponding
unit are written in lattice unit unless otherwise stated.
We employ the smeared quark source qsðx; tÞ ¼P
y fðx − yÞqðy; tÞ with the Coulomb gauge fixing, where

the smearing function fðxÞ is taken as [33]

fðxÞ ¼

8>><
>>:

Ae−Bjxj ð0 < jxj < ðL − 1Þ=2Þ
1 ðjxj ¼ 0Þ
0 ðjxj ≥ ðL − 1Þ=2Þ

; ð42Þ

with A ¼ 1.2, B ¼ 0.30. We generate a single Z4 noise
vector for each insertion of the one-end trick. To reduce
stochastic noise contaminations from noise vectors, the
dilution technique [34] is applied to color, spinor, and
spatial indices. We fully dilute color and spinor indices, and
s2 (even-odd) dilution [12] is taken for the spatial index.
Numerical derivatives are approximated by second order
differences. In estimations of x4 derivatives, we utilize
correlation functions with even relative time x4 ¼ 0;�2 to
keep the CM time X4 integer.
Since our formulation relies on the continuum dispersion

relation, we first check a behavior of a pion dispersion
relation. Figure 1 (left) shows effective energies of a single
pion with momenta p ¼ ð0; 0; nÞ (n ¼ 0, 1, 2). We obtain
good plateaus for all cases thanks to the quark smearing.
An energy eigenvalue for each momentum channel is
extracted by a single cosh fit, as shown by light color
bands in Fig. 1 (left). We then compare those to the
continuum dispersion relation, EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
p

. As
seen in Fig. 1 (right), extracted energy levels (blue points)
are consistent with the continuum dispersion relation (black
solid line) up to jpj ¼ 4π=L, so that we can safely utilize
the continuum dispersion relation in this study.

C. The NBS wave function in the laboratory frame

Before discussing the interaction potential, let us con-
sider the behavior of Fπþπþ;P defined in Eq. (36). As already
discussed in Eqs. (20) and (21), we can extract ground
state energies and corresponding NBS wave functions at
X4 ≫ 1. Figure 2 (left) shows effective energies obtained
from the X4 dependence of

P
x Fπþπþ;Pðx; x4 ¼ 0; X4Þ and

FIG. 1. Left: effective energies of a single pion with jpj ¼ 0 (orange square), jpj ¼ 2π=L (red triangle), and jpj ¼ 4π=L (blue circle).
Fit results using a cosh function and corresponding fit ranges are shown by light color bands. Right: a comparison between extracted

energy levels (blue points) and the continuum dispersion relation, EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π;fit þ p2
q

(black solid line). Formπ;fit, we use the fit result

of 2pt correlation function with jpj ¼ 0 (green band in the bottom of the left figure).
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corresponding noninteracting energy levels (horizontal
lines). We observe that all effective energies reach plateaus
at around X4 ¼ 15, and they slightly shift upward from the
noninteracting energy levels. It indicates that Fπþπþ;P is
almost dominated by the ground state at that time slice
and the interaction is repulsive as reported in previous
studies [10,13,24]. In the Fig. 2 (right), we show the spatial
dependence of the Fπþπþ;Pðx⊥;xk ¼ 0; x4 ¼ 0; X4Þ at
t ¼ X4 ¼ 16, which is expected to approach the ground
state NBS wave function in the CM frame in accordance
with Eq. (21) as

Fπþπþ;Pðx⊥;xk ¼ 0; x4 ¼ 0; X4Þ
≈ BminφWmin

ðx⊥;xk ¼ 0; x4 ¼ 0Þe−WminX4

¼ BminφW�
min
ðx�⊥ ¼ x⊥;x�

k ¼ 0; x�4 ¼ 0Þe−WminX4

: ð43Þ

A small number of data points in jPj ≠ 0 is due to the
condition of the equal-time scheme, ðxk; x4Þ ¼ ð0; 0Þ. As
expected by the behavior of effective energies, they show
the monotonic increasing behaviors in r, typical for the
repulsive force. Moreover, the NBS wave function with
jPj ¼ 4π=L (case 2) is very similar to that with jPj ¼ 0
(CM), probably due to a fact that the lowest energy with
jPj ¼ 4π=L boosted back to the CM frame is roughly equal
to the one with jPj ¼ 0, as seen in Fig. 2 (left).

D. Effective leading-order potential

We next consider effective leading order (LO) potentials
obtained by the time-dependent method. Figure 3 shows
effective LO potentials with three different total momenta
at t ¼ X4 ¼ 16. As already discussed in Sec. III C, poten-
tials show repulsive behaviors, and they are consistent with
each other except at short distances. A small difference

observed at short distances may be explained by finite
lattice spacing effects.
We also observe that potentials in cases 1 and 2 have

larger statistical errors and nonsmooth behaviors as com-
pared with that in the CM case. Typically, introducing
nonzero momentum makes correlation functions noisier,
since an enhancement of statics by the translational
invariance is reduced. Indeed, we have already observed
that NBS wave functions themselves are noisier than the
one in the CM frame [see Fig. 2 (right)]. In addition, larger
statistical fluctuations in the laboratory frame are probably
caused also by fourth-order X4 derivative terms in the time-
dependent method. To estimate fourth-order X4 derivatives
at a fixed X4 by the numerical difference, we have to utilize
correlation functions at X4 � 2, which are absent for
second-order derivatives. Since data at larger X4 are

FIG. 2. Left: effective energies obtained by spatial summation of Fπþπþ;P. Laboratory frame energies are boosted back to the CM frame
via W2

CM ¼ W2
L − P2. Dashed and solid lines show the lowest noninteracting energies with P ¼ ð0; 0; 2π=LÞ and ð0; 0; 4π=LÞ,

respectively. Right: spatial dependence of Fπþπþ;P. For jPj ≠ 0, we fix xk ¼ 0 and only show x⊥ dependence. Values at the origin are
normalized to unity.

FIG. 3. A comparison of all effective LO potentials. Inset shows
an enlarged view of the potentials.
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generally nosier, fourth-order X4 derivatives are expected to
be noisier as well. Nonsmooth behaviors for potentials in the
laboratory frame, on the other hand, may be explained by a
contamination from the l ¼ 2 partial wave, which is absent
in the CM frame, as follows. In the laboratory frame
calculation, the cubic rotation is no longer the symmetry

of the system, since the cubic box is deformed by the
Lorentz contraction if it is boosted back to the CM frame. In
our setup, since the box becomes a rectangular with size
L × L × γL with a boost factor γ in the CM frame, the cubic
symmetry is reduced to the onewhich makes this rectangular
intact. An irreducible representation Aþ

1 of the reduced

FIG. 4. A decomposition of the effective LO potential in case 1 (left) and case 2 (right). A dotted line represents an expected relative
energy in a noninteracting case.

FIG. 5. Fit results of effective LO potentials. Original data (blue points) and corresponding fit results (red lines) are shown.
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symmetry contains contributions from angular momenta
l ¼ 0; 2;…, in contrast to the Aþ

1 in the cubic symmetry,
which allows l ¼ 0; 4; 6;… partial waves. Since lower
partial waves in general have larger contributions at low
energy, a contamination form the l ¼ 2 partial wave causes
nonsmooth behaviors of potentials in the laboratory frame,
which is stronger than the one by the l ¼ 4 partial wave, the
lowest partial wave contamination in the CM frame.
To see how the time-dependent method works in detail,

we decompose potentials into the Laplacian term,
L⊥þLk
mG in

Eq. (32), and the energy term, mE
mG in Eq. (32), as shown in

Fig. 4. We observe that the Laplacian term (orange) and
the energy term (green) are away from zero, but the total
(blue) converges to zero at large distances thanks to their
cancellations. Since values of the energy shift (green)
roughly agree with expectations from lowest energies in
noninteracting cases, the cancellation of two terms (orange
and green) is a strong evidence on the validity of the time-
dependent method with nonzero total momenta.
In conclusion, we confirm that potentials can be

extracted at reasonable precision in the laboratory frame
formalism of the HALQCDmethod. One lesson we learn is
that we need more statistics than required in the conven-
tional center-of-mass formalism.

E. Scattering phase shifts

To investigate a consistency between calculations in the
lab frame and the CM frame more precisely, let us compare
behaviors of physical observables, such as scattering phase
shifts δ0ðkÞ and k cot δ0ðkÞ. We fit effective LO potentials
with a sum of four Gaussians,

VðrÞ¼a0e−ðr=a1Þ
2 þa2e−ðr=a3Þ

2 þa4e−ðr=a5Þ
2 þa6e−ðr=a7Þ

2

;

ð44Þ

and solve the Schrödinger equation in infinite-volume.
Representative fit results and corresponding fit parameters
are given in Fig. 5 and Table I, respectively. As seen from
the table, values of χ2=d:o:f: are rather large, mainly due to
data at short distances, which have smaller errors but whose
central values show scattered behaviors caused by higher
partial waves. Since fits in Fig. 5 looks reasonable in all
cases, we keep using the fitting function (44). We study
systematic uncertainties of potential fits caused by discre-
tization errors, whose details will be given in the Appendix.
Error bands in the following plots include both statistical

and systematic errors. As you can see from Fig. 6, resultant
scattering phase shifts obtained by the lab frame calcu-
lations (blue and orange bands) are consistent with the
conventional CM calculation (red band), as expected from
the agreement of potentials.
Finally, we compare our results with those obtained by

the finite-volume method. We extract ground state energies
by a single exponential fit to the time dependence of the R
correlators, as shown in Fig. 7. Energy levels are converted
to the center-of-mass relative momentum kn, to which the
Lüscher’s formula is applied as

kn cot δ0ðknÞ ¼ 4π
1

γnL3

X
p∈Pntotal

1

p2 − k2n
; ð45Þ

where

Pntotal
¼

�
pjp ¼ 2π

L
γ⃗−1

�
mþ 1

2
ntotal

�
;m ∈ Z3

�
; ð46Þ

with a short-hand notation γ⃗−1n ¼ γ−1nk þ n⊥. Extracted
values of k cot δ0ðkÞ are plotted in Fig. 8 (right), together
with a result in the literature [24]. As seen in the figure,
we confirm that phase shifts obtained by the HAL QCD
method are consistent with those by the finite-volume
method. It also implies that the LO approximation is
valid in the energy region we consider here, since the

TABLE I. Fit parameters of potentials at t ¼ X4 ¼ 16.

a0 a1 a2 a3 a4 a5 a6 a7 χ2=d:o:f:

Case 1 0.5579(72) 1.410(32) 0.2551(58) 2.86(10) 0.052(11) 5.24(24) 0.953(22) 0.7719(62) 7.28
Case 2 0.5711(95) 1.433(51) 0.2618(75) 2.88(16) 0.055(19) 5.15(44) 1.014(34) 0.7809(87) 2.30
CM 0.474(10) 1.589(75) 0.206(12) 3.04(19) 0.045(15) 5.16(34) 1.070(36) 0.813(11) 2.57

FIG. 6. Scattering phase shifts obtained by effective LO
potentials. Color bands show statistical and systematical errors
added linearly. Detailed discussion of systematic errors is given in
the Appendix.
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finite-volume method is free from systematics associated
with the derivative expansion.

IV. SUMMARY

In this paper, we propose a theoretical framework to
calculate HAL QCD potentials from NBS wave functions
in laboratory frames and perform a first numerical calcu-
lation in the I ¼ 2 ππ system at mπ ≈ 700 MeV. We
calculate effective LO potentials from NBS wave functions
with total momenta P ¼ ð0; 0; nÞ (n ¼ 0, 1, 2). While
larger statistical fluctuations and nonsmooth behaviors,
which are probably originated from higher order numerical
derivatives and the reduced rotational symmetry, have been
observed in laboratory frames (n ¼ 1, 2), potentials in all
cases (n ¼ 0, 1, 2) are repulsive and agree with each other
except small deviations at short distances. Resultant phase
shifts δ0ðkÞ and k cot δ0ðkÞ with n ¼ 1, 2 are consistent
with those obtained not only by the conventional center-of-
mass calculation (n ¼ 0) but also by the finite-volume
method. In conclusion, we confirm that the laboratory

frame formalism works in practice to extract scattering
phase shifts in lattice QCD. As already mentioned in Sec. I,
it enlarges applicabilities and opens new possibilities for
the HAL QCD method, such as determinations of higher-
order terms in the derivative expansion of nonlocal poten-
tials and extractions of potentials for systems having same
quantum numbers with a vacuum state.
We finally discuss some issues for a use of laboratory

frames in the HAL QCD method. As already mentioned,
statistical fluctuations are larger in laboratory frames,
probably due to larger energy of states with nonzero
momenta and higher order time derivatives necessary for
the time dependent method. While a number of statistical
sampling required for meaningful results is manageably
small for the I ¼ 2 ππ system, it may drastically increase
for more complicated systems including quark-antiquark
pair creations and annihilations. Nonsmooth behaviors of
potentials, caused by reduced symmetries in laboratory
frames, may be cured by the partial wave decomposition
technique [35], though the technique is restricted to the
center-of-mass system at this moment. Since larger nonzero

FIG. 7. Extraction of energy shifts by single exponential fits in the laboratory frame (left) and the center-of-mass frame (right). Color
bands show fit ranges and fit results with statistical errors.

FIG. 8. A comparison of k cot δ0ðkÞ between the HAL QCD method and the Lüscher’s method. Shown together are lines of the
Lüscher’s formula. Left: entire view. Right: enlarged view of the left figure.

YUTARO AKAHOSHI and SINYA AOKI PHYS. REV. D 108, 034510 (2023)

034510-10



momenta may cause lager discretization errors through
violations of continuum dispersion relations, we should
always check a validity of the continuum dispersion
relation. In addition, it is better to compare different
normalizations of R correlators for potentials, as discussed
in the Appendix.
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APPENDIX: SYSTEMATIC UNCERTAINTIES

In this appendix, we estimate systematic uncertainties on
extractions of I ¼ 2 S-wave ππ scattering phase shifts in
laboratory frames. Concretely, we investigate a normaliza-
tion dependence and an X4 dependence of the potential
extraction with nonzero total momenta.
For the former investigation, we consider an alternative

time-dependent method using R-correlators normalized
differently as

RP¼ezðx; x4; X4Þ ¼ Fπþπþ;ezðx; x4; X4Þ
Fπþ;0ðX4Þ2 ; ðA1Þ

RP¼2ezðx; x4; X4Þ ¼ Fπþπþ;2ezðx; x4; X4Þ
Fπþ;0ðX4Þ2 ; ðA2Þ

where Fπþ;0ðX4Þ ¼ P
x;yhπþðx; X4Þπ−ðy; 0Þi is a pion 2-pt

function with zero momentum. Building blocks of poten-
tials are thus modified to

Gðx; x4; X4Þ ¼ ðð∂X4 − 2mÞ2 − P2ÞRPðx; x4; X4Þ; ðA3Þ

Eðx; x4; X4Þ ¼ 1

4m
½∂2X4 − 4m∂X4 − P2�Gðx; x4; X4Þ; ðA4Þ

L⊥ðx; x4; X4Þ ¼ ∇2⊥Gðx; x4; X4Þ; ðA5Þ

Lkðx; x4; X4Þ ¼ ð−ð∂X4 − 2mÞ∇k þ iP∂x4Þ2RPðx; x4; X4Þ;
ðA6Þ

which should be compared with Eqs. (31)–(34). Using
these, the LO potential is constructed as

VLO
x�4¼0

ðx⊥Þ¼
ðL⊥þLkþmEÞðx;x4;X4Þ

mGðx;x4;X4Þ
����
x4¼0;xk¼0

; ðA7Þ

which is expected to agree with the one in (32) within
systematics errors. Therefore, we can estimate the system-
atics from a difference between two potentials with differ-
ent normalizations.
For the latter, we simply compare potentials at X4 ¼

16� 1. In the following, we show both dependences and
present an estimation of uncertainties on scattering phase
shifts.

1. Normalization dependence

Figure 9 shows the normalization dependence of
effective LO potentials, the W0;free normalization (orange)
defined in Eq. (32) and the 2m normalization (blue) in
Eq. (A7), with nonzero total momenta, P ¼ ez (left) and
P ¼ 2ez (right). We observe a slight systematic downward
shift of central values for the LO potential with the
2m normalization, though differences are comparable with
sizes of statistical errors, and these shifts mainly come from

FIG. 9. A normalization dependence of the potential in the case 1 (left) and the case 2 (right).
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the energy term, as seen in Figs. 10 and 11. Since an
implicit estimation of k2m in the energy term, (35) or (A4),
relies on the continuum dispersion relation and involves a
discretized second time derivative ∂

2
X4
, we suspect that

these shifts are caused by finite lattice spacing effects for a
larger energy of moving particles and thus, are regarded as
discretization errors associated with laboratory frame
calculations.

FIG. 10. A normalization dependence of the Laplacian term (left) and the energy term (right) in the case 1.

FIG. 11. A normalization dependence of the Laplacian term (left) and the energy term (right) in the case 2.

FIG. 12. A normalization dependence of scattering phase shifts at X4 ¼ 16 in the case 1 (left) and the case 2 (right).
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Since potentials should become zero at long distances
and indeed are consistent with zero within statistical errors,
we exclude data at such longer distances and employ data at

r < 13ð1.17½fm�Þ for the fit of potentials, (44), in order to
reduce statistical and systematic fluctuations of potentials
at longer distances as much as possible.

FIG. 13. The X4 dependence of potentials using W0;free normalization (left) and 2m normalization (right) in the case 1.

FIG. 14. Same as Fig. 13 in the case 2.

FIG. 15. The X4 dependence of scattering phase shifts using W0;free normalization in the case 1 (left) and the case 2 (right). A very
similar X4 dependence is observed in the case of 2m normalization.
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Figure 12 shows scattering phase shifts as a function
of k2=m2

π in two normalizations. We observe a slight
difference between the two, which is therefore taken into
account for our estimation of systematic uncertainties.

2. Time dependence

We next discuss the X4 dependence. Figures 13 (case 1)
and 14 (case 2) show effective LO potentials at X4 ¼
16� 1 with nonzero total moment using W0;free normali-
zation (left) and 2m normalization (right). While potentials
at different X4 are statistically consistent with each other,
statistical fluctuations of central values slightly affect fit
results of potentials. As a result, scattering phase shifts also
show a weak dependence on X4, as seen in Fig. 15 for the

W0;free normalization. We thus include the X4 dependence
in our estimation of systematic errors.

3. Final estimation of uncertainties

Let us present our final estimation of systematic uncer-
tainties, including both normalization dependence and X4

dependence of scattering phase shifts. We estimate sys-
tematic uncertainties from differences between maximum
and minimum of all data at a given energy. Figure 16 shows
scattering phase shifts as a function of k2=m2

π with the final
estimation of systematic uncertainties, where color bands
include both statistical and systematic errors. In the main
text, we discuss consistency among different extractions of
scattering phase shifts, taking these systematic uncertain-
ties into account.
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