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Finite-volume pionless effective field theory (FVEFTπ) at next-to-leading order (NLO) is used to
analyze the two-nucleon lattice QCD spectrum of Ref. [S. Amarasinghe et al., Phys. Rev. D 107, 094508
(2023)], performed at quark masses corresponding to a pion mass of approximately 800 MeV. Specifically,
the effective theory is formulated in finite volume, and variational sets of wave functions are optimized
using differential programming. Using these wave functions projected to the appropriate finite-volume
symmetry group, variational bounds from FVEFTπ are obtained for the ground state, as well as excited
states. By comparison with the lattice QCD GEVP spectrum, different low energy constants (LECs) are
constrained. Relativistic corrections are incorporated, allowing for the extractions of NLO LECs, as well as
the leading s − d-wave mixing term in the deuteron channel.
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I. INTRODUCTION

Nuclear physics originates from the nonperturbative
dynamics of quantum chromodynamics (QCD), the theory
of strong interaction between quarks and gluons. However,
first-principles predictions of nuclear properties remain a
complicated task. Lattice QCD (LQCD) offers a systemati-
cally improvable approach to perform calculations in QCD.
In particular, recent progress in the field has enabled
computations in few-nucleon systems [1–15]. Nonetheless,
achieving controlled calculations of many-nucleon systems
in LQCD remains an open problem, given the difficulties to
overcome the signal-to-noise problem and the growing
computational cost of Wick contractions in these systems.
Complementary to direct LQCD calculations of the

properties of larger nuclei, matching of LQCD to effective
field theories (EFTs) and nuclear many-body methods
provides another approach to describing the properties of
nuclei using first-principles QCD information. This can be
realized in several ways. One option is to match infinite-
volume extrapolated LQCD data to an EFT, and then use
LQCD instead of experimental constraints in EFT and
many-body pipelines [16–25]. A promising alternative is to
directly match finite-volume LQCD calculations to an EFT
formulated in the same finite volume, and then perform
many-body computations within the same EFT directly in
infinite volume [26–30]. An important advantage of the
latter approach is that it avoids the need for an infinite-
volume extrapolation in LQCD calculations, and makes
maximal use of LQCD results at fixed volume.
Pionless EFT (EFTπ) is an effective theory for nucleons

that is valid at low momenta [31–38] (see Ref. [39]

for a recent review). The expansion parameter of
EFTπ is k2=M2

π , where Mπ is the pion mass and k the
nucleon momentum, and its radius of convergence is set
by the t-channel cut, located at jk2j ¼ M2

π=4. EFTπ can be
expressed as a tower of contact interactions between
nucleon fields each accompanied by a corresponding
low-energy constant (LEC), and it can be formulated
both in finite and infinite volume [17,28,29,40]. With
LECs fixed by LQCD or experiment, calculations in EFTπ

have been performed for systems as large as atomic
number A ¼ 40 [20].
In recent work, finite-volume EFTπ (FVEFTπ) at leading

order has been used [28–30] to analyze the LQCD calcu-
lations of Ref. [6] (see also Refs. [2,41–45] for other works
on EFTs in finite volume). By optimizing variational wave-
function ansätze, the LECs of the theory were obtained after
matching finite-volume LQCD and EFTπ energies and
matrix elements. With that set of LECs, infinite-volume
predictions for systems of up to six nucleons were evaluated.
It was subsequently shown in Ref. [30] that differential
programming andmachine learning provide an efficient way
of optimizing variational wave functions.
This work further extends the application of FVEFTπ ,

and shows that it can be used to analyze a finite-
volume LQCD spectrum including excited states as well
as states in different irreducible representations of the
finite-volume symmetry group and with nonzero values
of the total momentum of the system. As such, it is
shown how FVEFTπ can be used as an alternative
to finite-volume multiparticle formalisms based on quan-
tization conditions [46–53]. Additional terms are
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implemented in the EFT Hamiltonian with respect to
previous work [29,30], specifically operators with up to
two derivatives and the first relativistic corrections.
Following the approach of Ref. [30], several sets of
correlated Gaussian wave functions are optimized. By
matching to the variational LQCD energy bounds from
Ref. [1], the leading order (LO) and next-to-leading order
(NLO) LECs are obtained, and the effects of both the LO
and NLO couplings are found to be statistically significant.
The magnitude of the s − d-wave mixing term in the
deuteron channel is also bounded by consideration of
differences between energy levels in different irreducible
representations of the cubic group.
This paper is organized as follows. Section II introduces

the necessary background to formulate pionless EFT in a
finite volume. Section II A describes the EFT at NLO,
Sec. II B introduces the Hamiltonian formulation and the
regularization of the interactions, Sec. II C discusses the
variational approach to FVEFTπ , and Sec. II D provides a
toy numerical demonstration of the effect of the different
terms of the Hamiltonian in the variational spectrum. The
application of FVEFTπ to constrain the LECs using LQCD
data from Ref. [1] is discussed in Sec. III, at LO in Sec. III
A, at NLO in Sec. III B, and including s − d-wave mixing
in Sec. III C. Section IV presents a conclusion and
summary. Appendix collects the necessary expressions to
evaluate the matrix elements of the Hamiltonian used in
this work.

II. PIONLESS EFT IN A FINITE VOLUME

Pionless EFT [31–38] describes the interactions between
nucleons in an energy range in which no other degrees of
freedom are dynamical, i.e., pions, and other meson and
baryon resonances have been integrated out. The radius of
convergence of the EFT is limited by the t-channel cut,
which originates from processes where two nucleons
exchange a pion. Therefore, the relative momentum in
the two-nucleon system is restricted to be in the region
jk2j < M2

π=4 for convergence.
In this section, the procedure to constrain LECs by

performing a direct matching of the energy levels between
LQCD and pionless EFT at NLO in a finite volume is
discussed.

A. Pionless EFT at NLO

The EFTπ Lagrangian including terms up to quadratic
order in momentum, and including at most two-nucleon
interactions, is given by [54]

Lπ ¼ LK þ LLO
2 þ LNLO

2 þ Lsd
2 þ � � � : ð1Þ

This Lagrangian describes both the deuteron, with spin
S ¼ 1 and isospin I ¼ 0, and the dineutron, with S ¼ 0 and
I ¼ 1. Here, LK refers to the kinetic term, and LLO

2 and

LNLO
2 to the leading and next-to-leading s-wave inter-

actions. In addition, the s − d-wave mixing term for the
deuteron channel, Lsd

2 , is also included, since it also
contains two derivatives and will affect the finite-volume
energies that are used in this work.
In the kinetic term, the first relativistic correction is

considered, given that the aim is to analyze excited states in
the two-nucleon spectrum,

LK ¼ N†
�
iD0 þ

D2

2MN
þ D4

8M3
N
þ � � �

�
N; ð2Þ

whereN is the nucleon field,MN is the nucleon mass,D0 is
the temporal derivative and D is the vector of spatial
derivatives.
At LO, the interaction Lagrangian is given by

LLO
2 ¼ −CSðNTPiNÞ†ðNTPiNÞ

− CTðNTP̄aNÞ†ðNTP̄aNÞ; ð3Þ

where CS and CT are the LECs corresponding to the
deuteron and dineutron channel. Repeated indices denote
summation. The deuteron and dineutron projectors are
defined as

Pi ≡ 1ffiffiffi
8

p σ2σiτ2; P̄a ≡ 1ffiffiffi
8

p σ2τ2τa; ð4Þ

where σi (τa) are Pauli matrices in spin (isospin) space.
At next-to-leading order, the following terms contribute

LNLO
2 ¼ −Cð2Þ

S ðNTOð2Þ
i NÞ†ðNTPiNÞ þ H:c:

− Cð2Þ
T ðNTŌð2Þ

a NÞ†ðNTP̄aNÞ þ H:c:; ð5Þ

where H.c. denotes the Hermitian conjugate, Cð2Þ
S and Cð2Þ

T
are LECs, the operator

Oð2Þ
i ¼ 1

4
½D⃖2Pi − 2D⃖PiD⃗þ PiD⃗

2�; ð6Þ

and Ōð2Þ
a is defined analogously for the dineutron channel

with the replacement Pi → P̄a. In Eq. (6), the arrows over
the derivatives indicate whether they act on the fields to the
left or to the right.
Moreover, in the deuteron channel at NLO one must

include a term that mixes s and d waves,

Lsd
2 ¼ CðsdÞðNTPiNÞ†ðNTOkl

j NÞT ij
kl þ H:c:; ð7Þ

where CðsdÞ
2 is the LEC that controls this mixing,

Okl
j ¼ D⃖kD⃖lPj − D⃖kPjD⃗

l − D⃖lPjD⃗
k þ PjD⃗

kD⃗l; ð8Þ
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and

T ij
kl ¼

�
δikδjl −

1

3
δijδkl

�
: ð9Þ

Finally, interactions of three or more nucleons can also
be included, but they will not be used in the present work,
which focuses on two-nucleon systems.

B. Hamiltonian for the EFT

In this section, the Hamiltonian formulation of the EFT
presented in Sec. II A is discussed. The Hamiltonian is
constructed as

H ¼
X
n

Kn þ
X
n<m

V2ðrnmÞ; ð10Þ

where n;m ∈ f1;…; Ag label the nucleons in an A-nucleon
system. Here, only systems of two nucleons are considered,
and the sum n < m can only take one value. The sum is
thus omitted henceforth to simplify notation. Furthermore,
note that in two-nucleon systems, each two-body isospin
channel can be considered independently.
The kinetic energy operator is

Kn ¼ Kð2Þ
n þ Kð4Þ

n ¼
�
−

1

2MN
∇⃗2
n −

1

8M3
N
ð∇⃗2

nÞ2
�
; ð11Þ

where ∇⃗n is the vector derivative with respect to the
coordinates of the n-th particle, and ∇⃗2

n is the corresponding

Laplacian. In Eq. (11), Kð2Þ
n and Kð4Þ

n are implicitly defined
to be the nonrelativistic kinetic energy, and the first
relativistic correction, respectively.
The two-particle interaction potential, V2ðrnmÞ, is a

function of the displacements between particles n and m,

rnm ¼ rn − rm, where rn ¼ ðrðxÞn ; rðyÞn ; rðzÞn Þ labels the posi-
tion of the nth particle. The two-nucleon interactions are
regulated with Gaussian smearing [55]. In infinite volume,
the regulator is

gΛðrÞ ¼
Λ3

8π3=2
exp ð−Λ2jrj2=4Þ

¼ Λ3

8π3=2

Y
α∈fx;y;zg

exp

�
−
Λ2

4
rðαÞ2

�
; ð12Þ

where Λ is a the regulator parameter, which can be related
to a length scale r0 as Λ ¼ ffiffiffi

2
p

=r0. This choice constitutes a
family of renormalization schemes for the LECs in the
Hamiltonian, and the concrete choice of Λ (or equivalently
r0) specifies the scheme.
At leading order,

VLO
2 ðrnmÞ ¼ CSP0

iPigΛðrnmÞ þ CTP̄0
aP̄agΛðrnmÞ; ð13Þ

where the projectors P and P̄ act on the incoming state, and
the P0 and P̄0 on the outgoing state. The s-wave NLO
potential is

VNLO
2 ðrnmÞ ¼ ðCð2Þ

S P0
iPi þ Cð2Þ

T P̄0
aP̄aÞ½gΛðrnmÞð∇⃗n − ∇⃗mÞ2

þ ð∇⃖n − ∇⃖mÞ2gΛðrnmÞ�: ð14Þ

Here, the right or left arrows above the ∇ operator indicate
whether it acts on the initial or final states, respectively.
Note that in the scheme used here, the derivative operators
never act on the Gaussian regulator function. Finally, for
the deuteron, the s − d-wave mixing term is specified as

Vsd
2 ðrnmÞ ¼ CðsdÞT ij

klP
0
iPj½gΛðrnmÞð∇⃗ðkÞ

n − ∇⃗ðlÞ
m Þ2

þ ð∇⃖ðkÞ
n − ∇⃖ðlÞ

m Þ2gΛðrnmÞ�; ð15Þ

where ∇ðkÞ
n is the kth component of ∇n, i.e., the derivative

with respect to rðkÞn .
Finally, the Hamiltonian can be formulated in a finite

periodic box of side length L. In practice, the only
necessary change involves the regulator, for which perio-
dicity can be imposed by summing over copies translated
by multiples of L in each spatial direction,

gΛðr;LÞ¼
Λ3

8π3=2

Y
α∈fx;y;zg

Xqcut
qðαÞ¼−qcut

exp

�
−
Λ2

4
ðrðαÞ−LqðαÞÞ2

�
:

ð16Þ

Exact periodicity is achieved as qcut → ∞. In practice, the
magnitude of contributions decays exponentially with qðαÞ,
and in numerical calculations a finite value of qcut is
sufficient to compute results to any given numerical
precision. The finite-volume potential is then given by
Eqs. (13) to (15) under the replacement gΛðrÞ → gΛðr; LÞ.

C. Variational approach

The variational method is a systematically improvable
approach to determining increasingly restrictive upper
bounds on some set of energies in a quantum system.
For the ground state, it proceeds as follows. Given a wave
function ansatzΨwith some definite quantum numbers, the
expectation value of the energy for that wave function,
E½Ψ�, constitutes an upper bound of the ground state energy
E0 in that sector of quantum numbers,

E0 ≤ E½Ψ� ¼ hΨjHjΨi
hΨjΨi : ð17Þ

Note that for simplicity, internal quantum numbers such as
spin or isospin are kept implicit in the wave function.
This can be generalized to energy levels beyond the

ground state; given a set of ‘trial’ wave functions fΨig with
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i ∈ f1;…; Ngg, and solving the generalized eigenvalue
problem (GEVP):

Hv ¼ λNv; ð18Þ

where

½N�ij ≡ hΨijΨji; and ½H�ij ≡ hΨijHjΨji; ð19Þ

yields Ng eigenvalues λ1;…; λNg
, ordered by increasing

energy, which correspond to upper bounds of the lowest Ng

energy levels. Moreover, the eigenvector corresponding to

the ith eigenvalue is ci ¼ ðcð1Þi ;…; c
ðNgÞ
i Þ, which can be

used to construct an approximate wave function for the

corresponding state,
P

j c
ðjÞ
i jΨji. This approximation, i.e.,

a ‘variational’ wave function, should approach the true
wave function as the set of trial wave functions approaches
a basis for the relevant Hilbert space.

1. Variational wave functions

In this section, the trial functions used in this work are
described. Following previous work [29,30], a factorization
of the spin-isospin and the spatial parts is assumed:

jΨi ¼ ΨðxÞjχhi: ð20Þ

Here x (with components xðαÞn ) describes the positions of all
particles in the three spatial dimensions, and h is a generic
label for spin-isospin quantum numbers.
The spin-isospin states for the two-nucleon systems are

chosen to be antisymmetric and given by

jχd;Sz¼þ1i ¼
1ffiffiffi
2

p ½jp↑n↑i − jn↑p↑i�;

jχd;Sz¼0i ¼
1

2
½jp↑n↓i − jn↑p↓i þ jp↓n↑i − jn↓p↑i�;

jχnni ¼
1ffiffiffi
2

p ½jn↑n↓i − jn↓n↑i�: ð21Þ

Here n, p denote neutron and proton one-particle states,
and the superscript arrows correspond to the third compo-
nent of the spin. Moreover, jχnni indicates the dineutron
channel, and jχd;Szi the deuteron channel with third
component of the two-nucleon spin Sz. Other spin-isospin
states not displayed here, e.g. jχppi, can be defined
analogously.
The spatial wave functions are assumed to factorize:

ΨðxÞ ¼
Y

α∈fx;y;zg
ΨðαÞðxðαÞÞ: ð22Þ

Then, correlated Gaussian ansätze are considered inde-
pendently for each component. In infinite volume, these are

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ

¼ exp

�
−
1

2
xðαÞTAðαÞxðαÞ

−
1

2
ðxðαÞ − dðαÞÞTBðαÞðxðαÞ − dðαÞÞ

�
; ð23Þ

where AðαÞ; BðαÞ, and dðαÞ contain the free parameters of the
ansatz. Specifically, AðαÞ and BðαÞ are Nn × Nn real sym-
metric matrices where Nn is the number of particles, and
dðαÞ is an Nn-component real-valued vector. In finite
volume, periodic boundary conditions are imposed by
summing periodically-translated copies of the wave func-
tion Ansatz,

ΨðαÞ
L ðAðαÞ; BðαÞ;dðαÞ;xðαÞÞ

¼
Xbcut

bðαÞ¼−bcut

ΨðαÞ
∞ ðAðαÞ; BðαÞ;dðαÞ;xðαÞ − bðαÞLÞ; ð24Þ

where bðαÞ is an integer-valued vector with Nn components
for each α. Similar to Eq. (16), exact periodicity requires an
infinite sum, but in practice each component of bcut need
only be large enough that Eq. (24) converges to the desired
numerical precision. Finally, to respect Fermi statistics, the
spatial wave function is forced to be symmetric by
summing over all possible permutations P of the particles:

Ψsym
L ðA; B;d;xÞ ¼

X
P

ΨLðAP ; BP;dP ;xÞ; ð25Þ

where A ¼ ðAðxÞ; AðyÞ; AðzÞÞ, and similarly for B and d, and
the permutation acts by swapping rows and columns of the
matrices and entries of the vectors. For example,

ðAðαÞ
P Þmn ¼ ðAðαÞÞPðmÞPðnÞ;

ðdðαÞP Þn ¼ ðdðαÞÞPðnÞ; ð26Þ

where PðnÞ is the nth element of the permutation P.
In summary, the finite-volume wave function Ansätze

are a linear combination of Ng wave functions,

jΨðhÞi ¼
XNg

i¼1

cijΨðhÞ
i i; ð27Þ

where the ith term looks like

jΨðhÞ
i i ¼ Ψsym

L ðAi; Bi;di;xÞjχhi≡Ψsym
L;i ðxÞjχhi; ð28Þ

for each choice of spin-isospin quantum numbers, h.
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2. Evaluation of matrix elements

In order to solve the GEVP in Eq. (18) given some set of
trial wave functions and thereby obtain variational bounds
on the spectrum, the matrix elements of both N and H need
to be evaluated. A convenient consequence of the choice of
a correlated Gaussians Ansatz is that all of the required
matrix elements can be evaluated analytically, as they all
reduce to multidimensional Gaussian integrals.1 This sec-
tion provides an overview of the necessary pieces, while the
explicit expressions are collected in Appendix.
In order to obtain variational bounds, the normalization

is needed

½N�ij ¼ δhh0
Z

dxΨsym
L;i ðxÞΨsym

L;j ðxÞ: ð29Þ

For notational simplicity, the h indices are omitted on the
left-hand side of this and the following equations. For the
Hamiltonian, several terms need to be evaluated:

½H�ij ¼ ½Kð2Þ þ Kð4Þ þ VLO
2 þ VNLO

2 þ V sd
2 �ij: ð30Þ

Here Kð2Þ represents matrix elements of the nonrelativistic
kinetic energy,

½Kð2Þ�ij ¼ δhh0
X
n

Z
dxΨsym

L;i ðxÞKð2Þ
n Ψsym

L;j ðxÞ; ð31Þ

with Kð2Þ
n given in Eq. (11), and similarly for the first

relativistic correction, Kð4Þ. Next, VLO
2 is constructed from

the matrix elements of the LO potential,

½VLO
2 �ij ¼ δhh0

Z
dx
Ψsym

L;i ðxÞhχhjVLO
2 jχhiΨsym

L;j ðxÞ; ð32Þ

with a similar expression for the NLO potential, VNLO
2 .

These terms do not mix spin or isospin components, which
is made explicit by δhh0, indicating that the matrix elements
vanish unless all isospin/spin quantum numbers are iden-
tical in the initial and final states. By contrast, the
expression for the s − d-wave mixing term mixes the spin
components of the deuteron,

½V sd
2 �ij ¼

Z
dx
Ψsym

L;i ðxÞhχh0 jVLO
2 jχhiΨsym

L;j ðxÞ: ð33Þ

By choosing a Cartesian basis for the spin components,
hχh0 jVsd

2 jχhi is easily related to the Tij
kl tensor in Eq. (15).

After solving the GEVP in Eq. (18) to determine energy
bounds and approximate eigenvectors, one can evaluate
observables using variational wave functions, e.g. matrix

elements as in Ref. [29]. One observable that is particularly
useful in the classification of states is the total three-
momentum P of the multiparticle system. In a finite
volume, P is quantized as ð2π=LÞn with n ∈ Z3, and each
value defines a “frame” such as, the rest frame with P2 ¼ 0.
In LQCD spectroscopy, it is customary to compute energy
levels at several different definite values of P2. For this
reason, it will be useful to evaluate the expectation value of
the P2 operator on the variational wave functions. For this,
the following expression is needed

½P2�ij ¼ δhh0
Z

dxΨsym
L;i ðxÞP2Ψsym

L;j ðxÞ; ð34Þ

where P2 ¼ ðPn PnÞ2, and Pn ¼ −i∇n.

3. Optimization of the wave functions

Efficient use of the variational approach relies on having
wave function Ansätze that have the flexibility to provide
accurate representations of the eigenstates. These can be
difficult to construct, and efficient algorithms are required
to optimize the parameters of the trial wave functions. In
Ref. [30] it was demonstrated that differential programming
and state-of-the-art machine-learning optimizers can be
powerful in this setting, outperforming other approaches
such as the stochastic variational method (SVM) [57] in the
context of pionless EFT for few-nucleon systems.
This section outlines the relevant features of the optimi-
zation procedure; further implementation details are as
in Ref. [30].
The optimization procedure followed in this work targets

the lowest eigenstate of a particular Hamiltonian.2 Thus, the
nucleon mass, the volume of the box and the values of the
LECs are fixed at the beginning of the process. Then, given
a wave function Ansatz of Ng correlated Gaussians as in
Eq. (27), the parameters to be optimized are the set of real-
valued ci, and the parameters in the correlated Gaussians
jΨii, denoted generically as θ. The energy of the trial wave
function is given by

E½ΨðθÞ� ¼ c · ðKð2Þ þ VLO
2 þ VNLO

2 Þ · c
c · N · c

; ð35Þ

where the chosen values for LECs are implicit in the matrix
elements of the LO and NLO potentials. The value of
E½ΨðθÞ� provides a bound for the ground-state energy,
and is minimized through the optimization process,
i.e., Eq. (35) is the “loss function”. The relevant matrix
elements are computed using the expressions in Appendix,
and the sums present in Eqs. (16) and (24) are evaluated up
to qcut ¼ 50, and bcut ¼ ð50; 50Þ.

1See Table 7.1 in Ref. [56] for useful expressions in the context
of multidimensional Gaussian integrals.

2Other optimization approaches that directly target excited
states could be implemented, but are beyond the scope of the
present work.
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The same algorithm as in Ref. [30] is used to minimize
the loss. Automatic differentiation is utilized to compute
the gradients with respect to the parameters, with a self-
adaptive learning rate (see Appendix B in Ref. [30]). The
latter is required, since during optimization there are
almost-flat directions that require very large learning rates.
Other minimizers, such as Adam [58], do not obviously
perform better. Three examples of optimization curves are
shown in Fig. 1. In one case, a second dip of the loss
appears, which is a consequence of an almost-flat direction.
In this work, the evaluation of the energy as the primary

optimization target only includes the terms in the
Hamiltonian corresponding to Kð2Þ, VLO

2 and VNLO
2 . Once

the wave functions have been optimized, the parameters of
the Ansätze are stored and it is possible to solve the GEVP,
as described in Eq. (18). In the GEVP, the effect of Kð4Þ and
Vsd
2 are also considered, but they are excluded from the

optimization, since obtaining the gradients for the opti-
mizer in these terms is numerically demanding. Moreover,
Vsd
2 in the case of the deuteron channel mixes different spin

components, and so, one would require a more complex set
of wave functions. Including these effects in this manner is
sufficient, since they are expected to be perturbative.
Finally, as demonstrated in Refs. [29,30], it is useful to

combine sets of Gaussians that have been optimized
independently, either with the same or different values of
the LECs, when solving the GEVP. Indeed, in the appli-
cation described in Sec. III this leads to improved bounds
on both the ground state, and excited states. In practice, to
scan over the parameter space or to perform fits, it is more
useful to combine sets at different values of the LECs.

4. Finite-volume symmetries

In a finite cubic volume, rotational invariance is broken
to a discrete subgroup of transformations, the so-called

cubic octahedral group or its double cover. Consequently,
finite-volume LQCD states enter in irreducible representa-
tions (irreps) of this reduced symmetry group rather than as
states of well-defined angular momentum (irreps of the
rotation group). In addition, the preserved symmetry may
be further reduced to the little group corresponding to
conserved vectors such as the total three-momentum. To
perform the appropriate matching, these symmetries must
also be considered in the FVEFT.
The wave function Ansatz in Eq. (28) is in general not

covariant under cubic-group transformations. This sym-
metry can be easily imposed by performing a projection
over the appropriate symmetry group to arrive at a wave
function Ansatz with the desired transformation properties,

jΨΓi ¼
X

Ri∈LGðPÞ
ζΓðRiÞΨsym

L;i ðRixÞjDSðRiÞχhi; ð36Þ

where LGðPÞ stands for “little group” and describes the
symmetry group in finite volume in a system with certain
total momentum P, ζΓðRiÞ is the character of the rotation Ri
in the irrep Γ, and DSðRiÞ is the representation of the
rotation Ri corresponding to spin S. In the rest frame, the
little group is the octahedral group. For nonzero total
momentum, it is the subgroup of the octahedral group that
leaves the momentum invariant. The set of irreps, rotations,
and characters in the octahedral group and little groups can
be found, e.g., in Refs. [59–61].
This work focuses primarily on states in the rest frame,

and the notation for irreps of Ref. [60] is used. For the
dineutron case, which is a spin singlet, the A1g irrep is
considered. This irrep couples dominantly to s-wave
interactions, and corresponds to states that are fully
symmetric under any transformation in the symmetry group
(the trivial irrep). As a result, the matrix elements of the

Hamiltonian for those states depend only on CT and Cð2Þ
T at

NLO. This irrep thus can be used to constrain these LECs.
Notice that the rotation of the spin states is trivial in
this case.
In the deuteron case, the T1g irrep is considered, which

couples to interactions in channels with total angular
momentum and parity JP ¼ 1þ; 3þ;… that are isosinglet.
This means that energy levels in this irrep are affected by
both s- and d-wave interactions, and can be used to

constrain the LECs CS; C
ð2Þ
S and CðsdÞ. Two ways of

obtaining T1g wave functions are used in this work.
First, one can construct a fully symmetric spatial wave
function multiplied by a generic deuteron spin-isospin
wave function as in Eq. (21). Second, arbitrary space-
spin-isospin wave functions can be projected following
Eq. (36), for which one needs explicit representation of
rotations acting on the spinDSðRiÞ, i.e., Wigner-D matrices
for an axial vector. The former approach will be used
during optimization and to constrain s-wave LECs, and the

FIG. 1. Examples of optimization of wave function Ansätze
with Ng ¼ 8 correlated Gaussians. Each of the three sets of wave
functions is optimized during 104 gradient steps and for different
LECs, as displayed in the legend.
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latter will be used to bound the magnitude of the
s − d-wave mixing term.

D. Numerical examples

In this section, numerical examples of the NLO effects in
the FVEFT method are explored, demonstrating how the
different terms in the Hamiltonian shift the energy levels. In
particular, examples are chosen to illustrate the new
features explored in this work; irrep projections, relativistic
corrections, and NLO terms in the potential. It is also
demonstrated how optimizing for the ground state for a
sufficiently large set of correlated Gaussians leads to
approximately optimized results for low-energy excited
states.
For these examples, the physical value of the nucleon

and pion masses are chosen, with a box of size MπL ¼ 4.
Specifically,

L ¼ 5.67 fm; MNL ¼ 27.05: ð37Þ

For the regulator in the interaction potential, the scale is set
as r0 ¼ 0.2 fm.

1. Excited states and irreps

A clear illustration of the approach is provided in the free
theory, with all LECs set to zero, and in the nonrelativistic
limit i.e., with ½Kð4Þ�ij ¼ 0. For the dineutron, the overall
spin is zero and the behavior of the spin part of the wave
function is trivial. The solutions in the free theory are
exactly known. The momentum of each particle is quan-
tized by the periodic boundaries as pi ¼ ð2π=LÞni with
n ∈ Z3, and so the energy is

E ¼ ELðn2
1 þ n2

2Þ; EL ¼ 2π2

MNL2
: ð38Þ

Note that several different values of ni result in degenerate
energies. In addition, each level can be assigned to a frame
labeled by P2 ¼ ð2π=LÞ2d2, with d ¼ n1 þ n2. For in-
stance, E ¼ EL has a 6-fold degeneracy for a symmetric
spatial wave function, corresponding to n2

1 ¼ 1 and n2
2 ¼ 0

(and the symmetric combination), where all states are in a
frame with overall momentum d2 ¼ 1. Moreover, E ¼ 2EL
has a 33-fold degeneracy, corresponding to (i) 12 states
with n2

1 ¼ 2 and n2
2 ¼ 0 (and the symmetric contribution)

and d2 ¼ 2, (ii) 6 states with n2
1 ¼ n2

2 ¼ 1 and d2 ¼ 4,
(iii) 3 states with n2

1 ¼ n2
2 ¼ 1 and d2 ¼ 0, and (iv) 12

states with n2
1 ¼ n2

2 ¼ 1 and d2 ¼ 2.
A numerical example of variational bounds on energies

in this system obtained by the approach of Sec. II is shown
in Fig. 2. The results have been obtained by optimizing five
sets of correlated Gaussian Ansätze with Ng ¼ 8 at differ-
ent values of the LECs as specified in the figure caption,
and then performing a combined GEVP with all LECs set

to zero. The upper panel shows the values for the energies
in units of EL, and the lower panel shows the overall
momentum d2 in units of ð2π=LÞ2. It can be seen that the
first levels with E ¼ 0 and E ¼ EL are correctly repro-
duced, including their degeneracies. In contrast, only a
subset of the expected bounds for states with true energies
E ¼ 2EL are close to that value. The values of d2 for these
states differ from integers because the variational wave
functions are contaminated by other states. One could
further improve on these bounds by considering larger sets
of optimized wave functions.
A second example is provided in Fig. 3, where the wave

functions have been projected to be completely symmetric
under permutations and inversions. This corresponds to the
A1g irrep for d2 ¼ 0, while for d2 > 0 is equivalent to
projecting to the trivial irrep of the little group of the moving
frame. Here, three sets of correlated Gaussian wave func-
tions with Ng ¼ 8 are optimized at different values of the
LECs as specified in the figure caption. In this case, the
bounds aremuch closer to the known free-energy levels than
in the example of Fig. 2; the correct degeneracies for the
levels emerge at E ¼ 2EL, and those at E ¼ 3EL are also
partially reproduced. It is also interesting to note that the first
few levels withd2 ¼ 0 andd2 ¼ 1 are verywell reproduced,
but starting from d2 ¼ 2, significant deviation can be seen.
Larger sets of trial wave functions would also allow for
further improvements in the fidelity of the spectrum.

FIG. 2. Optimized energy bounds in the noninteracting theory
in finite volume for several states. No spatial symmetry is
assumed for the wave functions. The upper panel shows the
energy bounds organized by increasing energy from left to right
in units of EL as in Eq. (38). The lower panel shows the calculated
value of the squared total momentum of the system in units of
ð2π=LÞ2. The shape and color of the markers are also used to
indicate the total momentum. These bounds have been obtained
by combining 5 different sets of Ng ¼ 8 correlated Gaussians in a
GEVP. They have been optimized for about 2000 gradient steps at
different values of the LO coupling: CS ¼ 0;�25;�50 MeV ·
fm3 (all other LECs are set to zero). In the combined GEVP,
CS ¼ 0 is used.
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2. Relativistic corrections

Next, the effect of the Oðp4Þ relativistic correction in the
spectrum is explored, once again in the setting of the free
theory, for which the answer is exactly known. In this case,
the relativistic correction is expected to shift the energy as

ΔEð4Þ ¼ −
E2
L

8MN
ðn4

1 þ n4
2Þ: ð39Þ

Note that this breaks the degeneracy between some levels.
For instance, the 33 energy levels with E ¼ 2EL in the
nonrelativistic limit become two different sets of levels,
12 levels with ΔEð4Þ ¼ −E2

L=ð2MNÞ and 21 levels with
ΔEð4Þ ¼ −E2

L=ð4MNÞ. As an indicator of scale, the typical
size of the relativistic shift is E2

L=MN ≃ 0.7 MeV for
physical quark masses and MπL ¼ 4, while for the
LQCD setting of Ref. [1] it is E2

L=MN ≃ 0.3 MeV.
An example of the effect of the relativistic correction is

shown in Fig. 4. Here, the same set of correlated Gaussians
are used as in the results shown in Fig. 3, a projection to
the fully symmetric wave function is performed, and the
relativistic correction ½Kð4Þ�ij is included as a part of
the GEVP.3 The figure shows the shift of the lowest few
energy levels for d2 ¼ 0; 1; 2 when adding the relativistic
term. This shift is correctly reproduced to better than
relative 2% accuracy for the lowest levels with d2 ¼ 0

and 1. In contrast, for d2 ¼ 2 some discrepancies can be

seen. In particular, the shifts should be −2 and −4 in the
units of the y-axis of the figure, and values around −3 and
−4 are found. This indicates that the optimized wave
functions are contaminated by higher-lying states, which
can also be seen in the fact that the state with i ¼ 6 has a
value of d2 that is larger than 2.

3. Effect of the s− d-wave mixing term

A final numerical example is given for the deuteron
channel, where the s − d-wave mixing term in Vsd

2 con-
tributes to the spectrum in the T1g irrep.

4 At second order in
perturbation theory, the effect of this term on the ground
state is expected to be

ΔEsd ¼ E − EjCðsdÞ¼0 ∝ ðCðsdÞÞ2 þO½ðCðsdÞÞ4�; ð40Þ

where ΔEsd is the shift due to the s − d-wave mixing term.
For higher excited states, other effects are possible.
In particular, in the free theory the state with d2 ¼ 0 and
n1 ¼ n2 ¼ 1 in the T1g irrep has a 6-fold degeneracy; A1g

irrep in the spatial wave function combined with T1g in
spin, and Eg in the spatial part combined with T1g in spin.
These states are degenerate in the free theory. If only the
Vsd
2 term is added to the Hamiltonian, perturbation theory

on degenerate states can be used to show that these levels
acquire a shift proportional to jCðsdÞj. In contrast, if any
other term in the potential, e.g. VLO, is different from zero,
these states will not be degenerate at zero s − d-wave
mixing and the effect of the LEC will be quadratic.
To evaluate the effect of this term, 5 sets of Ng ¼ 8

correlated Gaussians are optimized. Three different

FIG. 3. Optimized energy bounds in the noninteracting theory
in finite volume for several states imposing that the wave function
is fully symmetric under permutations and inversions. The energy
bounds are organized from left to right by increasing squared total
momentum, and with increasing energy at the same momentum.
Other notations are as in Fig. 2. These bounds have been obtained
by combining in a GEVP three sets of Ng ¼ 8 correlated
Gaussians, optimized at CS ¼ 0.0;�50 MeV · fm3.

FIG. 4. Shifts in the variational energy bounds due to the first
relativistic correction. The y-axis is given in dimensionless units
such that the exact predictions for the shifts are integers, see
Eq. (39). All notation is as in Fig. 3, and the same trial wave
functions as used for the results in that figure have been used.

3The relativistic correction could also be included during
optimization, but its effect is small and perturbative, and it is
sufficient to include it at the level of the GEVP.

4See Ref. [62] for a study of the effect of this term based on the
two-particle quantization condition.
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third-component spin projections are applied to each set
resulting in a 120 × 120 matrix in the GEVP. The depend-
ence of the energy bounds on CðsdÞ is displayed in Fig. 5.
The linear and quadratic responses seen are as expected
from the arguments above.

III. CONSTRAINTS ON LECs
FROM LATTICE QCD

This section presents a FVEFTπ analysis of the spectra
of Ref. [1] for the dineutron and deuteron channels. The
goal is to obtain constraints on the values of the LECs,

CS=T; C
ð2Þ
S=T and CðsdÞ. In the LQCD calculation of Ref. [1],

the lattice spacing and the nucleon mass are

a ¼ 0.1453ð16Þ fm; aMN ¼ 1.20467ð57Þ; ð41Þ

and the spatial lattice extent is L=a ¼ 32. Since the
uncertainty in both the lattice spacing and the nucleon
mass are much smaller than those in the two-nucleon
energies, they are neglected in this analysis. The energy
bounds used as constraints are given in Table I. In the
deuteron channels, the levels in the T1g irrep that are
dominated by s-wave interactions are used. In the dineutron
channel, the A1g irrep is used. Only the energy bounds
below the t-channel cut and dominated by baryon-baryon
operators of Ref. [1] are used here. States above the
t-channel cut are outside of the range of validity of pionless
EFT. The GEVP states in Ref. [1] that are dominated by
hexaquark operators are not used in the analysis of this
work, as new degrees of freedom would be needed to

describe them in the EFT. It is important to note that the
LQCD results in Ref. [1] are themselves variational upper
bounds on the eigenvalues of the system, rather than
estimates of the corresponding energy levels. If the true
eigenenergies on the system were significantly below these
bounds, the extracted LECs would change.
Avariational analysis is undertaken as detailed in Sec. II,

with five different sets of Ng ¼ 8 correlated Gaussians
ansätze optimized at different values of the LO and NLO
coupling. The couplings are chosen such that they span the
region around the a posteriori fit values. For example, for
the scheme set by r0 ¼ 0.2 fm, the LECs are chosen in the
range:CS=T ∈ ½−50;−130� fm3 · MeV for the LOLECs and

Cð2Þ
S=T ∈ ½0;−2� fm5 · MeV for the NLO LECs. In each case,

different groups of 5 sets of Ng ¼ 8 Gaussians optimized
independently at different values of the LECs produce
equivalent results, with the resulting difference in the energy
bounds being at least one order of magnitude smaller than
the uncertainties in the LQCD energy bounds in Table I.

A. Constraints on the LO couplings

A first analysis is performed using only the LO effective
theory in each isospin channel. Here, the scheme of
the LECs is fixed by setting r0 ¼ 0.2 fm, as in previous
work [30]. In this case, the analysis will be restricted to the
ground state since momentum dependence is expected to be
more impactful for excited states. Given optimized wave
function Ansätze, matching to the ground state LQCD
energies constrains the value of the CS or CT directly.
This analysis yields effective couplings

CS ¼ −90ð5Þ MeV · fm3;

CT ¼ −91ð4Þ MeV · fm3: ð42Þ

Here, the first relativistic correction is included, although it
makes very little difference compared to the uncertainties
of the LECs since the state is near threshold. Since these
LECs are very close, spin-dependent interactions are
subdominant with respect to spin-independent interactions,
as observed in Refs. [29,30]. The difference in these LECs
compared with those obtained in the similar analyses of

FIG. 5. Dependence of energy bounds of the ground and excited
states in the deuteron channel on the s − d-wavemixing LECCðsdÞ.
The lower panel corresponds to theground state, and the upper panel
to the next excited states. The dashed gray lines indicate exact
solutions in the free theory. The solid magenta lines are obtained by
setting all LECs to zero except CðsdÞ, and the dashed blue lines by
settingCS ¼ −2.5 fm3 · MeV and varyingCðsdÞ. The same five sets
of Ng ¼ 8 correlated Gaussians as in Fig. 2 are used.

TABLE I. GEVP energy bounds from Ref. [1] used in this
work. “Energy shifts” refers to the difference between the LQCD
energy bounds and the two-nucleon threshold. The uncertainties
that are shown include statistical uncertainties as well as
systematic uncertainties from using different procedures of
extracting the shifts from the LQCD correlation functions; see
Ref. [1].

Channel Irrep Energy shifts (MeV)

Deuteron T1g ¼ A1g ⊗ T1g −3.4ð7Þ 29.5(1.3) 71.5(1.4)
Dineutron A1g −3.3ð7Þ 30.7(1.2) 72.6(1.4)

CONSTRAINT OF PIONLESS EFT USING TWO-NUCLEON … PHYS. REV. D 108, 034509 (2023)

034509-9



Refs. [17,28–30] is a result of the different LQCD energy
spectrum used in this work, namely that of Ref. [1], rather
than Ref. [6].
Having fixed the effective couplings by matching to the

LQCD ground-state energies, one can examine how well
excited states are described. This comparison is displayed
in Fig. 6, where the dependence of the spectrum on the LO
LECs for the two isospin channels is compared with the
ground- and excited-state energy bounds from LQCD. As
can be seen, after fixing the LO LEC by matching to the
ground state, excited states are not correctly reproduced,
and the disagreement is larger as the energy of the state
grows. This indicates that LO EFTπ is insufficient to
describe the LQCD results, and is the motivation to extend
the analysis to use NLO EFTπ .

B. Constraints on the NLO couplings

Using the three energy levels in each isospin channel
shown in Table I, the set of LO and NLO LECs, CS=T and

Cð2Þ
S=T can be simultaneously constrained. Since there are

three levels and two parameters, this entails a (correlated)
fit with a single degree of freedom. The first relativistic
correction is included in the fit, and the effect of neglecting
it is explored below. Statistical uncertainties in these fits are
propagated from the LQCD energies using the derivative
method. Explicitly, the covariance matrix (Vnm) of the
parameters pn can be obtained as

Vnm ¼
 
∂Epred

i

∂pn
ðC−1Þij

∂Epred
j

∂pm

!−1

; ð43Þ

where Epred
i is the predicted energy level, and C is the

covariance matrix of the energies obtained from the data.
Fits to both channels using three different regulator

schemes for the LECs are performed, i.e., r0 ∈
f0.2; 0.3; 0.4g fm. The results for the LECs in both
channels are given in Table II. As can be seen from the
χ2, all fits have a good quality. For the case of r0 ¼ 0.2 fm,
the values of the LO couplings are significantly different
than those obtained in the analysis of the ground state

FIG. 6. Comparison between FVEFTπ predictions and LQCD data for the finite-volume energies in the deuteron (left) and dineutron
(right) channels. The blue line shows the dependence of the variational spectrum predicted by FVEFTπ on the LO couplings (the first
relativistic correction is also included). Horizontal bands correspond to the energy bounds from Ref. [1]; the orange band for the level
used in the matching, and the red dashed bands for those not included in the fit. Dotted horizontal gray lines correspond to the energies in
the free theory (all LECs set to zero). The dashed black line is obtained by matching the ground state of each channel, and the gray band
indicates the 1σ uncertainty in the LECs [see Eq. (42)].

TABLE II. Summary of the fit results including LO and NLO LECs for both isospin channels, and using three different schemes for
the LECs defined by the value of r0. For r0 ¼ 0.2 fm, the results excluding relativistic corrections are also shown.

r0 (fm) Relativistic corrections CS (MeV · fm3) Cð2Þ
S (MeV · fm5) χ2I¼0 CT (MeV · fm3) Cð2Þ

T (MeV · fm5) χ2I¼1

0.2 Included −134ð1Þ −1.07ð7Þ 0.34 −129ð8Þ −1.2ð5Þ 0.55
0.2 Excluded −122ð2Þ −0.52ð4Þ 0.89 −120ð7Þ −0.5ð3Þ 1.05
0.3 Included −147ð2Þ −0.46ð5Þ 0.21 −146ð8Þ −0.6ð3Þ 0.42
0.4 Included −161ð2Þ 0.25(5) 0.05 −162ð7Þ −0.1ð4Þ 0.43
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energies only; see Eq. (42). This indicates that truncating
the EFT at LO induces an error larger than the statistical
uncertainty of the LO coupling (see Ref. [63] for further
insights into incorporating these truncation uncertainties).
Moreover, the ground-state energy is equally well repro-
duced. In Table II, a fit for r0 ¼ 0.2 fm without the
first relativistic correction is also shown. Excluding this
correction reduces the fit quality thereby increasing the χ2,
and changes the best fit parameters by over a standard
deviation. This indicates that the systematic effect of
neglecting relativistic corrections is larger than the present
statistical uncertainty.
Figure 7 provides a representation of the fit quality for the

case of r0 ¼ 0.2 fm and both isospin channels. Here, the blue
lines correspond to the NLO FVEFTπ predictions as a
function of the LO LEC, and with the value of the NLO
LECs fixed at their best-fit result. The agreement between
the LQCD energy bounds, and the FVEFTπ predictions is
very good, as anticipated by the low value of the χ2

in Table II.
A visualization of the constraints on NLO EFTπ from the

matching is provided in Fig. 8, where the confidence
intervals for the various LECs are shown. Due to the
correlations in the LQCD energies, the determinations of
the LECs in each channel are also significantly correlated.
Interestingly, the LECs in the deuteron channel are sig-
nificantly better constrained, even though the uncertainties
of the LQCD energy levels are approximately the same.
This results from the covariance matrix of the LQCD
energies being very different, even though the diagonal
entries are of similar magnitude.

In considering fits using different FVEFTπ schemes
(different values r0), some scale dependence can be seen.
While most of the effect of changing the scale can be
reabsorbed by modifying the values of the LECs, the χ2

values in Table II and the shape of the 1σ ellipses in Fig. 8
do vary with r0. This residual scale dependence is expected,
since the regulator induces mixing between NLO terms
and operators with a higher number of derivatives.

FIG. 7. Visualization of the fits including the LO and NLO couplings at r0 ¼ 0.2 fm for the deuteron (left) and dineutron (right)
channels. The blue lines show the variational spectrum predicted by FVEFTπ as a function of the leading order couplings, while fixing

the NLO LEC, Cð2Þ
S=T to its best fit value in Table II. The first relativistic correction is also included. Horizontal orange bands correspond

to the energy bounds from Ref. [1]. Dotted gray lines correspond to the energies in the free theory. The dashed black line indicate the
best fit result for the LO coupling, and the gray bands indicate the 1σ uncertainty.

FIG. 8. One standard deviation confidence interval for the LO
(CS=T ) and NLO (Cð2Þ

S=T) couplings obtained after fitting three
energy levels in each isospin channel. Results for three different
schemes are shown, as indicated by the value of the scale r0 given
above each set of ellipses. The ellipses with blue stripes
correspond to the deuteron channel, while red ellipses denote
the dineutron channel.
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Nevertheless, in the range of values of r0 used here, the
p-values of the fits are in the region 0.5 to 0.8.

C. s− d-wave mixing in the deuteron

Finally, by including the term Vsd
2 in the potential in the

GEVP of the FVEFTπ , the s − d-wave mixing coupling in
the deuteron channel can also be constrained from the same
set of LQCD energy bounds as used for the analysis in the
previous subsection. As the effect of CðsdÞ on these energy
levels is quadratic, only its magnitude can be constrained.
Since the fits in Table II are of high quality, there is no
statistical necessity to include Vsd

2 , and so the effect of this
coupling can only be bounded.
Instead of performing a fit with no degrees of freedom

to constrain the magnitude of this parameter, the χ2

function is used to bound its magnitude. Specifically,
given the best fit parameters in Table II at r0 ¼ 0.2 fm,
and requiring χ2 < χ2min þ 1, bounds the s − d-wave mix-
ing LEC as

jCðsdÞj < 0.6 MeV · fm5: ð44Þ

As can be seen, the bound is about a factor of 2 smaller

than the central value found for Cð2Þ
S .

Alternatively, one could consider using other energy
levels from Ref. [1] to constrain CðsdÞ. For example, those
in the T1g irrep that have coupling to d-wave interactions,
e.g., resulting from states with nontrivial spin-spatial
coupling. The bounds on the energies of these states in
Ref. [1] lie below the noninteracting energies. By con-
trast, the effect of CðsdÞ on those levels is always
repulsive, suggesting that this LEC cannot be the only
source of the negative shifts. It is thus clear that it would
be necessary to also include d-wave interactions in an
analysis of these levels. The corresponding operators
would contain four derivatives and are beyond the scope
of this work.

IV. SUMMARY AND OUTLOOK

This work demonstrates that EFTs formulated in a finite
volume can be used to analyze LQCD spectra of two-
nucleon systems. In particular, finite-volume pionless EFT
has been applied to analyze two-nucleon GEVP energy
bounds obtained in Ref. [1] in the dineutron and deuteron
channels, yielding constraints on the LO and NLO LECs of
the EFTπ Hamiltonian.
This analysis makes use of several developments in the

usage of FVEFTπ . First, it has been shown that it is possible
to obtain variational bounds not only on the ground state,
but also on several excited states of the interacting theory.
Second, projection to irreducible representations of the
finite-volume symmetry group has been performed, along
with measurements of the total momentum of the system.

Combined, this allows excited-state energy levels with
definite quantum numbers to be mapped from lattice
QCD into variational bounds in the FVEFT. Third, matrix
elements of the first relativistic correction to the FVEFTπ

Hamiltonian have been computed, which is relevant for
analysis of excited states; omitting these corrections
reduces the fit quality and changes the best-fit values of
the LECs by over 2σ. Fourth, the effects of operators with
up to two derivatives, the NLO s-wave term, and the s − d-
wave mixing term have been studied. The effects of
the NLO operator in the Hamiltonian are sizeable, and
the corresponding LEC can be constrained through the
LQCD − FVEFTπ matching procedure. For the partial-
wave mixing term, the analysis yields only an upper bound
on its magnitude.
This works demonstrates that FVEFTπ is a powerful

alternative to the Lüscher method [46] for analysis of
systems of nucleons. There are two main advantages. On
the one hand, the same scheme for the LECs of the EFT can
be directly used in finite volume and in infinite volume—
the later can allow for EFT calculations of larger nuclei than
can be studied in LQCD at the present time. Second,
FVEFTπ can be applied straightforwardly to systems of
three and more nucleons, provided that LQCD spectra are
available. By contrast, Lüscher-like methods have only
been derived for up to three particles [47–51]—see
Refs. [64–67] for a review.
This application of FVEFTπ can be extended in several

ways. For instance, higher orders in pionless EFT can be
included. This would allow the inclusion of interactions in
higher partial waves and further investigation of truncation
uncertainties in pionless EFT [63]. Moreover, other EFTs
can be used, e.g., an EFT for baryons with strangeness, or
chiral EFTs. As LQCD results become more precise and
sophisticated, it will be important to investigate these
extensions.
Ultimately, there is great potential for FVEFTanalyses to

extend the reach of LQCD calculations of light nuclei
to constraints of the binding energies and matrix elements
of larger nuclei than those that can be studied directly.
Examples of important applications include scalar
matrix elements and the isotensor axial polarizability [68],
which are relevant for dark matter and neutrino experi-
ments [69,70]. For this, direct constraints of LECs from
LQCD at physical quark masses are needed, including
those of three- and even four-body systems. This will
require progress in both LQCD calculations, as well as
in EFTs.
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APPENDIX: EXPRESSIONS FOR
THE MATRIX ELEMENTS

Here, expressions for the matrix elements of the
different terms in the Hamiltonian in Eq. (30) are provided
(see Sec. II C 2). For ½N�ij, ½Kð2Þ�ij and ½VLO

2 �ij, see
Appendix C of Ref. [29]. Note that the matrix elements
of the potential and kinetic term are not labeled with
superindices in Ref. [29], but are the same quantities
as in this work. Some results are reproduced here for
completeness.
In the evaluation of matrix elements, fully symmetric

wave functions are used—see Eq. (29). To simplify
notation, the sum over permutations is omitted here. For
example, in the case of the normalization,

½N�ij ¼
X
PP0

½NPP0 �ij ≡
X
PP0

½Ñ�ij; ðA1Þ

that is, Ñ is short-hand notation for the permuted object.

1. Normalization

Using the factorization of the wave function in each
coordinate, the expression can be split as

½Ñ�ij ¼
Y

α¼x;y;z

½ÑðαÞ�ij: ðA2Þ

Each term can then be evaluated as

½ÑðαÞ�ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut X
bðαÞ

exp

�
−
1

2
ΩðαÞ

i;j

�
; ðA3Þ

where Nn is the number of nucleons,

ΩðαÞ
i;j0 ¼ ðLbðαÞÞ · AðαÞ

i · ðLbðαÞÞ þ ðLbðαÞ þ dðαÞ
i Þ

· BðαÞ
i · ðLbðαÞ þ dðαÞ

i Þ þ dðαÞ
j · BðαÞ

j · dðαÞ
j

− ΞðαÞ
i;j · ½CðαÞ

i;j �−1 · ΞðαÞ
i;j ; ðA4Þ

and

ΞðαÞ
i;j ¼ LAðαÞ

i · bðαÞ þ BðαÞ
i · ðLbðαÞ þ dðαÞ

i Þ þ Bj · d
ðαÞ
j ;

ðA5Þ

CðαÞ
i;j ¼ CðαÞ

i þ CðαÞ
j ; ðA6Þ

CðαÞ
i ¼ AðαÞ

i þ BðαÞ
i : ðA7Þ

2. Nonrelativistic kinetic term

The evaluation of the matrix elements of the kinetic term
can be split in different summands corresponding to the
derivative operator for all particles in each direction:

½K̃ð2Þ�ij ¼
1

2MN

X
α¼x;y;z

½K̃ð2;αÞ�ij
Y
β≠α

½ÑðβÞ�ij: ðA8Þ

In the previous equation, the factorization of spatial parts
has also been used. The remaining piece is

½K̃ð2;αÞ�ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut X
bðαÞ

ΘðαÞ
i;j ð1Þ exp

�
−
1

2
ΩðαÞ

i;j

�
; ðA9Þ

where 1 is an identity matrix and

ΘðαÞ
i;j ðMÞ ¼ Tr½ðAðαÞ

i þ BðαÞ
i Þ · ½CðαÞ

i;j �−1 · ðAðαÞ
j þ BðαÞ

j Þ ·M�
− ðYðαÞ

ij ÞT ·M · YðαÞ
ij ; ðA10Þ

where M is a generic matrix, and

YðαÞ
ij ¼ ðAðαÞ

j þBðαÞ
j Þ · ½CðαÞ

i;j �−1 · ðBðαÞ
i · ðLbðαÞ þdðαÞ

i Þ
þAðαÞ

i · ðLbðαÞÞÞ− ðAðαÞ
i þBðαÞ

i Þ · ½CðαÞ
i;j �−1 ·BðαÞ

j ·dðαÞ
j :

ðA11Þ

3. Total momentum

The evaluation of the total momentum can be split in a
similar way to the kinetic term,

½P̃2�ij ¼
X

α¼x;y;z

½P̃2;ðαÞ�ij
Y
β≠α

½ÑðβÞ�ij; ðA12Þ

and in fact, the expression is very similar,

½P̃ð2;αÞ�ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut X
bðαÞ

ΘðαÞ
i;j ðMPÞ exp

�
−
1

2
ΩðαÞ

i;j

�
;

ðA13Þ

where MP is a matrix with all elements being
unity, ½MP�nm ¼ 1.
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4. Relativistic correction

The relativistic correction matrix elements can be split in
several terms:

½K̃ð4Þ�ij ¼
−1
8M3

N

X
α¼x;y;z

½K̃ð4;4;αÞ�ij
Y
β≠α

½ÑðβÞ�ij

−
1

4M3
N

XNn

n¼1

X
α>β;γ≠α;β

½K̃ð4;2;αÞ
n �ij½K̃ð4;2;βÞ

n �ij½ÑðγÞ�ij;

ðA14Þ

where ½K̃ð4;2;βÞ
n �ij is related to the nonrelativistic kinetic term

for a single particle,

½K̃ð4;2;αÞ
n �ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut X
bðαÞ

ΘðαÞ
i;j ðMK;nÞ exp

�
−
1

2
ΩðαÞ

i;j

�
;

ðA15Þ

with ½MK;n�lm ¼ δlnδmn. Finally, the last piece

½K̃ð4;4;αÞ
n �ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut X
bðαÞ

�X6
w¼1

Kð4;n;αÞ
w;i;j

�
exp

�
−
1

2
ΩðαÞ

i;j

�
;

ðA16Þ

where

Kð4;n;αÞ
1;i;j ¼

X
klmo

½CðαÞ
i �nk½CðαÞ

i �nl½CðαÞ
j �

nm
½CðαÞ

j �
no
ð½e1�klmo þ ½e2�klmo þ ½e3�klmoÞ;

Kð4;n;αÞ
2;i;j ¼ ððBðαÞ

i dðαÞ
i þ CðαÞ

i LbðαÞÞ2n − ½CðαÞ
i �nnÞððBðαÞ

j dðαÞ
j Þ2

n
− ½CðαÞ

j �
nn
Þ;

Kð4;n;αÞ
3;i;j ¼

X
kl

½ðBðαÞ
i dðαÞ

i þ CðαÞ
i LbðαÞÞ2n − ½CðαÞ

i �nn�ðCðαÞ
j ÞnkðCðαÞ

j ÞnlððCΞÞkðCΞÞl þ ½CðαÞ−1
i;j �

kl
Þ

þ½ðBðαÞ
j dðαÞ

j Þ2
n
− ½CðαÞ

j �
nn
�ðCðαÞ

i ÞnkðCðαÞ
i ÞnlððCΞÞkðCΞÞl þ ½CðαÞ−1

i;j �
kl
Þ;

Kð4;n;αÞ
4;i;j ¼ −2

X
klm

ðCðαÞ
i ÞnkðCðαÞ

i ÞnlðCðαÞ
j ÞnmðBðαÞ

j dðαÞ
j Þ

n
DðαÞ;i;j

klm

− 2
X
klm

ðCðαÞ
j ÞnkðCðαÞ

j ÞnlðCðαÞ
i ÞnmðBðαÞ

i dðαÞ
i þ CðαÞ

i LbðαÞÞnDðαÞ;i;j
klm ;

Kð4;n;αÞ
5;i;j ¼

X
k

− 2½ðBðαÞ
j dðαÞ

j Þ2
n
− ½CðαÞ

j �
nn
�ðBðαÞ

i dðαÞ
i þ CðαÞ

i LbðαÞÞn½CðαÞ
i �nkðCΞÞk

− 2ðBðαÞ
j dðαÞ

j Þ
n
½ðBðαÞ

i dðαÞ
i þ CðαÞ

i LbðαÞÞ2n − ½CðαÞ
i �nn�½CðαÞ

j �
nk
ðCΞÞk;

Kð4;n;αÞ
6;i;j ¼

X
kl

4ðBðαÞ
j dðαÞ

j Þ
n
ðBðαÞ

i dðαÞ
i þ CðαÞ

i LbðαÞÞnðCðαÞ
i ÞnkðCðαÞ

j ÞnlððCΞÞkðCΞÞl þ ½CðαÞ−1
i;j �

kl
Þ; ðA17Þ

and shorthand notation is used such that

ðCΞÞk ≡ ð½CðαÞ−1
i;j �ΞðαÞ

i;j Þk; ðA18Þ

as well as

½e1�klmo ¼ ½CðαÞ−1
i;j �

kl
½CðαÞ−1

i;j �
mo

þ ðl ↔ mÞ þ ðl ↔ oÞ;
½e2�klmo ¼ ðCΞÞkðCΞÞl½CðαÞ−1

i;j �
mo

þ ðk ↔ mÞ þ ðk ↔ oÞ þ ðl ↔ mÞ þ ðl ↔ oÞ þ ðl; k ↔ m; oÞ;
½e3�klmo ¼ ðCΞÞkðCΞÞlðCΞÞmðCΞÞo; ðA19Þ

and

DðαÞ;i;j
klm ¼ ½CðαÞ−1

i;j �
kl
ðCΞÞm þ ½CðαÞ−1

i;j �
km
ðCΞÞl þ ½CðαÞ−1

i;j �
ml
ðCΞÞk þ ðCΞÞkðCΞÞlðCΞÞm: ðA20Þ
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5. Leading-order potential

The matrix element for the LO potential can be split as

½Ṽ2�ij ¼
Y
α

½Ṽ ðαÞ
2 �ij; ðA21Þ

where

½Ṽ ðαÞ
2 �ij¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̃ðαÞ
i;j

C̃ðαÞ
i;j þ2ρ

vuut X
bðαÞ

exp

�
−
1

2
ΩðαÞ

i;j

�

×
X
qðαÞ

exp

�
−

ρC̃ðαÞ
i;j

C̃ðαÞ
i;j þ2ρ

ððCΞÞn−ðCΞÞm−LqðαÞÞ2
�
;

ðA22Þ

with ρ ¼ 1=ð2r20Þ and

C̃ðαÞ
i;j ¼ð½CðαÞ−1

i;j �
nn
þ½CðαÞ−1

i;j �
mm

− ½CðαÞ−1
i;j �

nm
− ½CðαÞ−1

i;j �
mn
Þ−1:

ðA23Þ

Here n and m correspond to the indices of the particles that
are interacting, see Eq. (10). For a two-nucleon system,
n ¼ 1, m ¼ 2. The opposite m ¼ 1, n ¼ 2 combination is
included in the sum over permutation as in Eq. (A1).

6. Next-to-leading-order potential

The matrix element of the NLO potential can be
computed as

½ṼNLO
2 �ij ¼

X
α

½ṼNLO;ðαÞ
2 �ij

Y
β≠α

½Ṽ ðβÞ
2 �ij; ðA24Þ

where

½ṼNLO;ðαÞ
2 �ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃ðαÞ
i;j

C̃ðαÞ
i;j þ 2ρ

vuut X
bðαÞ

exp

�
−
1

2
ΩðαÞ

i;j

�

×
X
qðαÞ

½TrððCðαÞ
i þ 2ρMðmnÞ

V Þ · ðCðαÞ
i;j þ 2ρMðmnÞ

V Þ−1 · CðαÞ
j ·MðnmÞ

V Þ − ðYðαÞ;Q
ij ÞT ·MðnmÞ

V · YðαÞ;Q
ij �

×exp

�
−

ρC̃ðαÞ
i;j

C̃ðαÞ
i;j þ 2ρ

ððCΞÞn − ðCΞÞm − LqðαÞÞ2
�
; ðA25Þ

where n ¼ 1 and m ¼ 2 are used, and

YðαÞ;Q
ij ¼ ðAðαÞ

j þ BðαÞ
j Þ · ½CðαÞ

i;j þ 2ρMðmnÞ
V �−1 · ðBðαÞ

i · ðLbðαÞ þ dðαÞ
i Þ þ AðαÞ

i · ðLbðαÞÞÞ
−ðAðαÞ

i þ BðαÞ
i þ 2ρMðmnÞ

V Þ · ½CðαÞ
i;j þ 2ρMðmnÞ

V �−1 · BðαÞ
j · dðαÞ

j þ 2ρLqðαÞwðnmÞ; ðA26Þ

with wðnmÞ
k ¼ δkn − δkm, and ðMðnmÞ

V Þkl ¼ ðδknδln þ
δkmδlm − δknδlm − δkmδlnÞ.
Note that in Eq. (14), two terms are needed where the

derivatives act on different sides. The above expressions
correspond to the derivatives acting on the right side, and
the other case is obtained by switching i ↔ j. Note that
because of the sum over permutations in Eq. (A1), it is not
necessary to switch n ↔ m.

7. s− d-wave mixing term

The s − d-wave mixing term is computed as

½Ṽ sd
2 �ij ¼

X
αβγδ

T γδ
αβ½Ṽ ðαβÞ;sd

2 �ij: ðA27Þ

The component of the spatial part with identical indices is
given by

½Ṽ ðααÞ;sd
2 �ij ¼ ½ṼNLO;ðαÞ

2 �ij
Y
β≠α

½Ṽ ðβÞ
2 �ij: ðA28Þ

The off-diagonal part (α ≠ β)

½Ṽ ðαβÞ;sd
2 �ij¼

X
k∈fm;ng

X
l∈fm;ng

ððMðnmÞ
V Þkl½Ṽ sd;ðk;αÞ

2 �ij½Ṽsd;ðl;βÞ
2 �ijÞ

×
Y
γ≠α;β

½Ṽ ðγÞ
2 �ij; ðA29Þ

and
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½Ṽsd;ðk;αÞ
2 �ij¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞNn

Det½CðαÞ
i;j �

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃ðαÞ
i;j

C̃ðαÞ
i;jP0 þ2ρ

vuut X
bðαÞ

exp

�
−
1

2
ΩðαÞ

i;j

�
ðYðαÞ;Q

ij Þ
k
exp

�
−

ρC̃ðαÞ
i;j

C̃ðαÞ
i;j þ2ρ

ððCΞÞn− ðCΞÞm−LqðαÞÞ2
�
: ðA30Þ

Note that in Eq. (15), two terms are needed where the derivatives act on different sides. The above expressions correspond
to the derivatives acting on the right side, and the other case is obtained by switching i ↔ j. Note that because of the sum
over permutations in Eq. (A1), it is not necessary to switch n ↔ m.
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