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One of the sensitive probes of physics beyond the standard model is the test of the unitarity of the Cabbibo-
Kobyashi-Maskawa matrix. Current analysis of the first row is based on jVudj from fifteen superallowed
0þ → 0þ nuclear β decays and jVusj from the kaon semileptonic decay, K → πlνl. Modeling the nuclear
effects in the 0þ → 0þ decays is a major source of uncertainty, which would be absent in neutron decays. To
make neutron decay competitive requires improving the measurement of neutron lifetime and the axial
charge, as well as the calculation of the radiative corrections (RC) to the decay. The largest uncertainty in
these RCs comes from the nonperturbative part of the γW-box diagram, and lattice QCD provides a first
principle method for its evaluation. Our calculations, using lattice configurations generated with highly
improved staggered quarks by the MILC Collaboration, show that the analogous calculations for the pion and
kaon decays are robust and give □

VA
γW jπ ¼ 2.810ð26Þ × 10−3 and □

VA
γW jK0;SUð3Þ ¼ 2.389ð17Þ × 10−3 in

agreement with the previous analysis carried out by Feng et al. using a different discretization of the
fermion action.

DOI: 10.1103/PhysRevD.108.034508

I. INTRODUCTION

In the intensity frontier, physics beyond the standard
model (BSM) is probed by confronting accurate predictions
of the standard model (SM) with precision experiments.
Today, there are several tests showing roughly 2–3σ
deviations, one being the unitarity of the first row of the
Cabbibo-Kobyashi-Maskawa (CKM) quark mixing matrix,
which states that ΔCKM ≡ jVudj2 þ jVusj2 þ jVubj2 − 1
should be zero. Current analyses show a ≈3σ tension with
the SM [1–4] using the most precise value of jVudj2 ¼
0.94815ð60Þ coming from the analysis of fifteen 0þ → 0þ

nuclear β decays [1,5], and jVusj2 ¼ 0.04976ð25Þ obtained
from kaon semileptonic decays (K → πlνl) along with
the Nf ¼ 2þ 1þ 1-flavor lattice result for fKþð0Þ [6]. The
estimate of jVubj2 ≈ ð2� 0.4Þ × 10−5 is too small to impact
the unitarity test.

A current analysis of the unitarity bound is shown in
Fig. 1, with the errors from various sources in 0þ → 0þ
nuclear, nucleon, pion and kaon decays shown in Fig. 2.
While the extraction of Vud from superallowed 0þ → 0þ
nuclear decays is the best, it is still subject to significant
uncertainty in the theoretical analysis of nuclear effects.
Theoretically, the neutron is a clean system, i.e., it has no

uncertainty due to nuclear corrections. The largest theoreti-
cal uncertainty comes from the γW-box diagram illustrated

FIG. 1. Current status of the unitarity bound taken from the
FLAG report 2021 [6].
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in Fig. 3 for the pion as discussed in Refs. [9–11]. Lattice
QCD can provide the least well-determined nonperturbative
part of the γW-box to reduce the uncertainty in the radiative
corrections (RC) to neutron (and pion and kaon) decay. This,
together with improvements in experiments measuring free
neutron lifetime, τn, and the axial charge, gA, will make the
extraction of jVudj2 from neutron decay competitive.
In this paper we present results for the pion and kaon (short

for K → πlνl) decay as we have not yet obtained a precise
signal in the neutron correlation functions. Nevertheless, we
provide a brief review of the status of the extraction of jVudj2
from neutron decay as it is the ultimate goal of this project.
The analysis is carried out using the formula [4,12]

jVudj2 ¼
�
G2

μm5
e

2π3
f

�−1 1

τnð1þ 3g2AÞð1þ RCÞ

¼ 5099.3ð3Þ s
τnð1þ 3g2AÞð1þ RCÞ ; ð1Þ

where gA is best obtained from the neutron β decay
asymmetry parameter A, Gμ is the Fermi constant extracted
from muon decays, and f ¼ 1.6887ð1Þ is a phase-space
factor. With future measurements of the neutron lifetime
τn reaching an uncertainty of Δτn ∼ 0.1 s, and of the ratio
λ ¼ gA=gV of the neutron axial and vector coupling reaching
Δλ=jλj ∼ 0.01%, the extraction of Vud with accuracy com-
parable to 0þ → 0þ superallowed β decay can be achieved

provided the uncertainty in the RC to neutron decay can be
reduced.
The lattice methodology for the calculation of RC to

pion, kaon and neutron decays is similar [10,11]. It requires
the calculation of the γW-box diagram, illustrated in Fig. 3
for the pion. From here on, we restrict the discussion to
pion (πþ → π0lνl) and kaon to pion (K → πlνl) semi-
leptonic decays, for which the analog of Eq. (1) to extract
jVudj2 and jVusj2 are [1,13–15]

jVudfπþð0Þj2πl ¼ 64π3Γπ

G2
μM5

πIπð1þ δÞ ð2Þ

jVusfKþð0Þj2Kl¼
192π3BRðKlÞΓK

G2
μM5

KC
2
KSEWIKlð1þδKlEMþδKlSUð2ÞÞ

; ð3Þ

where Γπ=K are π and K decay rates, Iπ;K are known

kinematic factors, fπ=Kþ are semileptonic form factors,
CK is a known normalization factor needed for kaon decay,
SEW is the short distance radiative correction, and the δKlSUð2Þ
is the isospin breaking correction. The two (long distance)
radiative corrections in which the uncertainty needs to be
reduced are δ for pion and δKlEM for kaon decay.
Looking ahead, the experimental uncertainty in pion

decay needs to be reduced by a factor greater than 20, at
which point it will become roughly equal to that in
radiative corrections. PIONEER [16] is a next generation
experiment aimed at measuring precisely the rare pion
decay branching ratios. Its primary goal is to improve the
measurement of the branching ratio of the semileptonic
decay by up to a factor of ten, thus reducing the
experimental uncertainty in jVudj2 by the same factor.
At that point, as shown in Fig. 2, the experimental error in
jVudj2 from pion decay will become comparable to that
from 0þ → 0þ superallowed nuclear decay, and also to the
theory uncertainty.
In the determination of jVusj from kaon β decay, the

largest uncertainty comes from fKþð0Þ taken from lattice
calculations [17]. Comparatively, the uncertainty in the
radiative correction and experiments is already small [18].
This paper is organized as follows. The essential formulae

needed to describe the calculation are summarized in the next
Sec. II. The lattice setup, using ensembles generated by the
MILC Collaboration [19,20], is specified in Sec. III. Error
reduction methods used in the extraction of the hadronic
tensorHVA

μν are described in Sec. IV. A comparison of results
for the function MHðQ2Þ defined in Eq. (8) and calculated
using lattice QCD, with perturbation theory is made in
Sec. V, and the extrapolation to the continuum limit is
presented in Sec. VI. The final results and comparison to
previous calculations are given in Sec. VII.

FIG. 3. The γW-box diagram for RC to the pion decay.

FIG. 2. The error budgets on the various extractions of jVudj2
and jVusj2 to test the unitarity of the first row of the CKM
matrix [1,7,8].
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II. ELECTROWEAK BOX DIAGRAM

Following the framework developed in [10,21], the
electroweak box diagram [called the axial γW diagram
and shown in Fig. 3] is given by

□
VA
γW

���
H
¼

Z þ∞

0

dQ2

Z
Q

−Q
dQ0

1

Q4

1

Q2 þM2
W

× LμνðQ2; Q0ÞTVA
μν ðQ2; Q0Þ ð4Þ

with H labeling the state, π, K or N, under consideration,
and MW the W meson mass and MH the hadron mass.
Substituting in the known leptonic part LμνðQ;Q0Þ gives

□
VA
γW

���
H
¼ −

1

FHþ

αe
π

Z
∞

0

dQ2
m2

W

m2
W þQ2

×
Z ffiffiffiffiffi

Q2
p

−
ffiffiffiffiffi
Q2

p dQ0

π

ðQ2 −Q2
0Þ

3
2

ðQ2Þ2
ϵμναβQαPβTVA

μν

2m2
HjQ⃗j2 : ð5Þ

The hadronic tensor TVA
μν is given by

TVA
μν ¼ 1

2

Z
d4xeiQ·x

× hHfðpÞjT½Jemμ ðx⃗; tÞJW;A
ν ð0; 0Þ�jHiðpÞi; ð6Þ

where Jemμ ¼ ZVð23 ūγμd − 1
3
d̄γμd − 1

3
s̄γμsÞ and JW;A

μ ¼
ZAūγμγ5d are the renormalized currents with ZV and ZA

calculated in Ref. [22].
Only one term, T3, in the expansion TVA

μν ¼
iϵμναβqαpβT3 þ � � � of the spin-independent part of TVA

μν

contributes [3,10]. Knowing T3 as a function of Q2, the
γW-box correction, using the notation in Refs. [10,11],
is given by

□
VA
γW ¼ 3αe

2π

Z
dQ2

Q2

M2
W

M2
W þQ2

MHðQ2Þ ð7Þ

with

MHðQ2Þ ¼ −
1

6

1

FHþ

ffiffiffiffiffiffi
Q2

p
MH

Z
d4xωðx⃗; tÞ

× ϵμνα0xαHVA
μν ðx⃗; tÞ;

ωðt; x⃗Þ ¼
Z π

2

−π
2

cos3θdθ
π

j1
� ffiffiffiffiffiffi

Q2
p

jx⃗j cos θ
�

jx⃗j
× cos

� ffiffiffiffiffiffi
Q2

p
t sin θ

�
;

HVA
μν ðx⃗; tÞ ¼ hHfðpÞjT½Jemμ ðx⃗; tÞJW;A

ν ð0; 0Þ�jHiðpÞi: ð8Þ

Here j1 in the weight function ωðt; x⃗Þ is the spherical
Bessel function. The calculation of the hadronic part
HVA

μν ðx⃗; tÞ with the insertion of vector (V) and axial (A)
currents gives rise to, in general, four types of Wick
contractions shown by the quark-line diagrams in Fig. 4
for pion decay. It is a function of the separation fx⃗; tg, and
on the lattice, the integral becomes a sum. As can be seen
from Eq. (8), MHðQ2Þ is however, available for all values
of Q2. One expects the signal in HVA

μν ðx⃗; tÞ to fall off with
fx⃗; tg, and in Fig. 5, we show that the integral saturates
for R2 ≳ 2 fm2. To be conservative and save computation
time, we choose the integration volume to be larger than
R2 ∼ 3.3 fm2 on all the ensembles.

III. LATTICE SETUP

The calculation has been performed using eight Nf ¼
2þ 1þ 1 highly improved staggered quark (HISQ) ensem-
bles generated by the MILC Collaboration [19,20], whose
parameters are given in Table I, and shown in the fa;Mπg
plane in Fig. 6. For comparison, we also show the
parameters in the “Iwasaki” and “DSDR” variants of
domain-wall fermions used in Ref. [10].
The correlation functions are constructed using Wilson-

clover fermions, and the tuning of the light quark mass in

(a) (b)

(c) (d)

FIG. 4. The four quark-line diagrams that contribute to the pion
γW-box quantity HVA

μν ðx⃗; tÞ ¼ hπjT½Jemμ ðxÞJW;A
ν ð0Þ�jπi (right).

FIG. 5. The dependence of Mπ on R2 to check convergence.
(See Sec. II for details.) Circles are used for Q2 ¼ 0.317 GeV2

and triangles for Q2 ¼ 3.0 GeV2 data.
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the isosymmetric limit is done by requiringMvalence
π ¼ Msea

π

as described in Ref. [22] and their values are given in
Table I. The strong coupling αs at each lattice ensemble was
computed using fourth-order perturbative expression [23]

with Λnf¼4

QCD ¼ 292 MeV taken from [24].
Of the four quark-line diagrams shown in Fig. 4,

diagrams are A and C are called “connected”. The
“disconnected” diagram (B) does not contribute due to
the γ5-hermiticity property of the quark propagator, and
diagram (D) vanishes in the SUð3Þ limit. This calculation
has not been done at the SUð3Þ point, nevertheless we
neglect diagram (D) assuming it is small. Under the same
assumption, we also neglect contributions of the charm
quark. To construct these correlation functions, quark
propagators are generated using wall sources at two ends
of a sublattice with separation τ in time (see Table I). We
label these quark lines by W. For the internal line S in

diagram C, we solve for an additional propagator from the
position of the vector current Vμ placed on the middle time
slice between the source and sink. This point is labeled
fx⃗ ¼ 0; t ¼ 0g. We choose 256 such points for diagram A
and 64 for diagram C. Data are collected with the position
of Aμ varied within distance R2, listed in Table I, from these
points. On each configuration, we use 8 regions (sublat-
tices) offset by NT=8 on which we repeat the calculation to
further increase the statistics. With the current statistics, the
errors in the data from the eight ensembles are comparable
as shown later in Figs. 7 and 12. Since the total error budget
for the box diagram is already dominated by the uncertainty
in the renormalization constant ZA as shown in Fig. 7, the
current statistics are considered sufficient.
In Fig. 8, we show the result for MH and the γW-box

as a function of the separation τ between the wall source
and sink. Our data show no significant dependence on
τ > 2.4 fm, at which separation only the ground state of the
pseudoscalar mesons contributes to the calculation. To be
conservative and because the signal in correlation functions
for pseudoscalar mesons does not degrade with τ, we chose
to work with τ in the range ½3.48 ≤ τ ≤ 3.63� fm on all

FIG. 6. The lattice spacing and pion mass of the eight
ensembles (red circles) with 2þ 1-flavors of Wilson-clover
fermions analyzed in this study. The physical point (star) and
SU(3) symmetric point (cross) are also shown. We also show the
points for DSDR (triangle) and Iwasaki (square) actions that were
used in Feng et al. [10,11].

TABLE I. Description of the eight HISQ ensembles generated by the MILC Collaboration [19,20] and used in this work. To increase
the statistics, we create, on each configuration, 8 sublattices and in each make 256 measurements for diagram A and 64 for diagram C.
The values of a, Msea

π and Mval
π are reproduced from Ref. [22].

Ensemble ID a(fm) αS mval
π ðMeVÞ msea

π ðMeVÞ L3 × T mπL τ=a ðR=aÞ2 R2ðfm2Þ Nconf

a06m310 0.0582(04) 0.2433 319.3(5) 319.3(5) 483 × 144 4.52 62 1600 5.42 168

a09m130 0.0871(06) 0.2871 138.1(1.0) 128.2(1) 643 × 96 3.90 40 800 6.07 45
a09m220 0.0872(07) 0.2873 225.9(1.8) 220.3(2) 483 × 96 4.79 40 800 6.07 93
a09m310 0.0888(08) 0.2897 313.0(2.8) 312.7(6) 323 × 96 4.51 40 800 6.31 156

a12m220 0.1184(09) 0.3348 227.9(1.9) 216.9(2) 323 × 64 4.38 30 400 5.61 150
a12m220L 0.1189(09) 0.3348 227.6(1.7) 217.0(2) 403 × 64 5.49 30 400 5.65 150
a12m310 0.1207(11) 0.3384 310.2(2.8) 305.3(4) 243 × 64 4.55 30 400 5.83 179

a15m310 0.1510(20) 0.3881 320.6(4.3) 306.9(5) 163 × 48 3.93 24 400 9.12 80

FIG. 7. Fractional error in the calculation of the box diagram for
the pion on the eight ensembles. The total uncertainty (red bar) in
the calculation is dominated by the uncertainty from the renorm-
alization constant ZA (blue bar).
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ensembles. Note that this ability to choose τ large enough to
isolate the ground state is special to pseudoscalar mesons.
For our target case of neutrons, the signal decays exponen-
tially and excited state contamination may be a severe
challenge [25]. As a result, even with much larger statistics,
our ongoing calculations for neutrons have not yet yielded a
statistically significant signal.

IV. ERROR REDUCTION IN THE
EXTRACTION OF HVA

μν

The spectral decomposition of the two-point correlator
of the pion is

C2ptðτÞ ¼ Cfwd
2pt ðτÞ þ Cbkw

2pt ðτÞ
¼

X
x

e−ip·xhJπðx; τÞJ†πð0Þi

¼
X
i

jh0jJπjπiðpÞij2
e−EiðpÞτ þ e−EiðpÞðT−τÞ

2EiðpÞ
; ð9Þ

where i indexes the states. Statistics for C2ptðτÞ are
increased by averaging over forward and backward propa-
gation. From here on, we truncate the sum over states to
just the ground state since insertions of both currents, Vμ

and Aμ, are made within the plateau region, i.e., far enough
away from both source and sink time slices such that
contributions of excited states are negligible.
The spectral decomposition of the hadronic tensor,

limited to zero momentum neutron source and sink created
using wall sources for quark propagators, and normalized
by the 2-point function, is

RH
μνðτ; x⃗; tÞ¼

C4ptðτ; x⃗;tÞ
Cfwd
2pt ðτÞ

¼τ→02MπhJπ0ðτ=2ÞJemμ ð0;0ÞJW;A
ν ðx⃗;tÞJπ−ð−τ=2Þi

jh0jJπjπij2e−Mπτ
;

¼τ→0hπ0ðpÞjT½Jemμ ð0;0ÞJW;A
ν ðx⃗;tÞ�jπ−ðpÞi=2Mπ

¼Hμν=2Mπ; ð10Þ
where for the forward correlator, Cfwd

2pt ðτÞ, one can use the
fit or the data. These relations also apply for the kaon decay
(short for K → πlνl) as our calculation is done in the
approximation of SUð3Þ symmetry.
The form factorFHþ (matrix element) is obtained from the

3-point function,

FHþ ¼ hHðp0ÞjJVμ jHðpÞi
ðpþ p0Þμ¼4

¼
ffiffiffi
2

p
C3ptðτÞ

Cfwd
2pt ðτÞ

; ð11Þ

for H ¼ π. For H ¼ K, the factor
ffiffiffi
2

p
is absent. Thus, we

can calculate the desired ratios

HVA
μν ðx⃗; tÞ
Fπþ

¼ 2Mπ

C4ptðτ; x⃗; tÞffiffiffi
2

p
C3ptðτÞ

; ð12Þ

HVA
μν ðx⃗; tÞ
FKþ

¼ 2MK
C4ptðτ; x⃗; tÞ
C3ptðτÞ

; ð13Þ

in two ways; first, using the left-hand side with
Fπþð0Þ ¼

ffiffiffi
2

p
and FKþð0Þ ¼ 1, where the factor

ffiffiffi
2

p
comes

from the normalization of the pion states. In the second
method, we use the ratio of correlation functions in the
right hand side of Eq. (13). As shown in Fig. 9, the errors
in the 3- and 4-point functions are correlated and partially
cancel in the second method, which is therefore used for
the final results.

V. COMPARING LATTICE RESULTS FORMHðQ2Þ
WITH PERTURBATION THEORY

As mentioned in Sec. II, MH can be extracted at all
values of Q2. In practice, we choose sixty Q2 values that
are the same on all eight ensembles with a higher density
below Q2 < 1 GeV2. Data at these 60 points are converted

FIG. 8. The data for MπðQ2Þ and the γW-box contribution on
the a15m310 ensemble show no significant dependence on the
source-sink separation τ. We chose to perform all analyses in this
paper with τ in the range ½3.48 ≤ τ ≤ 3.63� fm.
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into the smooth curves shown in Fig. 10 (top) using the
cubic spline interpolator from scipy library [26]. Data show
that as Q2 increases above 1 GeV2, the value of MH on
coarser lattices decreases, indicating a dependence on the
lattice spacing. Below Q2 < 1 GeV2, the trend reverses.
The integrated box contributions for Q2 < 2 GeV2 and
their dependence on a and M2

π is shown in Fig. 11.
To compare the MHðQ2Þ from lattice and perturbation

theory, we extrapolate the data to the continuum limit
at Mπ ¼ 135 MeV using a fit linear in αS a since the
dependence on Mπ is observed to be small (See Fig. 12).
These fits, for all the ensembles and all Q2 values, have a
p-value above 0.2. As shown in Fig. 10, this continuum
limit data, represented by the gray solid line, roughly agrees
with the perturbative result obtained using the operator
product expansion [10,27,28] (gold line) forQ2 > 2 GeV2.
Uncertainty in the perturbative result arises from the
truncation of the series at the fourth-order and the neglected
higher-twist (HT) contributions [10]. Since diagram (A)
only has HT contributions, we use its full lattice value as an
estimate of the HT uncertainty and show this by the dotted
lines about the perturbative result.

VI. CONTINUUM EXTRAPOLATION OF THE
LATTICE DATA

The extrapolation of the γW-box for Q2 < Q2
cut to the

continuum limit a ¼ 0 and pseudoscalar massMπ ¼ Mphys
π

for the pion, and Mπ ¼ MSUð3Þ
K for the kaon is carried out

keeping the lowest-order dependence on the pion mass,
M2

π , and on the lattice spacing, αS a,

□jQ2<Q2
cut

VA ðMπ; aÞ ¼ c0 þ c1αSaþ c2M2
π: ð14Þ

FIG. 9. Comparison of the signal in MπðQ2Þ extracted using
method 1 combining the ratio defined in Eq. (10) and Fπþ ¼ ffiffiffi

2
p

(red), and using method 2, i.e., the ratio in Eq. (13) (blue). There
is roughly a factor of two reduction in errors using Eq. (13) as can
be deduced by comparing the blue and red bands.

FIG. 10. MHðQ2Þ for the pion and the kaon from the eight
ensembles is shown in the top two panels. The bottom panels
zoom in on the comparison between the continuum extrapolation
using the 60 Q2 values (gray band) and the gold line shows the
perturbative result along with an uncertainty band reflecting
higher-twist corrections.
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This extrapolation is shown in (Fig. 11) and gives

□
VA
γW jQ2≤2 GeV2

π ¼ 0.651ð25Þ × 10−3; ð15Þ

□
VA
γW jQ

2≤2 GeV2

K ¼ 0.230ð15Þ × 10−3; ð16Þ

Systematic uncertainties due to the chiral-continuum
extrapolation are included in these estimates. We also
estimated possible uncertainty in MH due to integration

using 52 discrete points in Q2 as the difference between
using the trapezoid and Simpson methods and found it to be
negligible. We assume finite volume effects are negligible
since all the ensembles have MπL ≥ 3.9.

VII. RESULTS FOR THE γW-BOX DIAGRAM
AND COMPARISON TO EARLIER WORKS

The contribution above the energy cut at Q2 ¼ 2 GeV2

is computed using the operator product expansion [10]

FIG. 11. The dependence of the γW-box contribution for Q2 ≤ 2 GeV2 for the pion (top) and kaon (bottom) decay on the lattice
spacing a (left), and the pion mass (M2

π) (right). The symbols for the various ensembles are defined in the inset and in Table I. The
physical point result given by the simultaneous fit in a and M2

π (gray band) is shown by the gray star symbol. The result for the kaon is
evaluated at the SUð3Þ symmetric point.

FIG. 12. MHðQ2Þ for the pion (left) and kaon (right) at Q2 ¼ 0.133 GeV2 (triangles), 2.00 GeV2 (circles). Ensembles are labeled by
color. Data for MHðQ2Þ do not show a significant dependence on M2

π . The red points on the very left are the continuum extrapolated
values using a fit linear in aαS, i.e., ignoring possible dependence on M2

π .
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with the higher-twist uncertainty estimated using
diagram A (See Fig. 4).

□
VA
γW jQ

2>2 GeV2

π;K ¼ 2.159ð6ÞHOð7ÞHT × 10−3: ð17Þ

Combining Eq. (17) with Eq. (16) gives our results for the
full box contribution,

□
VA
γW jπ ¼ 2.810ð26Þ × 10−3; ð18Þ

□
VA
γW jK0;SUð3Þ ¼ 2.389ð17Þ × 10−3; ð19Þ

which are in good agreement with those obtained by
Feng et al. [10,11]:

□
VA
γW jπ ¼ 2.830ð11Þð26Þ × 10−3; ð20Þ

□
VA
γW jK0;SUð3Þ ¼ 2.437ð44Þ × 10−3: ð21Þ

The difference in □
VA
γW jK0;SUð3Þ is 1.02σ, but note that our

value is determined with extrapolation in M2
π to SUð3Þ–

symmetric point, while the Feng et al. value, also called
□

VA
γW jK0;SUð3Þ , was computed at the physical pion mass in all

five ensembles, i.e., without extrapolation to MKjSUð3Þ.
The agreement between the two calculations provides

an important consistency check as they are done at
different values of fa;Mπg (see Fig. 6) and with different
lattice actions. The largest uncertainty in the results presented
in [10,11] comes from the systematic difference between
DSDR and Iwasaki estimates, whereas in our calculation, as
shown in Fig. 7, it comes from the renormalization constant
ZA, which is unity for domain-wall fermions.

Our data from the eight ensembles, all with the
same action, provide a more controlled chiral-continuum
extrapolation than in [10,11]. The data for the pion display
no significant dependence on a or M2

π. The data for the
kaon in Fig. 11 shows ≈10% dependence on a but is flat
with respect toM2

π. A similar level of dependence on a was
found in the Iwasaki action data in Ref. [11].
To conclude, taking the two calculations together

increases our confidence that lattice QCD calculations of
the nonperturbative part of the radiative corrections to pion
and kaon decays given by the γW-box are robust. The
analysis of RC to neutron decays is, as expected, more
challenging because of the exponentially decaying signal-
to-noise problem and the need to remove possibly large
contributions from excited states.
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