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In the gradient flow method of lattice gauge theory, coarse graining is performed so as to reduce the
action, and as the coarse graining progresses, the field strength becomes very small. However, the
confinement property that particles interact strongly is not lost by the gradient flow. It is seemingly
mysterious, and something stable against coarse graining is expected to be behind the nature of
confinement. By performing Monte Carlo simulations of Uð1Þ lattice gauge theory, we discuss the
relationship between the gradient flow and magnetic monopoles created by the compactness of the Uð1Þ
gauge group. Many magnetic monopoles are generated in the confinement phase but not so many in the
deconfinement phase. Since the monopole is a kind of topological quantity, the number of monopoles does
not change much by the coarse graining. To investigate why the confinement properties are not lost by the
gradient flow, we computed Wilson loops and Polyakov loops separating them into the field strength and
the monopole contributions. We found that the field strength, which decreases with the gradient flow, does
not affect confinement properties, and the monopole and the confinement properties are strongly related.
Furthermore, we discuss the relationship between the magnetic monopole and the center symmetry, which
is the symmetry broken by the confinement phase transition.
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I. INTRODUCTION

The gradient flow method [1–3] is known to be a
powerful method in the study of lattice gauge theory.
Using the small flow time expansion (SFtX) method
[4,5] based on the gradient flow, the temperature depend-
ence of thermodynamic quantities near the deconfinement
phase transition point can be computed accurately [6–11].
Moreover, the computation of the latent heat at the first-
order phase transition point is possible [12]. In the SFtX
method, the original thermodynamic quantity is calculated
using the operator after coarse graining by the gradient
flow. In order for such calculations about the confinement
phase transition to be possible, it is necessary that the
confinement properties must not change before and after
the gradient flow. Coarse graining is performed so as to
reduce the action in the gradient flow method, and as coarse
graining progresses, the strength of the gauge field Fμν

becomes very small. Nevertheless, the fact that the impor-
tant properties before flowing are not lost means that

something other than the field strength gives the system
its important properties.
In this paper, we consider aUð1Þ gauge theory instead of

SUð3Þ for simplicity. The Uð1Þ gauge theory is different
from SUð3Þ because it is not an asymptotic free theory, and
the determination of lattice spacing is also ambiguous.
However, we consider that the difference between gauge
groups is not so important for the change of gauge field in
the process of coarse graining by the gradient flow. In
particular, we discuss the relationship between magnetic
monopoles and the gradient flow in compact Uð1Þ lattice
gauge theory. In the Uð1Þ lattice gauge theory, a magnetic
monopole is defined due to the compactness of the gauge
group. It is also known that the magnetic monopole gives
rise to a linear potential between particles [13]. Since the
magnetic monopole is a topological quantity, it can be
expected to be stable during coarse graining. We consider
its stability and the nature of confinement.
Topological quantities are known to play important

roles also in QCD [14]. Abelian projection makes QCD
aUð1Þ-like theory, and magnetic monopoles can be defined
[15]. Many studies have been done on the relationship
between color magnetic monopoles and the quark confine-
ment after the Abelian projection in QCD [16–23]. We
believe that discussing the monopoles in the Uð1Þ lattice
gauge theory is also helpful for understanding the color
confinement in QCD as an early step.
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Similar to topological quantities, symmetries are stable
against coarse graining. The finite temperature deconfine-
ment phase transition can be understood as a spontaneous
breaking of the center symmetry. It is important to clarify
the relationship among the center symmetry, its order
parameter Polyakov loop, and magnetic monopoles and
discuss how their properties change with the gradient flow.
In the next section, wewill discuss the gradient flow in the

Uð1Þ lattice gauge theory. In Sec. III, we discuss the
magnetic monopole caused by the compactness in the
Uð1Þ lattice gauge theory. We investigate the behavior of
the magnetic monopole when smearing the gauge field by
the gradient flow. Furthermore, in Sec. IV, we introduce
the definitions of two types of flow equations. Then, we
point out that the compactness of the gauge field is very
important for having the nature of confinement. If the
gradient flow is performed without considering the com-
pactness, the confinement property is lost and the magnetic
monopole disappears. In Sec. V, we calculate Wilson loop
and discuss the origin of the linear potential. We decompose
the Wilson loop into contributions from field strength and
from monopoles, and consider their relationship with the
gradient flow. The deconfinement phase transition is dis-
cussed in Sec. VI, focusing on the Polyakov loop. In
Sec. VII, we discuss the relationship between the gradient
flow and the center symmetry. The contribution from
monopoles to the Polyakov loop has the center symmetry.
We comment on the importance of keeping the center
symmetry in the gradient flow process. Section VIII pro-
vides the conclusions and future prospects of this paper.

II. GRADIENT FLOW AND CONFINEMENT

In the gradient flow method of QCD proposed in
Ref. [3], the “flowed” gauge field Ba

μðt; xÞ at flow time t
is obtained by solving the flow equation,

∂Ba
μ

∂t
ðt; xÞ ¼ DνGa

νμðt; xÞ
≡ ∂νGa

νμðt; xÞ þ fabcBb
νðt; xÞGc

νμðt; xÞ; ð1Þ
for quenched QCD with the initial condition Ba

μð0; xÞ ¼
Aa
μðxÞ, where Ga

μνðt; xÞ is the flowed field strength given
from Ba

μðt; xÞ. Because Eq. (1) is a kind of diffusion
equation, we can regard Ba

μðt; xÞ as a smeared field of the
original gauge field Aa

μðxÞ over a physical range of
ffiffiffiffi
8t

p
in

four dimensions. Furthermore, −1 times the right-hand side
is equal to the functional derivative of the (flowed) action Sg
with respect to Ba

μðt; xÞ, δSg=δBa
μ. Thus, the flowed field

strength is weakened by the gradient flow. Operators
constructed from Ba

μðt; xÞ (flowed operators) have no ultra-
violet divergences nor short-distance singularities at finite
and positive t, and the gradient flow defines a kind of
renormalization scheme. This method is formulated non-
perturbatively and interesting results from lattice QCD
calculations have been obtained so far.

However, it is mysterious that the properties of the
original field are kept and the original physical quantities
can be calculated from the flowed field even though the
flowed field strength is weakened by the gradient flow. To
clarify why the gradient flow method works so well, we
consider (compact)Uð1Þ lattice gauge theory for simplicity.
In this study, we do not deal with dynamical fermions.
The action of the gauge field is given by

Sg ¼ −β
X
x;μ>ν

Re½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ�

¼ −β
X
x;μ>ν

cosΘμνðxÞ; ð2Þ

where the link field UμðxÞ is a complex number with
absolute value one and defined on links. Position xþ μ̂
means the site next to x in the μ direction.

P ¼ 1

6Nsite

X
x;μ>ν

Re½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ� ð3Þ

is called the plaquette value. Nsite ¼ N3
s × Nt is the number

of sites. Then, the gauge action is Sg ¼ −6NsiteβP. The
gauge field θμ and field strength Θμν in lattice units are
defined as

eiθμðxÞ ¼ UμðxÞ; ð4Þ

eiΘμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ
¼ ei½θνðxþμ̂Þ−θνðxÞ−θμðxþν̂ÞþθμðxÞ�: ð5Þ

The inverse coupling β is given by β ¼ 1=g2 with the gauge
coupling constant g. The gauge field in the continuum
theory AμðxÞ is defined as

θμðxÞ ¼ agAμðxÞ: ð6Þ

Here, a is the lattice spacing. The field strength in the
continuum theory, Fμν ¼ ∂μAν − ∂νAμ, corresponds to

Θμν ¼ a2gFμν: ð7Þ

Because Θμν is small when a is small, the path integral can
be evaluated around the minimum at Θμν ¼ 0. We perform
Taylor expansion of Eq. (2) around Θμν ≈ 0,

cosΘμν → 1 −
1

2
Θ2

μν: ð8Þ

In the continuum limit, the gauge action becomes

S ¼ 1

4

Z
d4xFμνFμν þ const: ð9Þ

This is consistent with the action of the continuum theory.
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In the continuum limit of theUð1Þ gauge theory, the flow
equation is given by

∂Bμ

∂t
ðt; xÞ ¼ ∂Gνμ

∂xν
ðt; xÞ ¼ −

δSg
δBμ

: ð10Þ

The flow equation changes the gauge field to minimize the
gauge action. Therefore, we define the flow equation for the
gauge field in lattice unit θμ as

∂θðtÞμ ðxÞ
∂ðt=a2Þ ¼ −g2

δSg

δθðtÞμ
¼

X4
ν¼1

ðsinΘðtÞ
μν ðxÞ − sinΘðtÞ

μν ðx − ν̂ÞÞ;

ð11Þ
where t=a2 is a dimensionless combination of the flow
time, and the flowed operators at the flow time are denoted

as θðtÞμ and ΘðtÞ
μν . We use this flow equation in the following

sections except Sec. IV.1

A. Numerical simulations

We perform simulations of the Uð1Þ lattice gauge theory
to investigate changes in physical quantities during the
gradient flow. The Uð1Þ lattice gauge theory has a decon-
finement phase transition. The critical β is about βc ¼ 1.01,
which depends on the lattice size. The confinement phase is
below βc and the deconfinement phase is above βc. The
expectationvalue of the Polyakov loop is an order parameter
of the confinement phase transition and is defined as

hLi ¼
�

1

N3
s

X
x⃗

exp

�
i
XNt−1

j¼0

θ4ðx⃗þ j4̂Þ
��

: ð12Þ

From thePolyakov loop, the free energyof a chargedparticle
is given by −T lnhLi, where T is the temperature.
Figures 1 and 2 show the flow time dependence of the

Polyakov loop. The expectation value of the absolute value
of the Polyakov loop2 is plotted as a function of β in Fig. 1.
The black, red, green, blue, and magenta symbols are the
results measured at flow time t=a2 ¼ 0.0, 0.5, 1.0, 1.5, and
2.0, respectively. The Polyakov loop as a function of flow
time t=a2 for each β is plotted in Fig. 2. We generate
configurations using a usual pseudo-heat-bath algorithm
[24]. Measurements are taken every 1000 updates for each

link. For each configuration, we solve the flow equation of
Eq. (11) that considers the compactness of the link field
UμðxÞ. The lattice size is Nsite ¼ 323 × 8. The number of
independent configurations is 2000 for each β. We impose
periodic boundary conditions in all directions. We find
from Figs. 1 and 2 that the Polyakov loop increases
with the gradient flow in the deconfinement phase;
however in the confinement phase, the Polyakov loop
remains zero. This means that the confinement and
deconfinement properties do not change by the gradient
flow. We also plot the results of the expectation value of
the plaquette in Fig. 3. As the flow time increases, the
plaquette approaches one. Since plaquette is related to the
field strength Fμν in the continuum theory by the equation
P ≈ 1 −

R
FμνFμνd4xg2=ð24V4Þ, we can see that the field

strength becomes weaker as the flow time progresses in
both confinement and deconfinement phases, where V4 is
the space-time volume.
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FIG. 1. Absolute value of Polyakov loop as a function of β at
some flow time t=a2 on a 323 × 8 lattice.
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FIG. 2. Absolute value of Polyakov loop as a function of flow
time, measured at various β on a 323 × 8 lattice.

1One may use an alternative definition that simply substitutes
a2gGνμ ¼ ΘðtÞ

νμ into Eq. (10) to discretize the flow equation. The
difference between such a naive flow equation and Eq. (11) is
whether the compactness of the gauge group is considered or not.
Without the compactness, the gradient flow does not work well.
In Sec. IV, we will discuss the importance of this compactness of
the flow equation.

2Since the expectation of the Polyakov loop operator itself is
always zero due to the Uð1Þ center symmetry, we compute the
expectation of the absolute value of the operator. We will discuss
the center symmetry in Sec. VII.
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We moreover compute the Creutz ratio χði; jÞ, which is a
quantity for simply calculating the string tension,

χði; jÞ ¼ − ln

�
Wði; jÞWðiþ 1; jþ 1Þ
Wðiþ 1; jÞWði; jþ 1Þ

�
: ð13Þ

The string tension is the proportionality constant of the
linear potential between static fermions. If Wilson loops
obey the area law, the Creutz ratio is equal to the string
tension. Figure 4 shows the flow time dependence of the
Creutz ratio at β ¼ 0.99 in confinement phase on a 204

lattice. The number of configurations is 10000 for each β.
Since the potential increases linearly at long distances in the
confinement phase, larger Wilson loops demonstrate the
area law. Thus, the Creutz ratio χði; jÞ approaches the string
tension as the size ði; jÞ increases. This figure shows that
the Creutz ratio does not change much with the gradient
flow. We, moreover, find that, as the gradient flow pro-
gresses, the size dependence of the Creutz ratio becomes
smaller and converges to a certain value. Also, the Creutz
ratio with a larger size has less flow time dependence.
As we expected, the statistical error of the Creutz ratios

decreases with the gradient flow. It may be possible to
calculate the string tension by extrapolating to t=a2 ¼ 0

using Creutz ratio data at finite t=a2 with large ði; jÞ that
cannot be calculated before the gradient flow due to large
statistical errors. Since χði; jÞ with small statistical error
varies linearly with respect to t=a2, we fit χði; jÞ with a
straight line for each ði; jÞ. In Fig. 4, the solid lines are the
results of the fit function. We will discuss this issue in more
detail in Sec. V. These features suggest the usefulness of the
gradient flow for numerical computation of lattice gauge
theories. However, it is curious that the string tension
hardly changes even though the field strength weakens with
the gradient flow.

III. MONOPOLE IN Uð1Þ LATTICE
GAUGE THEORY

The existence of topological quantities such as magnetic
monopoles is expected to be behind the fact that the
confinement property is maintained even with coarse
graining by the gradient flow. In the compact Uð1Þ lattice
gauge theory, magnetic monopoles can be defined in the
following way [25], which corresponds to the magnetic
monopoles caused by the compactness of the gauge group
[13]. Hereafter, for the differentiation of variables defined
in lattice units, such as θμ, Θμν, kμ, nμν, etc., the forward
derivative ∂μfðxÞ and the backward derivative ∂

0
μfðxÞ in a

lattice unit are defined as

∂μfðxÞ¼ fðxþ μ̂Þ−fðxÞ; ∂
0
μfðxÞ¼ fðxÞ−fðx− μ̂Þ;

ð14Þ
for any function fðxÞ, where xþ μ̂ means the site next to x
in the μ direction.
Since Θμν ¼ ∂μθν − ∂νθμ, the range of θμ is defined as

−π< θμ ≤ π, and then the range of Θμν is −4π < Θμν ≤ 4π.
In this case, − cosΘμν in Sg has minimum value at Θμν ¼ 0,
�2π, and �4π, and the approximation of Eq. (8) does not
hold except near Θμν ¼ 0. To avoid this problem, we define
the quantity Θ̄μν as follows, and it is more appropriate to
regard Θ̄μν as Fμν in the continuum theory rather than Θμν:

Θμν ¼ ∂μθν − ∂νθμ ¼ Θ̄μν þ 2πnμν; ð15Þ
with

Θ̄μν ¼ a2gFμν; ð16Þ

where nμν is an integer and −π < Θ̄μν ≤ π. Moreover, when
converting from Uμ to θμ, the ambiguity of integer multi-
ples of 2π does not affect Θ̄μν.
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FIG. 3. Plaquette as a function of flow time, computed at
various β on a 323 × 8 lattice.
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FIG. 4. The flow time dependence of Creutz ratios χði; jÞ in the
confinement phase, measured at β ¼ 0.99 on a 204 lattice.
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When the field strength is defined in this way, Θ̄μν does
not satisfy the Bianchi identity. From the definition,

ϵμνρσ∂νΘρσ ¼ ϵμνρσ∂νΘ̄ρσ þ 2πϵμνρσ∂νnρσ ¼ 0: ð17Þ
Thus,

ϵμνρσ∂νΘ̄ρσ ¼ −2πϵμνρσ∂νnρσ: ð18Þ
The right-hand side of Eq. (18) is not always zero. We then
define the magnetic monopole current as follows [25]:

kμðxÞ ¼
1

4π
ϵμνρσ∂νΘ̄ρσðxÞ ¼ −

1

2
ϵμνρσ∂νnρσðxÞ: ð19Þ

Here, we note that kμðxÞ is an integer, which corresponds to
Dirac’s quantization condition. Furthermore, kμðxÞ satisfies
the continuity equation,3

∂μkμ ¼ 0: ð20Þ
Thus, the monopole current forms a closed loop. When
the monopole current is integrated over the entire space-
time under the periodic boundary condition, the integrated
value becomes zero. The dual of nμνðxÞ is defined by
�nμνðxÞ ¼ 1

2
ϵμνρσnρσðxÞ. It satisfies the equation,

kμðxÞ ¼ ∂ν
�nνμðxÞ: ð21Þ

Because the boundary of �nμνðxÞ is the monopole current,
we call �nμνðxÞ Dirac string. This Dirac string corresponds

to an infinitely long and thin solenoid connected to Dirac’s
magnetic monopole.
When we perform a global change of link field,UμðxÞ →

eαμUμðxÞ ¼ eiαμeiθμðxÞ for any real number αμ, the gauge
field θ4 does not become θμ þ αμ because the range is
−π < θμ ≤ π, but becomes θμ þ αμ þ 2πn with an extra
integer multiple of 2π added. Then, in the definition,
∂μθν − ∂νθμ ¼ Θ̄μν þ 2πnμν, ΘμνðxÞ can change by an
integer multiple of 2π, but Θ̄μνðxÞ does not change.
Since kμðxÞ is defined by Θ̄μνðxÞ, the monopole current
is invariant under this transformation. On the other hand,
this transformation changes the Dirac string �nμνðxÞ.
Similarly for the gauge transformation, Θ̄μνðxÞ and kμðxÞ
are invariant and �nμνðxÞ changes. Therefore, the Dirac
string is not a physical quantity.
The magnetic monopole is expected to exist stably

against coarse graining. For the case of the gradient flow
considering compactness of UμðxÞ, − cosΘμν becomes
small when we solve the flow equation [Eq. (11)]. Then,
Θ̄μν will be small, but the integer variable nμν will not
change much in Eq. (15). Therefore, the monopole is
expected not to disappear even if the gauge field is coarse
grained by the gradient flow in the confinement phase.

A. Numerical simulation

By performing Monte Carlo simulations, we investigate
how the magnetic monopole changes with the gradient
flow. The monopoles are computed on the configurations
used in the calculations in Sec. II. Because the space-time
average of the monopole current is zero due to Eq. (20), we
focus on the space-time average of the absolute value of
kμðxÞ. The results of the expectation values of the density
ð4NsiteÞ−1

P
x;μ jkμðxÞj on the 323 × 8 lattice are plotted in

the left panel of Fig. 5. As seen from this figure, the number
of monopoles is large at β ≤ 1.01 in the confinement phase
before the flow. Then, the gradient flow causes the number
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FIG. 5. Density of monopoles ð4NsiteÞ−1
P

x;μ jkμðxÞj as a function of flow time for various β on a 323 × 8 lattice. The results in the
deconfinement phase only are plotted in the right panel.

3If we want to define the continuity equation using the
backward derivative on a lattice, we need to shift the definition
of the monopole current by one site, i.e., if kμðxÞ → k0μðxÞ ¼
kμðxþ μ̂Þ, then ∂

0
μk0μðxÞ ¼ 0. The current k0μ is conserved at x on

the lattice. Moreover, it is more appropriate to express Eq. (21) by
the backward derivative. if �nμνðxÞ → �n0μνðxÞ ¼ �nμνðxþ μ̂þ ν̂Þ,
then k0μðxÞ ¼ ∂

0
ν
�n0νμðxÞ. This means that k0μ is the boundary

of �n0νμ.
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of monopoles to slowly decrease, but it seems to never
reach zero. On the other hand, there are only a few
monopoles at β ≥ 1.02 in the deconfinement phase before
the gradient flow, and monopoles disappear immediately
after gradient flow. In the right panel of Fig. 5, the range of
the vertical axis is narrowed to show only the results for the
deconfinement phase. We also plot the number of monop-
oles as a function of β for each flow time in Fig. 6. The
number of monopoles at large flow times changes dramati-
cally at the critical β from a finite value in the confinement
phase to zero in the deconfinement phase. Figure 7 is the
result on a symmetric lattice with Nsite ¼ 204 at β ¼ 0.98
(green), 0.99 (blue), 1.02 (red), and 1.03 (yellow). The
configuration at β ¼ 0.99 is used in the study of the string
tension. The number of configurations at the other β is 4000.
This is qualitatively the same result as the 323 × 8 lattice.
These results suggest that there is a relationship between the
monopole not vanishing in the confinement phase and the
preservation of the confinement properties.

IV. GRADIENT FLOW WITH NONCOMPACT
FLOW EQUATION

So far, we have used Eq. (11) as the flow equation, but
alternative flow equations are also possible. By simply
discretizing Eq. (10) using the relation of a2gGμν ¼ ΘðtÞ

μν ,
we can also define the flow equation as

∂θðtÞμ ðxÞ
∂ðt=a2Þ ¼

X
ν

ðΘðtÞ
μν ðxÞ − ΘðtÞ

μν ðx − ν̂ÞÞ; ð22Þ

with Θμν ¼ ∂μθν − ∂νθμ. The difference between Eqs. (11)
and (22) is the consideration of the periodicity of cosΘμν in
the action. The right-hand side of Eq. (22) is equal to the
functional derivative of SNC, which is the action of the
noncompact Uð1Þ gauge theory:

∂θðtÞμ ðxÞ
∂ðt=a2Þ ¼−g2

δSNC

δθðtÞμ
; with SNC ¼ β

X
x;μ>ν

1

2
Θ2

μνðxÞ: ð23Þ

Thus, this flow equation changes the gauge field to
minimize SNC. Unlike the compact action Eq. (2), this
SNC has no periodicity in Θμν.
We investigate how the confinement properties and the

magnetic monopole changewith gradient flow for two cases
of the gradient flow defined by the compact flow equation
[Eq. (11)] and the noncompact flow equation [Eq. (22)]
performing Monte Carlo simulations. The results of these
two types of flow equations are drastically different.
We plot the results of plaquette values measured on a 164

lattice in Fig. 8. Configurations are generated by the action
of the compact Uð1Þ lattice gauge theory, Eq. (2). The
number of configurations is 10000 for each β. The solid
lines are the case using the compact flow equation, and the
dashed lines are the noncompact case. These two results are
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FIG. 6. Density of monopoles as a function of β on a 323 × 8
lattice. Black, red, green, blue and magenta lines are the results of
t=a2 ¼ 0.0, 0.5, 1.0, 1.5, and 2.0, respectively.
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FIG. 7. Density of monopoles as a function of t=a2 at β ¼ 0.98,
0.99, 1.02, and 1.03 on a 204 lattice.
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tions, measured at β ¼ 0.80 (green), 0.90 (blue), 1.10 (red) and
1.20 (yellow) on a 164 lattice.
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qualitatively very different. As discussed in Sec. II, for the
compact flow, the plaquette values monotonically approach
one as the flow progresses. However, in the case of the
noncompact flow, the plaquette values decrease once
immediately after the flow starts, the difference between
the confinement phase (β ¼ 0.80, 0.90) and the deconfine-
ment phase (β ¼ 1.10, 1.20) disappears, and they approach
one as the flow time increases.
A more pronounced difference in the Creutz ratio results

is seen when two different flow equations are used. In
Fig. 9, we plot the results of the Creutz ratios χð2; 2Þ (red)
and χð2; 3Þ (blue) measured at β ¼ 0.99 on a 164 lattice.
The solid lines and the dashed lines are for the compact and
the noncompact cases, respectively. It can be seen that the
Creutz ratio vanishes immediately when the gradient flow
is performed using the noncompact flow equation. This
indicates that the confinement property is lost by using the
noncompact flow equation.
We moreover plot the absolute value of Polyakov loop as

a function of the flow time in Fig. 10. The solid lines are the
results by the compact flow equation, which have been
shown in Sec. II. As discussed in Sec. II, the qualitative
properties of zero or finite values do not change with the
gradient flow. The dashed lines are the results by the
noncompact flow equation [Eq. (22)], measured on a 323 ×
8 lattice. This figure shows that as the noncompact flow
progresses, the Polyakov loop decreases until t=a2 ≈ 0.1,
where the β dependence disappears. After that, the
Polyakov loop increases with the same value for all β
(i.e. β in both phases) as the flow time increases. This also
indicates that the nature of confinement is lost by the
noncompact gradient flow.
The magnetic monopoles discussed in the previous

section appear due to the compactness of Uð1Þ group
elements UμðxÞ. Magnetic monopoles are expected to be
preserved when coarse grained using the compact flow

equation. However, the noncompact flow equation
[Eq. (22)] breaks the compactness of UμðxÞ, unlike the
compact flow equation [Eq. (11)]. There is no reason why
magnetic monopoles should not vanish if coarse grained
using a flow equationwithout the compactness.We compute
the expectation values of ð4NsiteÞ−1

P
x;μ jkμðxÞj, and plot

the results of the 164 lattice in Fig. 11. The solid lines in
Fig. 11 are the density of monopoles for the case of Eq. (11)
considering the compactness. As discussed in Sec. III, the
monopole does not disappear even with gradient flow in the
confinement phase. However, the dashed lines in Fig. 11 are
the results for the case of noncompact gradient flow
[Eq. (22)]. The number of monopoles increases once after
the flow starts, and the number of monopoles becomes the
same for all β at t=a2 ≈ 0.1. After that, the number of
monopoles immediately decreases to zero for all β. The
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FIG. 9. Creutz ratios χð2; 2Þ (red) and χð2; 3Þ (blue) as
functions of flow time at β ¼ 0.99 on a 164 lattice using the
noncompact (dashed line) and the compact (solid line) flow
equations.
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FIG. 10. Absolute values of Polyakov loop as functions of flow
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results obtained in this section indicate that it is important to
use the flow equation considering the compactness of the
gauge group so that the confinement properties are not lost
under the gradient flow. These results also suggest that the
disappearance of the monopoles corresponds to the dis-
appearance of the confinement properties.

V. STRING TENSION

The most important property of confinement is the linear
potential between particles. The effective potential VðrÞ at
the distance r between particles can be calculated from
Wilson loopsWðr; tÞ by the relationWðr; tÞ ¼ exp½−tVðrÞ�
when t is large. If the effective potential has a linear term
VðrÞ ∼ σr at long distances, where σ is the string tension,
Wilson loops show the area law, Wðr; tÞ ∼ σrt, for large r
and t. The area law can be derived in the strong coupling
limit of lattice gauge theories. In the proof of the area law,
the compactness of the gauge group is very important.
Moreover, the area law for Wilson loops is given by
monopole condensation in the compact Uð1Þ lattice gauge
theory with the Villain approximation [13]. So far, we have
argued that the magnetic monopoles may also play an
important role in the gradient flow. In this section, we study
the flow time dependence of the Wilson loops focusing on
the monopole condensation.
The Wilson loop can be separated into contributions

from field strength and magnetic monopoles [26]. We
introduce an external current JμðxÞ that takes �1 along
the Wilson loop and an antisymmetric tensor MμνðxÞ that
takes �1 in the area surrounded by the Wilson loop and
satisfies JνðxÞ ¼ ∂

0
μMμνðxÞ. The Wilson loop is given as

W ¼ exp

�
i
X
x

θμðxÞJμðxÞ
�

¼ exp

�
−
i
2

X
x

ΘμνðxÞMμνðxÞ
�
: ð24Þ

Using the identity,

MμνðxÞ ¼ −
X
x0
Dðx − x0Þ

�
∂
0
αð∂μMανðx0Þ − ∂νMαμðx0ÞÞ

þ 1

2
ϵαβμνϵλβρσ∂

0
α∂λMρσðx0Þ

�
; ð25Þ

the Wilson loop can be decomposed as follows:

W ¼ Wf ·Wm; ð26Þ

Wf ¼ exp

�
−i
X
x;x0

∂
0
μΘ̄μνðxÞDðx − x0ÞJνðx0Þ

�
; ð27Þ

Wm ¼ exp

�
2πi

X
x;x0

kβðxÞDðx−x0Þ1
2
ϵαβρσ∂αMρσðx0Þ

�
;

ð28Þ

where Dðx − x0Þ is a four-dimensional Coulomb propaga-
tor on a lattice, which satisfies

∂
0
μ∂μDðx − x0Þ ¼ −δx;x0 : ð29Þ

Then, hWi is approximately the product of hWfi and hWmi.
Θ̄μν corresponds to Fμν in the continuum theory. It is known
that the string tension calculated only by Wm without Wf

almost reproduces the original string tension by numerical
calculation [26].
The contribution from monopoles to the Wilson loop is

equivalent to theWilson loop with the contribution from the
field strengthFμν removed by hand, and is very similar to the
Wilson loop in which Fμν is reduced by gradient flow. We
investigate how the contributions from monopoles and Fμν

changewhen the field is coarse grained by the gradient flow,
and compare them with the original string tension.

A. Numerical simulation

We decompose the Wilson loop into two contributions
and investigate the flow time dependence. The simulations
are performed on a lattice of size 204. The number of
configurations is 10000 for β ¼ 0.99, and 4000 for
β ¼ 1.02. During the gradient flow, we solve the flow
equation [Eq. (11)]. In Fig. 12, we plot the results of Wilson
loops hWð2; 2Þi; hWð3; 3Þi and hWð4; 4Þi as functions of
the flow time t=a2 with square, circle, and triangle symbols.
The left and right panels are the results at β ¼ 0.99
(confinement) and β ¼ 1.02 (deconfinement). The green,
red, and blue symbols are the original Wilson loop, the Fμν

contribution, and the monopole contribution, respectively.
These Wilson loops increase monotonically as the flow
time increases in Fig. 12.
If Wilson loops show the area law, the Creutz ratio

χði; jÞ, Eq. (13), is equal to the string tension. From the
Wilson loops, we compute the Creutz ratio. As discussed in
Sec. II, Fig. 4 shows the flow time dependence of the
original Creutz ratio. In the confinement phase, the Creutz
ratio approaches the string tension as the size ði; jÞ
increases, and the size dependence becomes smaller as
the gradient flow progresses. This means that when coarse
grained by the gradient flow, the interparticle potential
becomes a linear rising potential even at short distances.
Figure 13 demonstrates the results obtained by the Wilson
loops from monopoles hWmði; jÞi. The statistical error of
the Creutz ratio from monopoles is smaller than that of the
original Creutz ratio. These Creutz ratios are independent
of the size of Wilson loops within the errors. This indicates
that both before and after flow, the interparticle potential is
a linear function even at short distances. Moreover, their
flow time dependence is smaller than the original one.
Since the numerical result of the Creutz ratio with small

statistical error seems to be well approximated by a linear
function, we fit these Creutz ratios at β ¼ 0.99 with a linear
function,
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χði; jÞ ¼ cði; jÞ þ dði; jÞt=a2; ð30Þ

for each size ði; jÞ, where cði; jÞ and dði; jÞ are the fitting
parameters. The straight lines in Figs. 4 and 13 are the

fitting functions. The results of the fitting parameters are
summarized in Table I. The second and third columns are
the results of the original Creutz ratio, and the fourth and
fifth columns are the results of the Creutz ratio from
monopoles. In Appendix A, we discuss the finite volume
effect in the Creutz ratios comparing the results on 164 and
204 lattices. A finite volume effect is visible in Creutz ratios
containing Wilson loops with a side length greater than
Ns=3 for a N4

s lattice. Thus, the table shows results with a
side length of 5 or less. The fitting range is adopted to be
0.0 ≤ t=a2 ≤ 2.0. Since χði; jÞ cannot be calculated if the
central value of a Wilson loop is negative, χði; jÞ containing
a negative Wilson loop is not used for this fitting. The string
tension is the double limit of i; j → ∞ and t → 0 after
removing their finite volume effects, i.e. the string tension
is cði; jÞ where ði; jÞ is large. The results of cð5; 5Þ are
0.248(28) from the original Wilson loop and 0.244(14)
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FIG. 12. Flow time dependence of Wilson loops (green), their field strength contributions (red), and their monopole contributions
(blue) on a 204 lattice. The left and right panels are the results at β ¼ 0.99 and 1.02. The square, circle, and triangle symbols areWð2; 2Þ,
Wð3; 3Þ, and Wð4; 4Þ, respectively.

TABLE I. Fitting parameters of the Creutz ratios on the
204 lattice.

Original Monopole

cði; jÞ dði; jÞ cði; jÞ dði; jÞ
χð3; 3Þ 0.2787(4) −0.0267ð2Þ 0.2481(2) −0.0207ð1Þ
χð3; 4Þ 0.2696(7) −0.0198ð4Þ 0.2437(5) −0.0164ð2Þ
χð3; 5Þ 0.2639(15) −0.0162ð7Þ 0.2414(9) −0.0142ð4Þ
χð4; 4Þ 0.2561(25) −0.0107ð12Þ 0.2374(14) −0.0112ð7Þ
χð4; 5Þ 0.2479(64) −0.0065ð32Þ 0.2353(34) −0.0094ð17Þ
χð5; 5Þ 0.248(28) −0.009ð14Þ 0.244(14) −0.014ð7Þ
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FIG. 13. The monopole contribution of Creutz ratios as
functions of flow time at β ¼ 0.99 on a 204 lattice.
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flow time at β ¼ 0.99 on a 204 lattice.
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from monopoles.4 The Creutz ratio from monopoles is
consistent with the original value within the statistical error.
On the other hand, the Creutz ratios computed from

hWfði; jÞi are plotted in Fig. 14. Even in the confined phase
(β ¼ 0.99), the Wilson loop from field strength does not
show the area law, thus the Creutz ratios are zero. Namely,
Fμν becomes smaller by the gradient flow, but originally
Fμν does not contribute to the string tension. The string
tension is produced by the monopoles, and the monopoles
do not disappear by the gradient flow.

VI. DECONFINEMENT PHASE TRANSITION

Next, we discuss the order parameter of the confinement
phase transition. The finite temperature phase transition of
Uð1Þ or SUðNÞ lattice gauge theories without dynamical
fermions can be understood as a spontaneous breaking of the
center symmetry. The order parameter for the center sym-
metry is the Polyakov loop. The confinement phase is a
symmetric phase. Thus, the expectationvalueof thePolyakov
loop hLi is zero in the confinement phase and finite in the
deconfinement phase. We physically interpret the Polyakov
loop as hLi ∼ e−F=T , whereF is the free energywhen there is
one charged particle. Similar to topological stability, there is
often symmetrybehind the stability of physical quantities.We
study the order parameter: Polyakov loop.
The Polyakov loop operator,

L¼ 1

N3
s

X
x⃗

LðlocÞðx⃗Þ¼ 1

N3
s

X
x⃗

exp

�
i
XNt−1

j¼0

θ4ðx⃗þj4̂Þ
�
; ð31Þ

can be expressed as the product of the contribution LðlocÞ
m

from monopole and the contribution LðlocÞ
f from field

strength [20]. We use the identity,

θ4ðxÞ ¼ −
X
x0
Dðx − x0Þ½∂0νΘν4ðx0Þ þ ∂4ð∂0νθνðx0ÞÞ�; ð32Þ

where Dðx − x0Þ is a four-dimensional Coulomb propaga-
tor on a lattice satisfying ∂

0
μ∂μDðxÞ ¼ −δx;0, and Θμν ¼

∂μθν − ∂νθμ. Then, the local Polyakov loop operator
LðlocÞðx⃗Þ at each point x⃗ can be decomposed as follows:

LðlocÞðx⃗Þ¼ exp

�
i
XNt−1

j¼0

θ4ðx⃗þ j4̂Þ
�
¼LðlocÞ

f ðx⃗Þ ·LðlocÞ
m ðx⃗Þ;

ð33Þ

LðlocÞ
f ðx⃗Þ ¼ exp

�
−i

XNt−1

j¼0

X
x0

Dðx⃗þ j4̂ − x0Þ∂0νΘ̄ν4ðx0Þ
�
;

ð34Þ
LðlocÞ
m ðx⃗Þ

¼ exp

�
−2πi

XNt−1

j¼0

X
x0

Dðx⃗þ j4̂− x0Þ1
2
ϵν4ρσ∂

0
ν
�nρσðx0Þ

�
:

ð35Þ

Here, ΘμνðxÞ ¼ Θ̄μνðxÞ þ 2πnμνðxÞ, ð−π < Θ̄μνðxÞ ≤ πÞ.
�nμνðxÞ ¼ 1

2
ϵμνρσnρσðxÞ is the Dirac string explained in

Sec. III. The magnetic monopole currents kμðxÞ are the
boundary of the Dirac string (sheet), i.e. kμðxÞ ¼ ∂ν

�nνμðxÞ.
We denote the spatial averages of LðlocÞ

f ðx⃗Þ and LðlocÞ
m ðx⃗Þ in

Eqs. (34) and (35) as Lf and Lm. The expectation values
hLfi and hLmi are the contributions from Fμν and monop-
oles to hLi, respectively. The contribution from monopoles
hLmi is calculated by the Dirac string, not from the
monopole current. However, as explained below, except
for the plus and minus signs, the value of the Polyakov loop
is determined solely by the location of the monopole
current, not the Dirac string (sheet). Therefore, we call
Lm the contribution from monopoles.
In order to consider the behavior of the Polyakov loop in

relation to the configuration change of themonopole currents,

we rewrite LðlocÞ
m ðx⃗Þ. Integrating out the time direction,

LðlocÞ
m ðx⃗Þ ¼ exp

�
−2πi

X
x⃗0
∂
0
iD3ðx⃗ − x⃗0Þ 1

2
ϵijk4

�ñjkðx⃗0; x04Þ
�
;

ð36Þ
where x⃗ is the position of the Polyakov loop in three-
dimensional space, and

D3ðx⃗Þ ¼
XNt

x4¼1

Dðx⃗; x4Þ; ð37Þ

is a three-dimensional Coulomb propagator, since it satisfies

∂
0
i∂iD3ðx⃗Þ ¼

X
x4

½∂0i∂iDðx⃗; x4Þ þ ∂
0
4∂4Dðx⃗; x4Þ� ¼ −δx⃗;0:

ð38Þ
�ñijðx⃗Þ is a projection of Dirac string in three-dimensional
space,

�ñijðx⃗Þ ¼
XNt

x4¼1

�nijðx⃗; x4Þ: ð39Þ

In addition, we introduce the solid angle Ωðx⃗Þ when we see
the Dirac string (sheet) from the point x⃗ where the Polyakov
loop is placed [27,28]. Then, Eq. (36) is rewritten as

4We also fit χði; jÞ with a quadratic function. The results of the
quadratic fit by the original Wilson loops are cð3;3Þ¼ 0.2814ð6Þ,
cð4; 4Þ ¼ 0.2494ð51Þ, and cð5; 5Þ ¼ 0.267ð66Þ. Those by the
monopole Wilson loops are cð3; 3Þ ¼ 0.2514ð3Þ, cð4; 4Þ ¼
0.2358ð23Þ, and cð5; 5Þ ¼ 0.248ð26Þ. The difference between
the linear fit and the quadratic fit would be the systematic error
due to the choice of fitting function.
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LðlocÞ
m ðx⃗Þ ¼ exp

�
2πiΩðx⃗Þ

4π

�
: ð40Þ

The value of 1
2
ϵijk4

�ñjkðx⃗0; x04Þ is the area of the Dirac sheet,
whose direction is perpendicular to the plane. In the con-
tinuum theory, ∂0iD3ðx⃗ − x⃗0Þ has amagnitude of1=r2, where r
is the distance between x⃗ and x⃗0, and its direction is the
direction of looking at the Dirac sheet from x⃗. Therefore, the
inner product of these quantities is a solid angleΩðx⃗Þ in three-
dimensional space.
Note that this solid angle is signed according to the

direction of the monopole current. From this equation, it is
found that the Polyakov loop depends only on the location of
the monopole current (boundary of the sheet), not on the
shape of the Dirac sheet. Even if the shape of the Dirac sheet

is changed, the value of LðlocÞ
m ðx⃗Þ does not change.

Especially, if there is a Dirac sheet bubble without a
monopole, i.e. a closed curved Dirac sheet with no bounda-
ries, the solid angle Ωðx⃗Þ looking at the Dirac sheet will be
�4π inside the bubble and 0 outside the bubble. Therefore,
such bubbles do not affect Lm. However, the sign of the
Polyakov loop may change depending on the Dirac sheet. If
there is an infinitely wide Dirac sheet without monopoles,
half of the full solid angle, �2π, will be added to Ωðx⃗Þ,
regardless of which x⃗ we look at the sheet from. Then, the

sign of LðlocÞ
m ðx⃗Þ changes at all x⃗. Thus, the monopole part of

the Polyakov loop operatorLm is a quantity determined only
by the distribution of monopoles except for its sign.
From Eq. (40), when the monopoles are distributed

throughout the space, the solid angle Ωðx⃗Þ takes a com-
pletely random value for each Polyakov loop location x⃗.
Then, the spatial average Lm becomes zero; whereas, when
there are few monopoles, the solid angle is almost zero and
the spatial average is close to one. Furthermore, since the
solid angle has a plus or minus sign depending on the

direction, even if there are many short closed monopole
current loops, they do not contribute much to Ωðx⃗Þ.
Equation (40) suggests that long monopole loops are
important because the monopole current spread over space
gives Ωðx⃗Þ various values from −2π to 2π.5

A. Numerical simulation

We calculate the Polyakov loop separating the monopole
contribution Lm and the field strength contribution Lf by
performing Monte Carlo simulations. The lattice size is
323 × 8 and the number of configurations is 2000, which is
the same as Sec. II. The β dependence of the absolute
values of Polyakov loops, hjLji, hjLfji, and hjLmji, is
shown in Fig. 15. The green, red and blue lines are the
expectation value of the original one, field strength part and
monopole part, respectively. The left panel presents the
result before the gradient flow and the right one the result at
flow time t=a2 ¼ 2.0. The monopole contribution in the
confinement phase below β ≈ 1.01 is zero, and remains
zero even when flowed. Then, the monopole part increases
sharply at the phase transition point, and the increase is
steeper after the gradient flow. On the other hand, the field
strength contribution is nonzero at all β and increases with
the gradient flow. It is found that the contribution from
monopoles makes the Polyakov loop zero in the confine-
ment phase and the field strength part does not contribute to
the deconfinement phase transition.
We also plot the field strength contribution and the

monopole contribution as functions of the flow time for
each β and functions of β for each t=a2 in Figs. 16 and 17.
Figure 16 is the result of field strength part hjLfji. As
shown in the left panel, hjLfjimonotonically increases with
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FIG. 15. Absolute value of Polyakov loop as a function of β measured on a 323 × 8 lattice. Green, red and blue lines are the original,
field strength part and monopole part, respectively. The left panel is before the gradient flow, and the right panel is the result at
t=a2 ¼ 2.0.

5The importance of long monopole currents in the finite
temperature phase transition of Abelian projected QCD is pointed
out in Ref. [19].
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increasing the flow time, and the dependence on β is small
as in the right panel. Figure 17 is the monopole part hjLmji.
hjLmji remains zero in the confinement phase and
approaches one in the deconfinement phase as the flow
time increases in the left panel. Then, as seen in the right
panel, hjLmji after the gradient flow becomes like a step
function in β.
In addition, histograms of the solid angleΩðx⃗Þ in Eq. (40)

are shown in Fig. 18. These are the histogram of Ωðx⃗Þ at all
spatial points x⃗ on one configuration measured on the
323 × 8 lattice before the gradient flow. The left panel is
the results at β ¼ 0.98 in the confinement phase. The
distribution probability in terms of Ωðx⃗Þ is almost constant.

Then, the spatial average of LðlocÞ
m ðx⃗Þ is approximately zero.

On the other hand, the right panels are the results at β ¼ 1.10
in the deconfinement phase. The histogram in the deconfine-
ment phase is shaped with a sharp peak. Then, the spatial

average of LðlocÞ
m ðx⃗Þ is nonzero. However, the discussion in

this section suggests that the histogram ofΩðx⃗Þ has a peak at
Ω ¼ 0 when there are few monopoles in the deconfinement
phase. As seen in the right panel of Fig. 18, the peak position
is nonzero in practical calculations. This peak shift will be
discussed in the next section.

VII. CENTER SYMMETRY BREAKING

A. Order parameter of the center symmetry

We consider the following transformation ofU4ðxÞ in the
Uð1Þ lattice gauge theory, called the Uð1Þ center trans-
formation,

U4ðx⃗; t1Þ → eiϕU4ðx⃗; t1Þ; ð41Þ

at all spatial points x⃗ in one time slice t1. ϕ is an arbitrary
real number. Then, θ4ðx⃗; t1Þ → θ4ðx⃗; t1Þ þ ϕ in Mod 2π.
Because eiϕ is an element of the Uð1Þ group, the path
integral measure DUμðxÞ is invariant. Since cosΘμνðxÞ ¼
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FIG. 17. The left panel is the absolute values of Polyakov loops from monopoles as a function of flow time t=a2 for each β computed
on a 323 × 8 lattice. The right panel is that as a function of β at various t=a2.
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FIG. 16. The left panel is the absolute values of Polyakov loops from field strength as a function of flow time t=a2 for each β computed
on a 323 × 8 lattice. The right panel is that as a function of β at various t=a2.
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Re½UμðxÞUνðxþ μ̂ÞU�
μðxþ ν̂ÞU�

νðxÞ� does not change
under the center transformation, the action does not change.
However, the Polyakov loop changes from hLi to eiϕhLi
because the loop passes through the time slice t1 only once.
Therefore, the expectation value of the Polyakov loop is
zero unless the center symmetry is spontaneously broken.
In other words, the phase transition in which the Polyakov
loop changes from zero to a finite value is a phase transition
due to the spontaneous breaking of this global Uð1Þ center
symmetry. The Polyakov loop is an order parameter for the
Uð1Þ center symmetry breaking.
We interpret the Polyakov loop as hLi ∼ e−F=T , where F

is the free energy when there is one charged particle. For
this interpretation, the Uð1Þ symmetric complex phase of
the Polyakov loop is unphysical that must be removed. The
Uð1Þ symmetry comes from the extra degree of freedom in

the theory. In the context of monopole condensations, it is
interesting to consider which extra dynamic variables are
related to the Uð1Þ center symmetry. In the following, we
focus on the Dirac string, which is an unphysical unob-
served quantity in Dirac’s magnetic monopole theory.
Since the action and the path integral measure are

invariant under the Uð1Þ center transformation, the dis-
tribution probabilities at L and eiϕL are equal for any ϕ.
When the Polyakov loop values on each configuration are
plotted on the complex plane, the distribution must be
Uð1Þ symmetric. The left and right panels of Fig. 19 are
the results the Polyakov loops averaged over the space at
β ¼ 0.98 (confinement) and 1.10 (deconfinement),
respectively. The green dots are the result before the
gradient flow and the blue dots are that at t=a2 ¼ 2.0. The
distribution is Uð1Þ symmetric in both the confinement
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FIG. 18. Histogram of half the solid angle in Eq. (40). The left and right panels are the results for the confinement phase (β ¼ 0.98)
and the deconfinement phase (β ¼ 1.10) on a 323 × 8 lattice, respectively.
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FIG. 19. Distribution of Polyakov loops in the complex plane. The left and right panels are the results β ¼ 0.98 and 1.10 on a 323 × 8

lattice, respectively. Green symbols are before the gradient flow, and blue symbols are at t=a2 ¼ 2.0.
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and deconfinement phases. These are distributed near the
origin in the confinement phase and on a circle in the
deconfinement phase. Spontaneous symmetry breaking
occurs when one of the points on the circle with the
highest probability is chosen as the vacuum in the
deconfinement phase. Therefore, when the Polyakov loop
is decomposed into Lf and Lm, the distribution of the part
related to the spontaneous symmetry breaking must be
Uð1Þ symmetric.
We expect that the field strength part Lf is unrelated to

the center symmetry, since Θ̄μνðxÞ does not change under
the center transformation. The distribution of the field
strength part Lf on the complex plane is shown in Fig. 20.
The green and blue dots are the results before and after the
gradient flow, respectively. These figures show that the
distribution is not Uð1Þ symmetric and the field strength
part is not related to the center symmetry.

We also plot the distribution of the monopole part Lm
on the complex plane in Fig. 21. From these figures, the
distributions of the monopole part are found to be Uð1Þ
symmetric both before and after the gradient flow, similar
to the original L. This result indicates that the important
part for the center symmetry breaking is the monopole
part. However, it is seemingly incomprehensible that the
monopole part is Uð1Þ symmetric because the monopole
current is invariant under the central transformation. [See
the definition of the magnetic monopole current Eq. (19).]
Furthermore, in the deconfinement phase, the number of
monopoles is reduced and the complex phase of Lm
should take a value near zero. The origin of the symmetric
complex phase of Lm will be discussed in the following
subsections.
Moreover, this situation does not change even if the gauge

field is coarse grained by the gradient flow equation
considering the compactness [Eq. (11)] as seen in
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FIG. 20. The distribution of the field strength part of the Polyakov loop in the complex plane at β ¼ 0.98 (left) and 1.10 (right) before
the gradient flow (green) and at t=a2 ¼ 2.0 (blue).
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FIG. 21. The distribution of the monopole part of the Polyakov loop in the complex plane at β ¼ 0.98 (left) and 1.10 (right) before the
gradient flow (green) and at t=a2 ¼ 2.0 (blue).
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Figs. 19 and 21. The reason that the gradient flow does not
break this Uð1Þ symmetry is that the flow equation is
invariant under the center transformation. On the other
hand, the flow equation which does not consider compact-
ness, Eq. (22), does not have the Uð1Þ center symmetry.
When Eq. (22) is used, coarse graining with the gradient
flow immediately breaks the Uð1Þ symmetry of the
Polyakov loop distribution. Then, the nature of confinement
is lost by the gradient flow as we have seen in Sec. IV.

B. Coulomb propagator and boundary condition

Before discussing the center symmetry with respect to
Lm, we need to discuss the Coulomb propagator on a finite
lattice. So far, the discussion has been on a system with
infinite volume, but the case of finite volume with periodic
boundary conditions is not so simple. Strictly speaking,
when the periodic boundary condition

DðxÞ ¼ Dðxþ Nsμ̂Þ ð42Þ
is imposed for μ direction with μ ¼ 1; 2; 3; 4, the definition
of the Coulomb propagator, ∂0μ∂μDðx − yÞ ¼ −δx;y, cannot
be satisfied. When both sides are integrated for the entire
space, the right-hand side becomes −1. However, since the
left-hand side is the total derivative, and the boundary value
is canceled by the periodic boundary condition, the left-
hand side becomes zero. This is because the operator ∂0μ∂μ
has zero eigenvalues. The eigenvector v⃗ of the zero
eigenvalue is when all of the components are the same,
i.e. vx ¼ c, where c is an arbitrary constant because
∂
0
μ∂μvx ¼ 0. Since Dðx − yÞ is the inverse matrix of
∂
0
μ∂μ, Dðx − yÞ does not exist.
In such cases, the definition should be changed to satisfy

the propagator definition only when multiplied by any
vector except the eigenvectors of zero eigenvalues v⃗. A
projection operator on the vector spaces excluding zero
eigenvalues can be defined as follows:

Pxy ¼ δx;y −
vxvy
jv⃗j2 ; ð43Þ

which satisfies Pv⃗ ¼ 0. Using the projection operator, the
propagator satisfies the equation

∂
0
μ∂μDðx − yÞPyzψ z ¼ −Pxyψy; ð44Þ

where ψ⃗ is an arbitrary vector, andPψ⃗ is a vector excluding
zero eigenvalues. The following equation satisfies Eq. (44)
for any ψ⃗ because PP ¼ P,

∂
0
μ∂μDðx − yÞ ¼ −Pxy: ð45Þ

For the case of vx ¼ c,

Pxy ¼ δx;y −
cc

Nsitec2
¼ δx;y −

1

Nsite
; ð46Þ

and the definition of the Coulomb propagator becomes

∂
0
μ∂μDðx − yÞ ¼ δx;y −

1

Nsite
: ð47Þ

This definition is the same as removing the zero-momen-
tum mode that diverges when one calculates DðxÞ by the
Fourier transform.

C. Additional complex phase in the Polyakov loop

In this definition of the Coulomb propagator, for
example, a bubble of Dirac sheet defined in a unit cube
at a point y shifts the phase of the Polyakov loop by 2π=N3

s.
We substitute

�n12ðyÞ ¼ �n23ðyÞ ¼ �n31ðyÞ ¼ 1;
�n12ðy − 3̂Þ ¼ �n23ðy − 1̂Þ ¼ �n31ðy − 2̂Þ ¼ −1 ð48Þ

into Eq. (35). TheDirac sheet is antisymmetricwith respect to
the directional index and �nρσðx0Þ ¼ 0 elsewhere. Note that
there is no monopole current in this case. Also see footnote 3
to understand that Eq. (48) means a unit cubic bubble. Then,

LðlocÞ
m ðx⃗Þ ¼ exp

�
−2πi

XNt−1

j¼0

X3
k¼1

½2Dðx⃗þ j4̂− yÞ

−Dðx⃗þ j4̂− yþ k̂Þ−Dðx⃗þ j4̂− y− k̂Þ�
�

¼ exp

�
2πi

XNt−1

j¼0

∂
0
k∂kDðx⃗þ j4̂− yÞ

�

¼ exp

�
2πi

XNt−1

j¼0

	
−δx⃗þj4̂;y þ

1

Nsite


�
¼ exp

	
2πi
N3

s



:

ð49Þ

Thus, extra complex phases appear without monopoles.
Regardless of the location of the bubble, the phase of

2π=N3
s is added to the phase of the Polyakov loop LðlocÞ

m ðx⃗Þ
and also Lm for the unit bubble of Dirac sheet. Therefore,
when there is a bubble of Dirac sheet of size Nbubble, the
Polyakov loop is multiplied by the phase expð2πiNbubble=
N3

sÞ [27,28]. The origin of this additional phase is the
exclusion of the constant mode in the Coulomb propagator.
We discuss in Appendix B the case of imposing antiperiodic
boundary conditions such that the definition of Coulomb
propagator Eq. (29) holds strictly. In that case, no extra phase
is added to the Polyakov loop other than the plus or minus
sign. However, at the same time, the center symmetry is
reduced from Uð1Þ to Z2.
In the Uð1Þ lattice gauge theory, the theory is invariant

under the transformation of adding a Dirac sheet without
monopoles, but the phase of the Polyakov loop changes
according to the size of the Dirac sheet bubbles. This
corresponds to the change in complex phase associated with
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the Uð1Þ center transformation. Under the center trans-
formation, the monopole current never changes, but the
Dirac string changes. Then, the size of the Dirac sheet
bubbles ofNbubble changes, and the additional complex phase
expð2πiNbubble=N3

sÞ changes. This phase shift is discrete, but
can be regarded as a continuous change if the spatial volume
is large enough. Thus, the center symmetry is reflected in
the symmetry of the distribution of the monopole part of the
Polyakov loop Lm. In addition, it is important to perform the
gradient flow so as not to break the symmetry to keep
the nature of the confinement. The flow equation [Eq. (11)] is
symmetric under the center transformation.

D. Gradient flow and Polyakov loops

Since the complex phase of the Polyakov loop from
monopoles is given by the solid angle when looking at
Dirac sheets surrounded by monopole currents, it is
expected that the coarse graining of the gradient flow

hardly changes the phase. In this section, we study how the
complex phases of the Polyakov loops change under the
gradient flow. Figure 22 shows the complex phase change
of the local Polyakov loop from monopoles LðlocÞ

m ðx⃗Þ during
the gradient flow. The left and right panels are the results at
several points x⃗ on one configuration in the confinement
phase (β ¼ 0.98) and the deconfinement phase (β ¼ 1.10),
respectively. The lattice size is 323 × 8. These are Ωðx⃗Þ=2
and the horizontal axis is the flow time t=a2. The monopole
and the Dirac sheet are integer variables, the variation of
Ωðx⃗Þ under the gradient flow is discrete and hard to change.
Since the complex phase is uniformly distributed before the
gradient flow in the confinement phase, the phase will be
uniform after the gradient flow. Thus the gradient flow does
not break the Uð1Þ symmetry. In the deconfinement phase,
the value ofΩðx⃗Þ is almost the same at every point, which is
given by the additional complex phase discussed so far, and
the Ωðx⃗Þ does not change by the gradient flow. The
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FIG. 23. Histogram of half the solid angle in Eq. (40) after the gradient flow. The left and right panels are the results for the
confinement phase (β ¼ 0.98) and the deconfinement phase (β ¼ 1.10) at t=a2 ¼ 2.0 on a 323 × 8 lattice, respectively.
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FIG. 22. Phases of the monopole part of Polyakov loops Ωðx⃗Þ=2 at some points on one configuration. The left and right panels are the
results at β ¼ 0.98 and 1.10, respectively.
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histogram of half of the solid angle before the gradient flow
is shown in Fig. 18, and the histogram after the gradient
flow with t=a2 ¼ 2.0 is Fig. 23. The histogram does not
change much by the gradient flow. The only change is the
width of the peak in the deconfinement phase.
The complex phase of the local Polyakov loop at

several points x⃗ on one configuration is plotted in
Fig. 24 as a function of t=a2. Since the local Polyakov

loop at x⃗ is given by LðlocÞ
m ðx⃗Þ · LðlocÞ

f ðx⃗Þ, the complex phase
of the local Polyakov loop is the sum of the phases of the
monopole part and the Fμν part. If the complex phase of
the monopole part is uniformly distributed before the
gradient flow in the confinement phase, the phase of the
local Polyakov loop will be uniform after the gradient
flow even when the phase from the Fμν part is added. The
complex phase of the monopole part is almost the same at
all x⃗ before the gradient flow in the deconfinement phase.
Then, the phase of the local Polyakov loop becomes the

phase of the monopole part LðlocÞ
m ðx⃗Þ after the gradient

flow because the Fμν part L
ðlocÞ
f ðx⃗Þ approaches one as the

flow time increases.
Figure 25 is the result of the monopole part of the

Polyakov loop Lm averaged over the space. Each line is
obtained on one configuration. As with the local Polyakov
loop, the complex phase does not change much with the
gradient flow. The difference between the averaged
Polyakov loop and the local Polyakov loop is that the
additional complex phase in the deconfinement phase is
different for each configuration. The complex phase of Lm
is uniformly distributed and does not vary with the gradient
flow. The flow time dependence of the complex phase of
the Polyakov loop on each configuration is shown in Fig. 26
for several configurations. The difference from the monop-
ole part is that the complex phase changes continuously, not
discretely because the contribution from Fμν is added.
Similar to the phase of the monopole part, the distribution
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FIG. 25. Phases of the monopole part of the averaged Polyakov loop on some configurations. The left and right panels are the results at
β ¼ 0.98 and 1.10, respectively.
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FIG. 24. Phases of Polyakov loops at some points on one configuration. The left and right panels are the results at β ¼ 0.98 and 1.10,
respectively.
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of the phase of the Polyakov loop on each configuration
remains uniform even after the gradient flow. Thus, theUð1Þ
symmetry of the Polyakov loop is also preserved.

VIII. CONCLUSIONS AND OUTLOOK

We discussed the reason why the property of color
confinement is not lost by the gradient flow even though the
field strength is weakened. In the gradient flow method, we
solve a kind of diffusion equation and coarse grain the
gauge field. We expected that the confinement property is
preserved because there is something in the background
that is stable against coarse graining, such as topological
quantities. Performing Monte Carlo simulations, we inves-
tigated Uð1Þ lattice gauge theory, in which the cause of the
confinement is believed to be condensation of magnetic
monopoles.
We confirmed that the magnetic monopole does not

disappear by the gradient flow in the confinement phase.
We usually use the gradient flow equation [Eq. (11)], which
considers the compactness of the gauge group. However, we
also investigated the case of the flow equation without
considering compactness Eq. (22).We find that the compact
flow equation keeps the confinement property, but the
noncompact one breaks this property. At the same time,
the number of monopoles in the confinement phase does not
decrease significantly for the compact flow equation, but
decreases rapidly using the noncompact flow equation.
Wilson loops were calculated by decomposing them into

contributions from field strength and monopoles. The string
tension is generated only from the monopole contribution,
both before and after the flow. We found that field strength
does not contribute to the string tension, and that decreas-
ing field strength due to the gradient flow does not affect
the string tension. The fact that the number of monopoles
does not decrease in the gradient flow is strongly related to
the fact that the string tension does not disappear.

The Polyakov loop can be also decomposed into con-
tributions from field strength and monopoles, and we
investigated how they change near the deconfinement
phase transition. Only the contribution from monopoles
has the property of the order parameter of the center
symmetry, which changes from zero to a finite value in
the deconfinement phase transition; whereas, the contribu-
tion from the field strength does not change.
The monopole part of the Polyakov loop has the Uð1Þ

center symmetry that is broken in the phase transition. We
discussed the relationship between monopoles and the
center symmetry. The unphysical complex phase by the
center symmetry is created from Dirac strings which are
also unphysical. The gradient flow equation considering
compactness does not break the center symmetry. During
the gradient flow, the center symmetry is maintained
through the Dirac strings connected to the monopoles.
In SUð3Þ gauge theory as well, it is important to perform

a gradient flow that does not break the center symmetry in
order not to lose the confinement property. The gradient
flow equation commonly used in lattice QCD takes into
consideration the compactness of the gauge group and has
the Z3 center symmetry. Since the center symmetry is
important, it may be interesting to investigate the relation-
ship with the Z3 center vortices and so on [29,30]. If you
want to discuss a magnetic monopole in QCD, you can
think of a magnetic monopole of the Uð1Þ part extracted by
the Abelian projection [15] as a straightforward extension.
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APPENDIX A: VOLUME DEPENDENCE OF THE
CREUTZ RATIO

To investigate the finite volume effect in the Creutz ratio,
we perform simulations at β ¼ 0.99 on lattices with N3

s ×
Nt ¼ 164 and 204. The number of independent configura-
tions is 10000. The results of the Creutz ratios χði; jÞ are
plotted in Fig. 27. The solid lines and dashed lines are the
result on 204 and 164 lattices, respectively. The left panel
is χð4; 4Þ (blue) and χð4; 5Þ (green) and the right panel is
χð5; 5Þ (blue) and χð5; 6Þ (green). The results of χð4; 4Þ
and χð4; 5Þ on the 164 and 204 lattices are consistent
within statistical error. However, volume dependence is
seen in χð5; 5Þ and χð5; 6Þ on 164 lattice and χð5; 6Þ on 204
lattice. These are different from χð4; 4Þ and χð4; 5Þ. This
suggests that a finite volume effect is visible in Creutz
ratios containing Wilson loops with a side length greater
than Ns=3 for a N4

s lattice. Since χði; jÞ is given byWði; jÞ,
Wðiþ 1; jÞ, andWðiþ 1; jþ 1Þ, for the 204 lattice, χði; jÞ
is affected by the finite volume effect for i, j ≥ 6.
Therefore, the results of the Creutz ratios with the side

lengths less than 6 are shown in Figs. 4, 13, 14, and
Table I.

APPENDIX B: MONTE CARLO SIMULATION
WITH ANTIPERIODIC BOUNDARY

CONDITIONS

The Coulomb propagator cannot be strictly defined under
periodic boundary conditions. This issue confuses us in
discussing the relationship between Polyakov loop and the
monopole condensation in Sec. VI. Therefore, we change
the boundary conditions of the Coulomb propagator so that
the definition, ∂0μ∂μDðxÞ ¼ −δx;0, can be strictly satisfied.
We impose antiperiodic boundary conditions onDðxÞ in the
spatial directions. The Coulomb propagator can be defined
exactly if at least one direction is an antiperiodic boundary
condition, since there is no constant mode in DðxÞ.
In determining the boundary conditions, it is important to

cancel the surface term at the boundary coming from the
total derivative term in integration by parts. Integration by
parts has been done several times to derive the monopole
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FIG. 28. Distribution of the Polyakov loop in the complex plane with antiperiodic boundary condition. The left and right panels are the
results for the confinement phase (β ¼ 0.90) and the deconfinement phase (β ¼ 1.10) on a 323 × 8 lattice, respectively.
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FIG. 27. Creutz ratios χði; jÞ as functions of the flow time measured at β ¼ 0.99 on 204 (solid lines) and 164 (dashed lines) lattices.
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part of the Polyakov loop Eq. (36). Considering that the
surface term is always in the combination ofDðx − x0Þθμ or
Dðx − x0Þkμ, all of DðxÞ, θμðxÞ, and kμðxÞ must be
antiperiodic boundary conditions:

DðxÞ ¼ −Dðxþ NsîÞ; θμðxÞ ¼ −θμðxþ NsîÞ;
kμðxÞ ¼ −kμðxþ NsîÞ; ðB1Þ

where î means the next site in the i direction. Then, the
surface terms are canceled. However, due to the finite
temperature system, the gauge field in the time direction
must impose periodic boundaries. Therefore, only the
boundary conditions in the spatial directions are set to
be antiperiodic. The link fields,UμðxÞ ¼ eiθμðxÞ, beyond the
boundary are the complex conjugate,

UμðxÞ ¼ U�
μðxþ NsîÞ: ðB2Þ

For the case of antiperiodic boundary condition, the
action of the gauge field is not symmetric under the center
transformation, U4ðxÞ → eiϕU4ðxÞ, at the boundaries. The
cross-boundary plaquette changes as follows:

UμðxÞU�
4ðxþ ð1 − NsÞμ̂ÞU�

μðxþ 4̂ÞU�
4ðxÞ

→ UμðxÞfeiϕU4ðxþ ð1 − NsÞμ̂Þg�U�
μðxþ 4̂ÞfeiϕU4ðxÞg�

¼ e−2iϕUμðxÞU�
4ðxþ ð1 − NsÞμ̂ÞU�

μðxþ 4̂ÞU�
4ðxÞ: ðB3Þ

Thus, except in the case of ϕ ¼ �π, the symmetry is
broken. Therefore, the center symmetry is reduced from
Uð1Þ symmetry to Z2 symmetry.
Monte Carlo simulations with the antiperiodic boundary

condition are performed. In Fig. 28, we plot the distribution
of the Polyakov loop on each configuration. The lattice size

is 323 × 8. The number of configurations is 1000 for each
β. The left panel is β ¼ 0.90 in the confinement phase, and
the right panel is β ¼ 1.10 in the deconfinement phase. The
distribution of the Polyakov loop is Z2 symmetric from L to
−L, corresponding to the symmetry change from Uð1Þ to
Z2. The contribution of the Polyakov loop from the
monopole is also calculated and shown in Fig. 29. The
distribution of the monopole contribution is also Z2

symmetric from Lm to −Lm.
We have discussed in Sec. VII that the complex phase of

the Polyakov loop frommonopoles is created from theDirac
sheet bubbles for periodic boundary conditions. However, if
the Coulombpropagator can be defined strictly, the behavior
of the Polyakov loop can be understood from the solid angle
of the monopole in Eq. (40). Then, the Dirac sheet without
monopoles does not affect the Polyakov loop, and there is no
reason to change the complex phase by theDirac sheet. Only
the sign of the Polyakov loop changes with the infinitely
wide Dirac sheet. The sign changing without monopoles
corresponds to the center transformation reduced fromUð1Þ
to Z2.
As shown in Fig. 29 for antiperiodic boundary conditions,

the Polyakov loop values are distributed near the origin in
the confinement phase and around two points on the real axis
in the deconfinement phase. This result can be understood
from the solid angle of the monopoles. The probability
distribution of the solid angle is flat in the confinement phase
because themonopoles are distributed throughout the space.
Then, the Polyakov loop on each configuration becomes
zero when the spatial average is taken. On the other hand, in
the deconfinement phase, the solid angle is distributed near
zero because there are very fewmonopoles. Then, the spatial
average of the Polyakov loop is a nonzero value near the real
axis, and the distribution is Z2 symmetric due to the
infinitely wide Dirac sheet.
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FIG. 29. Distribution of the monopole contribution to the Polyakov loop in the complex plane with antiperiodic boundary condition.
The left and right panels are the results at β ¼ 0.90 and 1.10 on a 323 × 8 lattice, respectively.
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