
Gauge-equivariant neural networks as preconditioners in lattice QCD

C. Lehner * and T. Wettig
Department of Physics, University of Regensburg, 93040 Regensburg, Germany

(Received 17 February 2023; accepted 19 July 2023; published 14 August 2023)

We demonstrate that a state-of-the-art multigrid preconditioner can be learned efficiently by gauge-
equivariant neural networks. We show that the models require minimal retraining on different gauge
configurations of the same gauge ensemble and to a large extent remain efficient under modest
modifications of ensemble parameters. We also demonstrate that important paradigms such as commu-
nication avoidance are straightforward to implement in this framework.

DOI: 10.1103/PhysRevD.108.034503

I. INTRODUCTION

Our current understanding of nature at the most funda-
mental level is to a large extent based on quantum field
theories. In particle physics, quantum chromodynamics
(QCD) explains, for example, how the proton is made up
of smaller constituents, quarks and gluons. To describe
current and future experiments, and to search for physics
beyond the Standard Model, we need to be able to solve
QCD to high precision. Lattice QCD constitutes a system-
atically improvable tool to solve QCD in the nonperturbative
regime by numerically simulating the theory on a finite
space-time lattice. It has evolved over more than four
decades and is now of direct phenomenological relevance,
see [1] and references therein. It is also very compute-
intensive and employs the largest supercomputers worldwide
[2]. Therefore much research is focused on improving the
algorithms that dominate the run time of these simulations.
The most time-consuming element, both in the gener-

ation of gauge-field configurations and in the computation
of physical observables, is typically the solution of the
Dirac equation in the presence of a given gauge field. For
physical values of the light quark masses and large lattice
volumes, the condition number of the matrix representing
the Dirac operator becomes very large, and consequently
very sophisticated methods are required to solve the Dirac
equation in a feasible time frame. The current state of the art
is to use a suitable preconditioner inside a Krylov subspace
solver. The construction of the preconditioner is a com-
plicated problem whose solution requires deep knowledge
of the underlying physics. The aim of this paper is to

reformulate the problem in the language of gauge-
equivariant (or, equivalently, gauge-covariant) neural net-
works and to show that such networks can learn the general
paradigms of state-of-the-art preconditioners and effi-
ciently reduce the iteration count of the outer solver. We
also provide a flexible implementation interface in the Grid
Python Toolkit (GPT) [3] that allows for experimentation
and further studies.
We briefly relate this paper to previous work. We will

concentrate on multigrid preconditioners [4–10] and refer
to [11] for an introduction. The idea of learning the
elements of multigrid preconditioners with neural networks
has been pursued in a number of earlier publications,
see, e.g., [12–18]. These works differ in the details of their
approaches, e.g., the choice of the loss function, the
network architecture, and the kind of learning (supervised
or unsupervised). The main difference in our work is that
we have to address the gauge degrees of freedom. More
precisely, our approach must be gauge-equivariant, i.e., the
map implemented by the neural network must commute
with local gauge transformations [19,20].
A number of papers have introduced gauge-equivariant

neural networks in the context of lattice quantum field
theory: Refs. [21–24] mainly addressed the question of
gauge-field sampling in several different theories, while
Ref. [25] showed how any gauge-covariant function on the
lattice can be approximated by neural networks. Our work
builds on and extends these papers.
We note that the use of neural networks as precondi-

tioners in a lattice gauge theory was recently also explored
in Ref. [26] for a two-dimensional U(1) gauge theory.
The structure of this paper is as follows. In Sec. II,

we introduce gauge-equivariant layers as the building
blocks of the models we study in this work. In Sec. III,
we discuss the problem of solving the preconditioned Dirac
equation with the Wilson-clover Dirac operator. In Sec. IV,
we construct preconditioner models that address the
high-mode component of the Dirac operator. In Sec. V,

*Corresponding author: christoph.lehner@ur.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 034503 (2023)

2470-0010=2023=108(3)=034503(13) 034503-1 Published by the American Physical Society

https://orcid.org/0000-0002-3584-4567
https://orcid.org/0000-0001-6732-9204
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.034503&domain=pdf&date_stamp=2023-08-14
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.1103/PhysRevD.108.034503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


we discuss a model to address the low-mode component of
the Dirac operator. In Sec. VI, we combine the specialized
models to a multigrid model that addresses both the
low-mode and high-mode components. We conclude in
Sec. VII, where we also give an outlook to future work.

II. GAUGE-EQUIVARIANT LAYERS

In this section, we define the building blocks of the
gauge-equivariant neural networks considered in this work
and explain their properties in detail. We begin with a
discussion of the concepts of parallel transport and gauge
equivariance.

A. Parallel transport and gauge equivariance

We consider a discrete d-dimensional space-time lattice
with Lμ sites in dimension μ ∈ f1;…; dg and d ∈ N. The
canonical unit vector in dimension μ is denoted by μ̂.
The set of all lattice sites shall be S ¼ fðx1;…; xdÞjxμ ∈
f1;…; Lμgg. Consider a field φ∶ S → VI; x ↦ φðxÞ with
internal vector space VI. The internal vector space shall be
a product of a gauge vector space VG ¼ CN and a non-
gauge vector space VḠ ¼ CN̄ with N; N̄ ∈ N, i.e.,

VI ¼ VG ⊗ VḠ: ð1Þ

We also consider gauge fields Uμ∶ S→SUðNÞ;x↦UμðxÞ
with SUðNÞ acting on VG. The set of fields φ shall be Fφ,
and the set of fields Uμ shall be FU.
We define the parallel-transport operator Tp∶ Fφ →

Fφ;φ ↦ Tpφ as

Tp ¼ Hpnp
� � �Hp2

Hp1
ð2Þ

for a path p defined as the sequence p1;…; pnp with
np ∈ N and pi ∈ f�1;�2;…;�dg. The operator
Hpi

∶ Fφ → Fφ;φ ↦ Hpi
φ acts on a field according to1

Hpi
φðxÞ ¼ U†

piðx − p̂iÞφðx − p̂iÞ ð3Þ

so as to transport information by a single hop in direction
p̂i. Here, we introduced the convention ν̂ ¼ −μ̂ for ν ¼ −μ,
and we identify U−μðxÞ ¼ U†

μðx − μ̂Þ. Addition and sub-
traction of coordinate tuples are defined component-wise.
Note that a single path p defines the transport for any
site x ∈ S to

x0 ¼ xþ
Xnp

i¼1

p̂i ð4Þ

and may be illustrated using a representative starting point.
If x0 ¼ x, the path is closed. Note that the trivial path 0 with
n0 ¼ 0 and T0 ¼ 1 is allowed as well.
A field φ ∈ Fφ acquires a phase θμ when translated

by Lμ in direction μ̂, i.e.,

φðxþ Lμμ̂Þ ¼ eiθμφðxÞ ð5Þ

for any coordinate tuple x. A gauge field Uμ ∈ FU is
periodic in all dimensions, i.e.,

Uμðxþ Lνν̂Þ ¼ UμðxÞ ð6Þ

with ν ∈ f1;…; dg. These equations define φðxÞ and
UμðxÞ for all sites x outside of S.
In Fig. 1, we illustrate the transport from the red

starting point along a path p to the black site. This path
corresponds to

Tp ¼ H−1H−2H−1H2H2; ð7Þ

where 1̂ and 2̂ is the horizontal and vertical unit vector,
respectively, in Fig. 1.
A gauge transformation is parametrized by a field

Ω∶ S → SUðNÞ; x ↦ ΩðxÞ that acts on all φ ∈ Fφ and
Uμ ∈ FU by

φðxÞ → ΩðxÞφðxÞ; ð8Þ

UμðxÞ → ΩðxÞUμðxÞΩ†ðxþ μ̂Þ: ð9Þ

It is straightforward to show that under such a gauge
transformation we have

TpφðxÞ → ΩðxÞTpφðxÞ ð10Þ

for any path p, i.e., the parallel-transport operator Tp

commutes with gauge transformations, and thus it is a

FIG. 1. The path p defining a parallel-transport operator Tp can
be visualized as a sequence of hops from a starting point (red) to
an end point (black).

1Note that the operatorHpi
does not act on the numerical value

φðxÞ. Rather, it acts on the field φ, resulting in the new fieldHpi
φ,

which is then evaluated at x. The same comment applies to Tp in
Eq. (10). Note also that in Eq. (3), the information is transported
from x − p̂i to x.

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-2



gauge-equivariant operator. For a comprehensive discus-
sion of gauge equivariance we refer to Ref. [20].

B. Parallel-transport convolutions

The models discussed in this work will be composed of
individual layers that map n input features φ1;…;φn ∈ Fφ

to m output features ψ1;…;ψm ∈ Fφ.
We consider a parallel-transport convolution (PTC) layer

defined by2

ψaðxÞ ¼PTC
Xn

b¼1

X

p∈P
Wbp

a TpφbðxÞ ð11Þ

for a ¼ 1;…; m, with a set of paths P and an endomor-
phism Wbp

a ∈ EndðVḠÞ. This extends the definition of
Ref. [23] from nearest-neighbor hops to a sum over
arbitrary paths. For closed paths p, we recover the case
discussed in Ref. [25]. Note that in lattice QCD Wbp

a is a
4 × 4 spin matrix.
We also consider a local parallel-transport convolution

(LPTC) layer defined by

ψaðxÞ ¼LPTC
Xn

b¼1

X

p∈P
Wbp

a ðxÞTpφbðxÞ ð12Þ

with Wbp
a ∶ S → EndðVḠÞ; x ↦ Wbp

a ðxÞ. Such a layer is
also gauge equivariant and may be able to better address
localized features. In the following we refer to the elements
of W as layer weights.
Since we intend to learn a linear preconditioner in this

work, we do not apply an activation function in these
layers. The expressivity of a deep network composed of
such layers is therefore equivalent to a single layer with a
larger set P. Nevertheless, it may be computationally more
efficient for a given problem to compose multiple layers
with smaller sets P.
In Fig. 2, we provide a graphical representation of a

(L)PTC layer with two input features and one output
feature and P ¼ fp1; p2g with

Tp1
¼ H−1H−2H−1; Tp2

¼ H−2H1: ð13Þ

C. Restriction and prolongation layers

In order to let information propagate efficiently over
long distances in terms of sites x ∈ S, we make use of
the multigrid paradigm [4,5]. To this end, we consider
a coarse grid with lattice sites S̃ and a coarse field φ̃∶ S̃ →
ṼI; y ↦ φ̃ðyÞ with coarse internal vector space ṼI . The set

of such fields is denoted by F φ̃. Note that there are no
gauge degrees of freedom in ṼI .
We define a restriction layer mapping a φ ∈ Fφ to a

ψ̃ ∈ F φ̃ by

ψ̃ðyÞ ¼RL
X

x∈BðyÞ
Wðy; xÞφðxÞ ð14Þ

with W∶ S̃ × S → HomðVI; ṼIÞ and block map B∶ S̃ →
PðSÞ, where P denotes the power set. We also define a
corresponding prolongation layer mapping a φ̃ ∈ F φ̃ to a
ψ ∈ Fφ by

ψðxÞ ¼PL Wðy; xÞ†φ̃ðyÞ ð15Þ

for x ∈ BðyÞ. In practice, we choose B corresponding to a
blocking in all dimensions. The linear maps W satisfy

X

x∈BðyÞ
Wðy; xÞWðy; xÞ† ¼ 1ṼI

; ð16Þ

where 1ṼI
is the identity in ṼI. These layers are straightfor-

ward to extend to the case of multiple input and output
features.
The linear maps W can be considered layer weights and

are constructed from a list of vectors that are block-wise
orthonormal, see Sec. V for details. The restriction and
prolongation layers are gauge equivariant if

Wðy; xÞ → Wðy; xÞΩðxÞ† ð17Þ

under a gauge transformation. Note that since ṼI does not
have gauge degrees of freedom there is no ΩðyÞ on the
coarse grid. We provide a graphical representation of the
restriction and prolongation layers in Fig. 3.

FIG. 2. Graphical representation of a (L)PTC layer with two
input features and one output feature. The planes represent the
features. The layer is represented by the paths drawn and the
dashed arrow.

2Equation (11) is a convolution with kernel W and input φ,
whose argument is shifted by Tp.

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-3



D. Parallel and identity layers

In this work, we consider models that act on a given
input feature with multiple layers in parallel. Consider
applying a layer Li to input features φ1;…;φn mapping to
output features ψ i1;…;ψ imi

. For several layers L1;…; Ll,
we concatenate the output features ψ11;…;ψ1m1

;…;
ψl1;…;ψlml

. The combination of layers L1;…; Ll

being applied in parallel can then be considered to be a
single layer that maps features φ1;…;φn to features
ψ11;…;ψ1m1

;…;ψl1;…;ψlml
.

We also introduce an identity layer that maps the input
features without modification to output features (which
implies m ¼ n). Such a layer is represented graphically by
a single dashed arrow pointing from the input features to
the output features.
We provide a graphical representation for the case of

n ¼ 1, l ¼ 2, and m1 ¼ m2 ¼ 1 in Fig. 4.

E. Communication avoidance

In practice, the performance of a given model in terms
of execution time is crucial. For problem sizes of interest
to the lattice QCD community, a single problem will be
distributed over multiple compute nodes that are connected

by a communication network. It is not uncommon that
the time needed to exchange information between nodes
exceeds the time each node spends performing floating-
point operations. Therefore it is an important paradigm in
lattice QCD to investigate approaches that avoid commu-
nication between nodes even if it possibly increases the
computational effort within a given node [27–30]. In this
work, we also investigate layers which do not communicate
between different sub-volumes that would typically be
mapped to multiple nodes in an MPI job. We perform such
investigations by setting the gauge links Uμ that connect
one such subvolume to another to zero. For such a modified
model, we can then avoid the communication step between
nodes altogether.

III. THE WILSON DIRAC OPERATOR

The main objective of this work is to precondition the
Dirac equation

Du ¼ b ð18Þ

with Dirac operator D∶ Fφ → Fφ, source b ∈ Fφ, and
solution u ∈ Fφ. It is useful to interpret Eq. (18) as a matrix
equation with u; b ∈ Ck and invertible complex k × k
matrix D with

k ¼ L1 � � �LdNN̄: ð19Þ

We train a model to play the role of an invertible complex
k × k preconditioner matrix M in

ðDMÞM−1u ¼ b; ð20Þ

where we attempt to improve the condition number
of DM compared to D. Ideally, DM is close to the identity
matrix up to a trivial scaling factor. The Dirac matrix
transforms as

D → ΩDΩ† ð21Þ

under a gauge transformation with block-diagonal matrix
Ω ¼ ⊕x∈S ΩðxÞ ⊗ 1VḠ

, which motivates the use of gauge-
equivariant layers to construct M.
We first consider the Wilson Dirac operator [31]

DW ¼ 1

2

X4

μ¼1

γμðH−μ −HþμÞ þm

−
1

2

X4

μ¼1

ðH−μ þHþμ − 2Þ ð22Þ

with mass m ∈ R and Euclidean gamma matrices γ1;…; γ4
satisfying the anticommutation relation γμγν þ γνγμ ¼ 2δμν

FIG. 3. Graphical representation of the restriction layer (left)
and prolongation layer (right) for a single feature. The layers are
represented by the gray square frustums, while the input and
output features are represented by the planes.

FIG. 4. Graphical representation of two parallel layers L1 and
L2 being applied to a single input feature and mapping to two
output features. As before, the features are represented by planes.
An identity layer (i.e., a copy operation) is represented by a
dashed arrow. In this example, the only nontrivial layer is L1,
which includes a single path in (11) or (12).

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-4



with Kronecker delta δμν. This operator can be mapped
to a single PTC layer with a zero-hop path and eight
one-hop paths.
We add a clover term that includes closed paths con-

sisting of four hops using

Qμν ¼ H−μH−νHþμHþν þH−νHþμHþνH−μ

þHþνH−μH−νHþμ þHþμHþνH−μH−ν ð23Þ

to obtain the Wilson-clover Dirac operator [32]

DWC ¼ DW −
csw
4

X4

μ;ν¼1

σμνFμν ð24Þ

with csw ∈ R,

Fμν ¼
1

8
ðQμν −QνμÞ; ð25Þ

and

σμν ¼
1

2
ðγμγν − γνγμÞ: ð26Þ

The operator DWC can also be mapped to a single PTC
layer, however, paths up to four hops are needed.
For the numerical experiments presented in the following

sections, we use gauge group SUð3Þ and the DWC operator
tuned to near criticality, i.e., the mass parameter is chosen
such that the real part of the smallest eigenvalue is close to
zero. This provides a challenging problem even for the small
lattice volume with L1 ¼ L2 ¼ L3 ¼ 8 and L4 ¼ 16 used in
this work. We set m ¼ −0.6 and csw ¼ 1 on a pure Wilson
gauge configuration [31] with coupling parameter β ¼ 6.0.
We use periodic boundary conditions also for the fields in
Fφ, i.e., θμ ¼ 0 in Eq. (5). We show the spectrum of DWC

on a representative single gauge configuration in Fig. 5.
We quantify the improvement achieved using the pre-

conditioner M by the reduction of the iteration count to
solve Eq. (20) to 10−8 precision in the preconditioned
flexible generalized minimal residual method (FGMRES)
[33]. We quote the iteration count gain defined as the
iteration count of the unpreconditioned solve divided by the
iteration count of the preconditioned solve. The unprecon-
ditioned solve took 4749 iterations.
In future work wewill investigate how the iteration count

gain translates to a reduction in wall-clock time for a
highly-optimized model. As a first approximation, we
note that a coarse-grid layer has negligible cost compared
to the fine-grid layer, which in turn has similar cost to the
application of DWC.
The methods developed in this work also extend to other

Dirac matrices. However, particular challenges exist in some
cases. For example, in the case of domain-wall fermions
[34,35] the spectrum encircles the origin [9,10,36–38],

which limits the convergence of unpreconditioned solves
of Du ¼ b using Krylov-subspace methods.

IV. HIGH-MODE PRECONDITIONERS

We want to learn a preconditioner M that approximates
D−1. For this purpose it is useful to consider an eigende-
composition of D and first construct optimal models for
the high-mode and low-mode components separately.
We study the high-mode component in this section and
the low-mode component in Sec. V. We then combine the
corresponding models in Sec. VI.

A. Model setup and training strategy

The high-mode part of the spectrum of DWC is related to
the short-distance behavior. Therefore we expect a single
layer with paths up to one hop to already show a gain in
iteration count. We consider a linear model M mapping a
vector x toMx. We employ a supervised learning approach
and describe a single training step in the following.
We first pick a random vector v with components drawn

from a Gaussian distribution with mean zero and unit
standard deviation. We then construct the cost function3

FIG. 5. Eigenvalues λ of the Wilson-clover Dirac operator with
m ¼ −0.6 and csw ¼ 1 on a pure-Wilson-gauge configuration
with β ¼ 6, L1 ¼ L2 ¼ L3 ¼ 8, and L4 ¼ 16. The mass m is
tuned to near criticality for the experiments in this work. We
computed the boundaries of the spectrum using the Arnoldi
method applied to ðD − λÞ−1 for several carefully selected values
of λ and filled in the bulk of the spectrum by hand for illustrative
purposes.

3Note that in Eq. (20) we use DM, while in Eq. (27) we use
MD. If DM is close to the identity, then so is MD, and thus
Eq. (27) is a suitable cost function.

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-5



C ¼ jMDWCv − vj2 ð27Þ

and its derivatives with respect to the model weights using
backpropagation. This corresponds to a batch of a single
training tuple ðDWCv; vÞ, where the model learns to map
the first to the second component. This cost function is
dominated by the high modes of DWC and is therefore
similar in spirit to using the spectral radius [12,14].
Since we use a different random vector at every iteration
our training dataset is unbounded in size and there is no
need to add a regulator. This holds even for LPTC layers
with a large number of model weights. We then apply a
single iteration of the Adam optimizer [39] with parameters
β1 ¼ 0.9, β2 ¼ 0.98, and α ¼ 10−3 that gave good perfor-
mance for the models considered in this work. This process
is repeated until the model weights are converged
sufficiently.
All layers and optimizers are implemented in the Grid

Python Toolkit (GPT) [3], and corresponding code samples
are provided in Appendix.

B. Locality and communication avoidance

In Fig. 6 we compare the performance of single-layer
models with a maximum of one hop. They correspond to a

version of Fig. 2 with a single input and output feature and
nine paths corresponding to

T0 ¼ 1;

T1 ¼ H1; T2 ¼ H2;

T3 ¼ H3; T4 ¼ H4;

T5 ¼ H−1; T6 ¼ H−2;

T7 ¼ H−3; T8 ¼ H−4: ð28Þ

We also investigate communication-avoiding versions with
local volume 43 × 8. We find that the LPTC models do not
perform better in terms of iteration count gain than the PTC
models. However, the LPTC models require more training
compared to the PTC models. The slower convergence is
expected due to the much larger number weights in the
LPTC models. We find that eliminating communication
between sub-volumes, as described in Sec. II E, only leads
to a modest reduction in performance. After translating the
iteration count gain to a reduction in time-to-solution, we
may therefore find the communication-avoiding models to
perform best.

C. Multiple hops and deep networks

In Fig. 7, we investigate models with multiple hops
either in a single layer or distributed over two layers.

FIG. 6. Convergence of the cost function (27) and iteration
count gain for one-layer and one-hop high-mode preconditioners.
The lattice volume is 83 × 16, and the local volume for the
communication-avoiding version is 43 × 8.

FIG. 7. Convergence of the cost function (27) and iteration
count gain for two-layer and two-hop high-mode preconditioners.

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-6



We use one-hop layers with paths defined in Eq. (28)
as well as a two-hop layer extending this set by all
combinations

HaHb ð29Þ

for a; b ∈ f−4;−3;−2;−1; 1; 2; 3; 4g with a ≠ −b. The
two-hop layer therefore has 65 distinct paths compared to
the 9 paths of the one-hop layer.
The first model that we investigate stacks two one-hop

layers with one input and one output feature back-to-back.
We denote this model as “2 layers (1 → 1 → 1), 1 hop.”
The second model is similar but has two output features
in the first layer and correspondingly two input features
in the second layer. We denote this model as “2 layers
(1 → 2 → 1), 1 hop.” The third model consists of a single
two-hop layer as described above.
We find that the second model performs best and gives

approximately twice the iteration count gain of the
corresponding single-layer models with a maximum of
one hop shown in Fig. 6. Since the layers are linear, the
two-layer models are not more expressive compared to the
single-layer model with two hops. We therefore expect
the third model to be able to match the performance of
the second model with a sufficiently improved training
procedure. It is not surprising that the second model can
be trained more efficiently compared to the third model
given that it has a smaller number of weights. We
conclude that while deep models do not increase expres-
sivity, the computational effort needed to train deep
models may be reduced compared to a corresponding
shallow model with more paths.

D. Transfer learning

In Fig. 8 we investigate how well the one-layer one-hop
PTC model of Fig. 6 that was trained on a given gauge
configuration with β ¼ 6.0 andm ¼ −0.6 performs when it
is used in the case of (i) a different gauge configuration of
the same gauge ensemble, (ii) a gauge configuration of a
different ensemble with β ¼ 5.9, and (iii) the same gauge
configuration but with a different mass m ¼ −0.55. In all
cases, we investigate the performance without retraining
and after additional retraining steps following the same
procedure as for the initial training. We find that the
high-mode preconditioner model does not require retrain-
ing to efficiently perform in all three cases. Once such a
model is trained, it can be used efficiently for different
gauge configurations of the same and similar ensembles.
We note that the maximum iteration count gain for mass
m ¼ −0.55 is significantly reduced. In this case, however,
the spectrum is not well tuned to criticality and the initial
problem is therefore less challenging. Comparing with
Fig. 6, we also observe a modest fluctuation in iteration
count gain between different configurations.

V. LOW-MODE PRECONDITIONERS

We now turn to the low-mode component in the
eigendecomposition of D. Since the low-mode compo-
nent corresponds to the long-distance behavior of the
Dirac operator D, it is not efficient to use the layers
discussed in Sec. IV since a rather deep network
composed of such layers would be needed to propagate
information over sufficiently long distances. The
multigrid paradigm, however, is ideally suited to address
this issue. In this section, we focus solely on the low-
mode component and then combine low modes and high
modes in Sec. VI.

A. Model setup and training strategy

In the multigrid approach, we define an additional
coarser version of the lattice as well as restriction and
prolongation operations that map between the fine and
coarse lattices. These operations must preserve the low-
mode component of D [40].
To achieve this, we follow standard procedures for the

multigrid setup [4–6]. We first find vectors u1;…; us in the
near-null space of D, i.e., vectors that satisfy

FIG. 8. Convergence of the cost function (27) and iteration
count gain for one-layer and one-hop high-mode preconditioners.
We retrain the model of Fig. 6 for a different gauge configuration
in the same ensemble, for a different value of β ¼ 5.9, and for a
different mass value ofm ¼ −0.55. The network performs well in
all cases even without retraining.

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-7



Dui ≈ 0 ð30Þ

with null vector 0 and i ∈ f1;…; sg for s ¼ dimðṼIÞ.
These vectors are then blocked such that one site y ∈ S̃ on
the coarse lattice corresponds to a set of sites, or block,
BðyÞ ⊂ S on the fine lattice. Let us denote such a blocked
vector, which lives on the sites BðyÞ, by uyi . One then
defines an inner product within each block BðyÞ and
orthonormalizes the vectors uy1;…; uys within each block
according to this inner product. The resulting vectors are
labeled ūy1;…; ūys . The linear mapW† discussed in Sec. II C
is then defined as

Wðy; xÞ† ¼
Xs

i¼1

ūyi ðxÞê†i ð31Þ

with standard basis ê1;…; ês of ṼI and x ∈ BðyÞ.
In practice a good approximation of such vectors ui can

be found by applying the FGMRES solver for matrix D
with source vector 0 and a random vector as initial guess.
This procedure removes high-mode components in ui,
leaving a linear combination of low-modes. We follow
this approach in the numerical experiments presented in the
following. While high precision is not needed, we solve
to 10−8 precision to avoid an additional tuning step. We use
a coarse grid of size 23 × 4 and a list of 12 near-null
vectors u1;…; u12.
We define a coarse-grid operator

D̃ ¼ RDWCP ð32Þ

with restriction matrix R and prolongation matrix P that are
defined according to Eqs. (14) and (15). We then train a
coarse-grid model M̃ that contains a single LPTC layer
with gauge fields Uμ ¼ 1, VG ¼ C1, VḠ ¼ ṼI , and use
only zero-hop and one-hop paths corresponding to
fH1; H2; H3; H4; H−4g. We omit the H−1, H−2, and H−3
paths since they are redundant on a 23 × 4 coarse grid
with periodic boundary conditions. The gauge fields are
replaced with the identity since the coarse fields do not
have a gauge degree of freedom. We refer to this special
case of the LPTC layer as cLPTC in the following.
We follow the training procedure described in Sec. IVA

but replace the cost function with

C ¼ jM̃ D̃ v − vj2: ð33Þ

It is worth noting that one could have considered a different
cost function

C0 ¼ jM̃v − D̃−1vj2 ð34Þ

in order to project more strongly on the low modes of D̃. In
this case, however, the training tuples require the somewhat

costly (approximate) inversion of D̃. We find that the cost
function Eq. (33) is sufficient for the purpose of training the
coarse-grid model. This point will be revisited when we
train a combined multigrid model in Sec. VI.
Note that the gauge equivariance of the restriction and

prolongation layers is guaranteed if every vector ui is a
linear combination of eigenmodes of D with gauge-
invariant coefficients. In our procedure the coefficients
are gauge invariant in the statistical average over random
initial guess vectors. Furthermore, note that the weights W
of the restriction and prolongation layers could also be
learned directly [12,14]. We leave the systematic study of
learning the restriction and prolongation layers, including
explicitly gauge-equivariant versions, to future work.

B. Results

In Fig. 9, we show the cost function (33) and the iteration
count gain for the training of the coarse-grid model M̃.
In this case, we consider the iteration count gain for the
inverse of D̃. We find that a significantly longer training
process is needed compared to the high-mode precondi-
tioner models of Sec. IV.

FIG. 9. Convergence of the cost function (33) and iteration
count gain for one-layer and one-hop low-mode preconditioners.
We show both the initial training in blue as well as the
performance of the trained model on a different gauge field of
the same gauge ensemble in orange. We find that after a moderate
amount of retraining, the model performs well on a different
gauge configuration.

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-8



We also investigate using the fully trained model from a
given gauge configuration and applying it to a different
gauge configuration. We use the same definition of the
restriction and prolongation layers on the different gauge
configuration to preserve the definition of D̃. For the
same reason we also use the same seeds for the random
number generator to generate the initial guess for the fields
u1;…; u12. We find that after a modest amount of retraining
the model performs very well on the different gauge
configuration. The retraining phase is significantly shorter
compared to the initial training phase. We note that the
maximum iteration count gain again differs to some degree
between configurations.

VI. MULTIGRID PRECONDITIONERS

In the previous sections we successfully trained separate
models M to approximate the short-distance and long-
distance features of D−1. In this section we combine them
to obtain a model that approximates D−1 over a wide range
of distances.

A. Smoother model setup and training strategy

We first create a version of the short-distance model that
accepts a second input feature, which provides an initial
guess. This model plays the role of a smoother in the
multigrid paradigm. The initial guess is provided by the
long-distance model acting on the coarse grid.
Concretely, we aim to find a sequence of uk that

approximately solve Du ¼ b such that the equation
becomes exact in the k → ∞ limit. The smoother then
maps the tuple ðuk; bÞ to ukþ1. If we have a high-mode
model Mh that approximates D−1 sufficiently well this can
be achieved by the iterative relaxation approach

ukþ1 ¼ ð1 −MhDÞuk þMhb

¼ uk þMhðb −DukÞ: ð35Þ
This approach is also commonly referred to as defect
correction with defect b −Duk.
Since both D and the high-mode model Mh can be

represented by (L)PTC layers we should be able to train a
model Ms only composed of (L)PTC layers to map ðuk; bÞ
to a ukþr for r ∈ Nþ. Such a model has two input features
and one output feature. We may construct Ms using 2r (L)
PTC layers stacked back-to-back since each iteration of
Eq. (35) corresponds to two (L)PTC layers. All but the final
layer need two output features.
In order to choose a reasonable value for r, we studied

the performance of the final multigrid preconditioner
described below and found that r ¼ 2 performed signifi-
cantly better than r ¼ 1. We therefore train the model Ms
for r ¼ 2 using the cost function

C ¼ jMsðuk; bÞ − ukþrj2 ð36Þ

with random vectors ðuk; bÞ and ukþr given by Eq. (35).
We use the same optimizer as in Secs. IV and V.
In Fig. 10, we show the training progress. The iteration

count gain is obtained by usingMs with initial guess zero as
a preconditioner for Du ¼ b. We use both PTC and LPTC
layers with zero-hop and one-hop paths. We expect these
models to yield an iteration count gain of approximately
twice the iteration count gain of the corresponding high-
mode models shown in Fig. 6 because of r ¼ 2. We find
that this expectation is satisfied by our data. In Fig. 10,
we first train the PTC model and then use the model
weights as initial values for the LPTC model (using the
same value for every site x). We find no additional benefit
by using the LPTC model.

B. Multigrid model setup and training strategy

We are now ready to combine the individual models to a
complete multigrid modelM as shown in Fig. 11. We start
by duplicating the input feature. One copy is preserved
for the smoother, while the other copy is restricted to the
coarse grid, where we apply the coarse-grid model of
Sec. V. The result is then prolonged to the fine grid, and
both the copy of the initial feature and the result of the
coarse-grid model are combined to two input features for

FIG. 10. Convergence of the cost function (36) and iteration
count gain for four-layer and one-hop smoother. The iteration
count gain is studied for the case of zero initial guess. We first
train the PTC model and use the result as initial weights for the
LPTC model.

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-9



the last four layers. These layers are the smoother that we
have learned in Sec. VI A.
We may expect this combined model to work well by

using the weights obtained in the training of the respective
model components. The model performance may, however,
be further improved by continued training of the complete
multigrid model M. For such additional training, we need
to modify the cost function of Secs. Vand IV such that both
the low-mode and high-mode components of D constrain
the model in the training phase. To this end, we use

C ¼ jMbh − uhj2 þ jMbl − ulj2 ð37Þ

with bh ¼ DWCv1, uh ¼ v1, bl ¼ v2, and ul ¼ D−1
WCv2.

Here, v1 and v2 are random vectors normalized such that
jbhj ¼ jblj ¼ 1. We therefore use a batch size of two with
one training tuple geared toward the high-mode component
and the other training tuple geared toward the low-mode
component of DWC. We can shift the focus of the training
between both components by adding a relative weight
factor to Eq. (37).

C. Results

In Fig. 12, we show the performance of the multigrid
(MG) model with initial weights taken from the trained
model components as well as progress achieved by
continued training of the combined model M. From the
start, the model performs substantially better than the
smoother by itself. Continued training of the combined
model further improves the iteration count gain to
approximately 40. Such continued training converges
within the first 20 training steps.
We also study using the multigrid model trained on one

configuration applied to a different gauge configuration
of the same gauge ensemble. In Fig. 12, we show that
after a brief retraining phase of only 20 training steps,

the model performs optimally on the different gauge
configuration as well.
Note that for concreteness we only present results

for a two-level multigrid preconditioner in this work.

FIG. 11. The combined two-level multigrid model studied in this work. The use of the multigrid paradigm allows for the efficient
transport of information over both short and long-distances. Additional levels can be introduced by recursively replacing the coarse-grid
layer (limited by the blue features) by the entire model as presented above.

FIG. 12. Convergence of the cost function (37) and iteration
count gain for the complete multigrid model. We use the weights
of the individually trained model components as starting point
and show further improvement by training the combined model.
The model also performs well on a different gauge configuration
and quickly converges to optimum performance after a modest
amount of retraining.

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-10



The extension to multiple levels is straightforward. In
Fig. 11, one merely has to replace the coarse-grid layer
limited by the blue features by the entire model as presented
in Fig. 11. By repeating this process n times, one obtains an
(nþ 2)–level multigrid preconditioner.
Also note that we use a rather small lattice volume of

83 × 16 in this work. In future work, we will investigate
multigrid models in more challenging large-volume sim-
ulations, where even larger iteration count gains should be
achievable.

D. Beyond the Krylov subspace

We note that any polynomial of DWC can be represented
by a network of PTC layers with suitable weights.
Therefore our models include Krylov-subspace precondi-
tioners as a special case. However, our models are suffi-
ciently expressive to represent solutions outside of the
Krylov subspace as well. This statement applies both to
the fine-grid and the coarse-grid models. As mentioned in
Sec. III, the flexibility to directly approximateD−1

WC without
being constrained to the Krylov subspace may play an
important role for Dirac operators with a more complex
spectrum such as domain-wall fermions. This will be
studied in future work.

VII. SUMMARY AND OUTLOOK

In this paper we have initiated a program to use gauge-
equivariant neural networks to learn preconditioners in
lattice QCD. We introduced a number of building blocks
from which suitable models can be constructed: (i) parallel-
transport convolution layers that can include arbitrary paths,
with either global or local weights, (ii) restriction and
prolongation layers that implement the multigrid paradigm,
and (iii) parallel layers that act on a single input feature.
To solve the Dirac equation for the Wilson-clover Dirac

operator we have first constructed models that approximate
the high-mode and low-mode component of the operator
separately. We then combined these models in a two-level
multigrid model, which can be extended straightforwardly
to an arbitrary number of levels. In all cases we found that
the models reduce the iteration count of the outer solver
significantly, e.g., by up to Oð40Þ in the multigrid model.
We also found that transfer learning works: If we consider
another gauge configuration (for the same or a slightly
different value of β) or a slightly different quark mass, only
a modest amount of retraining (or none at all) is required for
the model to perform efficiently again.
We also introduced a communication-avoiding algorithm

in which layers do not transfer information between
sub-volumes assigned to different MPI processes. In our
numerical experiments we found that the performance, i.e.,
the iteration count gain, of the corresponding model is only
slightly reduced. We expect that on large supercomputers,

the wall-clock time saved by avoiding communication
more than compensates for this modest reduction.
There are many interesting directions which we plan to

explore in future work. For example, we will attempt to
learn the weights W of the restriction and prolongation
layers directly, without computing the near-null vectors
explicitly. Also, we will investigate the space of possible
models that can be constructed from our building blocks in
a more comprehensive manner. Furthermore, we plan to
perform benchmarks that measure the cost of (re) training
and applying our models and compare the overall wall-
clock time to standard state-of-the-art multigrid methods.
It would also be worthwhile to apply our ideas to Dirac
operators whose spectrum encircles the origin, such as in
the case of domain-wall fermions. Finally, our finding that
very little, if any, retraining is needed between configura-
tions suggests that the present approach could also be
beneficial in the generation of gauge-field configurations
by Markov chain Monte Carlo.

ACKNOWLEDGMENTS

This work was funded in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation), Project No. 460248186.

APPENDIX: GPT CODE LISTINGS

In this appendix, we provide Grid Python Toolkit (GPT)
[3] code listings to implement the models used in this work.
We first import the library and load a gauge field U:

1 import gpt as g
2
3 # load gauge field
4 U = g.load(“gauge_field”)
5 grid = U[0].grid

The layer drawn in Fig. 2 corresponds to

1 # object types for QCD
2 ot_i = g.ot_vector_spin_color(4,3)
3 ot_w = g.ot_matrix_spin(4)
4
5 # two distinct paths
6 paths = [
7 g.path().f(0).f(1).f(0),
8 g.path().f(1).b(0)
9 ]
10
11 # define an abbreviation
12 l = g.ml.layer
13
14 # define the layer of Fig. 2
15 fig2 = l.parallel_transport_convolution(
16 grid, U, paths, ot_i, ot_w, 2, 1
17 )

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-11



in the case of lattice QCD. Next, we define restriction and
prolongation layers with a coarse grid of size 44 defined
using vectors ūi as

1 # define coarse grid
2 coarse_grid = g.grid([4,4,4,4], g.double)
3
4 # load \bar{u}_i vectors
5 u_bar = g.load(“u_bar”)
6
7 # create blocking map
8 b = g.block.map(coarse_grid, u_bar)
9
10 # create restriction and prolongation

layers
11 restrict = l.block.project(b)
12 prolong = l.block.promote(b)

Note that in the numerical work in this paper, we used a
23 × 4 coarse grid, while we present the 44 case here since it
lifts the degeneracy of paths mentioned in Sec. V.
The complete multigrid preconditioner model of Fig. 11

corresponds to

1 # define abbreviations
2 lptc = l.local_parallel_transport_

convolution
3 ptc = l.parallel_transport_convolution
4
5 # identities on coarse grid
6 one=g.complex(coarse_grid)
7 one[:]=1
8
9 I=[g.copy(one) for i in range(4)]
10
11 # coarse-grid vector space
12 cot_i = g.ot_vector_complex_additive_

group(
13 len(u_bar)
14 )
15 cot_w = g.ot_matrix_complex_additive_

group(

(Table continued)

(Continued)

16 len(u_bar)
17 )
18
19 # consider only nearest-neighbor hops
20 paths = [
21 g.path().forward(i)
22 for i in range(4)
23 ] + [
24 g.path().backward(i)
25 for i in range(4)
26 ]
27
28 # coarse-grid layer
29 def coarse_lptc(n_in, n_out):
30 return lptc(
31 coarse_grid, I, paths,
32 cot_i, cot_w, n_in, n_out
33 )
34
35 # fine-grid layer
36 def fine_ptc(n_in, n_out):
37 return ptc(
38 grid, U, paths, ot_i,
39 ot_w, n_in, n_out
40 )
41
42 # combined multigrid model
43 model_multi_grid = g. ml.model.sequence(
44 l.parallel(
45 l.sequence(),
46 l.sequence(
47 restrict,
48 coarse_lptc(1, 1),
49 prolong
50 )
51 ),
52 fine_ptc(2, 2),
53 fine_ptc(2, 2),
54 fine_ptc(2, 2),
55 fine_ptc(2, 1),
56 )

[1] A. S. Kronfeld et al. (USQCD Collaboration), Lattice QCD
and particle physics, arXiv:2207.07641.

[2] P. Boyle et al., Lattice QCD and the computational frontier,
arXiv:2204.00039.

[3] C. Lehner et al., Grid Python Toolkit (GPT), https://github
.com/lehner/gpt.

[4] J. Brannick, R. C. Brower, M. A. Clark, J. C. Osborn, and C.
Rebbi, Adaptive Multigrid Algorithm for Lattice QCD,
Phys. Rev. Lett. 100, 041601 (2008).

[5] R. Babich, J. Brannick, R. C. Brower, M. A. Clark,
T. A. Manteuffel, S. F. McCormick, J. C. Osborn, and C.
Rebbi, Adaptive Multigrid Algorithm for the Lattice
Wilson-Dirac Operator, Phys. Rev. Lett. 105, 201602
(2010).

[6] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
Adaptive aggregation based domain decomposition
multigrid for the lattice Wilson Dirac operator, SIAM J.
Sci. Comput. 36, A1581 (2014).

C. LEHNER and T. WETTIG PHYS. REV. D 108, 034503 (2023)

034503-12

https://arXiv.org/abs/2207.07641
https://arXiv.org/abs/2204.00039
https://github.com/lehner/gpt
https://github.com/lehner/gpt
https://doi.org/10.1103/PhysRevLett.100.041601
https://doi.org/10.1103/PhysRevLett.105.201602
https://doi.org/10.1103/PhysRevLett.105.201602
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507


[7] J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann,
and A. Strebel, Multigrid preconditioning for the
overlap operator in lattice QCD, Numer. Math. 132, 463
(2016).

[8] R. C. Brower, M. A. Clark, A. Strelchenko, and E.
Weinberg, Multigrid algorithm for staggered lattice fer-
mions, Phys. Rev. D 97, 114513 (2018).

[9] R. C. Brower, M. A. Clark, D. Howarth, and E. S. Weinberg,
Multigrid for chiral lattice fermions: Domain wall, Phys.
Rev. D 102, 094517 (2020).

[10] P. Boyle and A. Yamaguchi, Comparison of domain wall
fermion multigrid methods, arXiv:2103.05034.

[11] U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid
(Elsevier Science, New York, 2000).

[12] A. Katrutsa, T. Daulbaev, and I. Oseledets, Deep Multigrid:
Learning prolongation and restriction matrices, arXiv:
1711.03825.

[13] J. He and J. Xu, MgNet: A unified framework of multigrid
and convolutional neural network, Sci. China Math. 62,
1331 (2019).

[14] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R.
Kimmel, Learning to optimize multigrid PDE solvers,
in Proceedings of the 36th International Conference on
Machine Learning (2019), pp. 2415–2423, arXiv:1902
.10248.

[15] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh,
Learning algebraic multigrid using graph neural networks,
in Proceedings of the 37th International Conference on
Machine Learning (2020), pp. 6489–6499, arXiv:2003
.05744.

[16] M. Eliasof, J. Ephrath, L. Ruthotto, and E. Treister, MGIC:
Multigrid-in-channels neural network architectures, arXiv:
2011.09128.

[17] R. Huang, R. Li, and Y. Xi, Learning optimal multigrid
smoothers via neural networks, SIAM J. Sci. Comput. 45,
S199 (2021).

[18] A. van Betteray, M. Rottmann, and K. Kahl, MGiaD:
Multigrid in all dimensions. Efficiency and robustness by
coarsening in resolution and channel dimensions, arXiv:
2211.05525.

[19] T. Cohen and M. Welling, Group equivariant convolutional
networks, in Proceedings of The 33rd International
Conference on Machine Learning (2016), pp. 2990–2999,
arXiv:1602.07576.

[20] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling,
Gauge equivariant convolutional networks and the Icosa-
hedral CNN, in Proceedings of the 36th International
Conference on Machine Learning (2019), pp. 1321–1330,
arXiv:1902.04615.

[21] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C.
Hackett, S. Racanière, D. J. Rezende, and P. E. Shanahan,
Equivariant Flow-Based Sampling for Lattice Gauge
Theory, Phys. Rev. Lett. 125, 121601 (2020).

[22] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S.
Albergo, K. Cranmer, D. C. Hackett, and P. E. Shanahan,

Sampling using SUðNÞ gauge equivariant flows, Phys. Rev.
D 103, 074504 (2021).

[23] R. Abbott et al., Gauge-equivariant flow models for sam-
pling in lattice field theories with pseudofermions, Phys.
Rev. D 106, 074506 (2022).

[24] S. Bacchio, P. Kessel, S. Schaefer, and L. Vaitl, Learning
trivializing gradient flows for lattice gauge theories, Phys.
Rev. D 107, L051504 (2023).

[25] M. Favoni, A. Ipp, D. I. Müller, and D. Schuh, Lattice
Gauge Equivariant Convolutional Neural Networks, Phys.
Rev. Lett. 128, 032003 (2022).

[26] S. Calì, D. C. Hackett, Y. Lin, P. E. Shanahan, and B. Xiao,
Neural-network preconditioners for solving the Dirac equa-
tion in lattice gauge theory, Phys. Rev. D 107, 034508
(2023).

[27] M. Lüscher, Solution of the Dirac equation in lattice QCD
using a domain decomposition method, Comput. Phys.
Commun. 156, 209 (2004).

[28] Y. Osaki and K.-I. Ishikawa, Domain Decomposition
method on GPU cluster, Proc. Sci. LATTICE2010 (2010)
036.

[29] R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, and S.
Gottlieb, Scaling Lattice QCD beyond 100 GPUs, in SC11
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2011), arXiv:1109
.2935.

[30] J. Tu, M. A. Clark, C. Jung, and R. Mawhinney, Solving
DWF Dirac equation using multi-splitting preconditioned
conjugate gradient with tensor cores on NVIDIA GPUs,
in PASC ’21: Proceedings of the Platform for Advanced
Scientific Computing Conference (2021), pp. 1–11, arXiv:
2104.05615.

[31] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[32] B. Sheikholeslami and R. Wohlert, Improved continuum
limit lattice action for QCD with Wilson fermions, Nucl.
Phys. B259, 572 (1985).

[33] Y. Saad, A flexible inner-outer preconditioned GMRES
algorithm, SIAM J. Sci. Comput. 14, 461 (1993).

[34] Y. Shamir, Chiral fermions from lattice boundaries, Nucl.
Phys. B406, 90 (1993).

[35] V. Furman and Y. Shamir, Axial symmetries in lattice QCD
with Kaplan fermions, Nucl. Phys. B439, 54 (1995).

[36] N. Nachtigal, S. Reddy, and L. Trefethen, How fast are
nonsymmetric matrix iterations?, SIAM J. Matrix Anal.
Appl. 13, 778 (1992).

[37] P. A. Boyle, Hierarchically deflated conjugate gradient,
arXiv:1402.2585.

[38] A. Yamaguchi and P. Boyle, Hierarchically deflated con-
jugate residual, Proc. Sci. LATTICE2016 (2016) 374.

[39] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[40] M. Lüscher, Local coherence and deflation of the low
quark modes in lattice QCD, J. High Energy Phys. 07
(2007) 081.

GAUGE-EQUIVARIANT NEURAL NETWORKS AS … PHYS. REV. D 108, 034503 (2023)

034503-13

https://doi.org/10.1007/s00211-015-0725-6
https://doi.org/10.1007/s00211-015-0725-6
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1103/PhysRevD.102.094517
https://doi.org/10.1103/PhysRevD.102.094517
https://arXiv.org/abs/2103.05034
https://arXiv.org/abs/1711.03825
https://arXiv.org/abs/1711.03825
https://doi.org/10.1007/s11425-019-9547-2
https://doi.org/10.1007/s11425-019-9547-2
https://arXiv.org/abs/1902.10248
https://arXiv.org/abs/1902.10248
https://arXiv.org/abs/2003.05744
https://arXiv.org/abs/2003.05744
https://arXiv.org/abs/2011.09128
https://arXiv.org/abs/2011.09128
https://arXiv.org/abs/2211.05525
https://arXiv.org/abs/2211.05525
https://arXiv.org/abs/1602.07576
https://arXiv.org/abs/1902.04615
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevD.106.074506
https://doi.org/10.1103/PhysRevD.106.074506
https://doi.org/10.1103/PhysRevD.107.L051504
https://doi.org/10.1103/PhysRevD.107.L051504
https://doi.org/10.1103/PhysRevLett.128.032003
https://doi.org/10.1103/PhysRevLett.128.032003
https://doi.org/10.1103/PhysRevD.107.034508
https://doi.org/10.1103/PhysRevD.107.034508
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.22323/1.105.0036
https://doi.org/10.22323/1.105.0036
https://arXiv.org/abs/1109.2935
https://arXiv.org/abs/1109.2935
https://arXiv.org/abs/2104.05615
https://arXiv.org/abs/2104.05615
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1016/0550-3213(95)00031-M
https://doi.org/10.1137/0613049
https://doi.org/10.1137/0613049
https://arXiv.org/abs/1402.2585
https://doi.org/10.22323/1.256.0374
https://arXiv.org/abs/1412.6980
https://doi.org/10.1088/1126-6708/2007/07/081
https://doi.org/10.1088/1126-6708/2007/07/081

