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We investigate the real-time dynamics of the (1þ 1)-dimensional U(1) gauge theory known as the
Schwinger model via variational quantum algorithms. Specifically, we simulate quench dynamics in the
presence of an external electric field. First, we use a variational quantum eigensolver to obtain the ground
state of the system in the absence of an external field. With this as the initial state, we perform real-time
evolution under an external field via a fixed-depth, parameterized circuit whose parameters are updated
using McLachlan’s variational principle. We use the same ansatz for initial-state preparation and time
evolution, by which we are able to reduce the overall circuit depth. We test our method with a classical
simulator and confirm that the results agree well with exact diagonalization.
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I. INTRODUCTION

Lattice gauge theory is a powerful tool for studying
quantum field theory. In the conventional approach, sim-
ulations are performed using the Monte Carlo method,
which requires the exponential of the Euclidean action
expð−SEÞ to be positive and real. This protocol suffers from
a sign problem when we consider e.g. a topological term, a
finite chemical potential, and real-time dynamics.
Instead of Monte Carlo, one can use the Hamiltonian

formalism, which avoids the sign problem as it is not a
sampling-based approach. However, the quantum state
grows exponentially with the size of the system, making
this approach not feasible on classical computers. The
advantage of quantum computers is that the computational
resources can be kept logarithmic in system size, as was
shown in the seminal paper by Jordan, Lee, and Preskill [1].
Since that work, digital quantum simulation in the context
of quantum field theory has been attracting a lot of interest
[2–65]. In particular, real-time simulation is one of the
important applications since it can in general not be
captured efficiently by any known classical method.

The standard simulation method on quantum computers
uses Suzuki-Trotter decomposition, where the circuit depth
increases as the evolution time does, which causes a
decoherence problem on noisy intermediate-scale quantum
(NISQ) devices. Variational algorithms combine quantum
computations with classical optimizations, and are able to
perform both state preparation and time evolution using
an approach called variational quantum simulation (VQS),
even if the accuracy of the method depends on the chosen
variational ansatz. A VQS method based on Mclachlan’s
variational principle (MVP) was proposed in [66,67] in
which the evolved states are approximated by parametrized
states (ansatz) with a fixed depth.1

In this work, we apply this variational method to inves-
tigate the real-time dynamics of (1þ 1)-dimensional U(1)
gauge theory called the Schwinger model.2 Specifically, we
perform real-time simulation after turning on an external
electric field to see electron-positron pair creations induced
by the external field, which is the so-called Schwinger
mechanism [87]. This is similar to what was considered in
[88] where a classical tensor network approach was used.3
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1See [68–84] for algorithmic developments of the original
algorithm and other variational methods for real-time simulation.
See also [85] for a recent review.

2The authors [86] proposed an application of the variational
method to a scalar field theory and performed adiabatic-state
preparation, while they did not provide an explicit real-time
simulation.

3See also [89] for a recent study in a slightly different setup by
using VQE and Suzuki-Trotter decomposition.
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See Fig. 1 for the sketch of our simulation protocol. We first
prepare the ground state jΨGSi in the absence of the external
electric field q by using a variational quantum eigensolver
(VQE). At initial time t ¼ 0 the external field is then
suddenly turned on (the quantum quench), and the time
evolution in the system with an external electric field is then
studied. We approximate the dynamical states jΨðtÞi ¼
e−iHq≠0tjΨGSi by the same ansatz used in VQE, and evolve
the parameters according to MVP. Note that by performing
both state preparation and time evolution through variational
circuits, the depth of a quantum circuit is greatly reduced.
The structure of this paper is organized as follows.

Section II introduces the Hamiltonian of the Schwinger
model and observables wewill focus on. Section III explains
amethodwewill use for the simulation. In Sec. IV results are
presented and compared them with exact diagonalization.
Finally, conclusions are given in Sec. V.

II. THE SCHWINGER MODEL

The Schwinger model describes quantum electromag-
netism in one spatial and one time dimension. This model is
relatively simple, and can in fact be solved analytically
[90,91] in the massless limit. It is nevertheless a very
interesting field theory to study, since despite its simplicity
it shares several features with the QCD, the theory of the
strong interaction, such as confinement and charge screen-
ing [92,93].

A. Lattice Hamiltonian and spin description

Here we will define the lattice Hamiltonian and introduce
its spin description. We mostly follow the convention used
in [10]. First of all, the Lagrangian of the continuum
Schwinger model is given by

Lcon ¼ −
1

4
FμνFμν þ iψ̄γμð∂μ þ igAμ −mÞψ þ gθ

4π
ϵμνFμν:

ð1Þ

Here the first two terms correspond to the kinetic term of
the gauge boson and fermion, respectively, while the third
term denotes a topological term that does not affect the
classical equations of motion, but does affect the quantum
spectrum.
Taking the gauge A0 ¼ 0 and introducing the canonical

momentum Π ≔ ∂Lcon=∂ð∂0A1Þ, we can write the con-
tinuum Hamiltonian as

Z
dx

�
1

2

�
Π −

gθ
2π

�
2

− iψ̄γ1ð∂1 þ igA1 −mÞψ
�
;

with Π ¼ ∂0A1 þ gθ=2π. As is usual in A0 ¼ 0 gauge,
Gauss’s law has to be enforced through an extra constraint,
and physical states have to satisfy Gjphysi ¼ 0

with G ¼ ∂1Πþ gψ†ψ .
A lattice version of this Hamiltonian can be obtained

following the work of [94]. Fermions are put on a staggered
lattice, where the position x is sampled at discrete points xn.
Here n ¼ 0;…; N − 1 label the lattice sites corresponding
to xn ¼ na, and a is the lattice spacing. The fermion
fields at each lattice site are written in terms of χn, which
represents the Dirac fermion ψðxÞ ¼ ðψuðxÞ;ψdðxÞÞT
through

χnffiffiffi
a

p ↔

�
ψuðxnÞ ðn∶ evenÞ
ψdðxnÞ ðn∶ oddÞ : ð2Þ

The gauge fields are represented through operators living
on the links between nth and (nþ 1)th lattice sites

Un ↔ e−iagA
1ðxnÞ; ð3Þ

Ln ↔ −ΠðxnÞ=g: ð4Þ

These lattice variables satisfy the commutation relations

fχ†n; χmg ¼ δmn;

fχn; χmg ¼ 0;

½Un; Lm� ¼ δmnUn;

and U†
n ¼ U−1

n , L†
n ¼ Ln. With these definitions, the lattice

Hamiltonian is given by

H ¼ J
XN−2

n¼0

ðLn þ qÞ2 − iw
XN−2

n¼0

ðχ†nUnχnþ1 − χ†nþ1U
†
nχnÞ

þm
XN−1

n¼0

ð−1Þnχ†nχn; ð5Þ

where w¼ 1=ð2aÞ, J¼ g2a=2 and q ¼ θ=ð2πÞ. Introducing
nonzero q corresponds to turning on the external electric
field.

FIG. 1. Sketch of our simulation. We start from the ground state
in the absence of external electric field q. We then suddenly turn
on the external field q and evolve the state via the Hamiltonian
with q > 0. These states are approximated by the same
ansatz jψðλÞi.
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Gauss’s law gives a constraint for the Ln links on the
lattice given by

Ln − Ln−1 ¼ χ†nχn −
1 − ð−1Þn

2
: ð6Þ

We impose the open boundary condition L−1 ¼ 0 and
fix the gauge Un ¼ 1 to eliminate gauge fields from the
Hamiltonian.
One can transform the above Hamiltonian into a spin

Hamiltonian through the Jordan-Wigner transformation [95],

χn ¼
Xn − iYn

2

Yn−1
i¼0

ð−iZiÞ: ð7Þ

This leads to the spin Hamiltonian given by

H ¼ J
XN−2

n¼0

�Xn
i¼0

Zi þ ð−1Þi
2

þ q

�
2

þ w
2

XN−2

n¼0

½XnXnþ1 þ YnYnþ1� þ
m
2

XN−1

n¼0

ð−1ÞnZn; ð8Þ

up to an irrelevant constant.

B. Observables

While there are several observables one can study in the
Schwinger model, in this work we focus on three observ-
ables [88,96]. The first one is the total electric field,

EðtÞ ¼ g
N

XN−1

n¼0

hLn þ qit; ð9Þ

where h•it ≔ hψðtÞj • jψðtÞi. In the spin description this is
given by

EðtÞ ¼ g
2N

XN−1

n¼0

Xn
k¼0

hZkit þ
g
2N

XN−1

n¼0

Xn
k¼0

ð−Þk þ gq: ð10Þ

The second observable is the chiral condensate hψ̄ψi
whose lattice counterpart is given by

ΣðtÞ ¼ ag
N

XN−1

n¼0

ð−1Þnhχ†nχnit ð11Þ

¼ ag
N

XN−1

n¼0

ð−ÞnhZnit; ð12Þ

up to an irrelevant constant. In the heavy mass regime
m ≫ g this can be interpreted as the expectation value of
the particle number operator, while this interpretation is not

exact in other regimes. Nonetheless, this gives an approxi-
mate metric for particle-antiparticle creation.
The third and final observable is the U(1) charge Q

defined by

Q ¼ 1

N

XN−1

n¼0

hZnit: ð13Þ

This observable is useful since it has to be preserved in the
evolution under the Hamiltonian (8).

III. METHOD

A. Ansatz

As already discussed, this study uses variational quan-
tum circuits for both the state preparation and the time
evolution of the system after the quantum quench. To create
the initial ground state in the theory without an external
electric field we use the Hamiltonian variational ansatz
(HVA) [97–99] defined as

jψðα; β; γÞi ¼ UL−1 � � �U0V initj0i; ð14Þ

where

V init ¼
Y

n∶even
Xn; ð15Þ

Ulðαl; βl; γlÞ ¼
YN−1

n¼0

uðZÞn ðγl;nÞ

×
Y
n∶odd

uðZZÞn ðβl;nÞ
Y

n∶even
uðZZÞn ðβl;nÞ

×
Y
n∶odd

uðXYÞn ðαl;nÞ
Y

n∶even
uðXYÞn ðαl;nÞ; ð16Þ

with

uðZÞn ðγl;nÞ ¼ exp

�
i
γl;n
2

Zn

�
; ð17Þ

uðZZÞn ðβl;nÞ ¼ exp

�
i
βl;n
2

ZnZnþ1

�
; ð18Þ

uðXYÞn ðαl;nÞ ¼ exp

�
i
αl;n
2

XnXnþ1 þ YnYnþ1

2

�
: ð19Þ

In the above expression L represents the depth of ansatz.
Note that this ansatz preserves the global U(1) symmetry,
which must be preserved for true evolution under the
Hamiltonian. Note that in the following discussion the
whole set of parameters is often denoted by λ

λ ¼ ðα0; β0; γ0;…;αL−1; βL−1; γL−1Þ;
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and a general u ∈ fuðXYÞn ; uðZZÞn ; uðZÞn gN−1
n¼0 with dependence

on these parameters is denoted by uðλÞ.

B. McLachlan’s variational principle

McLachlan’s variational principle [100] gives the fol-
lowing set of equations:

X
j

Mijλ̇j ¼ Vi; ð20Þ

where

Mij ¼ 2Re½Aij� þ 2Cð0Þ
i Cð0Þ

j ; ð21Þ

Vi ¼ 2Im½Ci� þ 2iCð0Þ
i hHiψ ; ð22Þ

with

Aij ¼
∂hψ j
∂λi

∂jψi
∂λj

; Ci ¼
∂hψ j
∂λi

Hjψi; ð23Þ

Cð0Þ
i ¼ ∂hψ j

∂λi
jψi; hHiψ ¼ hψ jHjψi: ð24Þ

Each term is evaluated on a quantum computer as
follows [67]. We use the same variational ansatz used to
create the ground state in the absence of the background
electric field for the state after the background electric field
is turned on. This allows us to obtain the corresponding
ansatz for the derivatives of the state with respect to the
parameters λ needed in Eqs. (23) and (24). From the explicit
forms of the functions uðλÞ one obtains

du
dλi

¼
X
a

fi;auσi;a; ð25Þ

where σi;a ∈ fI; X; Y; Zg⊗N and fi;a are complex scalar
“structure constants”. Explicitly the derivatives are given by

duðXYÞn

dαl;n
¼ i

2
· uðXYÞn

XnXnþ1 þ YnYnþ1

2
; ð26Þ

duðZZÞn

dβl;n
¼ i

2
· uðZZÞn ZnZnþ1; ð27Þ

duðZÞn

dγl;n
¼ i

2
· uðZÞn Zn: ð28Þ

Using this information, one finds

∂jψi
∂λi

¼
X
a

fi;aÛi;aðλÞjϕi; ð29Þ

where Ûi;aðλÞ is given by replacing a unitary block u
corresponding to λi in the ansatz to ðuσi;aÞ and fi;a is
defined in (25). Besides, we denote the initial state as
jϕi ≔ Vinitj0i. Similarly, the coefficients Mij and Vi given
in Eqs. (21) and (22) can be evaluated as

Mij ¼
1

2

X
a;b

Re
h
hϕjÛ†

i;aÛj;bjϕi
i

−
1

2

X
a;b

Re
h
hϕjÛ†

i;aUjϕi
i
Re

h
hϕjÛ†

j;bUjϕi
i
; ð30Þ

Vi ¼ −
X
p;a

hpRe
h
hϕjÛ†

i;aσpUjϕi
i

þ
X
a

Re
h
hϕjÛ†

i;aUjϕi
i
hHiψ : ð31Þ

Note that the Hamiltonian can be decomposed into Pauli
strings asH ¼ P

p hpσp. Each term in the above equations
is therefore evaluated by the quantum circuit given in Fig. 1
of [67]. The initial state in the ancilla qubit is ðj0i þ
j1iÞ= ffiffiffi

2
p

corresponding to θ ¼ 0.
Some more details on the McLachlan variational prin-

ciple are given in Appendix A.

C. Quench dynamics via VQE and VQS

This section summarizes again the steps required to
simulate quench dynamics using VQE and VQS variational
algorithms. One starts from the ground state in the absence
of the external electric field jΨGSðq ¼ 0Þi. One then turns
on the external field q ≠ 0 and trace the time evolu-
tion, jΨðtÞi ¼ e−iHq≠0tjΨGSðq ¼ 0Þi.
This process is implemented through the following

quantum variational protocol:

FIG. 2. Ground-state preparation via VQE: a metric of accuracy
rðEÞ ≔ ðEmax − EVQEÞ=ðEmax − EminÞ. Dots/error bars show the
median and 25–75 percentiles of 20 samples.
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(1) State preparation via VQE: One approximates
jΨGSðq ¼ 0Þi by jψðλoptÞi, and determines λopt by
minimizing hψðλÞjHjψðλÞi on a classical computer.

(2) Real-time evolution via McLachlan’s variational
principle: One uses λopt as initial values and evolve
λ via (20). The coefficientsMij and Vi are evaluated
by a quantum circuit while the parameter evolution
is done by a classical computer.

In a standard algorithm, one need both a state preparation
and time-evolution circuit, but using the approach pre-
sented here one reduces the depth by using the same ansatz
for both processes.

IV. RESULTS

This section presents our results of the simulation using
the variational algorithms and compares them against
results obtained from exact diagonalization (ED). The
VQE and VQS results are obtained from noiseless state-
vector simulation implemented by Qulacs [101], while ED
results are obtained by QuSpin [102].

A. Ground-state preparation via VQE

We first perform VQE for N ¼ 4, ag ¼ 1, m=g ¼ 1 in
the absence of the external field q ¼ 0. We repeat opti-
mizations 20 times starting from different random initial-
izations. Figure 2 shows a metric of accuracy [103]
rðEÞ ≔ ðEmax − EVQEÞ=ðEmax − EminÞ as a function of
the number of layers, where Emax =min is the highest/lowest
eigenvalue of the Hamiltonian.4 The central value corre-
sponds to the median of the 20 optimizations performed,
while the error bar represents the 25–75 percentiles. One
observes that high-accuracy rðEÞ ≥ 0.999 can be achieved
for all L and that for L ≥ 4 the uncertainties improve
markedly.

B. Quench dynamics via VQS

After preparing the initial state, we perform VQS for
N ¼ 4, ag ¼ 1, m=g ¼ 1, and q ¼ 2.5 First, we investigate
the dependence of systematic errors on the number of layers
L and a time increment δt. The left plot in Fig. 3 shows
the fidelity FðtÞ ≔ jhΨEDðtÞjψVQSðtÞij2 between the states
obtained fromVQS and ED as a function of time (multiplied
by a coupling-constant) for different number of layers. One
can see that the stability improves as the number of layers is
raised up toL ¼ 3 and the (median) fidelity is above 0.99 for
all cases. The right panel shows the same plot, but this time
varying δt for fixed L. We see that the VQS results can be
improved significantly by decreasing δt.
Next, we evaluate the physical observables discussed in

Sec. II B and compare them to the results obtained by exact
diagonalization. We verified that the U(1) charge agrees
perfectly with the exact result, as can be expected since our
ansatz satisfies the global U(1) symmetry of the problem.
The remaining two observables are shown in Fig. 4 with
L ¼ 3 and δt ¼ 0.01 fixed. The VQS results are consistent
with those from ED up to a few % errors. The errors from
the variation over the 20 initial conditions is of the same
order of magnitude as the difference from the exact result,
but for the electric field and 1.5≲ t · g≲ 4.5 the difference
between the exact result and the central value of the VQS
results are about three times the size of the quoted error.
For t · g≲ 3, the value of the electric field decreases

while that of the chiral condensate increases, followed by
the oscillation. This can be interpreted as follows—the
external electric field first provides energy for fermions and
then leads to particle-pair creations.
Finally, let us comment on the scaling of the variational

methods. It is very important to understand how the errors/
resources scale with the lattice size/spacing, since we are

FIG. 3. Fidelity between states from VQS and ED for N ¼ 4, a · g ¼ 1.0, m=g ¼ 1.0, q ¼ 2.0. Solid curves/error bands show the
medians and 25–75 percentiles of 20 samples: (left) dependence of the number of layers L ∈ f1; 2; 3g with δt ¼ 0.01 fixed, (right)
dependence of a time increment δt ∈ f0.01; 0.02; 0.04g with L fixed.

4This ratio takes 0 for the worst case (EVQE ¼ Emax) and 1 for
the best case (EVQE ¼ Emin). We obtain Emax =min via ED.

5We regularize the matrix Mij as M → M þ ϵI if detðMÞ < ϵ
when we perform a matrix inversion. In the following simulation,
we set ϵ ¼ 10−7.

QUENCH DYNAMICS OF THE SCHWINGER MODEL VIA … PHYS. REV. D 108, 034501 (2023)

034501-5



eventually interested in continuum and infinite volume
limit. We provide additional results in Appendix B to show
the dependence of accuracy on the system size and lattice
spacing. As for system-size dependence, we observe that
the accuracy gets worse with increasing N, though we can
achieve F > 0.9 at least up to N ¼ 8 only with L ≤ 3.
Further investigation of the scaling would require the large
size simulation possibly with improved algorithms, which
we leave for the future works.

V. SUMMARY AND DISCUSSION

In this work, we demonstrated a possible application of
the variational quantum algorithm to a gauge theory.
Specifically, we investigated the real-time dynamics in
the Schwinger model after suddenly turning on the external
electric field, by combining VQE and VQS methods. We
performed the (classically-emulated) state-vector simula-
tion and found that the results obtained from the quantum
algorithms are consistent with those obtained from ED. Our
simulation results can be interpreted as a population of a
particle-antiparticle pair induced by the external field.
There aremany possible future directions. This paper used

the original algorithm proposed by Li and Benjamin [66].

There are two main drawbacks to this approach: First, the
matrix M can be singular or ill-conditioned in practice,
leading to unstable trajectories. Workarounds such as regu-
larization add a parameter that must be tuned. Secondly,
computing the each entry of M requires OðN2

pÞ calls to the
quantum computer where Np is the number of parameters.
There aremany attempts toovercome this problem [71–83]. It
would be important to see if these methods can improve our
simulation results in termsof accuracy andmeasurement cost.
Toward an implementation on real quantum devices, it is

important to understand the effects of hardware noise and
statistical error coming from a finite number of measure-
ments. Besides, combination with error mitigation methods
can be an essential ingredient.
Finally, it would be interesting to consider an extension to

the higher-dimensional and/or non-Abelian gauge theory.
For this purpose, a careful search for an ansatz that is efficient
and preserves gauge invariance during simulation can be
crucial.
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APPENDIX A: McLACHLAN’S VARIATIONAL
PRINCIPLE

This variational principle starts from a variational ansatz
state jψðλÞi given as the output of a parametrized circuit
(and a global phase λ0),

jψðλÞi ¼ eiλ0ðtÞ
YNp

i¼1

UðλiðtÞÞj0i: ðA1Þ

In other words, the time dependence of the state is encoded
through the time dependence of the parameters λðtÞ.
The task of simulating Schrödinger evolution jΨðtÞi ¼
T e−i

R
HðsÞdsjΨð0Þi under a general, time-dependent

Hamiltonian HðtÞ using the ansatz state jψðλÞi reduces
to finding the parameter function λðtÞ such that at any time
t, the state jψðλðtÞÞi optimally approximates the exact
state jΨðtÞi.
A standard approach to this problem is to use a

dynamical variational principle such as the McLachlan’s
variational principle, or MVP for short. Other choices such
as the Dirac-Frenkel variational principle and the time-
dependent variational principle exist, and while different in
subtle ways, they all agree under certain mild assumptions.
In this section we focus on the MVP.
The central idea behind MVP is to minimize the differ-

ence between the rates of change of jψi under exact
Hamiltonian evolution and variational evolution due to
dλ=dt. Normally, this is expressed as minimizing the
variation of the norm difference shown below,

δ

����
�
d
dt

þ iH

�				ψðλðtÞÞi
����
2

¼ 0; ðA2Þ

where k · k is the l2-norm. Note that the variation in the
above is with respect to δðdλi=dtÞ, i.e., total time derivatives
in each parameter λi. In other words, one is looking for
stationary points by varying the tangent vector dλ=dt. Since
one is dealing with a time-dependent Hamiltonian, the
equation has to be written a little more carefully as

lim
Δt→0

δ
kðUðtþ Δt; tÞ − IÞjψi − Δtjψ̇ik2

Δt2
¼ 0; ðA3Þ

where Uðt0; tÞ ≔ T e−i
R

t0
t
HðsÞds and I is the identity matrix.

The main difference from the time-independent case is due
to the appearance of an extra term at order Δt2 due to the
time dependence of H,

UðtþΔt;tÞ¼ I− iHΔt−ðH2þ iḢÞΔt
2

2
þOðΔt3Þ ðA4Þ

≡UTIðtþ Δt; tÞ − iḢ
Δt2

2
þOðΔt3Þ; ðA5Þ

whereUTI is the propagator ifH were held constant in time
at the value HðtÞ. However, since the limit is insensitive to
terms above linear order, the time dependence of H can be
safely ignored.
Before expanding (A2), one can implement some con-

straints on jψi and its time derivatives due to the normali-
zation condition hψ jψi ¼ 1. Setting the first and second
time derivatives to zero yields, respectively,

hψ̇ jψi ¼ −hψ jψ̇i; ðA6Þ

Rehψ̈ jψi ¼ −hψ̇ jψ̇i: ðA7Þ

Now, one expands the norm of the difference vector,

kjψ̇i þ iHjψik2 ¼ ðhψ̇ j − ihψ jHÞðjψ̇i þ iHjψiÞ ðA8Þ

¼ hψ̇ jψ̇i − 2Imhψ jHjψ̇i þ hH2i; ðA9Þ

using the notation hOi ¼ hψ jOjψi. Next, one writes jψ̇i in
terms of partial derivatives

jψ̇i ¼ λ̇0
∂

∂λ0
jψi þ

XNp

i¼1

λ̇i
∂

∂λi
jψi ¼ iλ̇0jψi þ λ̇ij∂iψi;

ðA10Þ

where j∂iψi ¼ ∂

∂λi
jψi. The last expression is implicitly

summed over i from 1 to Np, and the i ¼ 0 term
(corresponding to global phase) gives a derivative parallel
to jψi. The purpose of the λ0 term is to keep track of
variations parallel to ψ which do not change the overall
state but can have an effect on the dynamics of the
variational parameters. In practice, including it can lead
to more well-behaved dynamics.
Then, one can separately express the terms containing

jψ̇i as

hψ̇ jψ̇i ¼ λ̇iλ̇jReh∂iψ j∂jψi þ λ̇0λ̇iImhψ j∂iψi þ λ̇20; ðA11Þ

Imhψ jHjψ̇i ¼ λ̇0hHi þ λ̇iImhψ jHj∂iψi; ðA12Þ

where the properties hψ jψi ¼ 1 and hψ jHjψi ¼ hHi is real
have been used. Taken together, this yields
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kjψ̇i þ iHjψik2 ¼ λ̇iλ̇jReh∂iψ j∂jψi þ λ̇0λ̇iImhψ j∂iψi
þ λ̇20 − 2λ̇0hHi − 2λ̇iImhψ jHj∂iψi
þ hH2i; ðA13Þ

¼ λ̇iλ̇jReh∂iψ j∂jψi þ λ̇0λ̇iImhψ j∂iψi
− 2λ̇iImhψ jHj∂iψi þ ðλ̇0 − hHiÞ2
þ σ2ψ ðHÞ; ðA14Þ

where σ2ψ ðHÞ ≔ hH2i − hHi2 is thevariance ofH in the state
jψi. Now one derives stationary conditions by setting the
derivatives in λ̇0 and each λ̇i to 0. The first condition gives

λ̇0 ¼ hHi þ λ̇iImhψ j∂iψi; ðA15Þ

while the remaining conditions in each i are given by

λ̇jReh∂iψ j∂jψiþ λ̇0Imhψ j∂iψi− Imhψ jHj∂iψi¼0: ðA16Þ

Substituting for λ̇0, and defining the projection operators
Qψ ≔ I− jψihψ j≕I−Pψ , one arrives at the final expression

ðReh∂iψ jQψ j∂jψiÞλ̇j ¼ ðImhψ jHQψ j∂iψiÞ: ðA17Þ

The matrix Mij ≔ Reh∂iψ jQψ j∂jψi and vector Vi ≔
Imhψ jHQψ jψi specify a linear system whose solutions give

theMcLachlan update vectors λ̇i in each direction. Note that,
while trivial, the global-phase evolution can also be tracked
via (A15).

APPENDIX B: DEPENDENCE ON
LATTICE SIZE/SPACING

In this appendix we provide additional plots to show the
dependence of VQE and VQS on a lattice spacing a and a
system size N.

FIG. 5. Dependence of VQE accuracy rðEÞ on system size N. Three panels show the results for N ¼ 4, 6, 8 respectively with
ag ¼ 1.0, m=g ¼ 1.0 fixed. Dots/error bars show the median and 25–75 percentiles of 20 samples.

FIG. 6. Dependence of VQS fidelity on system size N. Three panels show the results for N ¼ 4, 6, 8 respectively. Each panel shows
results with various depths L ¼ 1, 2, 3 while a · g ¼ 1.0, m=g ¼ 1.0, q ¼ 2.0 are fixed. Solid curves/error bands show the medians and
25–75 percentiles of 20 samples.

FIG. 7. Dependence of VQS fidelity on lattice spacing a. Results
for a¼ 1, 0.8, 0.6 with N ¼ 4, m=g ¼ 1.0, q ¼ 2.0, L ¼ 3
fixed are shown. Solid curves/error bands show the medians and
25–75 percentiles of 20 samples.
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First, let us investigate the system size dependence.
Figure 5 shows the N-dependence of the accuracy rðEÞ for
VQE. We see that the accuracy gets worse with increasing
N, though we can achieve rðEÞ > 0.99 for N ≤ 8 with
L ¼ 5. We then plot the fidelity F of the VQS simulation
for N ¼ 4, 6, 8 in Fig. 6. As expected naively, the fidelity
for N ¼ 6, 8 are worse than that for N ¼ 4. Nevertheless,
we can achieve F > 0.9 using the ansatz with L ≤ 3 at least
up toN ¼ 8. It would be important to investigate further the

scaling of the minimal number of depth L to achieve certain
accuracy with increasing system sizes.
Next, we consider the lattice spacing dependence.

Figure 7 shows the fidelity of VQS simulation with varying
the value of a. We see that the fidelity gets worse for
smaller a, but the effects are not significant at least for
N ¼ 4. As seen from Fig. 8, one can improve the accuracy
by increasing the number of steps, while increasing the
number of depths does not lead to significant improvement.
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