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We describe data on elastic pp scattering at ISR and LHC energies using the analytical representation of
the amplitude as the sum of three exponentials equipped with complex phases. In addition, we take into
account the Coulomb and Coulomb-nuclear contributions in the entire transfer region and strong
“perturbative” contributions in the large transfer region. Refined values of basic scattering characteristics
are obtained. Significant changes in the behavior of the amplitude are detected at the transition from ISR to
LHC energies. The results obtained indicate a two-layer structure of the colliding protons. In the transition
to 13 TeV, a sharp increase in the size of the inner layer and its activity in the scattering is observed.
A possible interpretation of this effect is discussed.

DOI: 10.1103/PhysRevD.108.034028

I. INTRODUCTION

The main purpose of studying the diffraction scattering
of protons is to reveal their structure and the features of
strong interactions in the nonperturbative region. The usual
way to deal with these problems involves considering
different models to choose the one that best explains the
data. A complementary way is to use data to reconstruct
the scattering amplitude based on simple assumptions and
search for an interpretation of its components. The second
type of research is sometimes called “model-independent.”
A prominent representative of the latter approach is the

model of Barger and Phillips [1]. They proposed the
amplitude as two exponentials with a relative phase, and
based on this gave a description of the data in the ISR
energy range and a limited transfer range 0.15 GeV2 <
jtj < 5 GeV2. Ultimately, they interpreted the amplitude as
the sum of the “old” Pomeron with equal-to-one intercept
and a non-Regge background.
Afterward the same model was used [2] to describe the

preliminary LHC data at 7 TeV [3,4]. However, it was later
found [5] that the final LHC7 data [6] are poorly described
in this model, and its modification was proposed that
contains a form factor correcting the exponential respon-
sible for small jtj. Then, the LHC data at 8 and 13 TeV were
described in the same model [7]. However, the region of
very small t was excluded from the analysis, and the model

gave a systematically underestimated description in the
large-t region.
In parallel, the data were described using an amplitude

containing three contributions from strong interactions
[8–10]. One of them was the ordinary Gaussian. The other
was inspired by the stochastic vacuum model and provided
a slower (Yukawa-type) decrease in the amplitude over long
distances. The third term was designed to correct the
contributions at large jtj and represented a “perturbative”
three-gluon exchange [11,12]. In addition, the Coulomb
contributions with Coulomb phase were taken into account
in the region of very small t. On this basis, a satisfactory
description of the ISR and LHC data up to 7 TeV was
obtained. The subsequent fit [10] at 13 TeV led to
admissible χ2, but at large jtj the description was overstated
compared with the data. On the whole, this description
seems admissible since inaccuracies in the large-jtj region
can apparently be corrected. However, the physical nature
of the first two contributions to the amplitude is still not not
quite clear.
In fact, there are quite a few other approaches [13]. We

have mentioned only those of them, some aspects of which
will be used in our study. Along the same row, we also
mention [14,15], where the amplitude was described by the
sum of three contributions due to the independent scattering
of three different layers in the protons. The first contribu-
tion was caused by the diffraction process. It was initially
described in the impact parameter space as an even
combination of Fermi-Dirac distributions. The second
contribution was the ω meson exchange with a form factor
providing Orear behavior at large t. The third term was
determined as a hard Pomeron exchange. All in all, the
description was controlled by 17 adjustable parameters.
Unfortunately, it strongly disagreed with the LHC data at
7 TeV [3]. We have marked this model because of its idea of

*nekrasov@ihep.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 034028 (2023)

2470-0010=2023=108(3)=034028(11) 034028-1 Published by the American Physical Society

https://orcid.org/0000-0002-5280-2457
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.034028&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.034028
https://doi.org/10.1103/PhysRevD.108.034028
https://doi.org/10.1103/PhysRevD.108.034028
https://doi.org/10.1103/PhysRevD.108.034028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


a multilayer interpretation of protons. However, we do not
accept the idea that each layer scatters only off a similar
layer in another proton, while the other layers remain
undetected. We believe that if different layers “feel” the
presence of other layers in one proton, then they cannot
miss them in another proton.
In this paper, we propose an approach which is based

on the assumption that in the range of small and medium
transfers the amplitude can be represented as the sum of
three exponentials, each with its own complex phase. (As
a first experience, we consider the phases to be constant.)
The appearance of three exponentials can be considered as
a consequence of scattering by two layers in the protons.
Actually, this assumption was put forward earlier on the
basis of the observation of two cones in the differential
cross section [16–19]. In our approach, it becomes
possible to study this phenomenon at the amplitude level.
In particular, we will be able to consistently take into
account the interference and cross scattering of the layers.
Namely, the exponentials with the maximum and mini-
mum slope will correspond to the scattering of the outer
layers off each other and that of the inner layers,
respectively. The exponential with intermediate slope will
correspond to the scattering of the outer layer off the inner
layer and vice versa. Furthermore, we take into account
the Coulomb and Coulomb-nuclear contributions in the
entire transfer region. In the region of large jtj, we
introduce the “perturbative” three-gluon contribution.
Based on this, we describe the data at the ISR and
LHC energies and look for changes in the scattering
parameters and characteristics when increasing the energy.
Ultimately, we study the properties of the layers men-
tioned above.
The structure of the paper is as follows. In Sec. II we

define the analytic representation of the amplitude. In
Sec. III we determine the amplitude parameters based on
the ISR and LHC data. Sec. IV analyzes the solutions. In
Sec. V we discuss the properties of the above layers and a
possible cause of their occurrence. Section VI summarizes
the results.

II. ANALYTIC REPRESENTATION
OF THE AMPLITUDE

Let the elastic amplitude Aðs; tÞ be normalized so that at
high energies

dσ
dt

�
mb

GeV2

�
¼ jAj2: ð1Þ

Accordingly, the optical theorem is σtot ¼ 4
ffiffiffi
π

p ðℏcÞ× ImA,
where ðℏcÞ2 ¼ 0.389379 mbGeV2.
The amplitude A is formed due to several contributions

of different nature. First of all, this is the contribution due
to nonperturbative strong interactions, mainly forming a
diffraction pattern of scattering. We call this contribution

the nuclear amplitude and describe it as the sum of three
exponentials equipped with constant phases:

ANðs; t ¼ −q2Þ ¼ i
X3
n¼1

Aneiϕne−Bnq2=2: ð2Þ

Here An, Bn, and ϕn are parameters. In general, they
are s dependent, but not t dependent, An ≥ 0, Bn ≥ 0,
−π ≤ ϕn ≤ π, and we assume B1 ≥ B2 ≥ B3. We empha-
size that the above parametrization is not based on Regge
theory and does not imply any particular signature of each
of the contributions.
Since protons have electric charge, the Coulomb con-

tributions are significant in the region of very small
transfers. In the leading order in the fine-structure constant
α, the purely Coulomb contribution has the form

AC ¼ −QF 2=q2: ð3Þ

Here Q ¼ 2
ffiffiffi
π

p
αðℏcÞ, and F is the proton form factor. In

what follows we use it in the exponential parametrization,
F ðq2Þ ¼ expð−2q2=Λ2Þ, Λ2 ¼ 0.71 GeV2.
The Coulomb contributions against the background

of strong interactions are studied in [20–22]. We use the
result of [21], namely the intermediate formula (34) of this
work. Reducing it to our notation, we write the Coulomb-
nuclear amplitude in the form (below, we omit the
dependence on s)

ACNðq2Þ ¼ iα
Z

∞

0

dq02 ln
q02

q2
½F 2ðq02ÞÂNðq02; q2Þ�0; ð4Þ

where the prime after square brackets denotes the derivative
with respect to q02, and

ÂNðq02; q2Þ ¼ 1

2π

Z
2π

0

dϕANðq2 þ 2qq0 cosϕþ q02Þ: ð5Þ

Integral (5) for each term in (2) is calculated explicitly. On
this basis, we get without much difficulty

ACN ¼ −α
X3
n¼1

eneiϕne−Bnq2=2Gnðq2Þ; ð6Þ

Gnðq2Þ ¼ 2 ln

�
Bnq2

2

�
þ 2γ − Ei

�
Bnq2

2

�
1þ 8

BnΛ2

�
−1
�
:

ð7Þ

Here γ is the Euler constant, γ ¼ 0.577…, and EiðxÞ is the
exponential integral [23].
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For small q2 (7) gives

Gnðq2Þjq2→0 ¼ ln

�
Bnq2

2

�
þ γ þ ln

�
1þ 8

BnΛ2

�
þ ōð1Þ:

ð8Þ

This formula reproduces the result [21] for the Coulomb
phase with B replaced by Bn. However, the factors
1þ iαGn appear for each term in (2), and they are not
equal to each other. Therefore, these factors cannot be
extracted into a common factor at AN , then exponentialized
and represented as a common Coulomb phase. This fact
distinguishes our approach from [20–22] and, accordingly,
from many approaches used in the data analysis.
The next note is related to the fact that the exponential

integral increases exponentially for x → ∞, EiðxÞ∼
x−1 expðxÞ. As a result, the large-q2 behavior of ACNðq2Þ
essentially depends on the presence of the form factor
F 2ðq2Þ. Really, in the case of its absence, i.e., at Λ2 ¼ ∞,
we have ACNðq2Þ ∼ 1=q2 at q2 → ∞, while for finite Λ2

the ACN decreases exponentially with a factor 1=q2.
Nonetheless, the latter decrease is slower than that of
ANðq2Þ. For this reason, we take into account ACN in the
entire region q2.
Let us now turn to the large-q2 region. Here the strong

perturbative contributions can appear. At ISR energies
their appearance was revealed due to the almost energy-
independent behavior of the differential cross section at
jtj≳ 4 GeV2 of the form

dσ
dt

¼ 0.09t−8: ð9Þ

This behavior was explained [11,12] by three-gluon
exchange between colliding protons, with one power of
t−2 arising from the kinematical factor and t−6 directly from
the three-gluon exchange. Moreover, the corresponding
contribution to the amplitude was real and positive in the
case of pp scattering. Phenomenologically, it can be
described as, cf. [8–10,24],

AP ¼ κðℏcÞt−4ð1 − e−at
6Þ; ð10Þ

where κ and a are positive parameters. Matching with
(9) for large jtj prescribes κ ¼ 0.48. The last factor in
(10) cuts off contributions in the region of small and
medium t (in the nonperturbative domain). The require-
ment for (9) to be established at jtj≳ 4 GeV2 implies
a ≈ 3 × 10−4 GeV−12. The parameters κ and a can be
independently determined if the wave function of fast-
moving protons is known. Since the size characteristics
of the protons change logarithmically when increasing
the energy (see, e.g., [25–27]), we expect these param-
eters to depend weakly on s. This is indicated, in

particular, by the fact that at
ffiffiffi
s

p ¼ 7 TeV the power-
law behavior of the differential cross section of the form
t−8 manifests itself starting from jtj ≈ 1.5 GeV2 [3], i.e.,
at lower jtj compared with the ISR case.
In fact, the contribution of AP to the main physical

characteristics is very small, since in the large-t region the
amplitude decreases by several orders of magnitude com-
pared with its values in the peaks region. Therefore, we do
not add AP to the definition of ACN, which actually is a
perturbative contribution. For the same reason, we do not
care about the details in the definition of the proton form
factor.
Gathering the contributions, we obtain the full amplitude

of elastic scattering

Aðs; tÞ ¼ AN þ AC þ ACN þ AP: ð11Þ

It depends on ten adjustable parameters if κ has a fixed
value, or on 11 if κ is not known a priori.

III. DETERMINATION OF AMPLITUDE
PARAMETERS

In this section we get a representation in terms of the
amplitude (11) of ISR data at 31, 45, 63 GeV [28,29] and
LHC TOTEM data at 7 TeV [6] and 13 TeV [30,31]. In the
ISR case, the choice of energy is determined so that its next
value is separated from the previous one by about 1.5 times.
In this way, without unnecessary cluttering, we will get an
overall picture in the range of ISR energies. In the case of
LHC, the choice is determined by the presence of a
sufficiently wide measured region of t, which would
include areas of very small and large t. This condition is
satisfied by the TOTEM data. (Further by LHC we mean
TOTEM.) In each case when determining the actual dataset,
we follow the rule [28] that when two sets overlap, the data
should be taken from the set that has the smallest errors. In
all cases except of 7 TeV, we use statistical and systematic
errors summed in quadrature. In the particular case of
7 TeV the systematic errors are too large, and we use only
statistical errors.
In fact, in each of the selected cases there are several

solutions. In order to single out physical ones, we impose
the following conditions. First, we demand that the con-
dition ImANðs; t ¼ 0Þ > 0 required by unitarity be satis-
fied.1 Second, we demand the positivity of the phase shift
of the amplitude AN in the impact parameter representation.
Recall, the amplitude in this representation is determined
(in our notation) as

1We emphasize that this condition is imposed on the total
nuclear amplitude, and not on its individual components corre-
sponding to the internal layers, which themselves do not exist
independently of protons.
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hðs; bÞ ¼
ffiffiffi
π

p
ðℏcÞ

Z
d2q
ð2πÞ2 e

−iqbANðs; tÞ: ð12Þ

In turn, the phase shift δ is defined in the eikonal para-
metrization,

hðs; bÞ ¼ 1

2i
½ηðs; bÞe2iδðs;bÞ − 1�: ð13Þ

Here ηðs; bÞ is the elasticity parameter, ηðs; bÞ ≥ 0. Thus,

tan 2δðs; bÞ ¼ Rehðs; bÞ
1=2 − Imhðs; bÞ : ð14Þ

The positivity condition for δðs; bÞ follows from the time
delay for the passage by colliding particles of the inter-
action region [32,33]. In view of probable errors at the
periphery, we apply this requirement to the internal region
of interaction. Practically, we require that the real part of
the impact parameter amplitude be positive in this region.
This implies 0 < 2δ < π. If Rehðs; bÞ turns out to be
negative, we additionally require Imhðs; bÞ > 1=2 in the
same region, which implies δ > π=2.2

Further, we expect the behavior of the amplitude and its
components to change slowly with the energy. Practically,
this means that the behavior of the amplitude should not
change significantly when the energy varies within the
ISR domain and similarly in the 7–13 TeV region. In some
instances in the case of ISR energies, this allows us to
discard some solutions (which at the same time have
noticeably larger χ2). In the case of TOTEM energies this
condition has no practical consequences.
Following the above rules, we get one solution in each

case at ISR energies and two solutions with almost equal χ2

in each case at TOTEM energies (in the latter case the
solutions I and II actually differ only in the values of ϕn).
The results of the fit are presented in Table I, where An

are given in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb=GeV2

p
, Bn in GeV−2, ϕn in radians,

and a in GeV−12. In each case, we also show χ2 per
degree of freedom and the number of data points used. In
the 7 TeV case the χ2 is determined using statistical
errors (the corresponding χ2 with the total errors is given
in parentheses). A comparison of the data with the curves
defined with the above parameters is shown in Fig. 1. (At
the TOTEM energies, the curves for solutions I and II
practically coincide; for definiteness solutions of type I
are used.)
In all cases except for 7 TeV, the parameters in Table I

are determined with small or reasonable errors. In the
exceptional case of 7 TeV the errors are very large for
A2, A3, and B2, B3, although the errors are acceptable for
other parameters. Therefore, the solutions at 7 TeV are
rather arbitrary and should be treated with caution.
However, taking into account the correlation matrix,
the errors of the main physical quantities turn out to
be acceptable in some cases. In this regard, we retain
solutions at 7 TeV as optional for further discussion. As
for the main physical quantities, we mean those that are
usually given when presenting experimental data. They
are the total and elastic-scattering cross sections, σtot and
σel [mb], the ρ0 parameter which is the ratio of the real
to imaginary parts of the nuclear amplitude at zero
transfer, and the slope parameter B0 [GeV−2] of the
diffraction cone at zero transfer. Their values obtained on
the basis of the above solutions are presented in Table II
in comparison with those given in the experimental
publications. (The quoted uncertainties correspond to
1σ of confidence level.) Note that the values we have
obtained are close to the refereed ones, and in the cases
highlighted in bold they are defined more precisely,
despite the presence of two solutions at TOTEM
energies.

TABLE I. The amplitude parameters.
ffiffiffi
s

p
31 GeV 45 GeV 63 GeV 7 TeV (I) 7 TeV (II) 13 TeV (I) 13 TeV (II)

A1 8.80� 3.62 4.83� 1.52 5.67� 2.57 19.7� 3.6 20.16� 0.68 9.62� 1.03 10.85� 1.68
A2 6.71� 2.65 6.72� 0.17 7.30� 0.59 18� 1220 30� 5080 17.42� 0.61 17.62� 0.29
A3 0.030� 0.003 0.027� 0.002 0.029� 0.003 15� 1230 27� 5080 1.70� 0.03 1.68� 0.03
B1 13.00� 1.34 20.04� 2.23 19.23� 3.30 21.3� 1.2 20.94� 0.42 28.44� 0.70 27.92� 0.87
B2 9.06� 0.54 9.78� 0.08 10.11� 0.22 7.9� 37.5 7.7� 47.8 15.64� 0.14 15.70� 0.10
B3 1.40� 0.10 1.36� 0.08 1.38� 0.10 7.0� 32.0 7.1� 44.0 5.18� 0.03 5.14� 0.04
ϕ1 0.76� 0.17 0.66� 0.14 0.72� 0.16 0.00� 0.54 0.10� 0.33 −0.13� 0.75 0.30� 0.21
ϕ2 −1.17� 0.43 −0.56� 0.25 −0.70� 0.37 −0.05� 4.78 −0.39� 4.61 −0.03� 0.45 −0.33� 0.17
ϕ3 1.87� 0.34 2.08� 0.26 1.94� 0.38 −3.14� 0.69 2.79� 2.55 −2.87� 0.42 3.14� 0.15
κ 0.48 (input) 0.48 (input) 0.48 (input) 0.23� 0.08 0.27� 0.03 0.11� 0.04 0.14� 0.02
a ð2.9� 0.6Þ × 10−4 ð2.0� 0.4Þ × 10−4 ð2.9� 0.6Þ × 10−4 0.05� 0.07 0.11� 0.05 0.018� 0.012 0.030� 0.013
χ2=dof 0.75 1.82 0.70 2.04 (0.11) 2.01 (0.11) 0.96 0.98
N data 180 228 137 165 165 346 346

2In fact, the δ ≈ π=2 case means that the resonant scattering
mode is achieved [34], see also [35,36]. The onset of this mode is
possible at asymptotically high energies.
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FIG. 1. Differential cross section dσ=dt [mb=GeV2] vs jtj [GeV2] and some of its components due to strong interactions. Designations
are on the left panels. Shown from left to right: the entire region t, the region of very small t, and of the dip of the cross section.
Everywhere, except 7 TeV, the data are shown with total errors. In the case of 7 TeV, the data are shown with statistical errors, and shaded
(yellow) areas show the total errors.

TABLE II. The main characteristics of scattering. The reference lines contain the previously obtained values. Our
results with higher accuracy are in bold.
ffiffiffi
s

p
31 GeV 45 GeV 63 GeV 7 TeV (I) 7 TeV (II) 13 TeV (I) 13 TeV (II)

σtot 39.85ð11Þ 42.07ð7Þ 43.55ð8Þ 99.9ð4Þ 99.8ð3Þ 111.9ð3Þ 112.1ð3Þ
Reference 40.14(17) [28] 41.79(16) [28] 43.32(23) [28] 98.0(2.5) [37] 110.5(2.4) [30]

σel 7.15(21) 7.24(21) 7.74(34) 25.5(128.0) 25.5(289.0) 31.1ð6Þ 31.2ð4Þ
Reference 7.16(9) [28] 7.17(9) [28] 7.66(11) [28] 25.1(1.1) [37] 31.0(1.7) [38]

ρ0 0.009ð5Þ 0.059ð2Þ 0.093ð3Þ 0.043ð57Þ 0.005ð59Þ 0.09(2) 0.10(2)
Reference 0.042(11) [28] 0.062(11) [28] 0.095(11) [28] 0.145(91) [37] 0.09(1) [30] 0.10(1) [30]

B0 11.8(7) 13.70(77) 13.7(1.1) 20.1(50.6) 20.0(108.1) 21.14(31) 21.19(34)
Reference 12.2(3) [39] 12.8(3) [39] 13.3(3) [39] 19.9(3) [6] 20.40(1) [31]
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IV. ANALYSIS OF THE SOLUTIONS

Let us now find the changes in various characteristics in
the transition from ISR to TOTEM energies. From Table I,
it is easy to see four significant differences. The first is that
in the ISR case the value of A3 associated with the smallest
of Bn is 2 orders of magnitude smaller than A1 and A2. (At
the same time A3 is clearly nonzero given the errors.) In
contrast, in the TOTEM case A3 approaches A1 and A2.
Second, A2 is close to A1 at ISR energies, but in the
TOTEM case A2 dominates with respect to A1. The third
difference is that the parameter B3 remains constant at ISR
energies and increases sharply when transiting to TOTEM
energies.3 In the next section we discuss these features. The
fourth difference is a significant decrease in the parameter κ

in the case of TOTEM and a simultaneous increase in the
parameter a. This means a weakening of strong perturbative
contributions and a decrease in the transfer scale at which
they turn on. We associate this behavior with a change
in the wave functions of protons with a significant increase
in the energy.
Now we turn to the plots in Fig. 1. Here we note that the

curves generally agree well with the data throughout the
whole measured regions of t. The next common feature is
that jAN j2 and jAj2 noticeably diverge from each other in
the dip region. The difference is about 12% in TOTEM
cases and tens of percent in ISR cases. This means that
the Coulomb-nuclear contributions in all cases are signifi-
cant in the dip region. Next, we note the difference in the
behavior of jAN j2 and jAj2 in the large-t region. (Here
the contributions of AC and ACN are in fact negligible.)
Namely, at ISR energies jAN j2 exceeds jAj2, while at
TOTEM energies jAN j2 is less than jAj2. To understand

FIG. 2. The contributions to the amplitude due to strong interactions. The regions of small and large jtj are shown in the first two
columns. The third column shows the behavior of the complex phase of ANðtÞ. The corresponding energy is indicated in the first column.

3In the above cases while referring to TOTEM, we mean
solutions at 13 TeV.
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why this occurs, consider the plots of individual contribu-
tions to the amplitude depicted in the second column in
Fig. 2. It is easily seen that ReAN is negative in the large-t
region at ISR energies and in absolute value close to
the strictly positive AP. As a result, both contributions
reduce each other, thereby reducing the full amplitude. At
TOTEM energies at large t the contribution of AP signifi-
cantly exceeds jReAN j. As a result, there are no noticeable
reductions, and AP is the dominant contribution.
In the region of small t (see the first column in Fig. 2),

ANðs; tÞ dominates. A convenient way to give a description
of its real and imaginary parts is to consider its total phase,
given by the formula

ANðs; tÞ ¼ jANðs; tÞjeiϕðs;tÞ: ð15Þ

The dependence of ϕðs; tÞ on t is shown in the third column
in Fig. 2. In all cases, at t → 0 the ϕðs; tÞ approaches π=2
from below (thus ensuring that ρ0 is positive). However, as
jtj increases, ϕðs; tÞ behaves differently at ISR and TOTEM
energies. Namely, in the ISR case ϕðs; tÞ first decreases,
then increases, and reaches π=2 at jtj ¼ tR. Then it reaches
π at jtj ¼ tI. Here tR and tI are the points of the sign change
of ReAN and ImAN , respectively. The values of tR and tI are
given in Table III. At TOTEM energies, ϕðs; tÞ decreases
monotonically, crossing ϕ ¼ 0 at jtj ¼ tI, and then cros-
sing or asymptotically approaching the point ϕ ¼ π.
Accordingly, tR is greater than tI or tends to infinity.4 In
Table III, the infinity symbol denotes a situation when tR
goes beyond the limits of the domain t under consideration.
The behavior of the phase in this case is qualitatively
similar to the parametrization of Bailly et al. [41].

A minioverview of the behavior of ϕðs; tÞ in various
models can be found in [42].
The above difference in the behavior of the phase has

far-reaching consequences. In particular, in view of a
theorem by A. Martin [43], which states that the real part
of the even signature amplitude cannot have a constant sign
near t ¼ 0, we can expect that odd contributions, such as
the Odderon exchange, become significant at TOTEM
energies. This conclusion is consistent with that obtained
earlier [7] by comparing data of pp scattering and p̄p
scattering at different energies.
The next issue is the behavior of the nuclear amplitude in

the impact parameter representation [see the definition in
(12)]. The associated object is the overlap function,

Hinðs; bÞ ¼ ð1 − η2Þ=4; ð16Þ

where ηðs; bÞ is defined in (13). Both functions, hðs; bÞ and
Hinðs; bÞ, are dimensionless and are linked by the unitarity
relation, Imh ¼ jhj2 þHin. The quantities in this relation
are also called profile functions and have the meaning of
probability distributions that the total, elastic, inelastic,
respectively, scattering occurs at a distance b between the
centers of colliding particles. Accordingly, the mean square
of the impact parameter b for various types of scattering
may be defined as [44]

hb2iX ¼
R∞
0 bdbb2DXðs; bÞR∞
0 bdbDXðs; bÞ

: ð17Þ

Here DXðs; bÞ is the appropriate profile function,
X ¼ total, elastic, inelastic. The corresponding root-
mean-square (rms) values of b are given in Table IV.
The plots for the profile functions and for Rehðs; bÞ are

given in Fig. 3. Owing to the very weak energy dependence
of these functions, the ISR region is represented only at

TABLE III. Positions of the dip of ANðtÞ and zeroes of ReAN and ImAN .
ffiffiffi
s

p
31 GeV 45 GeV 63 GeV 7 TeV (I, II) 13 TeV (I, II)

tdip [GeV2] 1.42 1.35 1.31 0.52 0.52 0.47 0.47
tR [GeV2] 1.38 1.19 1.18 ∞ 0.83 ∞ ∞
tI [GeV2] 1.53 1.44 1.44 0.50 0.48 0.46 0.44

TABLE IV. rms values of b for the total, elastic, and inelastic scatterings.
ffiffiffi
s

p
31 GeV 45 GeV 63 GeV 7 TeV (I, II) 13 TeV (I, II)ffiffiffiffiffiffiffiffiffiffiffiffi

hb2itot
p

[fm] 0.96(3) 1.04(3) 1.04(5) 1.3(1.6) 1.2(3.4) 1.281(5) 1.288(13)ffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2iel

p
[fm] 0.67(2) 0.69(2) 0.70(3) 0.9(4.3) 0.9(9.6) 0.898(4) 0.903(7)ffiffiffiffiffiffiffiffiffiffiffiffi

hb2iin
p

[fm] 1.01(1) 1.10(1) 1.11(2) 1.4(2.8) 1.3(6.3) 1.401(3) 1.409(5)

4This behavior fundamentally distinguishes our solutions from
the solutions of [8–10] and [5] modified in [40], which are
characterized by tR < tI behavior.
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ffiffiffi
s

p ¼ 45 GeV. All the functions in the ISR case decrease
monotonically as b increases. In the TOTEM case, the
differences between the two solutions at 7 and 13 TeV are
almost indistinguishable on the chosen scale of the plots.
Unfortunately, some details of the behavior of the overlap
function Hin are not visible in Fig. 3. Therefore, we show
Hin in a higher resolution in the first two panels in Fig. 4. At
13 TeV, a small dip in the region of small b becomes clearly
visible in the cases of both solutions, approximately within
b < 0.5 fm. Simultaneously, the function Imh takes values
exceeding the critical value 1=2, and the phase shift δðs; bÞ
increases significantly in the vicinity of b ¼ 0; see the right
panel in Fig. 4. We interpret the totality of these facts as an
indication that the preresonant scattering mode is achieved
at 13 TeV. (So the resonant scattering mode proper, dis-
cussed in [34], occurs at higher energies.) Previously, a
dip in the overlap function at 13 TeV was observed in
[10,45–47]. At 7 TeV there is no obvious dip in our
approach, but there is a hint of a dip in the case of solution I
within b < 0.2 fm. At the same time, the Imh certainly
does not reach the critical value 1=2. It is worth noticing
that earlier the dip effect in the case of 7 TeV was obtained
[48] by artificially imputing the Bailly phase [41] to the
amplitude obtained in [5].

V. TRANSVERSE STRUCTURE
OF FAST-MOVING PROTONS

Now consider what we can learn from the above results
about the transverse structure of colliding protons. Here the
slope parameters Bn are of primary importance. Really,
substituting in place of DXðs; bÞ in (17) the Fourier-Bessel
of the imaginary part of the nth component in AN , we get

hb2in ¼ 2Bn; ð18Þ

where hb2in is the mean-square transverse size of the
corresponding interaction region. Recall that the three
exponentials in amplitude (2) may be considered as a
consequence of scattering of two layers of the protons off
each other. Namely, the scattering of the outer layers off
each other and the scattering of the inner layers off each
other lead to the exponentials with maximum and minimum
slopes, respectively, and the scattering of the larger off
smaller layers and vice versa leads to the formation of the
exponential with intermediate slope.
Next, we use the fact that, due to the short range of strong

interactions, the rms scattering radius is equal to the sum in
quadratures of the radii of the scattering structures [27] (see
also discussion in [49]). So, we may write

hb2i1 ¼ 2R2; hb2i2 ¼ R2 þ r2; hb2i3 ¼ 2r2;

ð19Þ

whereR and r are the radii of the larger and smaller layers,
respectively. A direct consequence of (18) and (19) is a
“sum rule,”

B1 þ B3 ¼ 2B2: ð20Þ

In all the cases (20) is fulfilled approximately, which
indirectly confirms the picture under discussion. The values
ofR and r defined by the first and third relations in (19), as
well as the value of the diffraction radius R0 ¼

ffiffiffiffiffiffi
B0

p
, are

given in Table V.
It follows from Table V that while the outer radii R0 and

R steadily grow with the energy, the inner radius r remains
constant at ISR energies, but increases sharply upon the
transition to TOTEM energies. This behavior is unexpected
from the conventional point of view. Indeed, the gradual

FIG. 3. The profile functions and Rehðs; bÞ at the ISR and TOTEM energies.

FIG. 4. The left two panels: the overlap function Hinðs; bÞ in higher resolution at 7 TeVand 13 TeV. The right panel shows the phase
shift δðs; bÞ at 45 GeV, 7 TeV, and 13 TeV.

M. L. NEKRASOV PHYS. REV. D 108, 034028 (2023)

034028-8



growth with the energy of the external transverse sizes is
predicted in many models, and is generally consistent with
the data on the growth of the total and elastic scattering
cross sections. However, the size of the inner layers, if it is
introduced, usually remains constant independent of the
energy. In particular, in [14,15,50] it is estimated to be a
constant of 0.2–0.3 fm, which coincides with r in Table V
at ISR energies. Below we discuss why the inner radius
may start to grow when transiting to TOTEM energies, but
first we discuss changes in the activity of the layers in the
scattering process.
The mentioned activity can be traced by the change in

the values of An parameters in relation to the change in the
sizes of the corresponding layers. In general, both values
should change at the same rate with increasing energy,
since both of them squared define the cross section.
However, the growth of A3 at the transition to TOTEM
energies occurs much faster than the growth of the inner
radius. Indeed, according to Table I and Table V, the ratio
r=R increases by about 1.3–1.6 times, while the A3=A1

increases by approximately 30–50 times. The difference is
huge. This clearly shows that the inner layer becomes much
more active in the scattering process. This conclusion is
also supported by the fact that A2 noticeably increases with
respect to A1 upon transition to 13 TeV.
We emphasize that the above behavior is a conse-

quence of the data and the assumption of a two-layer
structure of high-energy protons. So it is of particular
interest to identify a model that would explain the above
effects. Recall, this is the appearance of the inner layer,
the growth of its size, and the increase in its activity in
the transition to ultrahigh energies. In fact, such a model
exists; it is a modified parton model that takes into
account the transverse motions of the partons [26,27].
This model, which is a development of [25], predicts a
“diffusive” growth ∝

ffiffiffiffiffiffiffi
ln s

p
of the external transverse

sizes of the hadrons. However, starting from 2–7 TeV,
the growth becomes logarithmic. Simultaneously, a rar-
efaction of partons (a hollow) arises inside the hadrons,
which also grows logarithmically in transverse sizes. In
fact, the internal rarefaction is a layer, and its growth is
consistent with the data in Table V.
It is worth discussing the above features in more detail.

Actually, at low energies, the above model does not require
the rarefaction of partons to occur. Moreover, it assumes by
default that the interior of the hadrons is homogeneous.
However, this assumption is not mandatory. In particular, in

the rest frame, it can be assumed that at the center of the
protons there is a decrease in the density of quark matter
due to the fact that the valence quarks are somewhat
distanced from each other in order to ensure the tension
of the string connecting them. Simultaneously, a dense knot
of a Y-shaped flux tube can appear at the center, connecting
three valence quarks [51]. So, inhomogeneity may well
take place at the center of resting protons. Further, in
rapidly moving protons, due to time dilation, the role of
quantum fluctuations increases, and dissociation of valence
quarks and gluon structures occurs with the formation of
sea quarks and gluons, i.e., partons. At the initial stage,
their motion is characterized by diffuse expansion in
transverse directions and the same diffuse in the space
of transverse momenta, so that the relation ΔR⊥ΔK⊥ ∼ ln s
is satisfied, where ΔR⊥ and ΔK⊥ are the average variances
of the distance from the center and transverse momentum of
the peripheral partons [26]. Up to complete dissociation,
the inhomogeneity within the protons can be preserved. It is
quite possible that such an opportunity is realized at ISR
energies.
However, when the collision energy further increases

and exceeds 2–7 TeV, the behavior of the partons changes
radically [26,27]. Namely, instead of diffuse behavior,
a mode of correlated motion of the partons is formed,
in which the growth of their transverse momenta stops,
but the rate of growth of the occupied area increases
(ΔK⊥ ∼ const, but ΔR⊥ ∼ ln s). The latter effect leads to
a decrease in the average density of partons, since the law
of growth of the average number of the partons does not
change. As a result, the confinement forces pull out the
internal partons to the periphery, thus forming a hollow
inside.
From this point of view, one can understand why the

inner layer becomes more active. The point is that due to a
decrease in the local parton density at the center of protons,
the effective coupling constant in this region becomes large.
For this reason, the inner layer becomes more active when
interacting with the partons of another proton involved
in the collision. Earlier this phenomenon was discussed
in [34].

VI. SUMMARY AND DISCUSSION

We have shown that the differential cross section for
elastic pp scattering at the ISR and LHC energies can be
described using analytical representation of the amplitude
as the sum of three exponentials equipped with complex

TABLE V. The diffraction radius and the radii of the transverse layers in colliding protons.
ffiffiffi
s

p
31 GeV 45 GeV 63 GeV 7 TeV (I, II) 13 TeV (I, II)

R0 [fm] 0.68(2) 0.73(2) 0.73(3) 0.9(1.1) 0.9(2.4) 0.906(7) 0.907(7)
R [fm] 0.71(4) 0.88(5) 0.86(7) 0.91(2) 0.902(9) 1.051(13) 1.041(16)
r [fm] 0.233(8) 0.230(6) 0.232(9) 0.5(1.2) 0.5(1.6) 0.448(1) 0.447(2)
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phases, with the addition of the Coulomb and Coulomb-
nuclear contributions in the entire transfer region, and
strong “perturbative” contributions in the large-t region.
The proposed amplitude has been considered as a test for
the presence of two transverse layers in the scattering
protons. The success achieved in the description of the data
may be considered as a confirmation of this hypothesis.
Our description is multiparametric, including ten or 11

parameters in different versions, and it is intended to
describe data in a wide range of transfer. In this case,
the regions of very small and large t are specifically
important, since the real contributions to the amplitude
are significant there, which makes it possible to fix the
complex phase of the amplitude. So, in order to obtain
stable solutions, data covering the outmost areas is
needed. This requirement is met by the ISR data and the
TOTEM data at 13 TeV and, to a lesser extent, at 7 TeV.
Unfortunately, in the latter case some parameters were
poorly determined, possibly because of an insufficiently
wide range of t. For the above reason (the difficulty of
fixing the complex phase), we did not include in our
analysis the LHC data at 8 TeV and lower energies,
including ATLAS data, and the available data on the p̄p
scattering.
A distinctive feature of our analysis is that we do not

limit the Coulomb and Coulomb-nuclear contributions to
the region of very small t and consider them over the entire
transfer region. This was justified, since the mentioned
contributions turned out to be significant in the region of
the dip in the cross section. We believe that this made it
possible to improve the accuracy of determining some of
the scattering characteristics in comparison with those
previously obtained; see Table II.
Among the common properties at all energies, we note a

growth with the energy of the external sizes of the protons
and the rms values of the impact parameter for all types
of scattering, reconstructed from unitarity. The elastic
scattering is central in all cases. However, the inelastic
scattering, being central at the ISR energies, becomes
peripheral at 13 TeV. (This may be interpreted as reaching
the preresonant scattering mode at the indicated energy.)
Simultaneously, a sharp increase in the size and activity of

the inner layer in protons is observed. In fact, the former
effect is not surprising. It can be observed as a noticeable
increase in the slope of the secondary cone in the differ-
ential cross section in the transition to LHC energies [18].5

At the same time, the effect of a sharp increase in the
activity of the inner layer is fundamentally new. We have
discussed it and its interpretation in Sec. V.
Another noteworthy change in the transition to LHC

energies is a sharp change in the t dependence of the total
complex phase of the nuclear amplitude. Moreover, the t
dependence of the phase is established in such a way that
the real part of the nuclear amplitude does not change sign
near t ¼ 0. In view of A. Martin’s theorem [43] this result
can be interpreted that contributions with odd signature
become significant at ultrahigh energies. There are other
changes in the transition to LHC energies; see the dis-
cussions in Sec. IV.
In general, the approach discussed above is not a

completed scheme and can be further improved. In par-
ticular, one could include the t dependence in the phases
ϕn. Of course, this is expedient within a specific model, so
as not to increase the number of adjustable parameters.
Another direction of modernization is a more accurate
account of the Coulomb and Coulomb-nuclear contribu-
tions, including second-order contributions in the fine
structure constant α; see the discussion in [52]. In the case
of LHC energies, it would be very useful to obtain an
independent determination of the parameters of the “per-
turbative” contributions to the amplitude in the region of
large t. We hope that this will lead to an unambiguous
determination of the solutions. Ultimately, this will make it
possible to more accurately determine the characteristics of
colliding protons at ultrahigh energies.
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