
Exploring the linear space of Feynman integrals via generating functions

Xin Guan * and Xiang Li †

School of Physics, Peking University, Beijing 100871, China

Yan-Qing Ma ‡

School of Physics, Peking University, Beijing 100871, China,
and Center for High Energy Physics, Peking University, Beijing 100871, China

(Received 28 June 2023; accepted 27 July 2023; published 28 August 2023)

Deriving a comprehensive set of reduction rules for Feynman integrals has been a long-standing challenge.
In this paper, we present a proposed solution to this problem utilizing generating functions of Feynman
integrals. By establishing and solving differential equations of these generating functions, we are able to
derive a system of reduction rules that effectively reduce any associated Feynman integrals to their bases. We
illustrate this method through various examples and observe its potential value in numerous scenarios.
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I. INTRODUCTION

Scattering amplitudes play a crucial role in quantum field
theory as they connect theoretical predictions with exper-
imental observations. With the successful operation of the
Large Hadron Collider [1,2] and the proposal of next-
generation colliders [3–10], perturbative calculations of
scattering processes need to be pushed to higher orders,
such as next-to-next-to-leading order, to match the preci-
sion of experimental measurements. This requirement
necessitates the computation of scattering amplitudes at
multiloop levels. Utilizing Lorentz symmetry, these ampli-
tudes can be expressed as linear combinations of scalar
Feynman integrals (FIs). The calculation of scalar FIs poses
a significant challenge for state-of-the-art problems.
A family of scalar FIs can be represented as

Iðν⃗Þ ¼
Z YL

i¼1

dDli

iπD=2

D−νKþ1

Kþ1 � � �D−νN
N

Dν1
1 � � �DνK

K
; ð1Þ

where D ¼ 4 − 2ϵ represents the spacetime dimension, L is
the number of loops, li are the loop momenta, D1;…;DK
are the inverse propagators,DKþ1;…;DN are the irreducible
scalar products (ISPs) introduced for completeness,
ν1;…; νK can be any integers, and νKþ1;…; νN can only

be nonpositive integers. The rank of an integral is defined as
the opposite value of the sum of all negative powers, and the
dots of an integral represent the sum of all positive powers
subtracted by the number of positive indices. For instance,
the integral Ið1; 2; 2; 3;−1;−2Þ has rank 3 and dots 4.
It has been proven that a family of FIs forms a finite-

dimensional linear space [11] with bases known as master
integrals (MIs). Therefore, the prevailing method for calcu-
lating scalar FIs involves two distinct tasks. The first task is
FI reduction, which aims to express FIs as linear combina-
tions of MIs [12–52]; while the second is to compute these
MIs [13,53–107]. Notably, based on the auxiliary mass flow
method [100–105], any given FI can be automatically
calculated to high precision as far as the reduction has been
achieved. However, FI reduction is a critical yet formidable
task in complicated multiloop processes.
Integration-by-parts (IBP) identities [12] combining with

the Laporta algorithm [14] is a widely used approach to
realize reduction. Even though powered by the finite field
method [21–26] to avoid intermediate expression swell, and
syzygy equations [17–19,108–114] and block-triangular
form [27–29] to reduce the size of IBP system, reduction
of FIs with high power of denominators or ISPs is still
extremely time and resource consuming. Various other
methods have been proposed to bypass IBPs, but each
approach has its own difficulties. For instance, in the method
based on intersection theory [44–47], the calculation of
intersection numbers for multivariable problems remains
challenging. In the methods based on large spacetime
expansion [15,16] or large auxiliary mass expansion [27],
it is hard to obtain very higher order expansion terms.
For a long time, the ultimate goal of FI reduction

has been to find a complete set of reduction rules,
known as recurrence relations, with general powers ν⃗.
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These recurrence relations should efficiently reduce all
integrals in a family to the MIs. For simple problems, such
recurrence relations can be constructed by analyzing IBP
identities manually, see, e.g., Refs. [12,115–120] for early
works. There are also very powerful reduction programs
for specific problems, which can tackle massive tadpoles,
like MATAD [121], massless self-energy topology at three
and four loop, respectively, called Mincer [122,123] and
FORCER [124]. A tailored heuristical approach for general
problems is also available in LiteRed [41]. However, these
construction procedures are obscure and success is not
guaranteed.
From an algebraic geometry perspective, the establish-

ment of recurrence relations becomes possible once the
Gröbner bases are known. Gröbner bases serve as a
fundamental tool in the analysis of polynomial ideals,
and significant efforts have been dedicated to this area of
research [125–131]. However, computing Gröbner bases
for the noncommutative algebra generated by the IBP
relations remains an exceedingly challenging task.
In this paper, we propose a general approach to deriving

recurrence relations for arbitrary Feynman integral families
by setting up and solving differential equations (DEs) for
generating functions (GFs) associated with these integrals.
By doing so, we are able to effectively reduce the infinite
number of Feynman integrals within a family to a finite set
of MIs. This reduction is achieved through solving a linear
system with finite size, thereby providing a solution to this
long-standing and challenging problem with reasonable
computational complexity.
We employ the recently released Blade package [29] to

construct DEs of GFs. To demonstrate the performance of
the GF method, we apply it to some examples, spanning
from simple and straightforward problems to cutting-edge
and complex scenarios.

II. GENERATING FUNCTIONS

Our approach is motivated by the auxiliary mass flow
method [27], where by introducing an auxiliary mass
term η to each denominator and expanding around η ¼ 0
using DEs with respect to η, one can obtain values of a
series of FIs with arbitrary powers of denominators.
It means that the FI with auxiliary masses serves as a GF
of these original FIs. Similar ideas have also been
presented in Ref. [125], where Gröbner bases are
computed by solving DEs when all propagators, includ-
ing ISPs, have different masses. In Ref. [132], the
summation of the nonstandard term ðΔ · pÞn into a linear
propagator 1=ð1 − xΔ · pÞ constructs a kind of GF and
has been used in [133–135] for reduction of high rank
integrals. In Ref. [136], GFs are employed to reduce
arbitrary one-loop tensor integrals by introducing an
auxiliary vector [137–141]. In this paper, we propose
to use the GF method to reduce all FIs in any given
family.

One choice of GFs for the integral family in Eq. (1) can
be defined as follows:

Gν⃗ðx⃗; η⃗Þ ¼
Z YL

i¼1

dDli

iπD=2

eZ
x⃗ QN

i¼Kþ1D
−νi
iQ

K
i¼1ðDi − ηiÞνi

; ð2Þ

with top-sector corner integral given by

Gtopðx⃗; η⃗Þ ¼
Z YL

i¼1

dDli

iπD=2

eZ
x⃗

Q
K
i¼1ðDi − ηiÞ

; ð3Þ

where νi are given integers, ηi are auxiliary masses and
Zx⃗ ¼ P

N
i¼Kþ1 xiDi is a linear combination of ISPs. FIs in

Eq. (1) can be generated from Gtopðx⃗; η⃗Þ by expanding ηi
around 0 or∞ and xi around 0. For example, FIs in the top
sector can be generated by taking the following limit1:

Iðν⃗Þ ¼ lim
x⃗→0

lim
η⃗→0

∂
ν⃗
x∂

ν⃗
ηGtopðx⃗; η⃗Þ; ð4Þ

where

∂
ν⃗
x ≡

YN
i¼Kþ1

∂
νi

∂xiνi
; ð5Þ

∂
ν⃗
η ≡

YK
i¼1

1

ðνi − 1Þ!
∂
νi−1

∂ηi
νi−1

: ð6Þ

Similar to FIs, using methods such as the IBP method,
we find that the GFs defined in Eq. (2) form a finite-
dimensional linear space. We can choose a set of MIs of

GFs that cover Gtopðx⃗; η⃗Þ, denoted as G⃗ðx⃗; η⃗Þ, and derive
DEs for them:

∂

∂xi
G⃗ ¼ AiG⃗; ð7Þ

∂

∂ηi
G⃗ ¼ BiG⃗: ð8Þ

Since the FIs are expansion coefficients of GFs, by

expanding G⃗ðx⃗; η⃗Þ using DEs, we can obtain a system of
linear relations between FIs. These relations are the desired
recurrence relations that efficiently reduce all target FIs to
the minimal set of MIs. Therefore, once we obtain the DEs
for the MIs of GFs, the reduction of FIs in the correspond-
ing family is solved.

1As in general ηi ¼ 0 and xi ¼ 0 are singular points of G, the
limit η⃗ → 0 and x⃗ → 0 means to select the Taylor branch of the
GFs, and thus FIs are coefficients of Taylor expansion of GFs.
Because each branch of GFs satisfies the same DEs with respect
to η⃗ and x⃗, we will not emphasize the Taylor branches in the rest
of the paper.
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In physical Feynman amplitudes, one often encounters
FIs with high rank but very small dots. In such cases, we
can define simpler GFs as follows:

Gν⃗ðx⃗Þ ¼
Z YL

i¼1

dDli

iπD=2

eZ
x⃗

Q
N
i¼1 D

νi
i
; ð9Þ

and corresponding simpler MIs G⃗ðx⃗Þ, which have fewer
extra variables. By setting up and solving partial DEs of

G⃗ðx⃗Þ with respect to xi, we can achieve the reduction of
original FIs with arbitrary rank.
However, in practice, we find that there is an even better

approach, denoted as fixed direction scheme, by setting

x⃗ ¼ xc⃗; ð10Þ

where x is a variable and c⃗ are some fixed numbers. With
each chosen set of values for c⃗, we define GFs,

Gc⃗
ν⃗ðxÞ ¼

Z YL
i¼1

dDli

iπD=2

exZ
c⃗

Q
N
i¼1D

νi
i
; ð11Þ

and set up DEs for the corresponding MIs G⃗c⃗ðxÞ with
respect to x,

∂

∂x
G⃗c⃗ ¼ Ac⃗G⃗c⃗: ð12Þ

By expanding G⃗c⃗ðxÞ around x ¼ 0 using the above DEs, we
can obtain a system of relations between FIs. By simulating
a sufficient number of c⃗ values, we can generate enough
relations to reduce the original FIs of a certain rank. One
advantage of the fixed direction scheme is that there are
only two singularities in x space, namely x ¼ 0 and ∞,
which makes the DEs with respect to x relatively simple
and easier to achieve.
It is important to note that there are many other possible

choices of GFs. For example, one possibility is to replace
eZ

x⃗
by 1=ð1 − Zx⃗Þ. However, we find that this choice is

generally less efficient because the singularities in the x⃗
plane become more complicated.

III. ONE-LOOP N POINT

For a general one-loop N-point family shown in Fig. 1,
we aim to achieve a comprehensive set of reduction rules
with general powers of propagators through the method of
GFs. The obtained recurrence relations are not new, which
has been derived previously, e.g. in Ref. [142].
We consider a set of external momenta k1;…; kN which

satisfy momentum conservation
P

N
i¼1 ki ¼ 0. Inverse

propagators can be defined as

Di ¼ ðlþ riÞ2 −m2
i ; i ¼ 1;…; N; ð13Þ

where l is loop momentum, the momenta ri are defined by
ri ¼ ki þ ri−1 for i ¼ 1;…; N, and r0 ¼ rN ¼ 0 by defi-
nition. For the sake of clarity, we omit the infinitesimal
imaginary part iϵ in inverse propagators, since the reduc-
tions are independent of it. As there is no ISP at the one-
loop level, we introduce GFs as

Gν⃗ðη⃗Þ ¼
Z

dDl
iπD=2

1Q
N
i¼1ðDi − ηiÞνi

; ð14Þ

and MIs of GFs can be chosen as that with νi being 0 or 1.
The IBP equations

Z
dDl
iπD=2

∂

∂lμ

lμ þ rμiQ
N
j¼1ðDj − ηjÞ

¼ 0; i ¼ 1;…; N; ð15Þ

lead to DEs of GFs:

XN
j¼1

ðRji − ηj − ηiÞ
∂Gtop

∂ηj

¼
XN
j≠i

∂Gtop−e⃗i
∂ηj

þ ð1 −Dþ NÞGtop; ð16Þ

where Rji ¼ ðrj − riÞ2 −m2
i −m2

j is the Gram matrix of
the one-loop N-point family, “top − e⃗i” means
“ð1;…; 1Þ − e⃗i” and e⃗i with i ¼ 1;…; N are unit vectors.
By expanding Eq. (16) at small value of η⃗, the coef-

ficients of
Q

N
k¼1 η

νk−1
k result in

XN
j¼1

RjiνjIðfνk þ δkjgÞ

¼
XN
j¼1

νjIðfνk þ δkj − δkigÞ −
�
D −

XN
j¼1

νj

�
IðfνkgÞ;

ð17Þ

which can reduce all FIs with nonzero dots to MIs.
Therefore, we find that the DEs of GFs provide all desired
recurrence relations at the one-loop level. Our result is
consistent with that presented in Eq. (1) of Ref. [142].

FIG. 1. One-loop N-point diagram.
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Furthermore, by expanding Eq. (16) at small value of
1=ηi for some index i and small value of ηi for the others,
we can gain the same recurrence relations in Eq. (17),
which can reduce FIs with negative powers. FIs with
negative powers can also be viewed as tensor integrals,
which can be related to scalar integrals via Lorentz
decomposition [143]. Alternatively, the tensor integrals
can also be reduced by GFs with auxiliary vector [136].

IV. TWO-LOOP SUNRISE

Now let us give a simple two-loop example, the massless
sunrise family shown in Fig. 2. The family has two-loop
momenta l1 and l2 and one external momenta k, satisfying
k2 ¼ s. We choose a complete set of Lorentz scalars as

D1 ¼ l1
2; D2 ¼ l2

2; D3 ¼ ðl1 þ l2 þ kÞ2;
D4 ¼ l1 · k; D5 ¼ l2 · k; ð18Þ

where the last two are ISPs. We choose the ISPs as products
of loop momenta and external momenta, instead of quad-
ratic forms like ðl1 þ kÞ2, since the former have simpler
DEs in practice.
Although we can construct DEs with respect to xi and ηi

to obtain recurrence relations to reduce all FIs in the family,
this is not necessary. Instead, reduction problems can be
usually divided into two cases: (1) with large rank but small
dots; and (2) with large dots but small rank. We thus will
only deal with these two cases.

Considering arbitrary powers of ISPs, we choose GFs
defined in Eq. (9):

Gν⃗ðx⃗Þ ¼
Z

dDl1dDl2

ðiπD=2Þ2
D−ν4

4 D−ν5
5 eZ

x⃗

Dν1
1 D

ν2
2 D

ν3
3

; ð19Þ

where ν4, ν5 are nonpositive integers only. MIs can be
chosen as

G⃗ ¼ ðGð1;1;1;0;0Þ; Gð1;1;1;0;−1Þ; Gð1;1;1;−1;0ÞÞ; ð20Þ

which include only top-sector integrals because all sub-
sector integrals in this family are scaleless and vanishing in
dimensional regularization. Using Blade, we get the DEs
with respect to xi:

∂

∂xi
G⃗ ¼ AiG⃗; ð21Þ

where

A4 ¼

0
BB@

0 1 0
ð−1þϵÞs

x4
ð−1þϵÞð3x4−2x5Þ

x4ðx4−x5Þ − s
2

− ð−1þϵÞx5
x4ðx4−x5Þ

− s2
4

− −1þϵ
x4−x5

− s
2

−1þϵ
x4−x5

− s
2

1
CCA; ð22Þ

A5 ¼

0
BB@

0 0 1

− s2
4

− −1þϵ
x4−x5

− s
2

−1þϵ
x4−x5

− s
2

ð−1þϵÞs
x5

ð−1þϵÞx4
x5ðx4−x5Þ

ð−1þϵÞð2x4−3x5Þ
x5ðx4−x5Þ − s

2

1
CCA: ð23Þ

By expanding the DEs to xν44 x
ν5
5 with arbitrary ν4 and ν5,

we obtain three different linear relations between FIs.
Because of the permutation symmetry of the sunrise FIs,
Iðν4; ν5Þ≡ Ið1; 1; 1; ν4; ν5Þ ¼ Ið1; 1; 1; ν5; ν4Þ, we only
need to consider the cases where ν4 ≤ ν5 ≤ 0 and thus
we have the following relation:

c0Iðν4; ν5Þ ¼ c1Ið1þ ν4; ν5Þ þ c2Ið1þ ν4; 1þ ν5Þ þ c3Ið2þ ν4; ν5Þ; ð24Þ

where

c0 ¼ 4ð−1þ 2ϵþ ν4Þ½ðν5 − 1Þðν4 þ ν5 − 2Þ þ ϵðν24 − ν25 þ 7ν5 − 7Þ þ 3ϵ2ð2þ ν4 − ν5Þ�;
c1 ¼ −2s½ðν34 þ ν24ð2ν5 − 3Þ þ ν4ð1 − ν5Þ þ ðν5 − 1Þ2Þ þ ϵðν34 þ ν24ð8 − ν5Þ þ 2ν4ð3ν5 − 5Þ − ðν5 − 1Þð2ν5 − 5ÞÞ

þ ϵ2ð2ν24 þ ν4ð19 − 3ν5Þ þ ð5 − ν5Þð1 − ν5ÞÞ þ ϵ32ð1 − ν4 þ ν5Þ�;
c2 ¼ −s2ð−1þ ϵÞð−1þ 2ϵþ ν4Þν5ð−1þ 2ϵþ ν5Þ;
c3 ¼ −s2ð1þ ν4Þð2ϵþ ν4Þðν4 þ ν5 − 2 − ϵðν5 − 5Þ − 2ϵ2Þ:

This recurrence relation can reduce Iðν4; ν5Þ with ν4 ≤ ν5 ≤ 0 to Ið0; 0Þ. Note that, as Eq. (24) is an analytic function of ν4
and ν5, it also holds even if ν4 and ν5 are positive.

FIG. 2. Two-loop sunrise diagram.
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To obtain the reduction of arbitrary powers of propa-
gators with no ISP, we introduce GFs:

Gν⃗ðη⃗Þ ¼
Z

dDl1dDl2

ðiπD=2Þ2
1

ðD1 − η1Þν1ðD2 − η2Þν2ðD3 − η3Þν3
:

ð25Þ

MIs can be effectively chosen as

G⃗ ¼ ðGð1;1;1Þ; Gð2;1;1Þ; Gð1;2;1Þ; Gð1;1;2ÞÞ;

because the expansion coefficients of Gν⃗ðη⃗Þ are scaleless

if any νi ≤ 0. The DEs of G⃗ with respect to ηi and the
corresponding recurrence relations can be similarly
obtained, which are available in the ancillary file [144].

V. TWO-LOOP DOUBLE BOX

In this section, we take the double-box diagram shown
in Fig. 3 as an example to demonstrate that: (1) the fixed
direction scheme is usually preferred; and (2) the con-
struction of DEs of GFs is usually much easier than the
construction of recurrence relations of original FIs directly.
In this problem, there are four external momenta k1, k2,

k3, k4 satisfying on-shell conditions k2i ¼ 0 and momentum
conservation

P
4
i¼1 ki ¼ 0, which leaves two independent

scales s ¼ 2k1 · k2 and t ¼ 2k2 · k3. We choose a complete
set of Lorentz scalars as

D1 ¼ l1
2; D2 ¼ ðl1þ k1Þ2; D3 ¼ ðl1þ k1þ k2Þ2;

D4 ¼ l2
2; D5 ¼ ðl2 −l1Þ2; D6 ¼ ðl2þ k1þ k2Þ2;

D7 ¼ ðl2 − k4Þ2; D8 ¼ l1 · k3; D9 ¼ l2 · k1; ð26Þ

where the last two are ISPs. DEs of GFs in this family are
too long to present, and they are available in the ancillary
file [144].

A. Fixed direction scheme

Based on GFs defined in Eq. (9), there are 108 MIs with
five in the top sector. We construct DEs of these MIs with
respect to variables xi (i ¼ 8, 9),

∂

∂xi
G⃗ ¼ AiG⃗; ð27Þ

and find that there are many singularities in the coefficient
matrices. For example, the matrix elements ðA8Þ6;6, asso-
ciated with ∂x8Gð0;0;1;1;1;0;0;−1;−1Þ and Gð0;0;1;1;1;0;0;−1;−1Þ,
possess a denominator

denððA8Þ6;6Þ ¼ 2x8 × ðsx28 þ 2sx8x9 þ 2tx8x9 þ sx29Þ
× ðsx28 þ 2sx8x9 þ 4tx8x9 þ sx29Þ: ð28Þ

The complicated denominators lead to complicated numer-
ators, and thus a large number of numeric sample points are
required to reconstruct the matrix Ai. Therefore, it is very
time consuming.
Alternatively, we can choose the fixed direction scheme

defined in Eq. (11). In this scheme there are the same number
of MIs as the previous scheme, but DEs with respect to x,

∂

∂x
G⃗c⃗ ¼ Ac⃗G⃗c⃗; ð29Þ

are much simpler. For example, by choosing c8 ¼ 1 and

c9 ¼ 2, the denominator of the matrix element ðAð1;2Þ
x Þ6;6

becomes

denððAð1;2Þ
x Þ6;6Þ ¼ 2xð9sþ 4tÞ; ð30Þ

which results in also simpler numerators. In fact, for any
given value of c⃗, one can always choose MIs of GFs2 so that
Ac⃗ only has singularities at x ¼ 0 and x ¼ ∞, and thus the
construction of Ac⃗ is much easier than that of Ai in Eq. (27).
As shown in Table I, construction of Ai, which are functions
of s; t; ϵ; x8 and x9, needs 130 seconds CPU time; while the
construction of Ac⃗ with given value of c⃗, which are functions
of s, t, ϵ and x, needs 13 seconds.
However, to reduce top-sector FIs with rank r, which

amounts to rþ 1 FIs, in the fixed direction scheme we need
to sample c⃗ for ðrþ 1Þ=3 times. This is because we find
that, for each given value of c⃗, DEs of GFs can provide
three linearly independent relations among top-sector FIs

FIG. 3. Two-loop double-box diagram.

TABLE I. Comparing the GFs method with all variables
scheme and fixed direction scheme. #MIs represents the number
of MIs of GFs. tibp represents CPU time to solve the trimmed
numeric IBP system. Points represents number of numeric
sample points to fit s⃗, ϵ and x⃗. Primes represents number of
large prime for rational reconstruction. ttotal represents total CPU
time of IBP reduction for constructing DEs of GFs.

Scheme #MIs tibpðsÞ Points Primes ttotalðsÞ
All 108 0.02 3307 2 130
Fixed direction 108 0.02 324 2 13 × ðrþ 1Þ=3

2One can use the algorithms presented in Refs. [30,31]. The
original purpose of these algorithms is to choose proper MIs so
that no coupled singularities between spacetime dimensionD and
kinematic variables are present in reduction coefficients.
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with highest rank. Therefore, when rank r < 29, which is
much larger than rank of FIs in usual physical problems, the
efficiency of the fixed direction scheme is better.

B. Comparison with constructing recurrence
relations directly

We note that using Blade one can reduce FIs with arbitrary
powers of ISPs to lower powers, and thus construct recurrence
relations directly. It is necessary to compare the efficiency
between this direct way and the way based on GFs. To this
end, we introduce FIs with arbitrary powers of ISPs:

Iν⃗ðn1; n2Þ ¼
Z

dDl1dDl2

ðiπD=2Þ2
Dn1

8 Dn2
9Q

7
i¼1D

νi
i
; ð31Þ

where the ISPs fD8;D9g could be linear form: fl1 · k3;
l2 · k1g; or quadratic form: fðl1 þ k3Þ2; ðl2 þ k1Þ2g.
Using Blade, we can achieve the reduction of FIs, like

reducing Iν⃗ðn1 þ 1; n2Þ and Iν⃗ðn1; n2 þ 1Þ to Iν⃗ðn1; n2Þ,
which are the desired recurrence relations. The CPU time
to achieve recurrence relations in this way3 is shown in
Table II, which is clearly less efficient comparing with the
GF method shown in Table I. This comparison indicates the
superiority of GF for generating recurrence relations.

VI. TWO-LOOP DOUBLE PENTAGON

In this section, we use the GFs method to deal with a
cutting-edge problem, the massless two-loop double-
pentagon family shown in Fig. 4. The reduction of FIs
in this family up to rank 5, which are relevant for five-light-
parton scattering amplitudes in QCD, has been previously
accomplished [28,39,145]. There are five external
momenta k1, k2, k3, k4, k5 satisfying on-shell conditions
k2i ¼ 0 and momentum conservation

P
5
i¼1 ki ¼ 0, leaving

five kinematic variables s12¼k1 ·k2, s23 ¼ k2 · k3,
s13 ¼ k1 · k3, s14 ¼ k1 · k4, s34 ¼ k3 · k4 as the mass scales.
We choose a complete set of Lorentz scalars as

D1 ¼ l1
2; D2 ¼ ðl1 þ k1Þ2; D3 ¼ ðl1 þ k1 þ k2Þ2;

D4 ¼ l2
2; D5 ¼ ðl2 − l1Þ2; D6 ¼ ðl2 − l1 þ k5Þ2;

D7 ¼ ðl2 − k3 − k4Þ2; D8 ¼ ðl2 − k4Þ2;
D9 ¼ l1 · k3; D10 ¼ l2 · k1; D11 ¼ l2 · k2; ð32Þ

where the last three are ISPs.
To reduce powers of ISPs, we define the following GFs:

Gc⃗
ν⃗ðxÞ ¼

Z
dDl1dDl2

ðiπD=2Þ2
exZ

c⃗

Q
11
i¼1D

νi
i
: ð33Þ

There are 908 MIs of these GFs in total and 18 MIs in the
top sector. MIs in the top sector can be chosen as

n
Gc⃗

ð1;…;1;0;0;0Þ; G
c⃗
ð1;…;1;−1;0;0Þ; G

c⃗
ð1;…;1;0;−1;0Þ;

Gc⃗
ð1;…;1;0;0;−1Þ; G

c⃗
ð1;…;1;−1;−1;0Þ; G

c⃗
ð1;…;1;−1;0;−1Þ;

Gc⃗
ð1;…;1;0;−1;−1Þ; G

c⃗
ð1;…;1;−2;0;0Þ; G

c⃗
ð1;…;1;0;−2;0Þ;

Gc⃗
ð1;…;1;0;0;−2Þ; G

c⃗
ð1;…;1;−1;−1;−1Þ; G

c⃗
ð1;…;1;−2;0;−1Þ;

Gc⃗
ð1;…;1;−1;−2;0Þ; G

c⃗
ð1;…;1;−1;0;−2Þ; G

c⃗
ð1;…;1;0;−2;−1Þ;

Gc⃗
ð1;…;1;0;−1;−2Þ; G

c⃗
ð1;…;1;0;−2;−2Þ; G

c⃗
ð1;…;1;−2;−2;0Þ

o
;

which is denoted as (4,0) type because the max rank is 4
and the max dot is 0. Alternatively, MIs can be chosen as

n
Gc⃗

ð1;1;1;1;1;1;1;1;0;0;0Þ; G
c⃗
ð1;1;1;1;1;1;1;2;0;0;0Þ;

Gc⃗
ð1;1;1;1;1;2;1;1;0;0;0Þ; G

c⃗
ð1;1;1;1;2;1;1;1;0;0;0Þ;

Gc⃗
ð1;1;1;2;1;1;1;1;0;0;0Þ; G

c⃗
ð1;1;2;1;1;1;1;1;0;0;0Þ;

Gc⃗
ð1;2;1;1;1;1;1;1;0;0;0Þ; G

c⃗
ð2;1;1;1;1;1;1;1;0;0;0Þ;

Gc⃗
ð1;2;1;1;1;2;1;1;0;0;0Þ; G

c⃗
ð1;2;1;2;1;1;1;1;0;0;0Þ;

Gc⃗
ð1;2;2;1;1;1;1;1;0;0;0Þ; G

c⃗
ð2;1;1;1;1;1;1;2;0;0;0Þ;

Gc⃗
ð2;1;1;1;1;2;1;1;0;0;0Þ; G

c⃗
ð2;1;1;1;2;1;1;1;0;0;0Þ;

Gc⃗
ð2;1;1;2;1;1;1;1;0;0;0Þ; G

c⃗
ð2;2;1;1;1;1;1;1;0;0;0Þ;

Gc⃗
ð1;3;1;1;1;1;1;1;0;0;0Þ; G

c⃗
ð3;1;1;1;1;1;1;1;0;0;0Þ

o
;

TABLE II. Comparison of constructing recurrence relations
using IBP reduction directly with different choices of ISPs (linear
or quadratic form). #MIs represents the number of MIs of FIs
with general powers. Points represents the number of numeric
sample points to fit variables s⃗, ϵ, and n⃗. Other information is the
same as that in Table I.

Form #MIs tibpðsÞ Points Primes ttotalðsÞ
Linear 60 0.07 20139 3 4220
Quadratic 63 0.14 8031 2 2300 FIG. 4. Two-loop double-pentagon diagram.

3Although we can follow the fixed direction scheme of GF to
introduce D̃n

9 ¼ ðc1D8 þ c2D9Þn in the numerator in Eq. (31), it
cannot improve the efficiency because there are infinity number
of singularities in the n plane.
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which is denoted as (0,2) type because the max rank is 0
and the max dot is 2.
Using Blade, we set up closed DEs of these MIs with

respect to x. As shown in Table III, to reduce each point (i.e.,
given values of kinematic variables, ϵ, c⃗, and x), it costs
4.9(3.6) seconds and uses memory up to 12.4(2.7) GB,
respectively for (4,0) type and (0,2) type. To fully construct
the x dependence of the DEs, we need to simulate 32 or
108 different values of x, respectively. Furthermore, to
reduce top-sector integrals with rank r, we need to simulate
ð2þ rÞð1þ rÞ=24 or ð2þ rÞð1þ rÞ=2 different choices
of c⃗, respectively.
As a comparison, in Table IV we present the time and

resource consumption for reducing FIs in the double-
pentagon family with different ranks using IBP method
directly. It is clear that the memory used in the IBP method
increases fast as the rank becoming larger. In contrast, in
the GFs method, the memory is a constant value, inde-
pendent of the rank of the target FIs to be reduced. In this
example, when r > 4, the GFs method with the MIs
type (0,2) needs smaller memory.
For each point, the time consumption in the GFs method

is compatible with the IBP method for r ¼ 5. This is
understandable because, to construct the DEs of GFs with
the MI type (4,0), one needs to reduce rank 5 GFs to lower
ranks. However, because currently 32 points are needed to
reconstruct the x-dependent DEs, the total CPU time,
32 × 4.9 × ð2þ rÞð1þ rÞ=24, is still too long. As there
are only two singularities x ¼ 0 or∞ in the x plane, which

are respectively regular singularity and essential singular-
ity, it is possible to find a better set of MIs so that the DEs
are in a canonical form,

∂

∂x
G⃗c⃗ ¼

�
Cc⃗
1

x
þ Cc⃗

0

�
G⃗c⃗; ð34Þ

whereCc⃗
1 andC

c⃗
0 are independent of x. When the DEs of the

MIs satisfy the canonical form, only two points of x are
needed to fully reconstruct the DEs instead of 32 points.
In this case, the CPU time cost by the GFs method is
2 × 4.9 × ð2þ rÞð1þ rÞ=24, comparable with that of the
IBP method when r ¼ 7 and the GFs method with the MI
type (4,0) becomes more efficient when r > 7.
Note that the DEs of the sunrise family in Eq. (21) are

already in the canonical form if we set xi ¼ xci. For general
cases, we will study the construction of canonical DEs of
GFs in future publications.

VII. SUMMARY AND OUTLOOK

In this paper, we have introduced a general method for
constructing recurrence relations of Feynman integrals
(FIs) using generating functions (GFs). We have demon-
strated that by formulating and solving the differential
equations (DEs) associated with GFs, we can effectively
reduce FIs within a given family.
Compared to the plain IBP method, the GFs method

proves to be significantly more efficient for constructing
recurrence relations. When it comes to reducing FIs with
specific ranks, the GF method offers advantages in terms of
time and resource consumption, particularly when the rank
is large. However, for smaller ranks, the GF method may
not provide the same level of efficiency. This aspect makes
the GF method particularly appealing for addressing high-
rank problems, such as effective field theory problems, like
the calculation of twist-two operator matrix elements in
QCD, and gravitational scattering problems. For example,
in the calculation of Mellin moments of splitting func-
tion by twist-two operator matrix elements, the rank of
Feynman integrals is Oð20Þ at the four-loop level in the
planar limit [146] and that is Oð500Þ or higher for the full
three-loop contribution [133–135].
An important aspect to study is the selection of appro-

priate bases that lead to DEs of GFs in a canonical form
defined in Eq. (34). Techniques developed in recent years for
constructing ϵ forms of FIs [84] could potentially be useful
in this context, although further investigation is necessary.
Given that we employ IBP relations to construct DEs of

GFs, any advancements in IBP reduction techniques would
also benefit our method. One possible direction is to
integrate the syzygy method with the GFs method, utilizing
the latter to handle the reduction of subsector integrals.
By doing so, the DEs of GFs in the top sector can be
derived with the assistance of DEs of GFs in the subsectors.

TABLE III. Information for reducing double-pentagon FIs using
the GF method. MIs represents the max (rank, dots) of different
choices of master integrals. tibp represents the time spent to solve
the trimmed IBP system numerically for one time. Memibp

represents the memory used to load and trim the raw IBP system,
usually the maximal memory consumption in the calculation.
Points means number of numeric sample points of x to reconstruct
x dependence of DEs per c⃗. Number of c⃗ represents the number of
samples of c⃗ needed to reduce rank r FIs.

MIs tibpðsÞ MemibpðGBÞ Points Number of c⃗

(4,0) 4.9 12.4 32 ð2þ rÞð1þ rÞ=24
(0,2) 3.6 2.7 108 ð2þ rÞð1þ rÞ=2

TABLE IV. Information for reducing double-pentagon FIs using
the plain IBP method. tibp represents the time spent to solve the
IBP system numerically using one CPU. Memibp represents the
maximal memory consumption in solving the IBP system.

Rank tibpðsÞ MemibpðGBÞ
4 1.4 2.8
5 3.9 7.0
6 11 15.8
7 29 33.2
8 66 65.6
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This integration of techniques enables us to fully harness
the capabilities of the GF method, resulting in more
efficient computations.
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